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Abstract The hexagonal polygon model arises in a natural way via a transformation of the
1–2 model on the hexagonal lattice, and it is related to the high temperature expansion of the
Ising model. There are three types of edge, and three corresponding parameters α, β, γ > 0.
By studying the long-range order of a certain two-edge correlation function, it is shown
that the parameter space (0,∞)3 may be divided into subcritical and supercritical regions,
separated by critical surfaces satisfying an explicitly known formula. This result complements
earlier work on the Ising model and the 1–2model. The proof uses the Pfaffian representation
of Fisher, Kasteleyn, and Temperley for the counts of dimers on planar graphs.

Keywords Polygon model · 1–2 model · High temperature expansion · Ising model ·
Dimer model · Perfect matching · Kasteleyn matrix

Mathematics Subject Classification 82B20 · 60K35 · 05C70

1 Introduction

The polygon model studied here is a process of statistical mechanics on the space of disjoint
unions of closed loops on finite subsets of the hexagonal lattice H with toroidal boundary
conditions. It arises naturally in the study of the 1–2 model, and indeed the main result of
the current paper is complementary to the exact calculation of the critical surface of the 1–2
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734 G. R. Grimmett, Z. Li

model reported in [5,6] (to which the reader is referred for background and current theory of
the 1–2 model). The polygon model may in addition be viewed as an asymmetric version of
the O(n) model with n = 1 (see [2] for a recent reference to the O(n) model).

Let G = (V, E) be a finite subgraph of H. The configuration space �G of the polygon
model is the set of all subsets S of E such that every vertex in V is incident to an even number
of members of S. The measure of the model is a three-parameter product probability measure
conditioned on belonging to �G , in which the three parameters are associated with the three
classes of edge (see Fig. 1).

This model may be regarded as the high temperature expansion of a certain inhomogenous
Ising model on the hexagonal lattice. The latter is a special case of the general eight-vertex
model of Lin and Wu [16] (see also [25]). Whereas Lin and Wu concentrated on a mapping
between their eight-vertex model and a generalized Ising model, the current paper utilizes
the additional symmetries of the polymer model to calculate in closed form the equation of
the critical surface for a given choice of order parameter. The parameter space of the polymer
model extends beyond the set of parameter values corresponding to the classical Ising model,
and thus our overall results do not appear to follow from classical facts (see also Remarks
2.2 and 2.4).

The order parameter used in this paper is the one that corresponds to the two-point cor-
relation function of the Ising model, namely, the ratio ZG,e↔ f /ZG , where ZG,e↔ f is the
partition function for configurations that include a path between two edges e, f , and ZG is
the usual partition function.

Here is an overview of the methods used in this paper. The polymer model may be
transformed into a dimer model on an associated graph, and the above ratio may be expressed
in terms of the ratio of certain counts of dimer configurations. The last may be expressed (by
classical results of Kasteleyn [7,8], Fisher [3], and Temperley and Fisher [19]) as Pfaffians
of certain antisymmetric matrices. The squares of these Pfaffians are determinants, and these
converge as G ↑ H to the determinants of infinite block Toeplitz matrices. Using results of
Widom [22,23] and others, these limits are analytic functions of the parameters except for
certain parameter values determined by the spectral curve of the dimer model. This spectral
curve has an explicit representation, and this enables a computation of the critical surface of
the polygon model upon which the limiting order parameter is non-analytic.

More specifically, the parameter space (0,∞)3 maybe partitioned into two regions, termed
the supercritical and subcritical phases. The order parameter displays long-range order in
the supercritical phase, but not in the subcritical phase.

The results of the current paper bear resemblance to earlier results of [6], in which the
same authors determine the critical surface of the 1–2 model. The outline shape of the main
proof (of Theorem 2.5) is similar to that of the corresponding result of [6]. In contrast, neither
result seems to imply the other, and the dimer correspondence and associated calculations of
the current paper are based on a different dimer representation from that of [6].

The characteristics of the hexagonal lattice that are special for this work include the
properties of trivalence, planarity, and support of a Z

2 action. It may be possible to extend the
results to other such graphs, such as the Archimedean (3, 122) lattice, and the square/octagon
(4, 82) lattice.

This article is organized as follows. The polygon model is defined in Sect. 2, and the
main Theorem 2.5 is given in Sect. 2.3. The relationship between the polygon model and the
1–2 model, the Ising model, and the dimer model is explained in Sect. 3. The characteristic
polynomial of the corresponding dimer model is calculated in Sect. 3.5, and Theorem 2.5 is
proved in Sect. 4.
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Critical Surface of the Hexagonal Polygon Model 735

2 The Polygon Model

We begin with a description of the polygon model. Its relationship to the 1–2 model is
explained in Sect. 3.1. The main result (Theorem 2.5) is given in Sect. 2.3.

2.1 Definition of the Polygon Model

Let the graphG = (V, E) be a finite connected subgraph of the hexagonal latticeH = (V, E),
suitably embedded in R

2 as in Fig. 1. The embedding of H is chosen in such a way that each
edge may be described by one of the three directions: horizontal, NW, or NE. (Later we shall
consider a finite box with toroidal boundary conditions.) Horizontal edges are said to be of
type a, and NW edges (respectively, NE edges) type b (respectively, type c), as illustrated
in Fig. 1. Note that H is a bipartite graph, and we call the two classes of vertices black and
white.

Let � be the product space � = {0, 1}E . The sample space of the polygon model is the
subset �poly = �poly(G) ⊆ � containing all π = (πe : e ∈ E) ∈ � such that

∑

e�v

πe is either 0 or 2, v ∈ V . (2.1)

Each π ∈ �poly may be considered as a union of vertex-disjoint cycles of G, together with
isolated vertices. We identify π ∈ � with the set {e ∈ E : πe = 1} of ‘open’ edges under π .
Thus (2.1) requires that every vertex is incident to an even number of open edges.

Let εa, εb, εc 	= 0. To the configuration π ∈ �poly, we assign the weight

w(π) = ε2|π(a)|
a ε

2|π(b)|
b ε2|π(c)|

c , (2.2)

where π(s) is the set of open s-type edges of π . The weight function w gives rise to the
partition function

ZG(P) =
∑

π∈�poly

w(π). (2.3)

This, in turn, gives rise to a probability measure on �poly given by

PG(π) = 1

ZG(P)
w(π), π ∈ �poly. (2.4)

The measure PG may be viewed as a product measure conditioned on the outcome lying in
�poly. We concentrate here on an order parameter to be given next.

