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Abstract We study the semi-discrete directed random polymer model introduced by
O’Connell and Yor. We obtain a representation for the moment generating function of the
polymer partition function in terms of a determinantal measure. This measure is an exten-
sion of the probability measure of the eigenvalues for the Gaussian unitary ensemble in
randommatrix theory. To establish the relation, we introduce another determinantal measure
on larger degrees of freedom and consider its few properties, from which the representation
above follows immediately.

1 Introduction

In this paper we consider a directed random polymer model in random media in two (one
discrete and one continuous) dimension introduced by O’Connell and Yor [59]. For N
independent one-dimensional standard Brownian motions Bj (t), j = 1, . . . , N and the
parameter β(> 0) representing the inverse temperature, the polymer partition function is
defined by

ZN (t) =
∫
0<s1<···<sN−1<t

eβ(B1(s1)+B2(s1,s2)+···+BN (sN−1,t))ds1 · · · dsN−1. (1.1)

Here Bj (s, t) = Bj (t) − Bj (s), j = 2, . . . , N for s < t and −B1(s1) − B2(s1, s2) − · · · −
BN (sN−1, t) represents the energy of the polymer. In the last fifteen years much progress
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has been made on this O’Connell-Yor polymer model, by which we can access some explicit
information about ZN (t) and the polymer free energy FN (t) = − log(ZN (t))/β [7,10,11,
36,41,45–47,54,57,72]. The first breakthrough was made in the zero temperature (β → ∞)

case. In this limit, −FN (t) becomes

fN (t) := − lim
β→∞ FN (t) = max

0<s1<···<sN−1<t
(B1(s1) + B2(s1, s2) + · · · + BN (sN−1, t))

(1.2)

where− fN (t) is the ground state energy. For fN (t), the following relationwas established [7,
36]:

Prob ( fN (t) ≤ s) =
∫

(−∞,s]N

N∏
j=1

dx j · PGUE(x1, . . . , xN ; t), (1.3)

PGUE(x1, . . . , xN ; t) =
N∏
j=1

e−x2j /2t

j !t j−1
√
2π t

·
∏

1≤ j<k≤N

(xk − x j )
2, (1.4)

where PGUE(x1, . . . , xN ; t) is the probability density function of the eigenvalues in the
Gaussian unitary ensemble (GUE) in random matrix theory [3,35,52]. This type of con-
nection of the ground state energy of a directed polymer in random media with random
matrix theory was first obtained for a directed random polymer model on a discrete space
Z
2+ [42] by using the Robinson–Schensted–Knuth (RSK) correspondence. Equation (1.3)

can be regarded as its continuous analogue. Note that (1.4) is written in the form of a product
of the Vandermonde determinant

∏
1≤ j<k≤N (xk − x j ). This feature implies that the m-point

correlation function is described by an m × m determinant, i.e. the eigenvalues of the GUE
are a typical example of the determinantal point processes [73]. In addition based on this
fact and explicit expression of the correlation kernel, we can study the asymptotic behavior
of fN (t) in the limit N → ∞. In [7,36], it has been shown that under a proper scaling, the
limiting distribution of fN (t) becomes the GUE Tracy–Widom distribution [75].

In this paper, we provide a representation for amoment generating function of the polymer
partition function (1.1) which holds for arbitrary β(> 0):

E

[
exp

(
−e−βu ZN (t)

β2(N−1)

)]
=

∫
RN

N∏
j=1

dx j fF (x j − u) · W (x1, . . . , xN ; t), (1.5)

W (x1, . . . , xN ; t) =
N∏
j=1

1

j ! ·
∏

1≤ j<k≤N

(xk − x j ) · det (ψk−1(x j ; t)
)N
j,k=1 , (1.6)

where fF (x) = 1/(eβx + 1) is the Fermi distribution function and

ψk(x; t) = 1

2π

∫ ∞

−∞
dw e−iwx−w2t/2 (iw)k

� (1 + iw/β)N
. (1.7)

Formore details seeDefinition 1 andTheorem2below. This is a simple generalization of (1.3)
to the case of finite temperature. We easily find that it recovers (1.3) in the zero-temperature
limit (β → ∞). Note that the function W (x1, . . . , xN ; t) is also written as a product of two
determinants and thus retains the determinantal structure in (1.4).

In most cases, to find a finite temperature generalization of results for zero-temperature
case is highly nontrivial and in fact often impossible. But for the O’Connell-Yor polymer
model and a few related models, rich mathematical structures have been discovered for finite
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temperature and the studies on this topic entered a new stage [2,10,25,37,57,61,66–69].
O’Connell [57] found a connection to the quantum Toda lattice, and based on the develop-
ments in its studies and the geometric RSK correspondence, it was revealed that the law of
the free energy FN (t) is expressed as

Prob

(
−FN (t) + N − 1

β
logβ2 ≤ s

)
=

∫
(−∞,s]

dx1

∫
RN−1

N∏
j=2

dx j · m(x1, . . . , xN ; t).

(1.8)

Here the probabilitymeasurem(x1, . . . , xN ; t)∏N
j=1 dx j , which is called theWhittakermea-

sure, is defined by the density function m(x1, . . . , xN ; t) in terms of the Whittaker function
�λ(x1, . . . , xN ) (for the definition, see [57]) and the Sklyanin measure sN (λ)dλ (see (2.10)
below) as follows,

m(x1, . . . , xN ; t)
= �0(βx1, . . . , βxN )

∫
(iR)N

dλ�−λ/β(βx1, . . . , βxN )e
∑N

j=1 λ2j t/2sN (λ/β), (1.9)

where λ represents (λ1, . . . , λN ). In contrast to (1.4), the density function (1.9) is not known
to be expressed as a product of determinants and the process associated with (1.9) does not
seem to be determinantal. Nevertheless some determinantal formulas for the O’Connell-Yor
polymer have been found: First in [57], O’Connell showed a determinantal representation for
the moment generating function (LHS of (1.5)) in terms of the Sklyanin measure. (See (2.9)
below.) Next in [10], Borodin and Corwin obtained a Fredholm determinant representation
for the same moment generating function (see (4.23) below). A direct proof of the equiva-
lence between the two determinantal expressions was given in [13]. In [10], by considering its
continuous limit, the authors also obtained an explicit representation of the free energy distri-
bution for the directed random polymer in two continuous dimension described by stochastic
heat equation (SHE) [10,11]. The distribution in this limit, which describes the universal
crossover between the Kardar–Parisi–Zhang (KPZ) and the Edwards–Wilkinson universality
class, was first obtained in [2,66–69] and can be interpreted also as the height distribution for
the KPZ equation [44]. Furthermore in [10], they consider not only the O’Connell-Yor model
but a class of stochastic processes having the similar Fredholm determinant expressions, the
Macdonald processes, the probability measures on a sequence of partitions which are written
in terms of the Macdonald symmetric functions and include the Whittaker measure defined
by (1.8) as a limiting case.

The purpose of this paper is to investigate further the mechanism of appearance of
such determinantal structures and (1.5) is the central formula in our study. Although
W (x1, . . . , xN ; t)∏N

j=1 dx j defined by (1.6) is not a probability measure but a signed mea-
sure except when β → ∞, a remarkable feature of this measure is that it is determinantal for
arbitrary β contrary to the Whittaker measure (1.9). This determinantal structure allows us
to use the conventional techniques developed in the random matrix theory and thus from the
relation we readily get a Fredholm determinant representation with a kernel using biorthogo-
nal functionswhich is regarded as a generalization of the kernel with theHermite polynomials
for the GUE. In (1.6), the parameter β, which originally represents the inverse temperature
in the polymer model appears in the Fermi distribution function fF (x −u)with the chemical
potential u as well as ψk(x; t) (1.7) in RHS. This fact with the determinantal structure sug-
gests that the RHSmight have something to do with the free Fermions at a finite temperature.
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Related to this, a curious relation of the height of the KPZ equation with Fermions has been
discussed in [28].

For establishing (1.5), we introduce ameasure on a larger spaceRN (N+1)/2. By integrating
the measure in two different ways, we get its two marginal weights. In one formula appears
a determinant which solves the N dimensional diffusion equation with some condition (see
(2.11), (3.6), and (3.7)) and the other one with a symmetrization is exactly the RHS of (1.5).
The relation (1.5) follows immediately from the equivalence of these two expressions. Our
approach is similar to the one by Warren [78] for getting the relation (1.3). Actually in the
zero-temperature limit β → ∞, we see that the integration of the measure is written in terms
of the probability measure introduced in [78], which describes the positions of the reflected
Brownian particles on the Gelfand–Tsetlin cone. Note that the Macdonald processes (espe-
cially theWhittaker process in our case) [10] are also other generalizations of [78]. Although
the Whittaker process has rich integrable properties, they do not inherit the determinantal
structure of [78]. On the other hand, our measure is described without using the Whittaker
functions and keeps the determinantal structure. Furthermore combining (1.5) with the fact
that the quantity can be rewritten as the Fredholm determinant found in [10] (Corollary 13
and Proposition 15 below), our approach can be considered as another proof of the equiva-
lence between (4.23) and (2.9) in [13]. One feature of our proof is to bring to light the larger
determinantal structure behind the two relations.

This paper is organized as follows. In the next section, after stating the definition of a
determinantal measure, we give our main result, Theorem 2 and its proof. The proof consists
of two major steps: we first introduce in Lemma 3 a determinantal representation for the
moment generating function which is a deformed version of the representation (2.9) in [57].
Next we introduce another determinantal measure on larger space R

N (N+1)/2 and then we
find two relations about its integrations which play a key role in deriving our main result. In
Sect. 3 we show that this approach can be considered as an extension of the one in [78]. In
Sect. 4., we consider the Fredholm determinant formula with biorthogonal kernel obtained
by applying conventional random matrix techniques to our main result. The scaling limit to
the KPZ equation is discussed in Sect. 5. We check that our kernel goes to the one obtained
in the studies of the KPZ equation. A concluding remark is given in the last section.

2 Main Result

In this section, we introduce a measure W (x1, . . . , xN ; t)∏N
j=1 dx j (1.6), state our main

result and give its proof.

2.1 Definition and Result

Definition 1 Let ψk(x; t), k = 1, 2, . . . be

ψk(x; t) = 1

2π

∫ ∞

−∞
dw e−iwx−w2t/2 (iw)k

� (1 + iw/β)N
. (2.1)

For (x1, . . . , xN ) ∈ R
N , a function W (x1, . . . , xN ; t) is defined by

W (x1, . . . , xN ; t) =
N∏
j=1

1

j ! ·
∏

1≤l<m≤N

(xm − xl) · det (ψ j−1(xk; t)
)N
j,k=1 . (2.2)
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Remark We find thatW (x1, . . . , xN ; t) is a real function onRN , since by definitionψk(x; t)
is real for any k = 0, 1, 2, . . . , N − 1, β > 0 and t > 0. But in general, the positivity of this
measure is not guaranteed. For example ψ0(x; t) shows a damped oscillation and can take
a negative value for some x . Thus at least for the case N = 1, W (x, t) = ψ0(x; t) can be
negative.

We discuss the zero-temperature limit β → ∞ of W (x1, . . . , xN ; t). Noting �(1) = 1,
we see

lim
β→∞ ψk(x; t) = 1

2π

∫ ∞

−∞
dw e−iwx−w2t/2(iw)k = e−x2/2t

√
2π t

(
1

2t

) k
2

Hk

(
x√
2t

)
, (2.3)

where we used the integral representations of the nth order Hermite polynomial Hn(x) (see
e.g. Sect. 6.1 in [5]),

Hn(x) = (−2i)n√
π

∫ ∞

−∞
du une−(u−i x)2 . (2.4)

Note that (t/2)k/2Hk(x/
√
2t) is a monic polynomial (i.e. the coefficient of the highest degree

is 1) and

lim
β→∞ det

(
ψk−1(x j ; t)

)N
j,k=1 =

N∏
j=1

e−x2j /2t

t j−1
√
2π t

·
∏

1≤ j<k≤N

(xk − x j ). (2.5)

Thus we find

lim
β→∞ W (x1, . . . , xN ; t) = PGUE(x1, . . . , xN ; t), (2.6)

where PGUE(x1, . . . , xN ; t) is defined by (1.4). The function W (x1, . . . , xN ; t) can be
regarded as a deformation of (1.4) which keeps its determinantal structure.

In this paper, we provide a determinantal representation for the moment generating func-
tion of the polymer partition function (1.1) in terms of the function (2.2).

Theorem 2

E

(
e
− e−βu ZN (t)

β2(N−1)

)
=

∫
RN

N∏
j=1

dx j fF (x j − u) · W (x1, . . . , xN ; t) (2.7)

where fF (x) = 1/(eβx + 1) is the Fermi distribution function.

