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Abstract We consider the ensemble of real Ginibre matrices conditioned to have positive
fraction α > 0 of real eigenvalues. We demonstrate a large deviations principle for the joint
eigenvalue density of such matrices and introduce a two phase log-gas whose stationary
distribution coincides with the spectral measure of the ensemble. Using these tools we
provide an asymptotic expansion for the probability pn

αn that an n × n Ginibre matrix has
k = αn real eigenvalues and we characterize the spectral measures of these matrices.

Keywords Real Ginibre matrices · Large deviations · Log-gas

1 Introduction

Randommatrices constitute a central topic in modern probability theory [1–3] and an impor-
tant tool for an increasing number of applications, from physics [4,5] to biology [6–8] or
engineering [9–11].

The present study deals with specific properties of a canonical family of randommatrices,
the real Ginibre ensemble. Under a reference probability P, the entries of such matrices are
i.i.d. normal random variables with variance 1

n where n is the matrix size. In particular we
intend to look deeper into the properties of real Ginibre matrices with anomalously large
number of real eigenvalues, which are still largely unknown. These constraints are drastic for
the random matrices, and affect the shape of the distribution of the eigenvalues as illustrated
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Fig. 1 Top Superposition of 50 spectra of 50×50 Ginibre matrices conditioned to have 26 real eigenvalues (a)
and unconditioned (b). Black lines correspond to the unit circle and red lines correspond to our estimation of
the support of the complex part of the spectrum in the large n limit. Bottom Histogram of the real eigenvalues
of 200 50×50 Ginibre matrices conditioned to have 26 real eigenvalues (c) and unconditioned (d). Histograms
are normalized with respect to n. Red line corresponds to our estimation of the distribution of real eigenvalues
in the large n limit (Color figure online)

in Fig. 1. We aim at characterizing the eigenvalue distribution of random matrices when the
number of real eigenvalues k is proportional to the matrix size n.

Our work reveals that in this regime, the empirical spectral measure (ESD) markedly
departs from the one of the unconditioned ensemble. We establish that when n → ∞, the
ESD converges to a limit that is supported by both the real line and the complex plane. We
characterize themacroscopic properties of this limit and analyze itsmicroscopic organization.
In the process, we also obtain an estimate for the probability that an n × n matrix has k real
eigenvalues pn

k with k = O(n) as n → ∞.
Literature Review Before presenting our main results, we concisely review some rele-

vant past results in random matrix theory. Characterizing the spectral properties of the real
Ginibre ensemble has been an active field of research. A milestone in this direction was the
computation, first in [12] and later in [13], of the joint probability density of the eigenvalues
λ1, . . . , λn of n × n real Ginibre matrices:
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p[λ1, · · · , λn] = Cn

∏

i> j

|λi − λ j |
(

n∏

i=1

exp(−nλ2i )erfc
(
|λi − λ∗

i |
√

n/2
))1/2

(1)

where the asterisk denotes the complex conjugate and Cn is the normalization constant. We
denote in the sequel by Qn the associated probability measure on C

n (i.e., the probability
with density p with respect to Lebesgue’s measure on C

n).
A later breakthrough was the characterization of the correlations between eigenvalues in

terms of Pfaffian processes in a series of studies [14–20]. More recently, this picture has
been further augmented by the description of the distribution of the spectral radius and of
the largest real eigenvalue of this ensemble of matrices [21].

Much work has also been devoted to the characterization of the spectrum of real Ginibre
matrices in the limit of n → ∞. We denote by μ̂n the empirical spectral distribution of such
matrices of size n × n defined as:

μ̂n = 1

n

n∑

i=1

δ(λi ) (2)

where {λi }n
i=1 are the eigenvalues of the matrix. For Mn a real Ginibre matrix, it is now well

known that μ̂n converges to the uniform distribution on the unit disk as n → ∞, a result
known as circular law:

μ̂n ⇀
1

π
1|x |≤1 . (3)

For realGinibrematrices, this resultwasfirst demonstrated in [13]. It has beennowestablished
that the circular law is universal in the sense that convergence of μ̂n to the uniform distribution
on the unit disk holds for matrices composed of i.i.d. random variables with zero mean and
1/n variance [22]. Furthermore, local properties, such as correlations between eigenvalues are
also universal in the n → ∞ limit for matrices with independent elements with exponentially
decaying distribution and moments matching the normal distribution up to fourth order [23].
See also [24,25] for universality results in dimension one, as well as rigidity results in
dimension one and two [26–30].

Large deviations principles (LDP) for Gaussian randommatrices were derived in [31,32],
where it was shown that the sequence of empirical measures {μ̂n}n→∞ of Mn satisfy a LDP
with speed n2 and rate function

I[μ] = 1

2

(∫
x2dμ(x) −

∫ ∫
log |x − y|dμ(x)dμ(y)

)
− K (4)

for symmetric Gaussian ensembles (i.e. GaussianOrthogonal Ensemble) and the real Ginibre
ensemble respectively. In the former, the map I acts on probability measures on the real axis
M+

1 (R) and K = 3
8 + 1

4 log 2. In the later, the map I acts on probability measures on C

symmetrical with respect to complex conjugation: MS
1 (C), and K = 3

8 .
The distinctive feature of the spectrum of real Ginibre matrices is that it has a non-

zero probability of having real eigenvalues. As shown in [13,33,34], the empirical spectral
distribution of finite real Ginibre matrices has a singularity on the real line because there
is a positive probability of having real eigenvalues. As the matrix size n goes to infinity,
this singularity disappears because the expected number of real eigenvalues is of order

√
n.

The first numerical reports on this scaling appeared in [35] and a rigorous proof for the
average number of real eigenvalues and higher order expansions in [33]. Its universality was
established in [23]. Recent studies have provided a more detailed analysis of the distribution
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306 L. C. G. del Molino et al.

of real eigenvalues of real Ginibre matrices, notably the inter eigenvalue gap distribution
[36–38], which takes on an approximately semi-Poisson form in the bulk.