It is convenient to view the polygonmodel as a model on half-edges. To this end, let AG =
(AV, AE) be the graph derived from G = (V, E) by adding a vertex at the midpoint of each
edge in E . Let ME = {Me : e ∈ E} be the set of such midpoints, and AV = V ∪ MV . The
edges AE are precisely the half-edges of E , each being of the form 〈v, Me〉 for some v ∈ V
and incident edge e ∈ E . A polygon configuration on G induces a polygon configuration on

Fig. 1 An embedding of the
hexagonal lattice, with the
edge-types marked

a
b

c
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736 G. R. Grimmett, Z. Li

AG, which may be described as a subset of AE with the property that every vertex in AV has
even degree. For an a-type edge e ∈ E , the two half-edges of e are assigned weight εa (and
similarly for b- and c-type edges). The weight function w of (2.2) may now be expressed as

w(π) = ε|π(a)|
a ε

|π(b)|
b ε|π(c)|

c , π ∈ �poly(AG). (2.5)

We introduce next the order parameter of the polygon model. Let e, f ∈ ME be distinct
midpoints of AG, and let �e, f be the subset of all π ∈ {0, 1}AE such that: (i) every v ∈ AV
with v 	= e, f is incident to an even number of open half-edges, and (ii) the midpoints of e
and f are incident to exactly one open half-edge. We define the order parameter as

MG(e, f ) = ZG,e↔ f

ZG(P)
, (2.6)

where
ZG,e↔ f :=

∑

π∈�e, f

ε|π(a)|
a ε

|π(b)|
b ε|π(c)|

c . (2.7)

Remark 2.1 (Notation) We write εs for the parameter of an s-type edge, and εg for that of
edge g. For conciseness of notation, we shall later work with the parameters

α := ε2a , β := ε2b , γ := ε2c ,

and the main result, Theorem 2.5, is expressed in terms of these new variables. The ‘squared’
variables ε2s are introduced to permit use of the ‘unsquared’ signedvariables εs in the definition
of the polymer model on AG.

The weight functions of (2.2) and (2.5) are unchanged under the sign change εs → −εs
for s ∈ {a, b, c}. Similarly, if the edges e and f have the same type, then, for π ∈ �e, f , the
weight w(π) of (2.7) is unchanged under such sign changes. Therefore, if e and f have the
same type, the order parameter MG(e, f ) is independent of the sign of the εg , and may be
considered as a function of the parameters α, β, γ .

Remark 2.2 (High temperature expansion) If (α, β, γ ) ∈ (0, 1)3, the polygon model with
weight function (2.5) is immediately recognized as the high temperature expansion of an
inhomogeneous Ising model on AG in which the edge-interaction Js of an s-type half-edge
satisfies tanh Js = |εs |. Under this condition, the order parameterMG(e, f ) of (2.6) is simply
a two-point correlation function of the Isingmodel (see Lemma 3.2). If the |εs | are sufficiently
small, this Ising model is a high-temperature model, whence MG(e, f ) tends to zero in the
double limit as G ↑ Hn and |e − f | → ∞, in that order. It may in fact be shown (by results
of [12,14,17] or otherwise) that this Ising model has critical surface given by the equation
αβ + βγ + γα = 1.

See [1, p. 75] and [17,21] for accounts of the high temperature expansion, and [4] for a
recent related paper. The above Isingmodelmaybe viewed as a special case of the eight-vertex
model of Lin and Wu [16]. It is studied further in [6, Sect. 4].

2.2 The Toroidal Hexagonal Lattice

Wewill work mostly with a finite subgraph of H subject to toroidal boundary conditions. Let
n ≥ 1, and let τ1, τ2 be the two shifts ofH, illustrated inFig. 2, thatmap an elementary hexagon
to the next hexagon in the given directions. The pair (τ1, τ2) generates a Z

2 action on H, and
we write Hn = (Vn, En) for the quotient graph of H under the subgroup of Z

2 generated by
the powers τ n1 and τ n2 . The resulting Hn is illustrated in Fig. 2, and may be viewed as a finite
subgraph of H subject to toroidal boundary conditions. We write Mn(e, f ) := MHn (e, f ).
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Critical Surface of the Hexagonal Polygon Model 737

τ1τ2

Fig. 2 The graph Hn is an n × n ‘diamond’ wrapped onto a torus, as illustrated here with n = 4

As in Remark 2.1, let
α = ε2a , β = ε2b , γ = ε2c . (2.8)

Theorem 2.3 Let e, f be distinct edges of Hn. The order parameter Mn(e, f ) =
Mα,β,γ

n (e, f ) is invariant under the change of variables (α, β, γ ) �→ (α, β−1, γ −1), and
similarly under the other two changes of variables in which exactly two of the parameters α,
β, γ are replaced by their reciprocals.

Proof Let π ∈ �poly be a polygon configuration on AHn , and let π ′ be obtained from π by

π ′(e) =
{

π(e) if e has type a,

1 − π(e) otherwise.
(2.9)

Since π ′ is obtained from π by adding, modulo 2, a collection of edges that induce an even
subgraph of Hn , we have that π ′ ∈ �poly. Let wα,β,γ (π) be the weight of π as in (2.5), with
α, β, γ given by (2.8). Then

wα,β,γ (π) = (β#bγ #c)wα,β−1,γ −1
(π ′), (2.10)

where #s is the number of s-type edges in Hn . Similarly, if e 	= f , then π ′ ∈ �e, f and (2.10)
holds.

By (2.9)–(2.10), Mn is unchanged under the map (α, β, γ ) �→ (α, β−1, γ −1). The same
proof is valid for the other two cases. ��
Remark 2.4 Recall Remark 2.2, where it is noted that the polymer model is the high tem-
perature expansion of a solvable Ising model when (α, β, γ ) ∈ (0, 1)3. By Theorem 2.3, this
results in a fairly complete picture of the behaviour of limn→∞ Mn(e, f ) when either none
or exactly two of the three parameters lie in (1,∞). In contrast, the dimer-based methods
of the current work permit an analysis for all triples (α, β, γ ) ∈ (0,∞)3, but at the price of
assuming that e, f satisfy the conditions of the forthcoming Theorem 2.5.

2.3 Main Result

Let e = 〈x, y〉 denote the edge e ∈ E of the hexagonal lattice H = (V, E) with endpoints
x , y. We shall make use of a measure of distance |e − f | between edges e and f which, for
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738 G. R. Grimmett, Z. Li

definiteness, we take to be the Euclidean distance between the midpoints of e and f , with
H embedded in R

2 in the manner of Fig. 2 with unit edge-lengths. Our main theorem is as
follows.