By (1.2), (2.6) and the simple facts

lim
β→∞ e−eβx = lim

β→∞ fF (x) = �(−x), (2.8)

we find that the zero temperature limit of (2.7) becomes (1.3).
Because of the determinantal structure of W (x1, . . . , xN ; t), we can get the Fredholm

determinant representation for the moment generating function by using the techniques in
randommatrix theory. Recently another Fredholm determinant representation has been given
based on properties of Macdonald difference operators [10]. The equivalence between them
will be shown in Sect. 4.
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2.2 Proof

Herewe provide a proof of Theorem 2. Our starting point is the representation for themoment
generating function given in [57]:

E

(
e
− e−βu ZN (t)

β2(N−1)

)
=

∫
(iR−ε)N

N∏
j=1

dλ j

β
e−uλ j+λ2j t/2�

(
−λ j

β

)N

· sN
(

λ

β

)
, (2.9)

where 0 < ε < β and sN (λ)dλ is the Sklyanin measure defined by

sN (λ) = 1

(2π i)N N !
∏
i< j

sin π(λi − λ j )

π

∏
i> j

(
λi − λ j

)
. (2.10)

This relation was obtained by using the properties of the Whittaker functions [22,74] and the
Whittaker measure (1.9).

Lemma 3

E

(
e
− e−βu ZN (t)

β2(N−1)

)
=

∫
RN

N∏

=1

dx
 fF (x
 − u) · G(x1, . . . , xN ; t) (2.11)

where fF (x) is defined below (2.7) and

G(x1, . . . , xN ; t) = det
(
Fjk(xN− j+1; t)

)N
j,k=1 , (2.12)

Fjk(x; t) =
∫
iR−ε

dλ

2π i

e−λx+λ2t/2

�
(

λ
β

+ 1
)N

(
π

β
cot

πλ

β

) j−1

λk−1 (2.13)

with 0 < ε < β.

We will discuss an interpretation of (2.12) in the next section. In this definition, we have
arranged xi ’s in the reversed order so as to relate (3.17), the zero-temperature limit of (2.12),
to the stochastic processes defined later in (3.20).

Proof Noting the relation∏
1≤i< j≤N

sin(xi − x j ) =
∏

1≤i< j≤N

sin xi sin x j
(
cot x j − cot xi

)

=
N∏
j=1

sinN−1 x j ·
∏

1≤k<
≤N

(cot x
 − cot xk)

=
N∏
j=1

sinN−1 x j · det
(
cot
−1 xk

)N

k,
=1
, (2.14)

we rewrite RHS of (2.9) as

∫
(iR−ε)N

N∏
j=1

dλ j

β
e−uλ j+λ2j t/2�

(
−λ j

β

)N

· sN
(

λ

β

)

= 1

N !
∫

(iR−ε)N

N∏
j=1

dλ j

2π iβ
e−uλ j+λ2j t/2�

(
−λ j

β

)N
(
sin π

β
λ j

π

)N−1
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× det

((
π

β
cot

π

β
λ j

)k−1
)N

j,k=1

det
(
λ j

k−1
)N

j,k=1

= det

⎛
⎝

∫
iR−ε

dλ

2π iβ
e−uλ+λ2t/2�

(
− λ

β

)N
(
sin π

β
λ

π

)N−1 (
π

β
cot

π

β
λ

) j−1

λk−1

⎞
⎠

N

j,k=1

(2.15)

where in the last equality, we used the Andréief identity (also known as the Cauchy-Binet
identity) [4]: For the functions g j (x), h j (x), j = 1, 2, . . . , N , such that all integrations
below are well-defined, we have

1

N !
∫
RN

N∏
j=1

dx j · det (gk(x j ))Nj,k=1 det
(
hk(x j )

)N
j,k=1 = det

(∫
R

dxg j (x)hk(x)

)N

j,k=1
.

(2.16)

We notice that the factor e−uλ�(−λ/β)N (sin(πλ/β)/π)N−1in (2.15) can be written as

e−uλ�

(
− λ

β

)N
(
sin π

β
λ

π

)N−1

= (−1)N−1

�
(
1 + λ

β

)N

πe−uλ

− sin π
β
λ

= (−1)N−1

�
(
1 + λ

β

)N

∫ ∞

−∞
β

e−xλ

eβ(x−u) + 1
dx (2.17)

where we used the reflection formula for the Gamma function and the relation (4.31).
From (2.15) and (2.17), we arrive at the desired expression (2.11). ��

From (2.11), we see that for the derivation of our main result (2.7), it is sufficient to prove
the relation
∫
RN

N∏

=1

dx
 fF (x
 − u) · G(x1, . . . , xN ; t) =
∫
RN

N∏
j=1

dx j fF (x j − u) · W (x1, . . . , xN ; t).

(2.18)

where fF (x) is defined below (2.7) and W (x1, . . . , xN ; t) is given in Definition 1. Note that
this is a relation for the integrated values on R

N . To establish this we introduce a measure
on the larger space RN (N+1)/2.

Definition 4 Let xk be an array (x (1), . . . , x (k)) where x ( j) = (x ( j)
1 , . . . , x ( j)

j ) ∈ R
j and

dxk = ∏k
j=1

∏ j
i=1 dx

( j)
i . We define a measure Ru(xN ; t)dxN by

Ru(xN ; t) =
∏

1≤i≤ j≤N

fi (x
( j)
i − x ( j−1)

i−1 ) · det
(
F1i (x

(N )
j ; t)

)N

i, j=1
. (2.19)

Here x ( j−1)
0 = u, F1 j (x; t) is given by Fi j (x; t) (2.13) with i = 1 and fi (x), i = 1, 2, . . .

is defined by using the Fermi and Bose distribution functions, fF (x) := 1/(eβx + 1) and
fB(x) := 1/(eβx − 1) respectively as follows.

fi (x) =
{
fF (x), i = 1,

fB(x), i ≥ 2.
(2.20)
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x
(3)
1 x

(3)
2 x

(3)
3

≥ ≥
x
(2)
1 x

(2)
2

≥
x
(1)
1

x
(3)
1 x

(3)
2 x

(3)
3≥ ≥ ≥ ≥

x
(2)
1 x

(2)
2≥ ≥

x
(1)
1

(a) (b)

Fig. 1 Triangular arrays (k = 3). a An element of Vk (3.34). b The Gelfand–Tsetrlin pattern (an element
of (3.23))

Remark The reason why both the Bose and Fermi distributions appear in our approach is
not clear. The interrelations between them (see (2.28)–(2.30) below) will play an important
role in the following discussions.

As in Fig 1.we usually represent the array xN graphically in the triangular shape. Although
no ordering is imposed on xN , in the zero-temperature limit, Ru(xN ; t) has the support on
the ordered arrays as in Fig. 1a (see (3.34)). Figure 1b represents the other ordered array
called the Gelfand–Tsetlin pattern (see (3.23)).

As discussed later we will find that the moment generating function of the O’Connell-Yor
polymer model is expressed as the integration of this measure Ru(xN ; t) over RN (N+1)/2.
We have other choices for the definition of Ru(xN ; t) which give the same integration value.
One example is

R̄u(xN ; t) =
N∏


=1

1


! det
(
fi (x

(
)
j − x (
−1)

i−1 )
)


i, j=1
· det

(
F1i (x

(N )
j ; t)

)N

i, j=1
. (2.21)

This comes form the following consideration. Let fsym(xN ) be a function which is sym-

metric under permutations of x ( j)
1 , . . . , x ( j)

j for each j ∈ {1, 2, . . . , N }. Then we see that

Ru(xN ; t) (2.19) and R̄u(xN ; t) have the same integration value:
∫
RN (N+1)/2

dxN fsym(xN )Ru(xN ; t) =
∫
RN (N+1)/2

dxN fsym(xN )R̄u(xN ; t). (2.22)

It can be shown as follows. From the symmetry of fsym(xN ), LHS of the equation above
becomes∫

RN (N+1)/2
dxN fsym(xN )Ru(xN ; t) =

∫
RN (N+1)/2

dxN fsym(xN )R̃u(xN ; t). (2.23)

Here R̃u(xN ; t) is defined by

R̃u(xN ; t) =
N∏


=1

1


!
∑

σ ( j)∈S j , j=1,...,N

Ru
(
xσ
N ; t) , (2.24)

where S j is the permutation of 1, 2, . . . , j and xσ
N denotes (xσ (1)

, . . . , xσ (N )
) with xσ ( j) =

(x ( j)
σ ( j)(1)

, . . . , x ( j)
σ ( j)( j)

). We easily find the equivalence R̃u(xN ; t) = R̄u(xN ; t). Note that
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Ru(x
σ
N ; t) =

∏
1≤i≤ j≤N

fi
(
x ( j)
σ ( j)(i)

− x ( j−1)
σ ( j−1)(i−1)

)
· det

(
F1i (x

(N )

σ (N )( j)
; t)

)N

i, j=1

= sgnσ (N )
N∏
j=1

j∏
i=1

fi
(
x ( j)
σ ( j)(i)

− x ( j−1)
σ ( j−1)(i−1)

)
· det

(
F1i (x

(N )
j ; t)

)N

i, j=1

=
N∏
j=1

sgnτ ( j)
j∏

i=1

fi
(
x ( j)
τ ( j)(i)

− x ( j−1)
i−1

)
· det

(
F1i (x

(N )
j ; t)

)N

i, j=1
. (2.25)

Here in the last equality, τ ( j) ∈ S j , j = 1, 2, . . . , N is defined by using σ ( j−1) and σ ( j) as
σ ( j−1)τ ( j)(k) = σ ( j)(k), k = 1, . . . , j , where we regard σ ( j−1) as an element of S j with
σ ( j−1)( j) = j . Further in the last equality we used σ (N ) = ∏N

j=1 τ ( j). Substituting (2.25)

into (2.24) and using the definition of the determinant, we have R̃u(xN ; t) = R̄u(xN ; t).
The function R̄u(xN ; t) (2.21) has a similar determinantal structure to the Schur

process [60]. The Schur process is a probability measure on the sequence of partitions
{λ( j)} j=1,...,N , where λ( j) := {(λ( j)

1 , . . . , λ
( j)
j )|λ( j)

i ∈ Z, λ
( j)
1 ≥ · · · ≥ λ

( j)
j ≥ 0}, described

as products of the skew Schur functions sλ/μ(x1, . . . , xn). For the ascending case (see Defi-
nition 2.7 in [10]), the probability measure is expressed as

N∏
i, j=1

1

1 − aib j
·

N∏
k=1

sλ(k)/λ(k−1) (ak) · sλ(N ) (b1, . . . , bN ), (2.26)

where a j , b j , j = 1, . . . , N are positive variables. We note that sλ(k)/λ(k−1) (ak) is expressed
as a kth order determinant and sλ(N ) (b1, . . . , bN ) as a N th order determinant by the Jacobi-
Trudi identity [50],

sλ/μ(x1, . . . , xn) = det
(
hλi−μ j+ j−i (x1, . . . , xn)

)
(λ)

i, j=1
, (2.27)

where hk(x1, . . . , xn) is a complete symmetric polynomial with degree k and 
(λ) is the
length of the partition λ. Thus (2.21) and (2.26) have a common structure of N products of
determinants with increasing size times an N th order determinant.

In the following we provide the relations about two marginals of Ru(xN ; t) (2.19), from
which (2.18) immediately follows. For this purpose, we give two formulas for fF (x) and
fB(x) (2.20). First we define a multiple convolution g∗(m) f (x) m = 0, 1, 2, . . . for a func-
tions f (x) on R and an integral operator g with the kernel g(x − y) as

g∗(0) f (x) = f (x), g∗(k) f (x) =
∫ ∞

−∞
dy g(x − y)g∗(k−1) f (y), k = 1, 2, . . . . (2.28)

Using this definition, the formulas are written as follows:

Lemma 5 We regard all integrations below as the Cauchy principal values. For β > 0,
a ∈ C with −β < Re a < 0 and m = 0, 1, 2, . . ., we have

f ∗(m)
B eax =

(
π

β
cot

(
πa

β

))m
eax , (2.29)

f ∗(m)
B fF (x) = qm(x) fF (x), (2.30)

where qm(x) is an mth order polynomial with the coefficient of the highest degree being
1/m!.
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A proof of this lemma will be given in Appendix 1. The polynomial qm(x) in (2.30) is
defined inductively by (7.11)-(7.13). But in our later discussion we will not use its explicit
form.

From (2.13) and (2.29), we readily obtain for m = 0, 1, 2, . . .,

f̃ ∗(m)
B Fjk (x; t) = Fj+m,k(x; t), (2.31)

where we define f̃ B(x) := fB(−x).
Using (2.30) and (2.31), we obtain the following relations.