In [13] the author introduced the probabilities pn
k for a real Ginibre matrix of size n to

have k real eigenvalues and provided numerical estimates for some special cases of pn
k and

exact expressions for the specific case k = n. Integral expressions for these probabilities for
small n were derived[39], enlarging the range of values that could be numerically computed.
An exact expression for kn = n − 2 and its large n asymptotic behavior was derived in [40]
using the integrable structure of the real Ginibre ensemble and Pfaffian properties. Recently,
fine asymptotic estimates of pn

k for k small (k = o(log(n)/
√

n)) were analytically derived
in [41]. To our knowledge, there is no asymptotic expression of pn

k for large n and general k.
Another very efficient method for the study of the spectra of the Gaussian β ensembles

was proposed in [42]. This pioneering work made a deep analogy between 1d log-gases, i.e.
freely moving charged particles with quadratic confinement and logarithmic repulsion, and
the eigenvalues of matrix-valued symmetric real Ornstein–Uhlenbeck processes. In detail,
the equilibrium distribution of a one-dimensional log-gas at an inverse temperature β is pre-
cisely the distribution of the eigenvalues of the Gaussian β ensemble (symmetric, hermitian
or quaternionic random matrices), and the equilibrium density of a two-dimensional log-gas
is identical to the distribution of eigenvalues of the complex Ginibre ensemble. This link
between interacting particle systems and spectra of random matrices has proved an essen-
tial tool to demonstrate properties of the spectrum of random matrices even in cases with
extremely low probability. As an example, the use of the log-gas for symmetric matrices
was instrumental in the characterization the spectrum of random matrices with anomalous
densities [43,44], with applications to data analysis.

From the mathematical viewpoint, the existence and uniqueness of solutions to 1d log-gas
systems as well as the convergence as the system size goes to infinity were proved in [45]
and for a more general class of gases in [46]. For more on log-gases we refer to [1].

Methods and Summary of the Main Results Our methods rely on the derivation of a LDP
for the Ginibre ensemble conditioned on the proportion of real eigenvalues α = k/n. Our
contribution here is to extend the LDP in [31,32] to the situation that interpolates between
the two cases presented to allow for measures that are supported both on the real axis and
the complex plane. We find that such matrices satisfy a LDP with rate n2 and rate function
I, where K = 3

8 .
From our LDP, we are able to show that when k/n → α and n → ∞, 1

n2
log pn

k scales
as I[μα] − K where μα is the minimizer of the rate function I on the set Mα = {ν ∈
MS

1 (C) ; ν(R) = α}. In particular, for the case α = 1 one can see that

1

n2 log pn
n → −I[μ1] = −1

4
log 2 ,

which coincides asymptotically with the exact formula derived in [13] and with the formula
of pn

n−2 derived in [40]; actually, our result shows that this logarithmic equivalent is valid
for pn

n−2r for any r ∈ N and not only for r = 0 or 1. However, obtaining a closed form
expression for the minimizer μα is not straightforward. Nonetheless, we are able to derive
a precise qualitative picture of the support and shape of the minimizer through the use of a
constrained optimization problem [47].

To gain a deeper understanding on the minimizer, we next introduce and investigate the
log-gas whose stationary distribution corresponds to the eigenvalue distribution of the class
of matrices we are studying. In contrast with the existing literature, this log-gas is neither
one nor two dimensional: it is a mixture, in the complex plane, of the two types of gas, one
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The Real Ginibre Ensemble with k = O(n) Real Eigenvalues 307

fraction of the particles being confined on a singular region of the plane. We use this gas to
obtain numerically for various values of α, approximations of the distribution μα .

The above steps characterize the macroscopic properties of the limit distribution μα . We
complement these by a description of microscopic features. To this end, we use renormal-
ization techniques inspired from hydrodynamics and the Ginzburg–Landau theory [48–50]
that were extended to investigate the microscopic organization of particles in log-gases with
applications to the distribution of eigenvalues of the Ginibre ensemble. This approach has
unveiled in particular a crystallization phenomenon in one dimension, and led to conjecture
that particles in two-dimensional log-gases organize according to a regular triangular lattice
in the zero temperature limit [48,49]. We readily apply these methods to our mixed-type
problem.

Organization of the Paper Since the complex eigenvalues of real matrices come in pairs
of complex conjugates, matrices where k and n have different parity have probability 0. For
this reason through the text we assume that the number of real eigenvalues k has the same
parity as n. Also we introduce the notation αn for the closest integer to αn with the same
parity as n.

The article is organized as follows. In Sect. 2, we establish a specific LDP for real Ginibre
matrices conditioned to have k = αn real eigenvalues and the asymptotic estimation of pn

k
in Sect. 3. We characterize more precisely the form of the distribution of real and complex
eigenvalues minimizer in Sect. 4. We introduce and analyze in Sect. 5 the 1d 2d log-gas
whose stationary distribution is identical to the eigenvalues of aGinibrematrix constrained on
having a specific number of real eigenvalues. Finally, in Sect. 6, we derive the renormalized
energy for the mixed gas and discuss its implications in terms of the distributions of the
particles in the zero temperature limit.

2 Large Deviations Principle for k = αn and Analysis of the Rate Function

Consider Mn
kn

∈ R
n×n with n ∈ N a sequence of real Ginibre random matrices with kn

real eigenvalues, such that kn has the same parity as n and kn/n → α ∈ [0, 1]. The large
deviations principles shown in [31,32] correspond to α ∈ {0, 1}. We now show that they
can be extended to α ∈ (0, 1). To this purpose, we define Mα as the subset of MS

1 (C) (i.e.,
probability measures symmetrical with respect to the complex conjugation on C) exactly
charging a mass α to the real line:

Mα := {μ ∈ MS
1 (C) : μ(R) = α}

For fixed α ∈ (0, 1) and finite n, the space Mα contains empirical measures of matrices
of size n only if αn is an integer value. Therefore, this space is slightly too small in order
to understand the convergence properties of the spectrum of sequences of random matrices
asymptotically charging non-trivial mass on the real axis: the spectral density of matrices
of size n can only charge a mass proportional to 1/n to the real axis. In order to take into
account these fluctuations of the mass on the real axis as n is increased, we introduce the
decreasing sequence of spaces:

Mn
α =

{
μ ∈ MS

1 (C) : |μ(R) − α| ≤ 1

n

}
.