Theorem 2.5 Let e, f ∈ E be NW edges such that:

there exists a path 
 = 
(e, f ) of AHn from Me to M f,
using only horizontal and NW half-edges.

(2.11)

Let εs 	= 0 for s = a, b, c, so that α, β, γ > 0, and let

γ1 =
∣∣∣∣
1 − αβ

α + β

∣∣∣∣ , γ2 =
∣∣∣∣
1 + αβ

α − β

∣∣∣∣ , (2.12)

where γ2 is interpreted as ∞ if α = β.

(a) The limit M(e, f )2 = limn→∞ Mn(e, f )2 exists for γ 	= γ1, γ2.
(b) Supercritical case. Let Rsup be the set of all (α, β, γ ) ∈ (0,∞)3 satisfying

∣∣∣∣
1 − αβ

α + β

∣∣∣∣ < γ <

∣∣∣∣
1 + αβ

α − β

∣∣∣∣ .

The limit�(α, β, γ ) := lim|e− f |→∞ M(e, f )2 exists on Rsup, and satisfies� > 0 except
possibly on some nowhere dense subset.

(c) Subcritical case. Let Rsub be the set of all (α, β, γ ) ∈ (0,∞)3 satisfying

either γ <

∣∣∣∣
1 − αβ

α + β

∣∣∣∣ or γ >

∣∣∣∣
1 + αβ

α − β

∣∣∣∣ .

The limit �(α, β, γ ) exists on Rsub and satisfies � = 0.

The function � has a singularity when crossing between the subcritical and supercritical
regions. A brief explanation of the regions Rsub and Rsup follows. It turns out that the process
is ‘critical’ if and only if the spectral curve (see Sect. 3.5) of the corresponding dimer model
intersects the unit torus. This occurs if and only the parameter-vector (α, β, γ ) is a root of
the equation αβ + βγ + γα = 1 or of any one of the three equations obtained from this
equation by the changes of variables of Theorem 2.3. See Proposition 3.4.

Assumption (2.11), as illustrated in Fig. 3, is key to themethod of proof, andwe present no
results in the absence of this condition. Thus, Theorem 2.5 is not of itself a complete picture
of the location of critical phenomena. For the related 1–2 model, certain further information
about the limits corresponding to Theorem 2.5(b, c) may be derived as described in [6] and
[17], and we do not explore that here, beyond saying that it includes information on the rates
of convergence, and on correlations unconstrained by condition (2.11).

By Remark 2.1, it will suffice to prove Theorem 2.5 subject to the assumption that εs > 0
for s = a, b, c.

Fig. 3 A path 
 of NW and
horizontal edges connecting the
midpoints of e and f e

f
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Critical Surface of the Hexagonal Polygon Model 739

3 The 1–2 and Dimer Models

We summarize next the relations between the polygon and the 1–2 and dimer models.

3.1 The 1–2 Model

A 1–2 configuration on the toroidal graph Hn = (Vn, En) is a subset F ⊆ En such that every
v ∈ Vn is incident to either one or two members of F . The subset F may be expressed as a
vector in the space�n = {−1, 1}En where−1 represents an absent edge and 1 a present edge.
(It will be convenient later to use the space �n rather than the more natural �n = {0, 1}En .)
Thus the space of 1–2 configurationsmay be viewed as the subset of�n containing all vectors
σ such that

∑

e�v

πe ∈ {1, 2}, v ∈ Vn,

where πe = 1
2 (1 + σe).

The hexagonal latticeH is bipartite, and we colour the two vertex-classes black andwhite.
Let a, b, c ≥ 0 be such that (a, b, c) 	= (0, 0, 0), and associate these three parameters with
the edges as in Fig. 1. For σ ∈ �n and v ∈ Vn , let σ |v be the sub-configuration of σ on
the three edges incident to v, and assign weights w(σ |v) to the σv as in Fig. 4. We observe
the states σev,a , σev,b , σev,c , where ev,s is the edge of type s incident to v. The corresponding
signature is the word π(ev,c)π(ev,b)π(ev,a) of length 3. The signature of v is given as in Fig.
4, together with the local weight w(σ |v) associated with each of the six possible signatures.

Let
w(σ) =

∏

v∈V
w(σ |v), σ ∈ �n, (3.1)

and
Zn =

∑

σ∈�n

w(σ). (3.2)

This gives rise to the probability measure

μn(σ ) = 1

Zn
w(σ), σ ∈ �n . (3.3)

We write 〈X〉n for the expectation of the random variable X with respect to μn .

001, a 010, b 100, c110, a 101, b 011, c

001, a 010, b 100, c110, a 101, b 011, c

Fig. 4 The six possible local configurations σ |v at a vertex v in the two cases of black and white vertices of
Hn (see the upper and lower figures, respectively). The signature of each is given, and also the local weight
w(σ |v) associated with each local configuration
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740 G. R. Grimmett, Z. Li

The 1–2model was introduced by Schwartz and Bruck [18] in a calculation of the capacity
of a certain constrained coding system. It has been studied by Li [13,15], and more recently
by Grimmett and Li [6]. See [5] for a review.

3.2 The 1–2 Model as a Polygon Model

By [6, Prop.4.1], the partition function Zn of the 1–2 model with parameters a, b, c on Hn

satisfies

Zn = ( 1
4 (a + b + c)

)|Vn |Z ′
n,

where
Z ′
n =

∑

σ∈�

∏

v∈Vn

(
1 + Aσv,bσv,c + Bσv,aσv,c + Cσv,aσv,b

)
, (3.4)

σv,s denotes the state of the s-type edge incident to v ∈ V , and

A = a − b − c

a + b + c
, B = b − a − c

a + b + c
, C = c − a − b

a + b + c
. (3.5)

Each e = 〈u, v〉 ∈ En contributes twice to the product in (3.4), in the forms σu,s and σv,s

for some s ∈ {a, b, c}. We write σe for this common value, and we expand (3.4) to obtain
a polynomial in the variables σe. In summing over σ ∈ �n , a term disappears if it contains
some σe with odd degree. Therefore, in each monomial M(σ ) of the resulting polynomial,
every σe has even degree, that is, degree either 0 or 2. With the monomial M we associate the
set πM of edges e for which the degree of σe is 2. By examination of (3.4) or otherwise, we
may see that πM is a polygon configuration in Hn , which is to say that the graph (Vn, πM )

comprises vertex-disjoint circuits (that is, closed paths that revisit no vertex) and isolated
vertices. Indeed, there is a one-to-one correspondence between monomials M and polygon
configurations π . The corresponding polygon partition function is given at (2.3) where the
weights εa , εb, εc satisfy

εbεc = A, εaεc = B, εaεb = C, (3.6)

which is to say that

ε2a = BC

A
, ε2b = AC

B
, ε2c = AB

C
. (3.7)

Note that these squares may be negative, whence the corresponding εa , εb, εc are either real
or purely imaginary.