Theorem 6 Let the measures d A1 and d A2 be

d A1 =
∏

2≤i≤ j≤N

dx ( j)
i , d A2 =

∏
1≤i≤ j≤N−1

dx ( j)
i . (2.32)

Then we have

∫
RN (N−1)/2

d A1Ru(xN ; t) = G(x (1)
1 , . . . , x (N )

1 ; t)
N∏
j=1

fF (x ( j)
1 − u), (2.33)

∫
RN (N−1)/2

d A2Ru(xN ; t) = W̄ (x (N )
1 , . . . , x (N )

N ; t)
N∏
j=1

fF (x (N )
j − u). (2.34)

Here G(x (1)
1 , . . . , x (N )

1 ; t) is defined by (2.12) and

W̄ (x (N )
1 , . . . , x (N )

N ; t) =
N−1∏
j=1

q j

(
x (N )
j+1 − u

)
· det

(
F1 j

(
x (N )
k ; t

))N

j,k=1
, (2.35)

where q j (x) is defined below (2.30).

Weeasily see that (2.18) can be obtained from these relations (2.33) and (2.34): Integrating
the both hand sides of themover the remaining degrees of freedom ((x (1)

1 , . . . , x (N )
1 ) for (2.33)

and (x (N )
1 , . . . , x (N )

N ) for (2.34)), we get two different expression about the integrated value
of Ru(xN ; t)

∫
RN (N+1)/2

dxN Ru(xN ; t) =
∫
RN

N∏
j=1

dx ( j)
1 fF

(
x ( j)
1 − u

)
· G

(
x (1)
1 , . . . , x (N )

1 ; t
)

, (2.36)

∫
RN (N+1)/2

dxN Ru(xN ; t) =
∫
RN

N∏
j=1

dx (N )
j fF

(
x (N )
j − u

)
· W̄

(
x (N )
1 , . . . , x (N )

N ; t
)

,

(2.37)

where dxN = ∏
1≤i≤ j≤N x ( j)

i . RHS of the second relation is further rewritten as

∫
RN

N∏
j=1

dx ( j)
1 fF (x ( j)

1 − u) · 1

N !
∑

σ (N )∈SN
W̄

(
xσ (N )(1), . . . , xσ (N )(N ); t

)
, (2.38)
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and the symmetrized W̄ (x1, . . . , xN ; t) in this equation is nothing but W (x (N )
1 , . . . , x (N )

1 ; t)
(2.2) since

1

N !
∑

σ (N )∈SN
W̄ (xσ (N )(1), . . . , xσ (N )(N ); t)

= 1

N ! · det
(
q j−1(x

(N )
k )

)N

j,k=1
det

(
F1 j (x

(N )
k ; t)

)N

j,k=1

= W (x (N )
1 , . . . , x (N )

N ; t). (2.39)

Here in the second equality we used the fact that q j (x) is a j th order polynomial with the
coefficient of the highest degree being 1/j ! and F1 j (x; t) = ψ j (x; t).
Proof of Theorem 6. First we derive (2.33). By the definition of (2.19), LHS of (2.33)
becomes

N∏
j=1

fF (x ( j)
1 − u) · det

(
f̃ ∗(k−1)
B F1 j

(
x (N−k+1)
1 ; t

))N

j,k=1
. (2.40)

Here f̃ B(x) is defined below (2.31). Applying (2.31) to this equation we obtain (2.33).
Next we derive (2.34). We see that the factor d A2

∏
1≤i≤ j≤N fi (x

( j)
i − x ( j−1)

i−1 ) in
Ru(xN ; t) (2.19) can be decomposed to

d A2

∏
1≤i≤ j≤N

fi
(
x ( j)
i − x ( j−1)

i−1

)

=
N−1∏
k=1

⎛
⎝N−k∏

i=1

dx (i+k−1)
i ·

N−k+1∏
j=1

f j
(
x ( j+k−1)
j − x ( j+k−2)

j−1

)⎞
⎠ , (2.41)

and from (2.30) the integration of the factor for each k is represented as

∫
RN−k

∏
1≤i≤N−k

dx (i+k−1)
i

N−k+1∏
j=1

f j
(
x ( j+k−1)
i − x ( j+k−2)

j−1

)
= f ∗(N−k)

B fF
(
x (N )
N−k+1 − u

)

= qN−k

(
x (N )
N−k+1 − u

)
fF

(
x (N )
N−k+1 − u

)
(2.42)

where qm(x) is given in (2.30). Eq. (2.34) follows immediately from this relation. ��

3 Dynamics of the Two Marginals

The purpose of this section is to have a better understanding of the two quantities,
W (x1, . . . , xN ; t) (2.2) andG(x1, . . . , xN ; t) (2.12),which arose as partially integrated quan-
tities of Ru(xN ; t) (2.19) in Theorem 6 (forW a symmetrization is also necessary, see (2.39)).
We will first consider the evolution equations of these two quantities. Next we will see that
the zero-temperature limit of the equation for W (x1, . . . , xN ; t) is nothing but the evolu-
tion equation for the Brownian particles with reflection interaction while W (x1, . . . , xN ; t)
satisfies the one for the GUE Dyson’s Brownian motion [31] regardless of the value of β.
Furthermore we will find that our idea using Ru(xN ; t) in an enlarged spaceRN (N+1)/2 (The-
orem 6) is similar to the argument in [78] although we need a modification of [78] about the
ordering in an enlarged space.
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3.1 Evolution Equations of G(x1, . . . , xN; t) and W(x1, . . . , xN; t)

Let us first summarize the properties of Fjk(x; t) j, k ∈ {1, 2, . . .} (2.13) all of which are
easily confirmed by simple observations:

F1k(x; t) = ψk(x; t), (3.1)

∂

∂t
Fjk(x; t) = 1

2

∂2

∂x2
Fjk(x; t), (3.2)

∫ ∞

−∞
dx f̃B(x − y)Fjk(x; t) = Fj+1k(y; t), (3.3)

−β2

π2

∫ ∞

−∞
dx

e
β
2 (x−y)

eβ(x−y) − 1
Fj+1k(x; t) = Fjk(y; k), (3.4)

where ψk(x; t) in (3.1) and f̃ B(x) in (3.3) are defined by (2.1) and below (2.31). Eq. (3.3) is
equivalent to (2.31) while (3.4) is obtained from the relation

β2

π2

∫ ∞

−∞
dx

e
β
2 (x−y)

eβ(x−y) − 1
e−bx = −β

π
tan

(
π

β
b

)
e−by, (3.5)

for |Re b| < β/2. This relation is easily given by (2.29) with a = b − β/2.
We see that due to (3.2) and the multilinearity of a determinant, G(x1, . . . , xN ; t) (2.12)

satisfies the diffusion equation.

∂

∂t
G(x1, . . . , xN ; t) = 1

2

N∑
j=1

∂2

∂x2j
G(x1, . . . , xN ; t). (3.6)

In addition, by (3.4), it satisfies the condition

−β2

π2

∫ ∞

−∞
dx j

e− β
2 (x j−x j+1)

eβ(x j−x j+1) − 1
G(x1, . . . , xN ; t) = 0, (3.7)

for j = 1, 2, . . . , N − 1. Though this condition is unusual, we will see that it is regarded as
a finite temperature generalization of the Neumann boundary conditions at x j = x j+1, j =
1, . . . , N − 1 in the zero temperature limit (see (3.19)).

On the other hand, from (3.2) with the harmonicity of the Vandermonde determinant
in (2.2), we see that W (x1, . . . , xN ; t) satisfies the Kolmogorov forward equation of the
GUE Dyson’s Brownian motion [31], which is a dynamical generalization of the GUE,

∂

∂t
W (x1, . . . , xN ; t) = 1

2

N∑
j=1

∂2

∂x2j
W (x1, . . . , xN ; t)

−
N∑
j=1

∂

∂x j

⎛
⎜⎜⎝

N∑
m=1
m �= j

1

x j − xm

⎞
⎟⎟⎠W (x1, . . . , xN ; t). (3.8)

The time evolution equation for the GUE Dyson’s Brownian motion can be transformed to
the imaginary-time Schrödinger equation with free-Fermionic Hamiltonian (e.g. see Chapter
11 in [35]). On the other hand note that the density function of the Whittaker measure (1.9)
does not solve such a simple free-Fermionic time evolution equation (3.8).
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3.2 The Zero-Temperature Limit and a Brownian Particle System with Reflection
Interactions

Let us consider the zero temperature limit of the Eqs. (3.6) with (3.7) and (3.8). Note that for
x �= 0,

− lim
β→∞ f̃ B(x) = 1>0(x), − lim

β→∞ fB(x) = lim
β→∞ fF (x) = 1<0(x), (3.9)

where f̃ B(x) is defined below (2.31) and 1>0(x) and 1<0(x) are the step functions defined
by

1>0(x) =
{
1, x > 0,

0, x ≤ 0,
1<0(x) =

{
0, x > 0,

1, x ≤ 0.
(3.10)

In addition we have

lim
β→∞ Fjk(x; t) = F j−k(x; t), (3.11)

where Fn(x; t) is defined for n ∈ Z and ε > 0 as

Fn(x; t) =
∫
iR−ε

dλ

2π i

e−λx+λ2t/2

λn
. (3.12)

Here we summarize a few properties of the function which are the zero temperature limit
of (3.1)–(3.4) for Fjk(x; t).

F−k(x; t) = lim
β→∞ ψk(x; t) = e−x2/2t

√
2π t

(
1

2t

) k
2

Hk(x/
√
2t), k = 0, 1, 2, . . . , (3.13)

∂

∂t
Fn(x; t) = 1

2

∂2

∂x2
Fn(x; t), (3.14)

∫ y

−∞
dxFn(x; t) = −Fn+1(y; t), (3.15)

∂

∂x
Fn(x; t)

∣∣x→y = −Fn−1(y; t), (3.16)

where in (3.13),ψk(x; t) is definedby (2.1) and Hk(x) is the kth orderHermite polynomial [5].
The second equality in (3.13) has appeared as (2.3). Note that (3.16) corresponds to the zero-
temperature limit of (3.4), since RHS of (3.5) goes to −be−bx in the zero-temperature limit
and thus the integral operator with the kernel π2eβ(y−x)/2/β2(eβ(y−x) − 1) is equivalent to
differentiation in the zero temperature limit when its action is restricted to e−bx .

Let G(x1, . . . , xN ; t) be the zero-temperature limit of G(x1, . . . , xN ; t) (2.12) defined on
R
N . From (3.11), we find

G(x1, . . . , xN ; t) = det
(F j−k(xN− j+1; t)

)N
j,k=1 . (3.17)

The function G(x1, . . . , xN ; t) appeared as a solution to the Schrödinger equation for
the derivative nonlinear Schrödinger type model [70]. As discussed in [70], using (3.14)
and (3.16) with basic properties of a determinant, we find that for x1 �= · · · �= xN ,
G(x1, . . . , xN ; t) satisfies the diffusion equation,

∂

∂t
G(x1, . . . , xN ; t) = 1

2

N∑
j=1

∂2

∂x2j
G(x1, . . . , xN ; t), (3.18)
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with the boundary condition

d

dx j
G(x1, . . . , xN ; t)|x j→x j+1 = 0, for j = 1, . . . , N − 1. (3.19)

The probabilistic interpretation of G(x1, . . . , xN ; t) has been given in [78]. Let Xi (t), i =
1, . . . , N be the stochastic processes with N -components described by

Xi (t) = yi + Bi (t) + L−
i (t), (3.20)

where yi ∈ R satisfying y1 < y2 < · · · < yN represent initial positions, Bi (t) denotes
the standard Brownian motion and L−

i (t) is twice the semimartingale local time at zero of
Xi − Xi−1 for i = 2, . . . , N while L−

1 (t) = 0. The system (3.20) describes the N -Brownian
particles system with one-sided reflection interaction, i.e. the i th particle is reflected from
the i − 1th particle for i = 2, 3, . . . , N . Warren [78] found that the transition density of
this system from yi to xi , i = 1, . . . , N is written as G(x1 − y1, . . . , xN − yN ; t). Such
kind of determinantal transition density was first obtained for the totally asymmetric simple
exclusion process (TASEP) in [71]. Furthermore, based on the determinantal structures,
various techniques for discussing the space-time joint distributions for the particle positions
or current have been developed for TASEP [15,17–21,56,64,65] and the reflected Brownian
particle system (3.20) [32,33].