The limit of this sequence is exactly Mα , and for any n ∈ N, the space Mn
α contains all

empirical spectral densities ofmatriceswith a number of real eigenvalues k = αn. Throughout
the paper we will use the classical Lévy distance, which provides a metric for the topology of
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308 L. C. G. del Molino et al.

weak convergence.1 We will be interested in sequences of random matrices (Mn)n≥0 whose
spectral density belongs to Mn

α . These matrices satisfy the following estimates:

Theorem 1 For any ν ∈ Mα , we have:
⎧
⎪⎨

⎪⎩

lim
δ↘0

lim sup
n→∞

1

n2 logP
[
μ̂n ∈ Mn

α ∩ B(ν, δ)
] ≤ −I[ν]

lim
δ↘0

lim inf
n→∞

1

n2 logP
[
μ̂n ∈ Mn

α ∩ B(ν, δ)
] ≥ −I[ν] .

where B(ν, δ) is the Lévy ball of radius δ centered at ν and K = 3
8 .

This property is more general than a Large Deviation Principle (LDP) in that in allows to
take into account the constraint on the asymptotic proportion of real eigenvalues, which vary
with the sequence index. We denote the half complex plane as H = {z ∈ C; �(z) > 0}.
Proof The proof is based on a combination of evaluations and methods proposed in [31,32]
in order to prove large deviations principles for the Wishart or Ginibre ensembles. The
first inequality (upper bound) can be readily deduced from the corresponding inequalities
in [31,32] by noting that P[μ̂n ∈ Mn

α ∩ B(ν, δ)] ≤ P[μ̂n ∈ B(ν, δ)].
The lower bound is slightly more complex. In [31], the authors propose an original con-

struction of a particular set of points on the real line, from which they construct a measure
whose probability compares to the rate function and lower bounds the probability we aim
at controlling. This construction was generalized in [32] where the points now belong to H.
For our purposes, a mixed construction both on the real line and on H proves necessary to
ensure the property stated in the theorem.

Let us start by introducing the notations that are useful in the rest of the proof.We consider
ν ∈ Mα a probability measure symmetric with respect to complex conjugation and charging
a mass equal to α on the real line. We denote νR = 1

α
TrR(ν) the trace of the measure ν on the

real axis renormalized to obtain a probability distribution, and νC the probability distribution
obtained from renormalizing the trace of ν on H.

We now make explicit the mixed construction of a set of points on C whose empirical
measure will belong toMn

α for some integer n, and with which we will be able to deduce the
lower bound expected. Let us thus fix n ∈ N, define k = αn and l = (n −k)/2 corresponding
respectively to the number of points in R and H of empirical measures belonging to Mn

α .
The construction, schematically described in Fig. 2, proceeds as follows. By the continuity
properties of the rate function proved in [32], we can assume that νC has no atom with
continuous and everywhere positive density with respect to Lebesgue’s measure on H, and
we can define a square H in H with mass at least (1 − 1/n). Similarly for νR on R, one
can define a bounded interval R with mass at least equal to (1 − 1/n). The square H (resp.
the interval R) can be decomposed into D disjoint squares {Bl}l∈{1,··· ,D} (resp. δ disjoint
intervals) of length proportional to 1/

√
n (resp. 1/n), in each of which are set a fixed number

of complex (resp. real) points based on the density ν in each of these intervals. These points
are denoted (λ̃1 < · · · < λ̃k) ∈ R

k and (Z̃1, · · · , Z̃l) ∈ H
l (see [31,32] for the details of the

construction). The important information on these points is that:

1 For the sake of completeness, we recall that the distance between two probability measures (μ, ν) on C is
defined as:

dL (μ, ν) = inf
{
δ > 0 ; μ(A) ≤ ν(Aδ) and ν(A) ≤ μ(Aδ) ∀A ∈ B(C)

}

where B(C is the Borel algebra of C and for A ∈ B(C), Aδ = {x; d(x, A) ≤ δ}.
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The Real Ginibre Ensemble with k = O(n) Real Eigenvalues 309

Fig. 2 The artificial empirical measure constructed for the lower bound in the ball centered at ν. The density
of ν charges both H (light blue region) and a part on R (bold black line). The square H ⊂ H contains in its
interior a mass greater (1− α)(1− 1/n) and is partitioned into smaller squares of typical size of order 1/

√
n.

Atoms Z̃i are blue circles, surrounded by green ballsof size ε/n, and together form the space Dε . Along the
real line, orange circles are the atoms λ̃i and green intervals are of amplitude δ (Color figure online)

(i) λ̃i are the boundaries of the intervals (remark that the λi could alternatively be fixed as
quantiles of the distribution νR),

(ii) the number of points Z̃ j is related to the mass contained in the square they are contained
in,

(iii) the distance to the boundary of the square, as well as distances between two points, are
lower bounded by C/

√
n for some constant C .

Note that such a construction yields an empirical measure whose mass is smaller that one.
This is completed by adding some points outsideH, satisfying the same conditions of distance
to boundaries and between points. Thus the constructed empirical distribution is close from
ν, in the sense that the distance (in total variation) between these two measures is arbitrarily
small as soon as taking into account a sufficient number of points (λ̃i ) and a sufficiently fine
partition of H. Around these points, we can define small intervals [λ̃i − δ/2, λ̃i + δ/2] and
for sufficiently small ε > 0, non-overlapping balls centered at Z̃ i with radius ε/n. The union
of these balls is denoted Dε . From this construction, following exactly the same algebra as
in the pure real or complex case, we obtain:

Qn(B(ν, δ) ∩ Mn
α)

≥ Bn Dn exp

(
(−l + 1√

l
)

l/2∑

j=1

|Z̃ j |2 +
∑

i �= j

log |Z̃i − Z̃ j ||Z̃∗
i − Z̃∗

j | − l(l + k) log(1 − 2ε

C
)

− k
k∑

i=1

(|λ̃i | + δ)2 +
∑

i �= j

log |λ̃i − λ̃ j | + 2
k∑

i=1

l/2∑

j=1

log |λ̃i − Z̃ j |
)

≥ Bn Dn exp

(
(k + 1)2

∫
log |x − y|dνR(x)dνR(y) − (k + 1)2

∫
x2dνR(x)

− l
l/2∑

i=1

|Z̃ j |2 + l2

2

∫ ∫
log |x − y|dνC (x)dνC (y) + 2kl

∫ ∫
log |x − y|dνC (x)dνR(y) + R(δ, ε, n)

)
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310 L. C. G. del Molino et al.

where C denotes a constant independent of n (possibly depending on the parameters δ and
ε), Bn a constant depending on all parameters such that log(Bn) = o(n2), Dn a constant
satisfying the same property as in the proof of the upper bound (1/n2 log(Dn) → K ), and
R(δ, ε, n) a term tending to zero when δ or ε tend to zero, and is negligible compared to n2

as n → ∞ (this term is obtained explicitly). From this expression, it is now easy to see that :