The relationship between εs and the parameters a, b, c is given in the following elementary
lemma, the proof of which is omitted.

Lemma 3.1 Let a ≥ b ≥ c > 0, and let εs be given by (3.5)–(3.7).

(a) Let a < b + c. Then εa, εb, εc are purely imaginary, and moreover

(i) if a2 < b2 + c2, then 0 < |εa | < 1, 0 < |εb| < 1, 0 < |εc| < 1,
(ii) if a2 = b2 + c2, then |εa | = 1, 0 < |εb| < 1, 0 < |εc| < 1,
(iii) if a2 > b2 + c2, then |εa | > 1, 0 < |εb| < 1, 0 < |εc| < 1.

(b) If a = b + c, then |εa | = ∞, εb = εc = 0.
(c) If a > b+ c, then εa, εb, εc are real, and moreover |εa | > 1, 0 < |εb| < 1, 0 < |εc| < 1.

Equations (3.6)–(3.7) express the εg in terms of A, B,C . Conversely, for given real εs 	= 0,
it will be useful later to define A, B, C by (3.6), even when there is no corresponding 1–2
model.
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Critical Surface of the Hexagonal Polygon Model 741

3.3 Two-Edge Correlation in the 1–2 Model

Consider the 1–2 model on Hn with parameters a, b, c, and specifically the two-edge corre-
lation 〈σeσ f 〉n where e, f ∈ En are distinct.

We multiply through (3.4) by σeσ f and expand in monomials. This amounts to expanding
(3.4) and retaining those monomials M in which every σg has even degree except σe and σ f ,
which have degree 1. We may associate with M a set πM of half-edges of AHn such that: (i)
the midpoints Me and M f have degree 1, and (ii) every other vertex in AVn has even degree.
Such a configuration comprises a set of cycles together with a path between Me and M f .
The next lemma is immediate.

Lemma 3.2 The two-edge correlation function of the 1–2 model satisfies

〈σeσ f 〉n = Zn,e↔ f

Zn(P)
= Mn(e, f ), (3.8)

where the numerator Zn,e↔ f is given in (2.7), and the parameters of the polygon model
satisfy (3.7) and (3.5).

3.4 The Polygon Model as a Dimer Model

We show next a one-to-one correspondence between polygon configurations onHn and dimer
configurations on the corresponding Fisher graph of Hn . The Fisher graph Fn is obtained
fromHn by replacing each vertex by a ‘Fisher triangle’ (comprising three ‘triangular edges’),
as illustrated in Fig. 5. A dimer configuration (or perfect matching) is a set D of edges such
that each vertex is incident to exactly one edge of D.

Let π be a polygon configuration on Hn (considered as a collection of edges). The local
configuration of π at a black vertex v ∈ Vn is one of the four configurations at the top of
Fig. 5, and the corresponding local dimer configuration is given in the lower line (a similar
correspondence holds at white vertices). The construction may be expressed as follows. Each
edge e of Fn is either triangular or is inherited from Hn (that is, e is the central third of an
edge of Hn). In the latter case, we place a dimer on e if and only if e /∈ π . Having applied this
rule on the edges inherited from Hn , there is a unique allocation of dimers to the triangular
edges that results in a dimer configuration on Fn . We write D = D(π) for the resulting dimer
configuration, and note that the correspondence π ↔ D is one-to-one.

By (2.2), the weight w(π) is the product (over v ∈ Vn) of a local weight at v belonging to
the set {εaεb, εbεc, εcεa, 1}, where the particular value depends on the behavior of π at v (see
Figure 5 for an illustration of the four possibilities at a black vertex). We now assign weights
to the edges of the Fisher graph Fn in such a way that the corresponding dimer configuration
has the same weight as π .

Each edge of a Fisher triangle has one of the types: vertical (denoted ‘V’), NE, or NW,
according to its orientation. To each edge e of Fn lying in a Fisher triangle, we allocate the
weight:

A if e is vertical,

B if e is NE,

C if e is NW,

where A, B, C satisfy (3.6)–(3.7). The dimer partition function is given by

Zn(D) :=
∑

D

A|D(V)|B|D(NE)|C |D(NW)|, (3.9)
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742 G. R. Grimmett, Z. Li

b

c

A

Fig. 5 To each local polygon configuration at a black vertex of Hn , there corresponds a dimer configuration
on the Fisher graph Fn . The situation at awhite vertex is similar. In the leftmost configuration, the local weight
of the polygon configuration is εbεc , and in the dimer configuration A

where D(s) ⊆ D is the set of dimers of type s. It is immediate, by inspection of Figure 5,
that the correspondence π ↔ D is weight-preserving, and hence

Zn(D) = Zn(P).

3.5 The Spectral Curve of the Dimer Model

We turn now to the spectral curve of the weighted dimer model on Fn , for the background
to which the reader is referred to [14]. The fundamental domain of Fn is drawn in Fig. 6,
and the edges of Fn are oriented as in that figure. It is easily checked that this orientation
is ‘clockwise odd’, in the sense that any face of Hn , when traversed clockwise, contains an
odd number of edges oriented in the corresponding direction. The fundamental domain has
6 vertices labelled 1, 2, . . . , 6, and its weighted adjacency matrix (or ‘Kasteleyn matrix’) is
the 6 × 6 matrix W = (ki, j ) with

ki, j =

⎧
⎪⎨

⎪⎩

wi, j if 〈i, j〉 is oriented from i to j,

−wi, j if 〈i, j〉 is oriented from j to i,

0 if there is no edge between i and j,

where thewi, j are as indicated in Fig. 6. FromW weobtain amodified adjacency (or ‘modified
Kasteleyn’) matrix K as follows.

We may consider the graph of Fig. 6 as being embedded in a torus, that is, we identify the
upper left boundary and the lower right boundary, and also the upper right boundary and the
lower left boundary, as illustrated in the figure by dashed lines.

Let z, w ∈ C be non-zero. We orient each of the four boundaries of Fig. 6 (denoted by
dashed lines) from their lower endpoint to their upper endpoint. The ‘left’ and ‘right’ of an
oriented portion of a boundary are as viewed by a person traversing in the given direction.