On theother hand,wehave seen in (2.6) that the zero temperature limit ofW (x1, . . . , xN ; t)
(2.2) is the GUE density PGUE(x1, . . . , xN ; t) (1.4). Note that PGUE(x1, . . . , xN ; t) also
satisfies (3.8) since it holds for arbitrary β i.e:

∂

∂t
PGUE(x1, . . . , xN ; t) = 1

2

N∑
j=1

∂2

∂x2j
PGUE(x1, . . . , xN ; t)

−
N∑
j=1

∂

∂x j

⎛
⎜⎜⎝

N∑
m=1
m �= j

1

x j − xm

⎞
⎟⎟⎠ PGUE(x1, . . . , xN ; t). (3.21)

From (2.6), (3.9), and (3.11), we find that the zero-temperature limit of (2.18) is

∫
(−∞,u]N

N∏

=1

dx
 · G(x1, . . . , xN ; t) =
∫

(−∞,u]N

N∏
j=1

dx j · PGUE(x1, . . . , xN ; t). (3.22)

Warren [78] showed that this relation, which connects the two different processes, is obtained
in the followingway. First one introduces a process on the N (N+1)/2-dimensional Gelfand–
Tsetlin cone whose two marginals describe the above two processes. The Gelfand–Tsetlin
cone GTk, k = 1, 2, . . . is defined as

GTk := {(x (1), . . . , x (k))| x (i) = (x (i)
1 , . . . , x (i)

i ) ∈ R
i with i = 1, . . . , k,

x (m+1)

+1 ≤ x (m)


 ≤ x (m+1)

 with 1 ≤ 
 ≤ m ≤ k − 1}. (3.23)

For the graphical representation of an element of GTk , see Fig. 1b. Next we intro-
duce a following stochastic process on GTN . Let (X (1)(t), . . . , X (N )(t)) with X ( j)(t) =
(X ( j)

1 (t), . . . , X ( j)
j (t)) be a process defined by

X ( j)
i (t) = B( j)

i (t) + y( j)
i + L( j)−

i (t) − L( j)+
i (t), 1 ≤ i ≤ j ≤ N , (3.24)
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where B( j)
i (t) are the N (N +1)/2 independent Brownian motions starting at the origin, y( j)

i

represent the initial positions and the process L( j)−
i (t) and L( j)+

i (t) are twice the semimartin-

gale local time at zero of X ( j)
i − X ( j−1)

i and X ( j)
i − X ( j−1)

i−1 respectively. Equation (3.24)

describes the interacting particle systems where each X ( j)
i (t) is a Brownian motion reflected

from X ( j−1)
i−1 (t) to a negative direction and from X ( j−1)

i (t) to a positive direction. In [16],
Borodin and Ferrari also introduced similar processes on the discrete Gelfand–Tsetlin cone
where the probability measure at a particular time is described by the Schur process [60].

The pdf of the system (3.24) at time t can be given explicitly : For the case of y( j)
i = 0,

it is expressed as

QGT(xN ; t) =
∏

1≤i< j≤N

(
x (N )
i − x (N )

j

)
·

N∏
k=1

exp

(
−

(
x (N )
k

)2
/2t

)

tk−1
√
2π t

· 1GT(xN ), (3.25)

where xN is defined above (2.19) and 1GT(xk) represents the indicator function on GTk .

The pdfs of the two marginals, (x (1)
1 , . . . , x (N )

1 ) and (x (N )
1 , . . . , x (N )

N ) for QGT(xN ; t) was
obtained as follows:

Proposition 7 (Proposition 6 and 8 in [78])

∫
RN (N−1)/2

d A1QGT(xN ; t) = G(x (1)
1 , . . . , x (N )

1 ; t)
N−1∏
j=1

1>0(x
( j+1)
1 − x ( j)

1 ), (3.26)

∫
RN (N−1)/2

d A2QGT(xN ; t) = N !PGUE(x (N )
1 , . . . , x (N )

N ; t)
N−1∏
j=1

1>0(x
(N )
j − x (N )

j+1), (3.27)

where G(x1, . . . , xN ; t), PGUE(x (N )
1 , . . . , x (N )

N ; t), 1>0(x) and d A1, d A2 are defined
by (3.17), (1.4), (3.10) and (2.32) respectively.

Remark Note that G(x (1)
1 , . . . , x (N )

1 ; t) in (3.26) can be replaced by an arbitrary func-

tion on R
N such that it corresponds to G(x (1)

1 , . . . , x (N )
1 ; t) in the region x (1)

1 < x (2)
1 <

· · · < x (N )
1 . For later discussion on a generalization of finite temperature, we chose it as

G(x (1)
1 , . . . , x (N )

1 ; t) on the whole RN .

We see that the relation (3.22) is obtained from this theorem. By decomposing the integral
on xN in two different ways, we clearly have

∫
(−∞,u]N (N−1)/2

dxNQGT(xN ; t) =
∫

(−∞,u]N

N∏
j=1

dx ( j)
1

∫
RN (N−1)/2

d A1QGT(xN ; t)

=
∫

(−∞,u]N

N∏
j=1

dx (N )
j

∫
RN (N−1)/2

d A2QGT(xN ; t). (3.28)
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Applying (3.26) and (3.27) to this equation, we get

∫
(−∞,u]N

N∏
j=1

dx ( j)
1 G

⎛
⎝x (1)

1 , . . . , x (N )
1 ; t)

N−1∏
j=1

1>0(x
( j+1)
1 − x ( j)

1

⎞
⎠

=
∫

(−∞,u]N

N∏
j=1

dx (N )
j N !PGUE

(
x (N )
1 , . . . , x (N )

N ; t
) N−1∏

j=1

1>0

(
x (N )
j − x (N )

j+1

)
.(3.29)

Due to the symmetry of PGUE(x1, . . . , xN ; t) under the permutations of x1, . . . , xN , we
readily see that RHS of this equation is equal to RHS of (3.22). Also we find that LHS
of (3.29) becomes

∫
(−∞,u]N

N∏
j=1

dx ( j)
1 · G

(
x (1)
1 , . . . , x (N )

1 ; t
) N−1∏

j=1

1>0

(
x ( j+1)
1 − x ( j)

1

)

=
∫

(−∞,u]N

N∏
j=1

dx ( j)
1 · G

(
x (1)
1 , . . . , x (N )

1 ; t
) N−1∏

j=1

(
1>0

(
x ( j+1)
1 −x ( j)

1

)
+1>0(x

( j)
1 − x ( j+1)

1 )
)

=
∫

(−∞,u]N

N∏
j=1

dx ( j)
1 · G

(
x (1)
1 , . . . , x (N )

1 ; t
)

, (3.30)

where in the first equality we used for k = 2, . . . , N and (x (1)
1 , . . . , x (N )

1 ) ∈ (−∞, u]N
∫

(−∞,u]
dx (k)

1 G
(
x (1)
1 , . . . , x (N )

1 ; t
) k−2∏

j=1

1>0

(
x ( j+1)
1 − x ( j)

1

)
· 1>0

(
x (k−1)
1 − x (k)

1

)
= 0.

(3.31)

Note that G(x (1)
1 , . . . , x (N )

1 ; t) is defined on R
N and is finite even outside the region x (1)

1 <

x (2)
1 < · · · < x (N )

1 . (See Remark. of Proposition 7.) Eq. (3.31) is obtained from the following

observation: putting the last factor 1>0(x
(k−1)
1 −x (k)

1 ) in the N−k−1th rowof the determinant

G(x (1)
1 , . . . , x (N )

1 ; t) in (3.31) then applying (3.15),we get the determinantwhich has the same
two rows.

Thus (3.22) is obtained from Proposition 7. This is similar to the situation of (2.18) and
Theorem 6. This naive observation gives us the impression that the pdf QGT(xN ; t) (3.25)
is the zero-temperature limit of the weight Ru(xN ; t) (2.19). However in fact this is not the
case. Let Ru(xN ; t) := limβ→∞ Ru(xN ; t). From (3.9) and (3.11) one has

Ru(xN ; t) = (−1)N (N−1)/2 det
(
F1−i (x

(N )
j ; t)

)N

i, j=1

∏
1≤ j≤k≤N

1>0

(
x (k−1)
j−1 − x (k)

j

)
.

(3.32)

From (2.5) and (3.13), it is further rewritten as

Ru(xN ; t) =
∏

1≤i< j≤N

(
x (N )
i −x (N )

j

)
·

N∏
k=1

exp

(
−

(
x (N )
k

)2
/2t

)

tk−1
√
2π t

1>0

(
u−x (k)

1

)
· 1VN (xN ),

(3.33)
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where 1Vk (xk) is the indicator function on an ordered set Vk defined by

Vk := {(x (1), . . . , x (k))| x ( j) = (x ( j)
1 , . . . , x ( j)

j ) ∈ R
j , x (m+1)


+1 ≤ x (m)

 , 1≤
≤m≤k−1}.

(3.34)

For the graphical representation of an element of (3.34), see Fig. 1a. Comparing (3.25)
with (3.33),we see that they have the same formbut their supports (GTN andVN ) are different.
We further notice that VN with an additional order x (m)


 ≤ x (m+1)

 , 1 ≤ 
 ≤ m ≤ N − 1

corresponds to GTN .
Hence our approach using Ru(xN ; t) can be regarded as a modification of Warren’s

arguments on GTN to the ones on the partially ordered spece VN . Let us focus on two
marginals (x (1)

1 , x (2)
1 , . . . , x (N )

1 ) and (x (N )
1 , x (N )

2 , · · · , x (N )
N ) forRu(xN ; t) (3.33). By taking

the zero-temperature limit of Theorem 6, we have the following analogue of Proposition 7:

Proposition 8

∫
RN (N−1)/2

d A1 Ru(xN ; t) = G(x (1)
1 , . . . , x (N )

1 ; t)
N∏
j=1

1>0(u − x ( j)
1 ), (3.35)

∫
RN (N−1)/2

d A2 Ru(xN ; t) = Pu
(
x (N )
1 , . . . , x (N )

N ; t
) N∏

j=1

1>0

(
u − x (N )

j

)
, (3.36)

where for the definition of d A1 and d A2, see (2.32), G(x (1)
1 , . . . , x (N )

1 ; t) is given by (3.17)
and

Pu
(
x (N )
1 , . . . , x (N )

N ; t
)

=
N∏
j=1

(u − x (N )
j ) j−1

( j − 1)!t j−1 ·
∏

1≤ j<k≤N

(
x (N )
j − x (N )

k

)
·

N∏
j=1

e
−

(
x (N )
j

)2
/2t

√
2π t

.

(3.37)

Proof It is obtained by taking the zero-temperature limit (β → ∞) in Theorem 6. ��
As discussed in (2.39), PGUE(x1, . . . , xN ; t) (1.4) can be interpreted as the symmetric

version of Pu(x1, . . . , xN ; t):
1

N !
∑

σ (N )∈SN
Pu

(
xσ (N )(1), . . . , xσ (N )(N ); t

) = PGUE
(
x (N )
1 , . . . , x (N )

N ; t
)

. (3.38)

Therefore by the similar discussion in (3.28), we see that the relation (3.22) is obtained also
from Proposition 8.

The fact that both Proposition 7 and 8 lead to (3.22) implies the relation∫
RN (N+1)/2

dxNRu(xN ; t) =
∫

(−∞,u]N (N+1)/2
dxNQGT(xN ; t). (3.39)

This equivalence of their integration values is generalized in the following way.

Proposition 9 Let fsym(xN ) be the function defined above (2.22). Then we have
∫
RN (N+1)/2

dxN fsym(xN )Ru(xN ; t) =
∫

(−∞,u]N (N+1)/2
dxN fsym(xN )QGT(xN ; t) (3.40)

An essential step of the proof of this proposition is represented as the following.
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Lemma 10
∑

σ ( j)∈S j , j=1,...,N

sgnσ (N )1VN (xσ
N ) =

∑
σ ( j)∈S j , j=1,...,N

sgnσ (N )1GT(xσ
N ) (3.41)

The proof of this lemma will be given in Appendix 2. Using this lemma we readily derive
Proposition 9.

Proof of Proposition 9. Substituting the definition of Ru(xN ; t) (3.33) into (3.40), we see
that the LHS of (3.40) is rewritten as

∫
RN (N+1)/2

dxN fsym(xN )

N∏
k=1

1>0(u − x (k)
1 )e

−
(
x (N )
k

)2
/2t ·

∏
1≤i< j≤N

(
x (N )
i − x (N )

j

)

×
∑

σ ( j)∈S j , j=1,...,N

sgnσ (N )1V (xσ
N )

=
∫
RN (N+1)/2

dxN fsym(xN )

N∏
k=1

1>0(u − x (k)
1 )e

−
(
x (N )
k

)2
/2t ·

∏
1≤i< j≤N

(
x (N )
i − x (N )

j

)

×
∑

σ ( j)∈S j , j=1,...,N

sgnσ (N )1GT(xσ
N )

=
∫
RN (N+1)/2

dxN fsym(xN )

N∏
k=1

1>0(u − x (k)
1 )

∑
σ ( j)∈S j , j=1,...,N

QGT(xσ
N ; t) (3.42)

where in the second equality we use Lemma 10. ��

4 Fredholm Determinant Formulas

4.1 A Fredholm Determinant with a Biorthogonal Kernel

The functionW (x1, . . . , xN ; t) (1.6) has a notable determinantal structure that it is described
by a product of two determinants. This allows us to apply the results of randommatrix theory
and determinantal point processes developed in [43,76] and to get the Fredholm determinant
representation.