1

n2 log(Qn(B(ν, δ) ∩ Mn
α))

≥ log(Cn)

n2 + (k + 1)2

n2

(∫
|x |2dνR(x) +

∫ ∫
log |x − y|dνR(x)dνR(y)

)

+ l2

n2

(∫
|x |2dνC (x) +

∫ ∫
log |x − y|dνC (x)dνC (y)

)

+ 2kl

n2

∫ ∫
log |x − y|dνC (x)dνC (y) + o(1)

and therefore in the limit n → ∞ we conclude that:

lim
δ↘0

lim inf
n→∞

1

n2 log(Qn(B(ν, δ) ∩ Mn
α))

≥ K − α

∫
|x |2dνR(x) + α2

∫ ∫
log |x − y|dνR(x)dνR(y)

− (1 − α)

∫
|x |2dνC (x) + (1 − α)2

∫ ∫
log |x − y|dνC (x)dνC (y)

)

+ 2α(1 − α)

∫ ∫
log |x − y|dνC (x)dνC (y)

= I[ανR + (1 − α)νC ]
which ends the proof. ��

Similarly to a LDP, the above theorem readily ensures the following

Theorem 2 The rate function I has a unique minimizer μα on the space Mα . The sequence
μ̂n ∈ Mn

α of empirical measures of the spectrum of Ginibre matrices conditioned on having
k = αn real eigenvalues converges in the Lévy topology towards μα .

Proof We start by noting that the space Mα is convex since any convex combination of
elements of Mα remains in Mα . Moreover, it is a closed subset of MS

1 (C). The convexity
of I [31,32] ensures that the map I restricted to Mα remains lower-semicontinuous, and
has compact level sets in Mα . In particular, it implies that the map I is strictly convex
on Mα , guaranteeing that there exists a unique minimum μα in Mα . In order to ensure
that sequences of empirical processes in Mn

α converge towards μα exponentially fast with
speed n2, we further need to ensure that these sequences are tight. That property is, again, a
consequence of the analogous properties proved in the case of one-dimensional log-gases [31]
and on the the unconstrainedGinibre ensemble [32] (seen as a consequence of the first result).
Here, the elegant proof proposed in [32] readily extends to our constrained case and allows
ensuring the exponential tightness of sequences of randommatrices with spectral distribution
constrained to belong to Mn

α , as we now outline. Defining for K ∈ [0, 1] and r > 0 the
compact set An

K ,r , subset of Mn
α , as:

An
K ,r = {

μ ∈ Mn
α ; μ(Bc

r ) > K
}
,
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where Br is the complex centered ball with radius r , and AK ,r = {μ ∈ MS
1 (C) ; μ(Bc

r ) >

K } it is easy to see, using the inequality log(|x − y|) ≤ 2 + (|x |2 + |y|2)/4, that:

Qn(μ̂n ∈ An
K ,r ) ≤ gn

∫ ∏
i = 1kdλi

l∏

j=1

dx j dy j1AK ,r exp

(
−n2

4

∫
(|z|2 + |z′|2)dμ̃(z, z′)

)

≤ gn exp

(
− K n2r2

4

)

where μ̃ is the empirical measure with atoms at λi and x j ± iy j and log(gn) = O(n2). This
inequality readily yields the desired of exponential tightness including the constraint that
empirical distributions belong to Mn

α .
We have therefore built up all necessary ingredients for proving convergence of our

constrained ensembles. Indeed, classical Large Deviations theory show exponentially fast
convergence of a sequence of empirical measures under the condition that the sequence is
exponentially tight and satisfies a LDP with good rate function (the sequence converges
towards the unique minimum of the rate function). Here, analogous properties were proved
under the constraint that each element of the sequence belongs toMn

α , and the classical proof
ensures convergence of the constrained measures towards the minimum of the rate function
on Mα . ��

This method of proof of the convergence of the sequence of empirical measures μ̂n to
μα the unique minimizer of I on Mα goes beyond the case of constraining the Ginibre
ensemble to the number of real eigenvalues, and provides an account for so-called log-gas
method which proved very efficient for the understanding of rare events in the Gaussian and
Wishart β-ensembles [43,44] or the Ginibre ensemble [51].

In our purpose to characterizeGinibrematriceswith prescribed proportion of real eigenval-
ues, we therefore need to find the minimizerμα of the rate function inMα . If this is possible,
we can access (i) to the typical distribution of eigenvalues under our constraint and (ii) to the
probability of these events at leading order, logarithmically equivalent to exp(−n2I[μα]).
Our efforts will therefore now be devoted to the characterization of these distributions.

3 Asymptotic Behavior of pnαn

We now use the LDP in order to characterize the asymptotic behavior of the probability pn
αn

of having asymptotically k ∼ αn real eigenvalues. For Mn a random matrix of size n × n
from the real Ginibre ensemble, we recall that

pn
k = P

[
Mn has k real eigenvalues

] = P
[
μ̂n(R) = k/n

]
(5)

where μ̂n is the empirical spectral distribution of Mn . To account for the discrete nature of
the mass on the real line and for the parity of the number of complex eigenvalues, we consider
the following quantity:

pn
αn = P

[|μ̂n(R) − α| ≤ 1/n
] = P

[
μ̂n ∈ Mn

α

]
. (6)

In order to characterize this quantity, it is tempting to apply directly the large deviation
principle of [32, Theorem 1.1] on the set A = Mα which is closed with empty interior. One
therefore obtains the upper bound:

lim sup
n→∞

1

n2 logP
[
μ̂n(R) ∈ A

] ≤ − inf
ν∈A

I[ν] = −I[μα] . (7)
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312 L. C. G. del Molino et al.

Here one faces two difficulties. First, because of finite size effects the quantity P[μ̂n(R) ∈ A]
is not exactly equal to P[μ̂n(R) ∈ Mn

α]. In fact, if α is irrational logP[μ̂n(R) ∈ A] = −∞
for any n. Second, even if this problem is solved, only an upper bound holds.