Each edge 〈u, v〉 crossing a boundary corresponds to two entries in theweighted adjacency
matrix, indexed (u, v) and (v, u). If the edge starting from u and ending at v crosses an upper-
left/lower-right boundary from left to right (respectively, from right to left), we modify
the adjacency matrix by multiplying the entry (u, v) by z (respectively, z−1). If the edge
starting from u and ending at v crosses an upper-right/lower-left boundary from left to right
(respectively, from right to left), in themodified adjacencymatrix, wemultiply the entry byw
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1 4

6

5

2

3

C

B

A A

C

B
1

w

z

z−1

w−1

Fig. 6 Weighted 1× 1 fundamental domain of Fn . The vertices are labelled 1, 2, . . . , 6, and the weights wi, j

and orientations are as indicated. The further weights w±1, z±1 are as indicated

(respectively,w−1).Wemodify the entry (v, u) in the sameway. For a definitive interpretation
of Fig. 6, the reader is referred to the matrix following.

The signs of these weights are chosen to reflect the orientations of the edges. The resulting
modified adjacency matrix (or ‘modified Kasteleyn matrix’) is

K =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 −C B −1 0 0
C 0 −A 0 −z−1 0

−B A 0 0 0 −w−1

1 0 0 0 −C B
0 z 0 C 0 −A
0 0 w −B A 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The characteristic polynomial is given (using Mathematica or otherwise) by

P(z, w) := det K

= 1 + A4 + B4 + C4 + (A2C2 − B2)

(
w + 1

w

)

+ (A2B2 − C2)

(
z + 1

z

)
+ (B2C2 − A2)

(
w

z
+ z

w

)
. (3.10)

By (3.6) and (2.8),

P(z, w) = 1 + α2β2 + α2γ 2 + β2γ 2 + αγ (β2 − 1)

(
w + 1

w

)

+ αβ(γ 2 − 1)

(
z + 1

z

)
+ βγ (α2 − 1)

(
w

z
+ z

w

)
.

The spectral curve is the zero locus of the characteristic polynomial, that is, the set of roots
of P(z, w) = 0. It will be useful later to identify the intersection of the spectral curve with
the unit torus T

2 = {(z, w) : |z| = |w| = 1}.
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744 G. R. Grimmett, Z. Li

Let
U = αβ + βγ + γα − 1,
V = −αβ + βγ + γα + 1,
S = αβ − βγ + γα + 1,
T = αβ + βγ − γα + 1.

(3.11)

Proposition 3.3 Let εa, εb, εc 	= 0, so that α, β, γ > 0. Either the spectral curve does
not intersect the unit torus T

2, or the intersection is a single real point of multiplicity 2.
Moreover, the spectral curve intersects T

2 at a single real point if and only if UV ST = 0,
where U, V, S, T are given by (3.11).

Proof The proof follows by a computation similar to those of the proofs of [11, Thm. 9] and
[13, Lemma 3.2]. A number of details of the proof are very close to those of [11,13] and are
omitted. Instead, we highlight where differences arise.

Let εa, εb, εc > 0. By (2.8) and (3.6)–(3.7), the map ψ : (A, B,C) �→ (α, β, γ ) is a
bijection between (0,∞)3 and itself. That P(z, w) ≥ 0, for (z, w) ∈ T

2 and (α, β, γ ) ∈
(0,∞)3, follows by the corresponding argument in the proofs of [11, Thm. 9] and [13, Lemma
3.2]. It holds in the same way that the intersection of P(z, w) = 0 with T

2 can only be a
single point of multiplicity 2.

We turn now to the four points when z, w = ±1. Note that

P(1, 1) = (−1 + A2 + B2 + C2)2 = U 2,

P(−1,−1) = (1 − A2 + B2 + C2)2 = S2,

P(−1, 1) = (1 + A2 − B2 + C2)2 = T 2,

P(1,−1) = (1 + A2 + B2 − C2)2 = V 2,

by (3.6). Since A, B,C 	= 0, no more than one of the above four quantities can equal zero. ��
The condition UV ST 	= 0 may be understood as follows. Let γi be given by (2.12), and

note that
γ2(α

−1, β) = 1/γ1(α, β). (3.12)

Proposition 3.4 Let α, β, γ > 0 and let U, V, S, T satisfy (3.11).

(a) We have that UV ST = 0 if and only if γ ∈ {γ1, γ2}.
(b) The region Rsup of Theorem 2.5 is an open, connected subset of (0,∞)3.
(c) The region Rsub is the disjoint union of four open, connected subsets of (0,∞)3, namely,

R1
sub = {γ < γ1} ∩ {αβ < 1}, R2

sub = {γ < γ1} ∩ {αβ > 1},
R3
sub = {γ > γ2} ∩ {α < β}, R4

sub = {γ > γ2} ∩ {α > β}. (3.13)

Proof Part (a) follows by an elementary manipulation of (3.11). Part (b) holds since γ1 < γ2
for all α, β > 0. Part (c) is a consequence of the facts that γ1 = 0 when α + β = 0, and
γ2 = ∞ when α − β = 0. ��

4 Proof of Theorem 2.5

4.1 Outline of Proof

We begin with an outline of the main steps of the proof. In Sect. 4.2, the two-edge correlation
of the polymer model on Hn is expressed as the ratio of expressions involving Pfaffians
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Critical Surface of the Hexagonal Polygon Model 745

of modified adjacency matrices of dimer models on the graph of Sect. 3.4. The squares of
such Pfaffian ratios are shown in Sect. 4.4 to converge to a certain determinant. This implies
the existence of the limit M(e, f )2 of the two-edge correlation, and completes the proof
of part (a) of the theorem. For parts (b) and (c), one considers the square M(e, f )2 as the
determinant of a block Toeplitz matrix. By standard facts about Toeplitz matrices, the limit
� := lim|e− f |→∞ M(e, f )2 exists and is analytic except when the spectral curve intersects
the unit torus. The remaining claims follow by Proposition 3.3.

4.2 The Order Parameter in Terms of Pfaffians

ByRemark 2.1,we shall assumewithout loss of generality that εa, εb, εc > 0.Let 
be the path
of AHn connecting Me and M f as in (2.11). To a configuration π ∈ �e, f we associate the
configuration π ′ := π + 
 ∈ �poly (with addition modulo 2). The correspondence π ↔ π ′
is one-to-one between �e, f and �poly. By considering the configurations contributing to
Zn,e↔ f , we obtain by Lemma 3.2 that

Mn(e, f ) = Zn,e↔ f

Zn(P)
=

(∏

g∈


εg

)
Zn,
(P)

Zn(P)
, (4.1)

where Zn,
(P) is the partition function of polygon configurations on AHn with the weights
of s-type half-edges along 
 changed from εs to ε−1

s .
From the Fisher graph Fn , we construct an augmented Fisher graph AFn by placing two

further vertices on each non-triangular edge of Fn , see Fig. 7. We will construct a weight-
preserving correspondencebetweenpolygon configurations on AHn anddimer configurations
on AFn .