To see this we provide a lemma. Let φ j (x; t), j = 0, 1, 2, . . . be

φ j (x; t) = 1

2π i

∮
dv evx−v2t/2 �(1 + v/β)N

v j+1 , (4.1)

where the contour encloses the origin anticlockwise with radius smaller than β. We find
φ j (x; t) and ψk(x; t) (2.1) satisfy the biorthonormal relation:

Lemma 11 For j, k ∈ {0, 1, 2, . . .}, we have
∫ ∞

−∞
dx φ j (x; t)ψk(x; t) = δ j,k . (4.2)
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Proof Substituting the definitions (2.1) and (4.1) into LHS of (4.2), one has
∫ ∞

−∞
dx φ j (x; t)ψk(x; t)

= 1

(2π)2i

∮
dv

∫ ∞

−∞
dw e−(w2+v2)t/2

(
�(1 + v/β)

�(1 + iw/β)

)N
(iw)k

v j+1

∫ ∞

−∞
dx e(v−iw)x .

(4.3)

As the integrand in this equation is analytic onCwith respect tow, we can shift the integration
path as w = w′ − iv, w′ ∈ R. Then using

1

2π

∫ ∞

−∞
dx e(v−iw)x = 1

2π

∫ ∞

−∞
dx e−iw′x = δ(w′), (4.4)

we find ∫ ∞

−∞
dx φ j (x; t)ψk(x; t) = 1

2π i

∮
dv vk− j−1 = δ j,k . (4.5)

��
The residue calculus shows that the functionφ j (x; t) is a j th order polynomial in x and the

coefficient of the highest order is 1/j !. As the Vandermonde determinant in (2.2) is expressed
as

∏
1≤ j<k≤N

(xk − x j ) = det
(
x j−1
k

)N

j,k=1
= det

(
( j − 1)!φ j−1(xk, t)

)N
j,k=1 , (4.6)

W (x1, . . . , xN ; t) is rewritten as a product of two determinants

W (x1, . . . , xN ; t) = 1

N ! det
(
φ j−1(xk; t)

)N
j,k=1 det

(
ψ j−1(xk; t)

)N
j,k=1 . (4.7)

From Lemma 11 and (4.7), we obtain a Fredholm determinant representation for the moment
generating function. Throughout this paper, we follow [10] for the notation on Fredholm
determinants.

Proposition 12

∫ ∞

−∞

N∏
j=1

dx j g(x j ) · W (x1, . . . , xN ; t) = det (1 − ḡK )L2(R) (4.8)

where g(x) is an arbitrary function such that the left hand side is well-defined and in the
right hand side det (1 − ḡK )L2(R) represents a Fredholm determinant defined by

det (1 − ḡK )L2(R) =
∞∑
k=0

(−1)k

k!
∫
Rk

k∏
j=1

dx j ḡ(x j ) · det (K (xl , xm; t))kl,m=1 . (4.9)

Here ḡ(x) = 1 − g(x) and K (x, y; t) is written in terms of the biorthogonal functions
ψ j (x, t) (2.1) and φk(x, t) (4.1) as

K (x, y; t) =
N−1∑
k=0

φk(x; t)ψk(y; t). (4.10)
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Proof Wereadily obtain this representationby applying the techniques in [76]withLemma11
to LHS of (4.8). For reference, here is an outline of the proof. First, using the Andréief
(Cauchy-Binet) identity (2.16), we have

∫
RN

N∏
j=1

dx j g(x j ) · W (x1, . . . , xN ; t) = det

(∫
R

dx g(x)φ j−1(x; t)ψk−1(x; t)
)N

j,k=1

= det

(∫
R

dx φ j−1(x; t)ψk−1(x; t) −
∫
R

dx ḡ(x)φ j−1(x; t)ψk−1(x; t)
)N

j,k=1

= det
(
δ j,k − A j,k

)N
j,k=1 , (4.11)

where A j,k, j, k = 1, . . . , N is defined as

A jk =
∫
R

dx ḡ(x)φ j−1(x; t)ψk−1(x; t). (4.12)

In the first equality of (4.11), we used (4.7) with (2.16) and in the last one we used Lemma 11.
We further rewrite A jk as

A jk =
∫
R

dx B( j, x)C(x, k) (4.13)

by using

B( j, x) = φ j−1(x; t), C(x, k) = ḡ(x)ψk−1(x; t). (4.14)

Applying the identity for Fredholm determinants,

det
(
δ j,k − A j,k

)N
j,k=1 = det(1 − BC)L2({1,2,...,N }) = det(1 − CB)L2(R), (4.15)

and noting

(CB)(x, y) = ḡ(x)
N−1∑
k=0

φk(x; t)ψk(y; t), (4.16)

we arrive at our desired expression. ��

Combining this proposition with Theorem 2, we readily obtain

Corollary 13

E

(
e
− e−βu ZN (t)

β2(N−1)

)
= det

(
1 − f̄u K

)
L2(R)

(4.17)

where the right hand side is theFredholmdeterminant (4.9)with the kernel f̄u(xi )K (xi , x j ; t),
f̄u(x j ) = 1 − fF (x j − u), and K (xi , x j ; t) is defined in (4.10).

As in (2.3), we see

lim
β→∞ φk(x; t) = 1

2π i

∮
dv

evx−v2t/2

vk+1 = 1

k!
(
t

2

) k
2

Hk

(
x√
2t

)
, (4.18)
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which is due to another representation of the nth order Hermite polynomial Hn(x) (see e.g.
Sect. 6.1 in [5]),

Hn(x) = n!
2π i

∮
dz

e2xz−z2

zn+1 , (4.19)

where the contour encloses the origin anticlockwise. From (2.3) and (4.18), we find

lim
β→∞ K (x1, x2; t) = e−x22/2t

√
2π t

N−1∑
k=0

Hk(x1/
√
2t)Hk(x2/

√
2t)

2kk! . (4.20)

HereRHS appears as a correlation kernel of the eigenvalues in theGUE randommatrices [52].
Thus K (xi , x j ; t) is a simple biorthogonal deformation of the kernel with Hermite poly-

nomials which appears in the eigenvalue correlations of N ×N GUE randommatrices. Using
this Fredholm determinant expression (4.17), we can understand a few asymptotic properties
of the partition function by applying saddle point analyses to the kernel as will be discussed
in Sect. 5.

4.2 A Representation from the Macdonald Processes

In [57], O’Connell first introduced the probability measure on R
N which is called the

Whittaker measure m(x1, . . . , xN ; t)∏N
j=1 dx j whose density function m(x1, . . . , xN ; t) is

defined in terms of the Whittaker function �λ(x1, . . . , xN ) (see [57]),

mt (x1, . . . , xN ; t)
= �0(βx1, . . . , βxN )

∫
(iR)N

dλ�−λ/β(βx1, . . . , βxN )e
∑N

j=1 λ2j t/2sN (λ/β), (4.21)

where throughout this paper we denote λ = (λ1, . . . , λN ) and sN (λ) is defined by (2.10).
Then he showed the following relation about the distribution of the free energy FN (t) =
− log(ZN (t))/β (see Theorem 3.1 and Corollary 4.1 in [57]),

Prob

(
−FN (t) + N − 1

β
logβ2 ≤ s

)
=

∫
(−∞,s]

dx1

∫
RN−1

N∏
j=2

dx j · m(x1, . . . , xN ; t).

(4.22)

The density function m(x1, · · · , xN ; t) (4.21) is also a finite temperature extension of
PGUE(x1, · · · , xN ; t) (1.4). Actually it has been known that m(x1, . . . , xN ; t) converges
to PGUE(x1, . . . , xN ; t) in the zero-temperature limit. (See Sect. 6 in [57]). In contrast to
W (x1, . . . , xN ; t) (2.2), however, this extension does not inherit the determinantal structure
which PGUE(x1, . . . , xN ; t) has and thus we cannot apply the techniques in random matrix
theory which is useful especially for asymptotic analyses of the GUE. This fact necessitated
the developments of newmethods [2,10,11,13,14,24,29,30,66–69]. By using the techniques
of theMacdonald difference operators [10] and the duality [14], one can get a Fredholm deter-
minant expression for the moment generating function of the partition function, which allows
us to access the asymptotic properties.

Proposition 14 ([10])

E

(
e
− e−βu ZN (t)

β2(N−1)

)
= det (1 + L)L2(C0)

(4.23)
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where C0 denotes the contour enclosing only the origin positively with radius r < β/2 and
the kernel L(v, v′; t) is written as

L(v, v′; t) = 1

2π i

∫
iR+δ

dw
π/β

sin(v′ − w)/β

wNew2t/2−wu

v′Nev′2t/2−v′u
1

w − v

�(1 + v′/β)N

�(1 + w/β)N
. (4.24)

Here δ satisfies the condition r < δ < β − r .

We can show the equivalence between the two expressions (4.17) and (4.23).

Proposition 15

det(1 − f̄u K )L2(R) = det(1 + L)L2(C0)
(4.25)

where f̄u(x) = 1− fF (x − u) and K (x, x ′; t) and L(v, v′; t) are defined (4.10) and (4.24)
respectively.

Proof Substituting the definitions (2.1) and (4.1) into (4.10), we have

K (x, x ′; t) =
∮
C0

dv

∫
iR+δ

dw evx−wx ′−(v2−w2)t/2 �(1 + v/β)N

�(1 + w/β)N

1

v

N−1∑
k=0

(w

v

)k

=
∮
C0

dv

∫
iR+δ

dw evx−wx ′−(v2−w2)t/2 �(1 + v/β)N

�(1 + w/β)N

1 − (w/v)N

v − w
. (4.26)

For the definition of C0, see below (4.23). Here we changed w → −iw in (2.1) and shift
the path of w by δ which is larger than the radius of v. We notice that although the last
expression in (4.26) consists of two terms proportional to 1/(v − w) and (w/v)N /(v − w),
the integration of the term proportional to 1/(v −w) with respect to v vanishes. Thus we see

f̄u(x)K (x, x ′) = − f̄u(x)
∮
C0

dv

∫
iR+δ

dw
evx−wx ′−(v2−w2)t/2

w − v

(
�(1 + v/β)

�(1 + w/β)

w

v

)N

= −
∮
C0

dv A(x, v)B(v, x ′) (4.27)

where we set

A(x, v) = f̄u(x)e
vx−v2t/2

(
�(1 + v/β)

v

)N

, (4.28)

B(v, x ′) =
∫
iR+δ

dw
e−wx ′+w2t/2

w − v

(
w

�(1 + w/β)

)N

. (4.29)

Here we use the relation for Fredholm determinants, det(1− AB)L2(R) = det(1−BA)L2(C0)
,

where the kernel −(BA)(v, v′) on RHS reads

−
∫ ∞

−∞
dx B(v, x)A(x, v′)

= −
∫
iR+δ

dw
e(w2−v′2)t/2

w − v

(
w�(1 + v′/β)

v′�(1 + w/β)

)N ∫ ∞

−∞
dx f̄u(x)e

(v′−w)x . (4.30)

Using the relation ∫ ∞

−∞
dx

eax

1 + ex
= π

sin πa
, for 0 < Re a < 1, (4.31)
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we perform the integration over x in (4.30) as

−
∫ ∞

−∞
dx f̄u(x)e

(v′−w)x =
∫ ∞

−∞
dx

−eβ(x−u)+(v′−w)x

1 + eβ(x−u)
= e(v′−w)uπ/β

sin [(v′ − w)π/β]
. (4.32)

Note that because of the conditions 0 < r < β/2 and r < δ < β − r (see below (4.23)
and (4.24) respectively), (4.31) is applicable to the above equation. Thus from (4.30)
and (4.32), we have

−
∫ ∞

−∞
dx B(v, x)A(x, v′)

= 1

2π i

∫
iR+δ

dw
π/β

sin [(v′ − w)π/β]

wNew2t/2−wu

v′Nev′2t/2−v′u
1

w − v

�(1 + v′/β)N

�(1 + w/β)N

= L(v, v′; t). (4.33)

��

5 The Scaling Limit to the KPZ Equation

In this section, we discuss a scaling limit of the O’Connell-Yor polymer model. When both
N and t are large with its ratio N/t fixed, it has been known that the polymer free energy
FN (t) defined below (1.1) is proportional to N on average and the fluctuation around the
average is of order N 1/3 [54,72]. Furthermore recently it has been shown in [10] that the
limiting distribution of the free energy fluctuation under the N 1/3 scaling is the GUE Tracy–
Widom distribution [75]. This type of the limit theorem has been obtained also for other
models related to the O’Connell-Yor model [6,13,26,34,58,77]. These results reflect the
strong universality known as the KPZ universality class.