A much better estimate can be achieved using the results of Theorem 1:

Corollary 1 For any α ∈ (0, 1), we have:

lim
n→∞

1

n2 log pn
αn = lim

n→∞
1

n2 logP
[
μ̂n ∈ Mn

α

] = −I[μα] (8)

Proof In the proof of Theorem 1 we have shown that for any ν ∈ Mα and δ > 0:

lim sup
n→∞

1

n2 logP
[
μ̂n ∈ Mn

α ∩ B(ν, δ)
] ≤ − inf

μ∈Mα∩B(ν,δ)
I[μ] (9)

and

lim inf
n→∞

1

n2 logP
[
μ̂n ∈ Mn

α ∩ B(ν, δ)
] ≥ −I[ν] (10)

And therefore, letting δ → ∞, we obtain:

lim sup
n→∞

1

n2 logP
[
μ̂n ∈ Mn

α

] ≤ − inf
μ∈Mα

I[μ] (11)

lim inf
n→∞

1

n2 logP
[
μ̂n ∈ Mn

α

] ≥ −I[ν] (12)

≥ − inf
μ∈Mα

I[μ] (13)

readily proving result announced in Eq. (8). ��
This result shows that the probabilities pn

αn decrease as e−n2 . For α = 1, we know that
μ1 is the semi-circular law, and I[μ1] can be readily computed and is equal to log(2)/4 (it is
exactly the difference between the constant term in the rate function for Hermitian matrices

and that for non-Hermitian matrices, see e.g. [31,32]). This shows that log pn
ϕ(n) ∼ − n2

4 log 2

for any map ϕ : N �→ N with ϕ(n)/n → 1. In particular, log pn
n−2r ∼ − n2

4 log 2 for any
r ∈ N. Furthermore the continuity and convexity properties of α �→ I[μα] proven below
imply the continuity and convexity of the map α �→ limn→∞ pn

αn .

4 Properties of the Minimizer μα

We investigate the qualitative properties of the distribution μα , the large n limit spectral
distribution of the Ginibre ensemble with asymptotic proportion α of real eigenvalues.

4.1 Continuity and Monotonicity of α �→ μα

In this subsection, we establish continuity of the minimizer and of the minimum of the rate
function on the subspacesMα with respect to the parameter α, as well as the convexity and
monotonicity of the minimum.

Proposition 1 1. The mappings α ∈ [0, 1] �→ μα and α ∈ [0, 1] �→ I[μα] are continuous.
2. The mapping α ∈ [0, 1] �→ I[μα] is convex and increasing.
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Proof 1. We define:

Jα[μ] :=
{
I[μ] if μ ∈ Mα

+∞ otherwise.
(14)

I has a unique minimizer in Mα . In order to show the continuity properties in α we
will use the theory of �-convergence [52, Theorem 1.21, p. 29]. In detail we consider a
sequence (αn)n≥0 ∈ [0, 1]N converging towards α ∈ [0, 1]. For each αn , there exists a
minimum μαn of the map Jαn . To show that μαn → μα , we will show that the sequence
of functionals Jαn �-converges to Jα . This amounts to proving a few inequalities on the
limits of the sequence of functions Jαn together with an equi-coerceness property of the
sequence (Jαn )n . In detail, it suffices to prove that the sequence of processes satisfies the
following properties:

(a) for any μ ∈ M and any converging sequence αn → α with ναn → μ, the following
inequality holds:

lim inf
n→∞ Jαn

[
ναn

] ≥ Jα[μ] (15)

(b) for any μ ∈ M, there exists a sequence αn → α and ναn ∈ Mαn converging to μ

such that:

lim sup
n→∞

Jαn

[
ναn

] ≤ Jα[μ] (16)

(c) (Equicoerciveness): for all n ∈ N and for all t > 0 there exists a compact set
Kt ⊂ M1(C) such that {ν : Jαn [ν] ≤ t} ⊂ Kt .

We now prove that the three assumptions indeed hold in our case.

(a) This property is a consequence of the regularity properties of good rate functions.
Indeed, let μ ∈ M be a fixed measure. If μ /∈ Mα , then for n large enough, ναn

cannot be inMαn , the above lim inf is infinite and inequality (15) is trivial. Otherwise,
if μ ∈ Mα , the above inequality is actually a direct consequence of the lower-
semicontinuity of I : we can assume that ναn ∈ Mαn (or at least a subsequence), so
that Jαn [ναn ] = I[ναn ] and then one uses the lower-semicontinuity of I to obtain
(15).

(b) Given a measure μ ∈ M, the second step amounts to finding a sequence αn → α

and a sequence of measures ναn ∈ Mαn with ναn → μ such that the inequality (16)
holds. For μ /∈ Mα , the inequality holds for any sequence ναn since Jα[μ] = +∞.
Otherwise,μ can bewritten asμ = αμR +(1−α)μC , and for any sequence αn → α,
one defines ναn = αnμR + (1 − αn)μC . Then, ναn ∈ Mαn and Jαn [ναn ] = I[ναn ].
Therefore, one obtains (16) by continuity of a �→ I[aμR + (1 − a)μC ].

(c) The equicoerciveness property is a consequence of the fact that I is a good rate
function, hence has compact level level-sets. Therefore, for any t ∈ R, there exists a
compact Kt such that {I ≤ t} ⊂ Kt .We thus have {Jαn ≤ t} = {I ≤ t}∩Mαn ⊂ Kt .

These three results proved the �-convergence of Jαn towards Jα , and therefore of μαn

to μα for any sequence αn → α, which concludes the proof of the first point of the
proposition.

2. We now prove the convexity and monotony of α �→ I[μα]. Let α, α′ ∈ [0, 1]. Since
μ �→ I[μ] is convex, we have:

I[tμ + (1 − t)ν
] ≤ tI[μ] + (1 − t)I[ν] for t ∈ [0, 1], μ ∈ Mα and ν ∈ Mα′ (17)
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Therefore, taking the infimum on the above equation shows that α �→ I[μα] is convex.
Since, I[μ0] < I[μ1] and I[μα] ≥ I[μ0], we conclude that the continuous mapping
α �→ I[μα] is necessarily increasing.

��
Remark 1 Since α �→ I[μα] is increasing, the minimum of the rate function conditioned on
Mα is equal to the minimum on M+

α = {μ ∈ MS
1 (C) : μ(R) ≥ α}:

inf
Mα

I[μ] = inf
M+

α

I[μ] (18)

With this continuity properties in hand, we return to the characterization of the qualitative
features of μα .