We assign weights to the edges of AFn as follows. Each triangular edge of AFn is assigned
weight 1. Each non-triangular s-type edge of the Fisher graph Fn is divided into three parts in
AFn to which we refer as the left edge, the middle edge, and the right edge. The left edge and
right edges are assigned weight ε−1

s , while the middle edge is assigned weight 1. We shall
identify the characteristic polynomial PA of this dimer model in the forthcoming Lemma
4.3. Let E
 be the set of left and right non-triangular edges corresponding to half-edges in 
,
and let V
 be the set of vertices of edges in E
.

1 4

6

5

2

3

Fig. 7 The fundamental domain of AFn , which may be compared with Fig. 6
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746 G. R. Grimmett, Z. Li

There is a one-to-one correspondence between polygon configurations on AHn and poly-
gon configurations onHn . The latter may be placed in one-to-one correspondence with dimer
configurations on AFn as follows. Consider a polygon configurationπ onHn . An edge e ∈ En

is present in π if and only if the corresponding middle edge of e is present in the correspond-
ing dimer configuration D = D(π) on AFn . Once the states of middle edges of AFn are
determined, they generate a unique dimer configuration on AFn .

By consideration of the particular situations that can occur within a given fundamental
domain, one obtains that the correspondence is weight-preserving (up to a fixed factor),
whence

Zn(P) =
( ∏

g∈AEn

εg

)
Zn(AD),

where Zn(AD) is the partition function of the above dimer model on AFn , and εg is the
parameter corresponding to an edge with the type of g. A similar dimer interpretation is valid
for Zn,
(P), and thus we have

Zn,e↔ f

Zn(P)
=

(∏

g∈


εg

)
Zn,
(P)

Zn(P)
=

⎛

⎝
∏

g∈


ε−1
g

⎞

⎠ Z ′
n(AD)

Zn(AD)
, (4.2)

where Z ′
n(AD) is the partition function for dimer configurations on AFn , in which an edge

of E
 has weight εg (where g is the corresponding half-edge), and all the other left/right
non-triangular edges have unchanged weights ε−1

g .
We assign a clockwise-odd orientation to the edges of AFn as indicated in Fig. 7. The

above dimer partition functions may be represented in terms of the Pfaffians of the weighted
adjacency matrices corresponding to Zn(AD) and Z ′

n(AD). See [7,8,12,20].
Recall that AFn is a graph embedded in the n×n torus. Let γx and γy be two non-parallel

homology generators of the torus, that is, γx and γy are cycles winding around the torus,
neither of which may be obtained from the other by continuous movement on the torus.
Moreover, we assume that γx and γy are paths in the dual graph that meet in a unique face
and that cross disjoint edge-sets. For definiteness, we take γx (respectively, γy) to be the
upper left (respectively, upper right) dashed cycles of the dual triangular lattice, as illustrated
in Fig. 8. We multiply the weights of all edges crossed by γx (respectively, γy) by z or z−1

(respectively, w or w−1), according to their orientations. Note that 
 crosses neither γx nor
γy .

Let Kn(z, w) be the weighted adjacency matrix of the original dimer model above, and
let K ′

n(z, w) be that with the weights of s-type edges along 
 changed from ε−1
s to εs .

If n is even, by (4.2) and results of [7,12] and [17, Chap. IV],

Zn,e↔ f

Zn(P)
=

(∏

g∈


ε−1
g

)−Pf K ′
n(1, 1) + Pf K ′

n(−1, 1) + Pf K ′
n(1,−1) + Pf K ′

n(−1,−1)

2Zn(P)
,

(4.3)
where

2Zn(P) = −Pf Kn(1, 1) + Pf Kn(−1, 1) + Pf Kn(1,−1) + Pf Kn(−1,−1). (4.4)

The corresponding formula when n is odd is

Zn,e↔ f

Zn(P)
=

(∏

g∈


ε−1
g

)
Pf K ′

n(1, 1) + Pf K ′
n(−1, 1) + Pf K ′

n(1,−1) − Pf K ′
n(−1,−1)

2Zn(P)
,
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Critical Surface of the Hexagonal Polygon Model 747

γx γy

Fig. 8 Two cycles γx and γy in the dual triangular graph of the toroidal graph Hn . The upper left and lower
right sides of the diamond are identified, and similarly for the other two sides

as explained in the discussion of ‘crossing orientations’ of [18, pp. 2192–2193]. The ensuing
argument is essentially identical in the two cases, and therefore we may assume without loss
of generality that n is even.

4.3 The limit as n → ∞

In studying the limit of (4.3) as n → ∞, we shall require some facts about the asymptotic
behaviour of the inverse matrix of Kn(θ, ν). We summarise these next.

The graph AFn may be regarded as n×n copies of the fundamental domain of Fig. 7, with
vertices labelled as in Figs. 9 and 10. We index these by (p, q) with p, q = 1, 2, . . . , n, and
let Dp,q be the fundamental domain with index (p, q). LetD = {(p, q) : D(p, q)∩
 	= ∅},
so that the cardinality of D depends only on |e − f |. Each Dp,q contains 12 vertices. For
v1, v2 ∈ D1,1, we write K−1

n (Dp1,q1 , v1; Dp2,q2 , v2) for the (u1, u2) entry of K−1
n , where ui

is the translate of vi lying in Dpi ,qi .

a1 a4

c1

b1

b4

c4

a2 a3

b3

c3

c2

b2

Fig. 9 The fundamental domain of AFn with vertex-labels

123



748 G. R. Grimmett, Z. Li

Fig. 10 Part of the path 


between two NW edges

a1 a4
b1

b4
a2 a3

b3

b2

Proposition 4.1 Let θ, ν ∈ {−1, 1}. We have that
lim
n→∞ K−1

n (θ, ν)(Dp1,q1 , vr ; Dp2,q2 , vs)

= − 1

4π2

∫

|z|=1

∫

|w|=1
z p2−p1wq2−q1K−1

1 (z, w)vs ,vr
dz

i z

dw

iw
, (4.5)

where (p1, q1), (p2, q2) ∈ D, and r, s ∈ {ai , bi : i = 1, 2, 3, 4}, and K−1
1 (z, w)vs ,vr denotes

the (vs, vr ) entry of K
−1
1 (z, w).