Althoughwe expect that the same result on the Tracy–Widom asymptotics can be obtained
from our representation (4.17), we consider another scaling limit where the partition function
goes to the solution to the stochastic heat equation (SHE) (or equivalently, the free energy
goes to the solution to the Kardar–Parisi–Zhang (KPZ) equation). This scaling limit to the
KPZ equation has also been known to be universal although in a weaker sense compared
with the KPZ universality stated above [1,9,27]. The height distribution of the KPZ equation
has been obtained for a droplet initial data in [2,66–69]. Since then, explicit forms of the
height distribution have been given for the KPZ equation and related models for a few
initial data [10–12,23,38,39,49,62,63]. In particular for the O’Connell-Yor model (1.1), the
limiting distribution of the polymer free energy has been obtained by applying the saddle
point method to the kernel (4.24) [10,11].

In this section, we confirm that a similar saddle point analysis can be applicable to our
biorthogonal kernel (4.10). Since our kernel has a simple form, we find that the nontrivial
part of this problem reduces only to the asymptotic analyses of the functions ψk(x; t) (2.1)
and φk(x; t) (4.1).
5.1 The O’Connell-Yor Polymer Model and the KPZ Equation

Before discussing the saddle point analysis, let us briefly review the scaling limit to the KPZ
equation. Hereafter we will write out explicitly the dependence on β of the polymer partition
function (1.1) as ZN ,β(t).
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Let Z̃ j,β(t) := e−t−β2t/2Z j,β(t), j = 1, . . . , N . By Itô’s formula, we easily find that it
satisfies the stochastic differential equations

d Z̃ j,β(t) =
(
Z̃ j−1,β(t) − Z̃ j,β(t)

)
dt + β Z̃ j,β(t)dB j (t), (5.1)

where we set Z̃0,β(t) = 0 and interpret the second term of this equation as Itô type. Now let
us take the diffusion scaling for (5.1): we set

t = T M, N = T M − X
√
M (5.2)

and at the same time we scale β as

β = M−1/4, (5.3)

then take the large M limit. the scaling exponent −1/4 in (5.3) is known to be universal: it
characterizes the disorder regime referred to as the intermediate disorder regime [1], which
lies between weak and strong disorder regimes in directed polymer models in random media
in 1 + 1 dimension.

This M−1/4 scaling can be explained in the following heuristic way. Let Bj (t), j =
1, . . . , N be N independent one dimensional standard Brownian motions. For N1, N2 ∈
{1, 2, . . . , N }, we have

〈BN1(t)BN2(t)〉 = tδN1,N2 , (5.4)

where 〈·〉 represents the expectation value with respect to the Brownian motions. Now we
consider its large M limit under the same scaling as (5.2) i.e. t = MT and

Nk = T M − Xk
√
M, k = 1, 2. (5.5)

Noting that limM→∞
√
MδN1,N2 = δ(X1 − X2) under (5.5), we see

lim
M→∞ M−1/2〈BN1(t)BN2(t)〉 = T δ(X1 − X2). (5.6)

This suggests in a heuristic sense,

lim
M→∞ M−1/4BNk (t) =

∫ T

0
ds η(s, Xk), k = 1, 2. (5.7)

Here η(T, X) with T > 0 and X ∈ R is the space-time white noise with mean 0 and
δ-function covariance,

〈η(T, X)〉 = 0, 〈η(T, X)η(T ′, X ′)〉 = δ(T − T ′)δ(X − X ′). (5.8)

Thus considering (5.7), we choose the scaling of β (5.3).
Under the scaling (5.2) and (5.3), the following limiting property is established.

lim
M→∞

√
MZ̃N ,β(t) = Z(T, X). (5.9)

Here Z(T, X) is the solution to the SHE with the δ-function initial condition,

∂

∂T
Z(T, X) = 1

2

∂2

∂X2Z(T, X) + η(T, X)Z(T, X), (5.10)

Z(0, X) = δ(X), (5.11)
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where η(T, X) is the space-time white noise with mean 0 and δ-function covariance (5.8).
The SHE (5.10) is known to be well-defined if we interpret the multiplicative noise term as
Itô-type [8,55]. Using this equation, the solution to the KPZ equation can be defined via

h(T, X) = log(Z(T, X)), (5.12)

which is called the Cole-Hopf solution to the KPZ equation. Recently a new regularization
for the KPZ equation was developed in [37] (see also [48]).

According to [10], a rigorous estimate about the convergence to the SHE (5.9) has been
obtained for the O’Connell-Yor model [53] based on the results in [1]. This type of conver-
gence has been discussed also in interacting particle processes [9,27]. For reference we offer
a sketch of the derivation of (5.9). For this purpose, we provide the following lemma,

Lemma 16 For Z̃N ,β(t) defined above (5.1), one has

Z̃N ,β(t) =
∞∑
k=0

βk
∑

1≤N1≤···≤Nk≤N

∫
�k (0,t)

k∏
j=1

dBN j (t j ) ·
k+1∏
j=1

Po
(
t j − t j−1, N j − N j−1

)

(5.13)

where Po(t, n) := e−t tn/n! denotes the Poissonian density and N0 = 1, Nk+1 = N , s0 =
t0 = 0, sN = tk+1 = t . �n(s, t) denotes the region of the integration s < t1 < · · · < tn < t
and the Itô integrals on RHS, referred to as the multiple Itô integrals [40,51], are performed
in time order (i.e. the order of t1, . . . , tN ).

Proof By the definition of ZN (t) (1.1), we have

Z̃N ,β(t) = e−t
∫
0<s1<···<sN−1<t

N−1∏
j=1

ds j ·
N∏
j=1

e
β

(
Bj (s j )−Bj (s j−1)− β(s j−s j−1)

2

)
, (5.14)

with s0=0 and the integrand of RHS is expressed as

N∏
j=1

e
β

(
Bj (s j )−Bj (s j−1)− β(s j−s j−1)

2

)
=

N∏
j=1

⎛
⎝1 + e

β

(
Bj (s j )−Bj (s j−1)− β(s j−s j−1)

2

)
− 1

⎞
⎠

=
∞∑

m=0

∑
1≤M1<···<Mm≤N

m∏
j=1

⎛
⎝e

β

(
BM j (sM j )−BM j (sM j−1)−

β(sM j
−sM j−1)

2

)
− 1

⎞
⎠ . (5.15)

Here we use the relation on a one-dimensional standard Brownian motion B(t): one has for
t > s > 0 and β > 0,

e
β
(
B(t)−B(s)− β(t−s)

2

)
=

∞∑
n=0

βn
∫

�n(s,t)

n∏
j=1

dB(t j )·, (5.16)

where the Itô integrals on RHS, referred to us the multiple Itô integrals, are performed in
time order (i.e. the order of t1, . . . , tN ) [40,51]. Using this, we get
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N∏
j=1

e
β

(
Bj (s j )−Bj (s j−1)− β(s j−s j−1)

2

)

=
∞∑

m=0

∑
1≤M1<···<Mm≤N

m∏
j=1

∞∑
n j=1

βn j

∫
�n j (sM j−1,sM j )

n j∏

=1

dBMj (tM j ,
)

=
∞∑
k=0

βk
∞∑

m=0

∑
1≤M1<···<Mm≤N

∞∑
n1,...,nm=1
n1+···+nm=k

m∏
j=1

∫
�n j (sM j−1,sM j )

n j∏

=1

dBMj (tM j ,
). (5.17)

Substituting this into (5.14), and performing the integration on s1, . . . , sN−1, we have

Z̃N ,β(t) =
∞∑
k=0

βk
∞∑

m=0

∑
1≤M1<···<Mm≤N

∞∑
n1,...,nm=1
n1+···+nm=k

∫
�k (0,t)

m∏
j=1

n j∏

=1

dBMj (tM j ,
)

× e−t
m+1∏
j=1

(tM j ,1 − tM j−1,n j )
Mj−Mj−1

(Mj − Mj−1)! (5.18)

where we set M0 = 1, Mm+1 = N . Now we introduce the new variables N j , t j , j =
1, . . . , k by the relation

Nn1+···+n j−1+
 = Mj , tn1+···+n j−1+
 = tM j ,
 for 
 = 1, . . . , n j , j = 1, . . . ,m. (5.19)

Then one has dBMj (tM j ,
) = dBNn1+···+n j−1+

(tn1+···+n j−1+
) leading to

m∏
j=1

n j∏

=1

dBMj (tM j ,
) =
k∏
j=1

dBN j (t j ). (5.20)

Further from (5.19), we have

e−t
m+1∏
j=1

(tM j ,1 − tM j−1,n j )
Mj−Mj−1

(Mj − Mj−1)! =
k+1∏
j=1

e−(t j−t j−1)
(t j − t j−1)

N j−N j−1

(N j − N j−1)! (5.21)

where we set N0 = 1, Nk+1 = N . Substituting these (5.20) and (5.21) into (5.18) and noting
the summations

∑∞
m=0

∑
1≤M1<···<Mm≤N

∑∞
n1,...,nm=1
n1+···+nm=k

can be summarized as the simple

form
∑

1≤N1≤···≤Nk≤N , we obtain (5.13). ��

Note that under the scaling (5.2), the Poissonian density Po(t, N ) goes to the Gaussian
density g(T, X) = exp(−X2/2T )/

√
2πT , i.e.

lim
M→∞

√
MPo(t, N − 1) = g(T, X). (5.22)

Furthermore by Theorems 4.3 and 4.5 in [1], for a function f (t1, . . . , tk, N1, . . . , Nk) that
converges to f(u1, . . . , uk; y1, . . . , yk) under the scaling ti = ui M and Ni = ui M −
yi

√
M, i = 1, . . . , k, we have
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lim
M→∞

1

M3k/4

∑
1≤N1≤···≤Nk≤N

∫
�k (0,t)

k∏
j=1

dBN j (t j ) · f (t1, . . . , tk; N1, . . . , Nk)

=
∫

�k (0;T )

k∏
j=1

du j ·
∫
Rk

k∏

=1

dy j ·
k∏

m=1

η(tm, ym) · f(u1, . . . , uk; y1, . . . , yk) (5.23)

where η(t, y) is the space-time white noise with the δ-covariances (5.8). Thus from (5.13),
(5.22) and (5.23), we have under the scaling (5.2),

lim
M→∞

√
MZ̃N ,β(t)

= lim
M→∞

∞∑
k=0

(βM1/4)k
1

M3k/4

∑
1≤N1≤···≤Nk≤N

∫
�k (0,t)

k∏
j=1

dBN j (t j )

×
k+1∏
j=1

M1/2Po(t j − t j−1, N j − N j−1)

=
∞∑
k=0

∫
�k (T )

k∏
j=1

dt j ·
∫
Rk

k∏
j=1

dy j ·
k∏

m=1

η(tm, ym) ·
k+1∏

=1

g(t
 − t
−1, y
 − y
−1), (5.24)

where t0 = 0, tk+1 = T, y0 = 0, yk+1 = X . Since we easily find that RHS of this equation
is the solution of the SHE with δ-function initial data (5.10), we obtain (5.9).