4.2 Qualitative Description of μα

We are now interested in characterizing the distribution μα . The large deviation principle
defines this distribution as the minimum of I, which can therefore be characterized through
the computation of the differential of I in the spaceMα . This differential is a linear operator,
acting on the space of signed measures h symmetrical with respect to the real axis and such
that h(C) = 0, with traces h R on the real axis and hC on H satisfying h R(R) = hC (H) = 0.
Denoting αμR

α the trace of μα on the real axis and 1−α
2 μC

α on H (with these definitions,
μR

α (R) = μC
α (H) = 1), we find that:

dμI[h] = 1

2

∫

C

|z|2dh(z) −
∫

log |z − z′|dμ(z)dh(z′)

which can be rewritten as:

∂μRI[μ] =
∫ {

α|x |2 + α2
∫

log |x − x ′|2dμR(x ′) + α(1 − α)

∫
log |x − z|2dμC (z)

}
h R(dx)

∂μC I[μ] =
∫ {

(1 − α)|z|2 + α(1 − α)

∫
log |z − x |2dμR(x)

+ (1 − α)2
∫ (

log |z − z′|2 + log |z − z′∗|2
)

dμC (z′)
}

hC (dz) .

Necessarily, provided that these differentials are bounded atμα , the linear behavior described
by the above equation fails (indeed, the freedom to replace h by −h would contradict the
minimality of I on Mα at μα). Therefore the differential operator is equal to zero for any
acceptable measure h, implying the following proposition:

Proposition 2 The measure μα satisfies the system of integral equations defined for any
x ∈ R and z ∈ H as

αx2 + α2
∫

log |x − x ′|2dμR
α (x ′) + α(1 − α)

∫
log |x − z′|2dμC

α (z′) = 0

(1 − α)|z|2 + (1 − α)2
∫ (

log |z − z′|2 + log |z − z′∗|2) dμC
α (z′) + α(1 − α)

∫
log |z − x ′|2dμR

α (x ′) = 0.

For the two extreme cases α ∈ {0, 1} we recover the circular law μR(x) = 0, μC (z) =
1
π
1|z|<1 for α = 0 and the semi-circular law μR(x) = μsc(x) = 1

π

√
2 − x21|x |≤√

2,

μC (z) = 0 for α = 1.
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These equations are generally too complex to be solved explicitly. It is however possible
to characterize further the minimizer μα for intermediate values of α.

Theorem 3 Denoting αμR
α and 1−α

2 μC
α the trace on R and H of the minimizer μα of I on

Mα for α ∈ [0, 1]. The measure μα has the following profile:

i. μR
α has a density gα with respect to Lebesgue’s measure on R such that gα ∈ L2(R).

This density vanishes outside an interval [−Rα, Rα] for some constant Rα > 0
ii. μC

α has a constant density 2
(1−α)π

with respect to Lebesgue’s measure on its support

Vα ⊂ H. This support is a simply connected bounded open set and is such that V̄α∩R = ∅.

In [53] the authors have analyzed the limiting distribution of the eigenvalues of the complex
Ginibre ensemble conditioned on the event that a large proportion of the eigenvalues lies in
an open subset of the complex plane. The situation we consider is similar in the sense that we
have extra weight on the real line. While this is not treated explicitly in [53], the argument
of proof goes through with adequate modifications.

This theorem provides us with a qualitative description of the minimizer μα . A more pre-
cise characterization of the minimizer requires the use of other techniques, namely numerical
ones that are described below.

5 Log-Gas for Ginibre Conditioned on k

The present section introduces and analyses a log-gas whose equilibrium distribution is
related to μα .

The log-gas approach to spectral analysis of the real Ginibre ensemble presents two new
challenges with respect to previous analysis in the literature. First, the spectra of real matrices
are symmetric with respect to the real axis so one has to impose this symmetry in the gas.
Second, due to the positive probability of having real eigenvalues, the log-gas is composed of
two interacting phases: a 2d phase supported on the complex plane and a 1d phase constrained
to the real line for all timers. This last property has a very important consequence, namely
that the dynamics of the whole gas depend on the quantity of real particles k with respect to
the total number of particles n. Our method is based on the introduction of a mixed 1d-2d
log-gas whose stationary distribution is that of the spectrum of real Ginibre matrices with k
real eigenvalues.

This system is composed of n interacting particles in a two-phase gas: k of these particles
are confined to the real axis and the other 2l = (n − k) particles form l pairs of complex
conjugated particles outside the real axis. We denote the set of eigenvalues {λi }1≤i≤n ∈ C

with λi = (xi , 0) for 1 ≤ i ≤ k, λi = (xi , yi ) for k < i ≤ k + l with yi > 0 and λi = λ∗
i−l

for k + l < i ≤ n.

5.1 Log-Gas Equations

To derive the equations for the gas dynamics for fixed k, we identify the joint probability
densities (1) as a Boltzmann factor and compute the corresponding potential, following the
method of [42]. One obtains the following dynamics

dλi (t) = σ√
n

d Bi −
∑

i

∇i�(λ1, . . . , λn)dt (19)
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where σ = √
2, Bi is a real Brownian motion with Bi = (B R

i , 0) for i ≤ k, and Bi =
(B R

i , B I
i ) a complex Brownian motion for k < i ≤ k + l. Symmetry is ensured by imposing

Bi = B∗
i−l for k + l < i ≤ n. We denote ∇i = (∂xi , ∂yi ). The potential is given by

�(λ1, . . . , λn) =
∑

i

∑

j �=i

1

2n
V (λi , λ j ) +

∑

i

U (λi ) (20)

with

V (λi , λ j ) = − log |λi − λ j |

U (λi ) = x2i
2

− 1yi �=0

(
y2i
2

+ 1

2n
log
(
erfc(|yi |

√
2n)
))

(21)

We will be specially interested on the t → ∞ limit of the empirical measure

ρn
k (t) = 1

n

n∑

i=1

δ(λi (t)) . (22)

The system (19) is well posed: we prove below that solutions neither collide nor blow
up. The result is actually more general and extends to particle systems within more general
confining potential U we state:

Theorem 4 Suppose λi (0) for i = 1, . . . , k + l are distinct and λi (0) = λ∗
i−l(0) for k +

l < i ≤ n, that U is C2 and the maps (x, y) �→ (−x∂xU (x + iy),−y∂yU (x + iy)) and
(x, y) �→ �U (x, y) are upper bounded in R

2 by some constant γ . The processes λi are
defined by (19) up to the stopping time

T = inf{t : λi (t) = λ j (t) for some j �= i or yi = 0 for some i > k or λi = ∞ for some i} .