Proof The limiting entries of K−1
n (θ, ν) as n → ∞ can be computed explicitly using the

arguments of [10, Thm. 4.3] and [9, Sects 4.2–4.4], details of which are omitted here. ��

Note that the right side of (4.5) does not depend on the values of θ, ν ∈ {−1, 1}.
4.4 Representation of the Pfaffian Ratios

We return to the formulae (4.1) and (4.3)–(4.4) for the two-edge correlation. The matrices
Kn(θ, ν) and K ′

n(θ, ν) are antisymmetric when θ, ν ∈ {−1, 1}. For θ, ν ∈ {−1, 1},
det K ′

n(θ, ν)

det Kn(θ, ν)
= det[K ′

n(θ, ν)K−1
n (θ, ν)]

= det
[
RnK

−1
n (θ, ν) + I

]
, (4.6)

where
Rn = K ′

n(θ, ν) − Kn(θ, ν). (4.7)

The following argument is similar to that of [12, Thm. 4.2]. Let

Y (λ) =
(

0 λ

−λ 0

)
,

and define the 4 × 4 block matrix

Ss =
(
Y (εs − ε−1

s ) 0
0 Y (εs − ε−1

s )

)
, s = a, b.

Each half-edge of Hn along 
 corresponds to an edge of AFn , namely, a left or right non-
triangular edge. Moreover, the path 
 has a periodic structure in AHn , each period of which
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Critical Surface of the Hexagonal Polygon Model 749

consists of four edges of AHn , namely, a NW half-edge, followed by two horizontal half-
edges, followed by anotherNWhalf-edge. These four edges correspond to four non-triangular
edges of AFn with endpoints denoted vb3 , vb4 , va1 , va2 , va3 , va4 , vb1 , vb2 . See Fig. 10.

Let (p, q) ∈ D. The 12× 12 block of Rn with rows and columns labelled by the vertices
in Dp,q may be written as

Rn(Dp,q , Dp,q) =
⎛

⎝
Sa 0 0
0 −Sb 0
0 0 0

⎞

⎠ . (4.8)

Each entry in (4.8) is a 4 × 4 block, and the rows and columns are indexed by
va2 , va1 , va4 , va3 , vb2 , vb1 , vb4 , vb3 , vc1 , . . . , vc4 . All other entries of Rn equal 0.

Owing to the special structure of Rn , the determinant of Sn := RnK−1
n (θ, ν) + I is the

same as that of a certain submatrix of Sn given as follows. From Sn , we retain all rows
and columns indexed by translations (within D) of the vai and vb j . Since each fundamental
domain contains four such vertices of each type, the resulting submatrix Sn,
 is square with
dimension 8|D|. By following the corresponding computations of [12, Sect. 4] and [17, Chap.
VIII], we find that det Sn = det Sn,
.

Let X
 be the V
 × V
 block diagonal matrix with rows and columns indexed by vertices
in V
, and defined as follows. Adopting a suitable ordering of V
 as above, the diagonal 2×2
blocks of X
 are Y (εs − ε−1

s ), where s depends on the type of the corresponding edge, and
off-diagonal 2 × 2 blocks of X
 are 0. Note that

det X
 =
∏

g∈E


(
εg − 1

εg

)2

. (4.9)

Let K−1
n (θ, ν)
 be the submatrix of K−1

n (θ, ν) with rows and columns indexed by V
. By
Proposition 4.1, the limit

K
 := lim
n→∞ K−1

n (θ, ν)
 (4.10)

exists and is independent of θ, ν ∈ {−1, 1}.
Proposition 4.2 The limit M(e, f )2 = limn→∞ Mn(e, f )2 exists and satisfies

M(e, f )2 = lim
n→∞

(
Zn,e↔ f

Zn(P)

)2

= det(X
K
−1

 + I )

( ∏

g∈E


1

ε2g

)
. (4.11)

Proof Let θ, ν ∈ {−1, 1}, and assume first that εa, εb 	= 1. By (4.6)–(4.9) and the discussion
before the proposition,

det K ′
n(θ, ν)

det Kn(θ, ν)
= det[X
K

−1
n (θ, ν)
 + I ]

= det[K−1
n (θ, ν)
 + X−1


 ] det X

= det[K−1
n (θ, ν)
 + X−1


 ]
∏

g∈E


(
εg − 1

εg

)2

.

On taking square roots, and noting that K−1
n (θ, ν)
 + X−1


 is antisymmetric,

Pf K ′
n(θ, ν)

Pf Kn(θ, ν)
= (−1) jPf [K−1

n (θ, ν)
 + X−1

 ]

∏

g∈E


(
εg − 1

εg

)
,
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for some j that is independent of θ , ν.
By (4.3),

2Zn,e↔ f = (−1) j
{
−p(1, 1)Pf Kn(1, 1) + p(−1, 1)Pf Kn(−1, 1)

+ p(1,−1)Pf Kn(1,−1) + p(−1,−1)Pf Kn(−1,−1)
} ∏

g∈E


(
1 − 1

ε2g

)
,

where p(θ, ν) = Pf [K−1
n (θ, ν)
 + X−1


 ]. By (4.4) and (4.10),

lim
n→∞

(
Zn,e↔ f

Zn(P)

)2

=
⎡

⎣Pf (K−1

 + X−1


 )
∏

g∈E


(
1 − 1

ε2g

)⎤

⎦
2

,

and (4.11) follows by (4.9) and (4.1).
Assume next that εa = εb = 1. We have

K ′
n(θ, ν) = Kn(θ, ν), for θ, ν = ±1.

Since X
 = 0 in this case, we obtain (4.11) once again. If exactly one of εa , εb equals 1, we
obtain (4.11) as above. ��
4.5 Proof of Theorem 2.5(a)

As in [10, Thm. 4.3] and [9, Sects 4.2–4.4], by Proposition 4.2, the limit M(e, f )2 =
limn→∞ Mn(e, f )2 exists and equals the determinant of a block Toeplitz matrix with dimen-
sion depending on |e − f |, and with symbol ψ given by

ψ(ζ ) = 1

2π

∫ 2π

0
T (ζ, φ) dφ, (4.12)

where T (ζ, φ) is the 8 × 8 matrix with rows and columns indexed by va1 , va2 , va3 , va4 ,
vb1 , vb2 , vb3 , vb4 (with rows and columns ordered differently) given by

⎛

⎜⎜⎜⎝

ε−1
a + K−1

1 (ζ, eiφ)va2 ,va1
λa K−1

1 (ζ, eiφ)va2 ,va2
λa · · · K−1

1 (ζ, eiφ)va2 ,vb4
λa

−K−1
1 (ζ, eiφ)va1 ,va1

λa ε−1
a − K−1

1 (ζ, eiφ)va1 ,va2
λa · · · −K−1

1 (ζ, eiφ)va1 ,vb4
λa

.