5.2 The Asymptotics of the Kernel

In [10], Borodin and Corwin discussed the asymptotics of the Fredholm determinant (4.23)
under the scaling limit to the KPZ equation, especially the limiting property of the ker-
nel (4.24) based on the saddle point method. Here we check that a similar saddle point
method is applicable to our biorthogonal kernel (4.10). The scaling limit we consider is (5.9)
discussed above, but here we adopt its rephrased version stated in [10],

lim
N→∞

ZN ,β=1(t = √
T N + X)

C(N , T, X)
= Z(T, X), (5.25)

where C(N , T, X) is

C(N , T, X) := exp

(
N +

√
T N + X

2
+ X

√
N

T

) (
T

N

) N
2

, (5.26)

which is more suitable for our purpose. To see the equivalence between (5.9) and (5.25), we
rewrite the relation (5.9) as

lim
N→∞ β−2 Z̃N ,β(t) = Z(T, X), (5.27)

where we scale t, β as

t = N + X

√
N

T
, β =

(
N

T

)−1/4

. (5.28)
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Furthermore focusing on the scaling property of the partition function ZN ,β(t) =
ZN ,1(β

2t)/β2(N−1), we find

β−2 Z̃N ,β(t) = 1

β2Net+β2t/2
ZN ,1(β

2t) (5.29)

in distribution. Noticing under the scaling (5.28)

β2t = √
T N + X, β2Net+β2t/2 = C(N , T, X), (5.30)

where C(N , T, X) is defined in (5.26), we find that (5.27) is equivalent to (5.25).
For the moment generating function, (5.25) implies

lim
N→∞E

(
e
−e−u ZN ,1

(√
T N+X

))
= E

(
e−e−u′Z(T,X)

)
= E

(
e−e−u′+h(T,X)

)
, (5.31)

where on LHS, u is set to be

u = u′ + logC(N , T, X), (5.32)

with C(T, N , X) (5.26), and in the last equality in (5.31) we used (5.12). The notions of the
KPZ universality class tell us that the fluctuation of the height h(T, X) and the position X
are scaled as T 1/3 and T 2/3 respectively for large T . Considering them, we set

h
(
T, 2γ 2

T Y
) = −γ 3

T

12
+ γT (h̃(T, Y ) − Y 2), (5.33)

where γT = (T/2)1/3. The first term −γ 3
T /12 = −T/24 represents the macroscopic growth

with a constant velocity. The height fluctuation is expressed as h̃(T, Y ) and the term Y 2

reflects the fact that the SHE with delta-function initial data in (5.11) corresponds to the
parabolic growth in the KPZ equation [2,66,69]. Thus substituting u′ = γt s−γ 3

T /12−γT Y 2,
X = 2γ 2

T Y into (5.32), we arrive at the modified scaling

u = γT s − γ 3
T

12
− γT Y

2 + N +
√
T N + 2γ 2

T Y

2
+ 2γ 2

T Y

√
N

T
+ N

2
log

T

N
. (5.34)

Hence (5.31) is rewritten as

lim
N→∞E

(
e
−e−u ZN ,1

(√
T N+2γ 2

t Y
))

= E

(
e−eγt (h̃(T,Y )−s))

)
(5.35)

with the scaling (5.34). This is the scaling limit of the moment generating function from the
O’Connell-Yor polymer to the KPZ equation.

It has been known that RHS of this equation can be represented as the Fredholm determi-
nant [24,29,30],

E

(
e−eγT (h̃(T,Y )−s)

)
= det

(
1 − KKPZ

)
L2(R)

, (5.36)

where the kernel KKPZ(ξ1, ξ2) is expressed as

KKPZ(ξ1, ξ2) = eγT (ξ1−s)

eγT (ξ1−s) + 1

∫ ∞

0
dλAi(ξ1 + λ)Ai(ξ2 + λ). (5.37)

Note thatY does not appear inRHSof this equation. This kernel first appeared in the studies of
the KPZ equation for the narrow wedge initial condition [2,66–69]. From the relation (5.36)
we readily get the distribution of the scaled height h̃(T, Y ) given in (5.33).

123



Determinantal Structures in the O’Connell-Yor... 703

By combining the formula (4.17) for the O’Connell-Yor polymer and the limiting rela-
tion (5.35) from the O’Connell-Yor polymer to the KPZ equation, we can obtain (5.36) by
showing

lim
N→∞ det

(
1 − f̄u K

)
L2(R)

= det (1 − KKPZ)L2(R) (5.38)

under (5.34). This was indeed already discussed in [10] by using the kernel (4.24) . Here we
show that the kernel (5.37) appears rather easily from the scaling limit of our biorthogonal
kernel (4.17). Using the saddle point method, we get the following:

Proposition 17

lim
N→∞ f̄u(x1)K

(
x1, x2;

√
T N + 2γ 2

T Y
)

= e
γT
2 (ξ1−ξ2)KKPZ(ξ1, ξ2). (5.39)

Here the kernel is expressed in terms of φk(x1; t) and ψk(x2; t) defined by (4.1) and (2.1)
respectively as

f̄u(x1)K (x1, x2; t) = ex1−u

ex1−u + 1

N−1∑
k=0

φk(x1; t)ψk(x2; t), (5.40)

and we set u to be (5.34) and

xi = γT ξi − γ 3
T

12
− γT Y

2 + N + (T N )1/2 + 2γ 2
T Y

2
+ 2γ 2

T Y

√
N

T
+ N

2
log

T

N
. (5.41)

Since the factor e
γT
2 (ξ1−ξ2) in (5.39) does not contribute to the Fredholm determinant, we

get (5.38) (though for a complete proof one has to prove the convergence of the Fredholm
determinant itself, not only the kernel). Note that (5.40) has a similar structure to the ker-
nel (4.20) in the GUE random matrices. When we discuss certain large N limits in the GUE
such as the bulk and the edge scaling limit, the nontrivial step reduces to the scaling limit of
the Hermite polynomial in (4.20). The same thing happens in our case: the only nontrivial
step for getting (5.39) is the asymptotics of the functions ψk(x; t) (2.1) and φk(x; t) (4.1).
Based on the saddle point method, we obtain the following results of which the proof is given
in Appendix 3.

Lemma 18

lim
N→∞

γT

C(N )
ψk(xi ; t) = lim

N→∞
N 1/2C(N )

(2γT )1/2
φk(xi ; t) = Ai(ξi − λ), i = 1, 2, (5.42)

where we set xi as (5.41) and k and t as

k = N + N 1/2

(2γT )1/2
λ, t = √

T N + 2γ 2
T Y. (5.43)

The constant C(N ) is represented as C(N ) = e
∑5

j=1 C j in terms of C1, . . . ,C5 defined
by (9.10), (9.14) and (9.16) in Appendix 3.

On the other hand, when we take the same limit for the other representation (4.23), we
can apply the saddle point analysis also to the kernel (4.24) and can get the limiting kernel.
But since it does not correspond to the kernel (5.37) directly, we need an additional step to
show the equivalence between the Fredholm determinant with the limiting kernel and that
with (5.37) (see Sect. 5.4.3 in [10]).
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Proof of Proposition 17. Combining the estimate (5.42) with the simple fact

exi−u

exi−u + 1
= eγT (ξi−s)

eγT (ξi−s) + 1
, i = 1, 2, (5.44)

under (5.34) and (5.41), we immediately obtain the result (5.39). ��

6 Conclusion

For the O’Connell-Yor directed random polymer model, we have established the repre-
sentation (2.7) of the moment generating function for the partition function in terms of a
determinantal function which is regarded as a one-parameter deformation of the eigenvalue
density function of the GUE random matrices.

There are some special mathematical structures behind the O’Connell-Yor model which
play a crucial role in deriving the relation. The first one has been the determinantal represen-
tation (2.11) which is essentially the one with the Sklyanin measure in [57]. Next we have
introduced another determinantal measure in enlarged degrees of freedom (2.19). Our main
theorem has been readily obtained from a simple fact about two marginals of this measure
(Theorem 6).

We can regard our approach as a generalization of the one in [78] which retains its deter-
minantal structures. To see this we needed to reinterpret the dynamics in the Gelfand–Tsetlin
cone introduced in [78] using the weight (3.33) supported on the partially ordered space
VN (3.34). Our approach is a natural generalization of [78] from this viewpoint. It would be
an interesting future problem to find a clear relation with the Macdonald process [10], which
is another generalization of [78].

Applying familiar techniques in random matrix theory to the main result, we have readily
obtained the Fredholm determinant representation of the moment generating function whose
kernel is expressed as the biorthogonal functions both of which are simple deformations of
the Hermite polynomials. The asymptotics of the kernel under the scaling limit to the KPZ
equation can be estimated easily by the saddle point analysis.

Acknowledgments The work of T. I. and T. S. is supported by KAKENHI (25800215) and KAKENHI
(25103004, 15K05203, 14510499) respectively.

Appendix 1: Proof of Lemma 5

First we give a proof of (2.29). For this purpose, it is sufficient to show the case of m =
1, x = 0, ∫ ∞

−∞
dx e−ax fB(x) = π

β
cot

(
πa

β

)
. (7.1)

Furthermore setting eβx = y, a/β = b, one sees that (7.1) is rewritten as∫ ∞

0
dy hb(y) = π cot πb, (7.2)

where hb(y) = y−b−1/(y − 1) and we take the branch cut of hb(y) to be the positive real
axis. Hence here we prove (7.2). We set the contourC as depicted in Fig. 2 with α = 1. From
the Cauchy integral theorem, we find
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Fig. 2 The contour C on C,
where α ∈ (0, ∞). It consists of
the paths C1, . . . ,C6

0 α

R

δ ε

C1

C2

C3

C4

C5

C6

C

∫
C
dy hb(y) = 0. (7.3)

Dividing the contourC intoCi , i = 1, . . . , 6 as in Fig. 2, we find that by simple calculations,

lim
δ→0,ε→0
R→∞

∫
C1

dy hb(y) = − lim
δ→0,ε→0
R→∞

e2π ib
∫
C4

dy hb(y) =
∫ ∞

0
dy hb(y),

lim
ε→0

∫
C2dy

dy hb(y) = lim
ε→0

e2π ib
∫
C5

dy hb(y) = −π i,

lim
R→∞

∫
C3

dy hb(y) = lim
δ→0

∫
C6

dy hb(y) = 0, (7.4)

where note that the factors e2π ibs come from the cut locus of y−b.
From (7.3),(7.4), we get

0 = lim
δ→0,ε→0
R→∞

6∑
j=1

∫
C j

dy hb(y) = (1 − e−2π ib)

∫ ∞

0
dy hb(y) − (1 + e−2π ib)π i, (7.5)

which leads to (7.2).
Next we give a proof of (2.30). For this purpose we first show the following relation. Let

I j (x), j = 1, 2, . . ., x ∈ (0,∞), be

I j (x) =
∫ ∞

0
dw

1

x − w

(logw) j−1

w + 1
. (7.6)

Then we have

I j (x) = 1

x + 1
r j (log x), (7.7)

where rk(x) (k = 0, 1, 2, . . .) is a kth order polynomial of x where the coefficient of the
highest degree is 1/k. This relation (7.7) can be derived by considering the integration of
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m j (w; x) := (logw) j/((x − w)(w + 1)), x > 0 with respect to w along the contour C
in Fig. 2 with α = x and R > 1.

Note that ∫
C
dwm j (w; x) = 2π i

(π i) j

x + 1
, (7.8)

where RHS corresponds to the residue ofm j (w; x) atw = −1. As in the previous case (7.4),
one easily gets

lim
δ→0,ε→0
R→∞

∫
C1

dwm j (w; x) = I j+1(x),

lim
δ→0,ε→0
R→∞

∫
C4

dwm j (w; x) = −
∫ ∞

0
dwm j (we2π i ; x) = −

∫ ∞

0
dw

(logw + 2π i) j

(x − w)(w + 1)

= −
j∑

k=0

(
j

k

)
(2π i) j−k Ik+1(x),

lim
ε→0

∫
C2

dwm j (w; x) = π i
(log x) j

x + 1
, lim

ε→0

∫
C5

m j (w; x)dw = π i
(log x + 2π i) j

x + 1
,

lim
R→∞

∫
C3

dwm j (w; x) = lim
δ→0

∫
C6

dwm j (w; x) = 0. (7.9)

Substituting (7.9) into (7.8), we find

2π i
(π i) j

x + 1
= lim

δ→0,ε→0
R→∞

6∑
k=1

∫
Ck

dwm j (w; x)

= I j+1(x) −
j∑

k=0

(
j

k

)
(2π i) j−k Ik+1(x) + π i

x + 1

(
(log x) j + (log x + 2π i) j

)
.

(7.10)

Thus we obtain

I j (x) = (log x) j + (log x + 2π i) j − 2(π i) j

2 j (x + 1)
− 1

j

j−2∑
k=0

(
j

k

)
(2π i) j−1−k Ik+1(x) (7.11)

which leads to (7.7).
Here we show (2.30). We find that (2.30) is rewritten as

J ∗(m)
B JF (x) = qm

(
log x

β

)
JF (x), (7.12)

where qm(x) is defined below (2.30) and the functions JF (x) and JB(x) on R+ are defined
by JF (x) = 1/(x + 1) and JB(x) = 1/βx .