If σ 2 ≤ 2, then P[T = ∞] = 1: there is no collision or explosion and the particle system is
defined for all times.

Proof The proof follows the one in [45]. To prove that there are no collisions we show that
the drift term in (19) is bounded from above. We apply Itô’s formula on � to obtain

d� = σ√
n

∑

j

∇ j�d B j +
∑

j

[
σ 2

2n
� j� − (∇ j�)2

]
dt (23)

where � j = ∂2x j
+ ∂2y j

. Developing the drift term we have

∑

j

[
σ 2

2n
� j� − (∇ j�

)2
]

=
∑

j

⎡

⎣σ 2

2n

∑

r �= j

1

n
� j V (λ j , λr ) + σ 2

2n
�U (λ j )

−
∑

r �= j

1

n2

(∇ j V (λ j , λr )
)2 − (∇U (λ j )

)2 −
∑

r �= j

1

n
∇ j V (λ j , λr )(∇U (λ j ) − ∇U (λr ))

⎤

⎦
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The term−(∇U (λ j ))
2 is clearly upperbounded. Moreover, our assumptions ensure that both

terms σ 2

2n �U (λ j ) and the last term are upperbounded. Therefore, the only term that we have
to control is

∑

j

∑

r �= j

σ 2

2n2 � j V (λ j , λr ) − 1

n2

(∇ j V (λ j , λr )
)2

.

Because of the noise in the system, the collisions between real and complex particles aswell as
between complex non conjugated particles are impossible. On the other hand, because of the
confinement of some of the particles to the real line and the symmetry with respect to the real
axis, collisions between two real particles and between a pair of complex conjugate particles
are possible. Developing the Laplacian and the gradient squared for those interactions (real-
real and complex-complex conjugate) one can see that

σ 2

2n2 � j V (λ j , λr ) − 1

n2

(∇ j V (λ j , λr )
)2 ≤ σ 2 − 2

2n2

1

|λ j − λr |2 if λ j , λr ∈ R

σ 2

2n2 � j V
(
λ j , λ

∗
j

)− 1

n2

(∇ j V (λ j , λ
∗
j )
)2 ≤ σ 2 − 2

2n2

1

|λ j − λ∗
j |2

if λ j ∈ C

and hence, using the same arguments as in [45], one can show that for σ 2 ≤ 2 particles do
not collide before an explosion.

Now it remains to show that there is no explosion in finite time. Let Rt =
1
2n

(∑
j x2j + y2j

)
= 〈μn

t , f 〉 where f (λ) = |λ|2/2. We have to prove that Rt < ∞ for

all t . As shown in [45] Rt ≤ R′
t a.s. for all t where R′

t solves

d R′
t = σ

n

√
2R′

t dWt +
(

σ 2

2n
+ (n − 1)

n
− γ

)
dt

for Wt a Brownian motion. R′
t is a squared Bessel process which is known not to explode so

Rt does not explode either. ��
Remark 2 The assumptions on the confining potential U of the above theorem are clearly
satisfied for U given by (21).

The result of this theorem ensures existence and uniqueness of the particle system for
all times and finite n. If this system converges in time towards a non-singular stationary
distribution, the limit is necessarily given by the joint pdf (1) of the eigenvalues of the
Ginibre ensemble under our constraints. In this case the empirical measure of the particle
system ρn

k (t) converges in distribution as t → ∞ to the empirical spectral measure μ̂n of
the Ginibre ensemble with k real eigenvalues. Therefore, simulating the long term dynamics
of the particle system will provide an approximation of μ̂n .

5.2 Numerical Simulations

In principle, it is possible to generate numerically the spectra of Ginibre matrices conditioned
on k by drawing Ginibre matrices at random and classifying them according to the number
of real eigenvalues. However, for the events we consider, k deviates from its expected value
and pn

k decrease as e−n2 , so that matrices with large k are not readily accessible with such a
strategy. As we dispose of an explicit form of the joint probability distribution of the eigen-
values under our constraint, standard sampling methods, such as the Monte Carlo algorithm
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Fig. 3 Left Numerical estimation of the support of μC
α for α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The crosses cor-

respond to the points (0, ±y∗), the dashed line is the unit circle. Right Numerical estimation of μR
α for

α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The dashed line is the semi-circular law. The estimations are long time simula-
tions of log-gases with n = 1000

described in Appendix, allow to access directly these rare events. Unfortunately, they are not
efficient for large matrices.

The same limitations at large n arise for simulations of the log-gas given that the system is
stochastic and one needs to average over several runs to smooth out fluctuations. To overcome
these, we took advantage of the fact that the noise term perturbing each particle vanishes.
Therefore, for estimating n → ∞ spectral distributions, instead of stochastic simulations,
we ran deterministic simulations of the gas. Even though the latter do not correspond to the
eigenvalues of actual matrices, their n → ∞ limit converges to the limit distribution of the
eigenvalues, which is exactly what we seek to approximate. We checked convergence by
increasing progressively the number of particles of the gas until the shapes for the complex
support and the distribution of the real phase were visually indistinguishable.

Here we summarize our key findings, which can be considered educated guesses based
upon known facts and numerical evidence (see Fig. 3). The first claim is that the border of
the support of each connected component of the complex part ofμα is a smooth closed curve
for all 0 < α < 1. This closed curve varies continuously with α. In fact, as α goes from
zero to one, the support v decreases monotonically (in the sense of strict inclusion) from the
unit semi-circle inH to the point z∗ = (0, y∗) where z∗ is found by minimizing the potential
that a single pair of complex particles would experience interacting with μR = μsc which is
given by the map z �→ |z2| − ∫

log |z − x |dμsc(x). The coordinate y∗ is hence the solution
of:

∫
1

x2 + (y∗)2
dμsc(x) = 2 (24)

Coincidentally, the support of μR
α grows monotonically from [−1, 1] to [−√

2,
√
2] as μR

converges to the semi-circular law in [−√
2,

√
2].
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6 Renormalized Energy and Microscopic Organization at Zero
Temperature