.

.
.
.
.

. . .
.
.
.

K−1
1 (ζ, eiφ)vb3 ,va1

λb K−1
1 (ζ, eiφ)vb3 ,va2

λb · · · ε−1
b + K−1

1 (ζ, eiφ)vb3 ,vb4
λb

⎞

⎟⎟⎟⎠ ,

and λg = 1− ε−2
g . See [22–24] and the references therein for accounts of Toeplitz matrices.

One may write

[K−1
1 (z, w)]i, j = Qi, j (z, w)

PA(z, w)
, (4.13)

where Qi, j (z, w) is a Laurent polynomial in z, w derived in terms of certain cofactors of
K1(z, w), and PA(z, w) = det K1(z, w) is the characteristic polynomial of the dimer model.

Lemma 4.3 The characteristic polynomial P A of the above dimer model on AFn satisfies
P A(z, w) = (εaεbεc)

−4P(z, w), where P(z, w) is the characteristic polynomial of (3.10).

Proof The characteristic polynomial PA satisfies PA(z, w) = det K1(z, w). Each term in
the expansion of the determinant corresponds to an oriented loop configuration consisting
of oriented cycles and doubled edges, with the property that each vertex has exactly two
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Critical Surface of the Hexagonal Polygon Model 751

incident edges. It may be checked that there is a one-to-one correspondence between loop
configurations on the two graphs of Figs. 7 and 6, by preserving the track of each cycle
and adding doubled edges where necessary. The weights of a pair of corresponding loop
configurations differ by a multiplicative factor of (ABC)2 = (εaεbεc)

4. ��
By the above, the limit M(e, f )2 exists whenever PA(z, w) has no zeros on the unit torus

T
2. By Lemma 4.3 and Proposition 3.3, the last occurs if and only if UV ST 	= 0. The proof

of Theorem 2.5(a) is complete, and we turn towards parts (b) and (c).

4.6 Proofs of Theorem 2.5(b, c)

Consider an infinite block Toeplitz matrix J , viewed as the limit of an increasing sequence of
finite truncated block Toeplitz matrices Jn . When the corresponding spectral curve does not
intersect the unit torus, the existence of det J as the limit of det Jn is proved in [22,23]. By
Lemma 4.3 and Proposition 3.3, the spectral curve condition holds if and only ifUV ST 	= 0.
We deduce the existence of the limit

�(α, β, γ ) := lim|e− f |→∞ M(e, f )2, (4.14)

whenever UV ST 	= 0. By Proposition 3.3, the function � is defined on the domain D :=
(0,∞)3 \ {UV ST = 0}.
Lemma 4.4 Assume α, β, γ > 0. The function � is an analytic function of the complex
variables α, β, γ except when UV ST = 0, where U, V, S, T are given by (3.11).

As noted after Theorem 2.5, � is singular when UV ST = 0.

Proof This holds as in the proofs of [12, Lemmas 4.4–4.7].We consider� as the determinant
of a block Toeplitz matrix, and use Widom’s formula (see [22,23], and also [6, Thm. 8.7])
to evaluate this determinant. As in the proof of [6, Thm. 8.7], � can be non-analytic only if
the spectral curve intersects the unit torus, which is to say (by Lemma 4.3 and Proposition
3.3) if UV ST = 0. ��

The equationUV ST = 0 defines a surface in the first octant (0,∞)3, whose complement
is a union of five open, connected components (see Proposition 3.4). By Lemma 4.4, � is
analytic on each such component. It follows that, on any such component: either � ≡ 0, or
� is non-zero except possibly on a nowhere dense set.

Let α, β, γ > 0. By Proposition 3.4, UV ST 	= 0 if and only if

γ ∈ (0, γ1) ∪ (γ1, γ2) ∪ (γ2,∞), (4.15)

where the γi are given by (2.12).

Proof of Theorem2.5(b). By Proposition 3.4, UV ST 	= 0 on the open, connected region
Rsup. Therefore, � is analytic on Rsup. Hence, either � ≡ 0 on Rsup, or � 	≡ 0 on Rsup and
the zero set Z := {r = (α, β, γ ) ∈ Rsup : �(r) = 0} is nowhere dense in Rsup. It therefore
suffices to find (α, β, γ ) ∈ Rsup such that �(α, β, γ ) 	= 0.

Consider the 1–2 model of Sects. 3.1–3.3 with a = b > 0 and c > 4a. By (2.8), (3.5),
and (3.6), the corresponding polygon model has parameters

α = β = c − 2a

c + 2a
, γ = c2

(c − 2a)(c + 2a)
.
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In this case, γ2 = ∞ and γ ∈ (γ1, γ2).
By [6, Thm. 3.1], for almost every such c, the 1–2 model has non-zero long-range order.

By Lemma 3.2, �(α, β, γ ) 	= 0 for such c. ��
Proof of Theorem2.5(c). By Remark 2.2, when α, β, γ > 0 are sufficiently small, the two-
edge correlation function M(e, f ) of the polygon model equals the two-spin correlation
function 〈σeσ f 〉 of a ferromagnetic Ising model on AH at high temperature. Since the latter
has zero long-range order, it follows that � = 0. Suppose, in addition, that αβ < 1 and
γ < γ1. Since � is analytic on R1

sub (in the notation of (3.13)), we deduce that � ≡ 0 on
R1
sub. We next extend this conclusion to Rk

sub with k = 2, 3, 4.
Let (α, β, γ ) ∈ R4

sub. By (3.12), we have that α−1β < 1 and γ −1 < γ1(α
−1, β), so that

(α−1, β, γ −1) ∈ R1
sub. By Theorem 2.3,

�(α, β, γ ) = �(α−1, β, γ −1) = 0.

Therefore, � ≡ 0 on R4
sub.

Let (α, β, γ ) ∈ R2
sub, whence (α−1, β−1, γ ) ∈ R1

sub by (3.12). As above,

�(α, β, γ ) = �(α−1, β−1, γ ) = 0,

whence � ≡ 0 on R2
sub. The case of R

3
sub can be deduced as was R4

sub. ��
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