We prove (7.12) by using (7.7) and by mathematical induction: suppose that (7.12) holds
for m = N − 1. Then we get

J ∗(N )
B JF (x) = 1

β

∫ ∞

0
dy

1

x − y
J ∗(N−1)
B JF (y) = 1

βN (N − 1)! IN (y) +
N−2∑
k=0

ck
βk+1 Ik+1(y)

(7.13)
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where ck(k = 0, 1, . . . , N −2) is the coefficient of xk in qN−1(x) and in the last equality we
used the assumption for the mathematical induction and (7.6). Considering (7.7), we arrive
at (7.12). ��

Appendix 2: Proof of Lemma 10

To showLemma10,wewill use the following identity. For (x1, . . . , xN−1) ∈ R
N−1 satisfying

x1 > · · · > xN−1 and (y1, . . . , yN ) ∈ R
N , we have

∑
σ∈SN

sgnσ
N∏
j=2

1>0
(
x j−1 − yσ( j)

)

=
∑

σ∈SN
sgnσ

N∏
j=2

1>0
(
x j−1 − yσ( j)

)
1>0

(
yσ( j−1) − x j−1

)
, (8.1)

where SN is the permutation of (1, 2, . . . , N ). For the proof of (8.1), it is sufficient to show
for m = 1, 2, · · · , N ,

∑
σ∈SN

sgnσ
N∏
j=2

1>0(x j−1 − yσ( j)) ·
m∏

k=2

1>0(yσ(k−1) − xk−1) · 1>0(xm − yσ(m)) = 0,

(8.2)

where, as in (8.1), we assume the condition x1 > x2 > · · · > xN−1. This can easily be
obtained by noting that

∑
σ∈SN

sgnσ
N∏
j=2

1>0(x j−1 − yσ( j)) ·
m∏

k=2

1>0(yσ(k−1) − xk−1) · 1>0(xm − yσ(m))

=
∑

σ∈SN
sgnσ

N∏
j=2
j �=m

1>0(x j−1 − yσ( j)) ·
m∏

k=2

1>0(yσ(k−1) − xk−1) · 1>0(xm − yσ(m))

=
∑

σ∈SN
sgnσ

N∏
j=2

j �=m, m+1

1>0(x j−1 − yσ( j))

×
m∏

k=2

1>0(yσ(k−1) − xk−1) · 1>0(xm − yσ(m))1>0(xm − yσ(m+1))

= 0 (8.3)

where in the first equality we used the fact that the factor 1>0(xm−1 − yσ(m)) can be omitted
in this equation thanks to the factor 1>0(xm − yσ(m)) with the condition xm−1 > xm and the
last equality follows from the fact that the term with σ cancels the term with σ ′ where σ ′ is
defined in terms of σ as σ ′(m) = σ(m + 1) and σ ′(m + 1) = σ(m) with σ ′(k) = σ(k) for
k �= m, m + 1.
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Using (8.2), we have for x1 > x2 > · · · > xN−1

∑
σ∈SN

sgnσ
N∏
j=2

1>0
(
x j−1 − yσ( j)

)

=
∑

σ∈SN
sgnσ

N∏
j=2

1>0
(
x j−1 − yσ( j)

) · (1 − 1>0(x1 − yσ(1)))

=
∑

σ∈SN
sgnσ

N∏
j=2

1>0
(
x j−1 − yσ( j)

) · 1>0(yσ(1) − x1)

=
∑

σ∈SN
sgnσ

N∏
j=2

1>0
(
x j−1 − yσ( j)

) · 1>0(yσ(1) − x1)(1 − 1>0(x2 − yσ(2)))

=
∑

σ∈SN
sgnσ

N∏
j=2

1>0
(
x j−1 − yσ( j)

) ·
2∏

k=1

1>0(yσ(k) − xk), (8.4)

where for the first and the third equality, we used (8.2) with m = 1 and m = 2 respectively.
Performing the procedure in (8.4) repeatedly, we arrive at (8.1).

Now we give a proof of the lemma by the mathematical induction. The case N = 1 in is
trivial. Suppose that it holds for N − 1. Then noticing

1VN (xN ) =
N∏

k=2

k∏
j=2

1>0

(
x (k−1)
j−1 − x (k)

j

)
= 1VN−1(xN−1)

N∏
j=2

1>0

(
x (N−1)
j−1 − x (N )

j

)
,

(8.5)

we see that LHS of (3.41) is written as

∑
σ ( j)∈S j , j=1,...,N

sgnσ (N ) 1VN−1(x
σ
N−1)

N∏
j=2

1>0

(
x (N−1)
σ (N−1)( j−1)

− x (N )

σ (N )( j)

)

=
∑

σ ( j)∈S j , j=1,...,N

sgnσ (N−1) 1VN−1(x
σ
N−1) · sgnσ (N )

N∏
j=2

1>0

(
x (N−1)
j−1 − x (N )

σ (N )( j)

)

=
∑

σ ( j)∈S j , j=1,...,N

sgnσ (N−1) 1GT(xσ
N−1) · sgnσ (N )

N∏
j=2

1>0

(
x (N−1)
j−1 − x (N )

σ (N )( j)

)

=
∑

σ ( j)∈S j , j=1,...,N

sgnσ (N ) 1GT(xσ
N−1)

N∏
j=2

1>0

(
x (N−1)
σ (N−1)( j−1)

− x (N )

σ (N )( j)

)
, (8.6)

where in the second equality we used the assumption for N−1. Note that in the rightmost side
of (8.6), the condition x (N−1)

σ (N−1)(1)
> x (N−1)

σ (N−1)(2)
> · · · > x (N−1)

σ (N−1)(N−1)
holds for the support of

1GT(xσ
N−1). Thus we can apply (8.1) to the rightmost side. We see that it becomes
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∑
σ ( j)∈S j , j=1,...,N

sgnσ (N ) 1GT(xσ
N−1)

×
N∏
j=2

1>0

(
x (N−1)
σ (N−1)( j−1)

− x (N )

σ (N )( j)

)
1>0

(
x (N )

σ (N )( j−1)
− x (N−1)

σ (N−1)( j−1)

)

=
∑

σ ( j)∈S j , j=1,...,N

sgnσ (N ) 1GT(xσ
N ), (8.7)

which completes the proof of Lemma 10. ��

Appendix 3: The Saddle Point Analysis of ψk(x; t)
In this Appendix, we give a proof of (5.42) based on the saddle point method in a similar
way to Sect. 5.4.3 in [10]. Here we deal with the case of general Y while the case of Y = 0
was considered in [10]. We focus mainly on the limit about ψk(x; t) (2.1) in (5.42) since
the case φk(x; t) (4.1) can also be estimated in a parallel way. Changing the variable as
w = −i

√
Nz, (2.1) becomes

ψk(x, t) =
√
N

2π i

∫ i∞

−i∞
dz e fN (z;t,x), (9.1)

where

fN (z; t, x) = −√
Nzx + N

z2t

2
+ (k − N ) log(

√
Nz) − N log�(

√
Nz). (9.2)

Substituting (5.41) and (5.43) into (9.2), we arrange the first three terms in ascending order
of powers of N as

− √
Nzxi + N

z2t

2
+ (k − N ) log(

√
Nz)

= N 3/2 log N · z
2

+N 3/2
(

−z+ T 1/2z2

2
− z

2
log T

)
+N

(
γ 2
T Y z

2−2γ 2
T Y T

−1/2z− T 1/2z

2

)

+ N 1/2 log N · λ

2(2γT )1/2
+ N 1/2

(
γ 3
T

12
z − γT ξi z + γT Y

2z − γ 2
T Y z + λ

(2γT )1/2
log z

)
.

(9.3)

Using the Stirling formula

log�(n) = n log n − n − log 2πn

2
+ 1

12n
+ O(n−3) (9.4)

for the last term in (9.2), we have

−N log�(
√
Nz) = −N 3/2 log N · z

2
+ N 3/2 (z − z log z) + N

4
log N + N

log 2π z

2

− N 1/2 1

12z
+ O(N−1/2). (9.5)
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Thus from (9.3) and (9.5), fN (z) (9.2) can be expressed as

fN (z; t, x) = N 3/2 f (z) + Ng(z) + N 1/2h(z) + C1 + O(N−1/2), (9.6)

f (z) = T 1/2z2

2
− z log z − z

2
log T, (9.7)

g(z) = −T 1/2z

2
+ log z

2
+ γ 2

T Y z
2 − 2γ 2

T Y

T 1/2 z, (9.8)

h(z) = − 1

12z
+

(
γ 3
T

12
− γ 2

T Y − γT (ξi − Y 2)

)
z + λ

(2γT )1/2
log z. (9.9)

Here C1, which does not depend on z is written as

C1 = N 1/2 log N · λ

2(2γT )1/2
+ N

2
log 2π

√
N . (9.10)

Wenote that f (z) abovehas a double saddle point zc = T−1/2 such that f ′(zc) = f ′′(zc) = 0.
We expand f (z), g(z), h(z) around zc. Noting f ′′′(zc) = 2γ 3

T , g
′(zc) = 0, g′′(zc) =

2γ 2
T Y − γ 3

T , h
′(zc) = γ 3

T /4 − γ 2
T Y + γT (λ − ξi + Y 2), we get

N 3/2 f (z) = N 3/2 f (zc) + N 3/2

3! f ′′′(zc)(z − z3)
3 + O(N 3/2(z − zc)

4)

= C2 + N 3/2 γ 3
T

3
(z − zc)

3 + O(N 3/2(z − zc)
4), (9.11)

Ng(z) = Ng(zc) + Ng′(zc)(z − zc) + N
g′′(zc)

2
(z − zc)

2 + O(N (z − zc)
3)

= C3 − N

(
γ 3
T

2
− γ 2

T Y

)
(z − zc)

2 + O(N (z − zc)
3), (9.12)

N 1/2h(z) = N 1/2h(zc) + N 1/2h′(zc)(z − zc) + C4 + O(N 1/2(z − zc)
2)

= C4 + N 1/2

(
γ 3
T

4
− γ 2

T Y + γT (λ − ξ + Y 2)

)
(z − zc) + O(N 1/2(z − zc)

2),

(9.13)

where C2, C3 and C4 are

C2 := N 3/2 f (zc) = N 3/2T−1/2/2, C3 := Ng(zc) = −N

(
1 + log T

2
+ Y

2γT

)
,

C4 := N 1/2h(zc) = −N 1/2
(
T 1/2

24
+ (γ 2

T Y + γT (ξ − Y 2))T−1/2 − λ log T−1/2

(2γT )1/2

)
.

(9.14)

Thus from (9.6)–(9.13) and under the scaling z′√
N

= (z − zc), we have

fN (z; t, xi ) = γ 3
T

3

(
z′+ Y

γT
− 1

2

)3

−γT (ξ−λ)

(
z′+ Y

γT
− 1

2

)
+

5∑
j=1

C j + O
(
N−1/2) ,

(9.15)
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where C1, . . . ,C4 are defined in (9.10) and (9.14) and C5 is

C5 = −1

3

(
Y − γT

2

)3 + (ξ − λ)
(
Y − γT

2

)
. (9.16)

Further changing the variable z′ + Y/γT − 1/2 = −iv/γT , we obtain

fN (z; t, xi ) = i

3
v3 + i(ξi − λ)v +

5∑
j=1

C j + O
(
N−1/2) . (9.17)

Hence from (9.1) and (9.17), we get the limiting form of ψk(xi ; t)

e−∑5
j=1 C j γTψk(xi ; t) ∼ 1

2π

∫ ∞

−∞
dv e

i
3 v3+i(ξi−λ)v = Ai(ξi − λ), (9.18)

which is nothing but (5.42).
As with (9.1), we rewrite φk(x; t) (4.1) by the change of variable v = √

Nz,

φk(x; t) = 1

2π i

∮
dz

e− fN (z;t,x)

z
, (9.19)

where fN (z; t, x) is given in (9.2). Applying the same techniques as above to this equation,
we get the result for φk(x; t).
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77. Vető, B.: Tracy-Widom limit of q-Hahn TASEP. Electron. J. Probab. 20, 1–22 (2015)
78. Warren, J.: Dyson’s Brownian motions, intertwining and interlacing. Electron. J. Probab. 12, 573–590

(2007)

123

http://arxiv.org/abs/1501.05626

	Determinantal Structures in the O'Connell-Yor Directed Random Polymer Model
	Abstract
	1 Introduction
	2 Main Result
	2.1 Definition and Result
	2.2 Proof

	3 Dynamics of the Two Marginals
	3.1 Evolution Equations of G(x1,ldots,xN;t) and W(x1,ldots,xN;t)
	3.2 The Zero-Temperature Limit and a Brownian Particle System with Reflection Interactions

	4 Fredholm Determinant Formulas
	4.1 A Fredholm Determinant with a Biorthogonal Kernel
	4.2 A Representation from the Macdonald Processes

	5 The Scaling Limit to the KPZ Equation
	5.1 The O'Connell-Yor Polymer Model and the KPZ Equation
	5.2 The Asymptotics of the Kernel

	6 Conclusion
	Acknowledgments
	Appendix 1: Proof of Lemma 5
	Appendix 2: Proof of Lemma 10
	Appendix 3: The Saddle Point Analysis of ψk(x;t)
	References