The gas provides a precise description of theminima of the potential (20) even at temperatures
that differ from that corresponding to the eigenvalues of the Ginibre ensemble. In particular,
expansion of the energy of the system supplies further information on themicroscopic organi-
zation of the particles at vanishing temperature. To this end, following the work for log-gases
in dimension one [48], two [49] or higher [50], one shall compute the next-to-leading order
terms of the energy. These terms correspond essentially to the microscopic arrangements of
the particles. Since we have shown that in the regime we consider with k = αn, there exists
a macroscopic gap between the real axis and complex eigenvalues, the energy related to the
microscopic interactions of real onto the complex eigenvalues and reciprocal forces vanish
in the thermodynamic limit. Once this has been noted, a direct application of the results in
one and two dimensions [48,49] leads to state the following:

Proposition 3 For large n, the equivalent energy of a Ginibre matrix conditioned on having
k ∼ αn real eigenvalues enjoys the following expansion around μα = αμR

α + (1 − α)μC
α

the minimizer of the macroscopic energy:

En,α = n2I(μα) − (1 + α)

2
n log(n) + n

[
(1 − α)

κ2

2π
+ α

κ1

π

]

−n
[
(1 − α)

∫

C

dμC
α log(μC

α ) + α

∫

R

dμR
α log(μR

α )
]

+ o(n) (25)

where the κ2 and κ1 are universal constants related to the dimension of the spaces where μC
α

and μR
α are supported.

From this expansion, theminimization at zero temperature leads to state that the real eigenval-
ues crystallize [48], and to the conjecture that the complex eigenvalues organize in a regular
triangular lattice (called Abrikosov lattice in the superconductivity domain [54]), which is
proved under the assumption that the organization is a regular lattice [49].

7 Conclusion

The main conclusions of our work can be outlined as:

1. Despite the fact that the joint probability distribution of real Ginibre matrices is always
given the same compact formula above (Eq.(1)), the limit distributions of the empirical
measure μ̂n strongly depends on the number k of real eigenvalues. When k/n → α and
n → ∞, we prove that the empirical measure has a unique limit μα that significantly
departs from the circular law.

2. The key method in establishing the above result is an LDP theorem devised to take into
account both real and complex eigenvalues. Previous LDPs discarded real eigenvalues,
as in the unconstrained matrices, the fraction of real eigenvalues tends to zero. While
we have provided the proof in the specific case of the real Ginibre ensemble, it can
readily be adapted to other situations, such as gases in higher dimensions with more
general confining and repulsive potentials such as [55] or heterogeneous gases [56] with
constraints (fraction of particles restrained to a subspace). It also extends to Gaussian
β and Wishart ensembles conditioned on rare events (such as anomalous proportions of
eigenvalues in a given interval). In this sense, our approach provides a theoretical basis
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for the log-gas method used in [43,44,51,57]. These generalizations allow, for instance,
to analyze the impact of anomalously large numbers of real eigenvalues on the spectra
of random asymmetric matrices with some level correlations in the entries such as those
in [12,35].

3. One of the consequences of the LDP was to provide an asymptotic for log pn
αn which

scales as −n2I[μα]. To our knowledge, this is the first derivation of large n estimate for
pn

k .
4. The theoretical and numerical analysis of μα established that, unlike the circular law

which is supported by a disk, the measure μα has two distinct components. The first is
supported by a compact set of the complex plane that is well separated from the real line,
and upon which μα has uniform density of mass 1 − α. The second is supported by a
segment in the real plane and has a density w.r.t. Lebesgue’s measure with mass α. As
α increases to one, the support of the former shrinks to a single point and its complex
conjugate whereas the latter tends to the semi-circular law on [−√

2,
√
2].

5. Themicroscopic characterization of the particle distributions at zero temperature through
the renormalized energy reveals that, (i) in the complex plane, particles organize in
an Abrikosov lattice, similar to the unmixed 2d gas, yet (ii) on the real line, they are
crystallized similarly to the Gaussian Orthogonal Ensemble in the zero temperature limit,
but unlike real eigenvalues of unconstrained real Ginibre matrices.

The last two points above establish that the real Ginibre ensemble constrained by k/n → α

interpolates between the circular and semi-circular law as α shifts from zero to one at the
macroscopic level. At the microscopic level, it is a mixture of the two extreme cases. This
interpolation is distinct from the ones in which the circular law is progressively flattened on
the real line with intermediate elliptic like support for the spectra [12,35]. It reveals some
of the rich characteristics of real random matrices due to their spectrum containing both real
and complex eigenvalues.

Acknowledgments We thank an anonymous referee for his suggestions on the proof of Theorem 1.

Appendix

Monte Carlo Algorithm for the Eigenvalues

An efficient method to approximate numerically the minimizer μα and the probability distri-
bution of the proportion of real eigenvalues is to use the Metropolis–Hastings Monte Carlo
algorithm. This method consists in constructing an ergodic Markov chain whose stationary
distribution is given by (1). Here, we evolve a n-particles system zt , but in contrast to the
log-gas, the dynamics is now discrete, and the transition probability is based on the pdf (1):
a new configuration z∗ is drawn by modifying one of the eigenvalues at random and the
Markov chain has a transition towards z∗ if Qn(z∗) > Qn(zt ), and otherwise according to a
Bernoulli variable of parameter Qn(z∗)

Qn(zt )
.

When conditioning on very rare events, (here for instance, a fixed number of real eigen-
values), cases satisfying the constraints have an extremely low probability of being explored,
and more refined methods need to be developed in order to access these probabilities. In the
present case, the problem is considerably simplified since we dispose of an explicit form of
the distribution of the eigenvalues under our constraint. Indeed, the joint probability distribu-
tion of Ginibre matrices of size n constrained on having k real eigenvalues (λi ; i = 1 . . . k)

(and therefore l = (n − k)/2 pairs of complex eigenvalues (zi , i = 1 . . . n − k)) is given by:
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P
[
λ1 . . . λk, z1, . . . , zn−k

] = C̃n

∏

i> j

|λi − λ j |
∏

i> j

|zi − z j |
∏

i, j

|λi − z j |

×
(

k∏

i=1

exp(−λ2i )

n−k∏

i=1

exp(−z2i )erfc(|zi − z∗
i |/

√
2)

)1/2

,

where the coefficient Cn can be found in [14].
Classical Metropolis–Hastings algorithm with Gaussian transitions preserving the nature

of the system therefore allow to access directly the distribution of eigenvalues and the prob-
ability p(n, k) of the event considered.
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