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Abstract We consider a finite number of particles characterised by their positions and veloc-
ities. At random times a randomly chosen particle, the follower, adopts the velocity of another
particle, the leader. The follower chooses its leader according to the proximity rank of the lat-
ter with respect to the former. We study the limit of a system size going to infinity and, under
the assumption of propagation of chaos, show that the limit equation is akin to the Boltzmann
equation. However, it exhibits a spatial non-locality instead of the classical non-locality in
velocity space. This result relies on the approximation properties of Bernstein polynomials.
We illustrate the dynamics with numerical simulations.
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1 Introduction

In this paper, we explore collective dynamics driven by rank-based interactions, i.e. that’s to
say interactions determined by the rank of the agents with respect to certain criterion. There
are many examples where such interactions take place. In economics for instance, it was
extensively analysed in [14] that agents are more sensitive to their rank compared to others
(salary or wealth for example) than their own independent cardinal level. To go further, [17]
studies, in an organisation, compensation schemes which pay according to an individual’s
ordinal rank rather than their output level. Such payoff based on the rank approach also
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appears very naturally in a variety of economics applications such as bids, the labour market,
portfolio management, the oil market, academic production, reputation, etc.

Evolutionary game theory studies the evolution of strategies/genes transmitted through
natural selection. In chimpanzees as in cockroaches a group is formed of a dominant male,
females and lower ordermales. Only the dominant male is supposed tomate with the females.
However, when the dominant male is absent, the females also reproduce with other males
giving the preference to males in descending order [12]. It is also known that the rank of an
offspring strongly depends on the rank of its mother [16], so that in the replicator dynamic
process the rank increases the chance of reproduction. The study of such models requires
taking into account interactions depending on the rank of the agents.

In this article we focus on the dynamics of bird flocks. There is a widespread literature
of flocking models where the birds react to their neighbours as a function of the neighbours’
distance from them within the flock. These are the co-called “metric” interactions. In this
context, dynamics based on alignment [20], consensus [11] or attraction-repulsion see [3,4]
have been widely studied. However, there has been recent compelling evidence [1] that
interactions within bird flocks are mostly metric free, as the birds react primarily with a
limited number of their nearest neighbours irrespective of the distances between them. This
observation has motivated the concept of “topological interaction”, which has been widely
echoed in the scientific literature [5,7,10,13,19].

Our goal is to investigate the large size limit of a system of agents interacting through topo-
logical interactions. Specifically, we consider a leader-follower model [8,9] where at random
times a randomly chosen bird, the follower, decides to adopt the velocity of another bird, its
leader, in the flock. The follower chooses its leader according to a probability only depending
on the proximity rank of the latter with respect to the former. If we assume that the probability
has a strong cutoff as soon as the proximity rank exceeds a certain value, of the order of seven
in actual flocks, the considered model is akin to the topological interactions of [1].

To our knowledge, [6] is the first mathematical work where interaction rules between
agents depending on their rank are considered. The closest to our work is [15] where kinetic
and hydrodynamic models for topological interactions have been proposed. However, the
considered dynamics is different from ours. In [15], it is supposed that an agent’s velocity
relaxes towards an average velocity of its neighbours where the relative weights of the neigh-
bours depend on their proximity rank to the considered agent. Therefore, it is a model of
Cucker-Smale type [11] combined with a topological interaction rule. In [15], a mean-field
type kinetic model is rigorously derived under some regularisation in the large system size
limit and a hydrodynamic model under a monokinetic closure assumption is proposed.

Here, the interaction rule is different and, in the large system size limit, leads to a Boltz-
mann type model with an integral operator describing the balance between gains and losses
due to the interactions rather than a mean-field model where the interactions are described
through a force field. From themathematical viewpoint, this makes a considerable difference,
as an empirical measure approach is not possible. Instead, one has to rely on the propagation
of chaos property for the solution of the master equation. In the present work, propagation
of chaos is assumed and its proof is defered to future work. Still, under this assumption, the
derivation of the kinetic equation is not obvious and as we will see, relies on fine approxi-
mation properties of Bernstein polynomials.

Indeed, we will realise that the derivation of a kinetic model requires the estimation of the
probability that given two particles say numbered 1 and 2, the rank of 2 with respect to 1 be
equal to a given integer j . Then, the interaction probability of 1with 2 in this configuration is a
function K ( j/N ), where N is the total number of particles and the function K is characteristic
of the considered interaction. Thanks to an easy combinatorial estimation, the total probability
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of 1 interacting with 2 is found as the Bernstein polynomial approximation of K when
N is large. Due to some cancellations, the first order correction in powers of 1/N of the
Bernstein polynomial approximation of K is also needed. This correction can be found in
the literature [18].

The paper is organised as follows. In Sect. 2, we present the N particle dynamics and state
the main result. In Sect. 3, we derive the master equation of the process and the equation
for the first marginal under the assumption of propagation of chaos. In Sect. 4 we precisely
state our main result, namely that, in the limit N → ∞ and the assumption of propagation
of chaos, the equation for the first marginal reduces to a kinetic equation of Boltzmann type
with spatial nonlinearity. To prove this theorem, we use results on Bernstein’s polynomial
approximation from the literature [18]. Section 5 offers some considerations on the limit
kinetic equation and illustrates our discussion with numerical simulations emphasising that
the large-time and large number of particles limits do not commute. Finally, a conclusion is
drawn in Sect. 6.

2 The N-particle Dynamics

Consider a set of N particles. The particle i is characterised by its position xi ∈ R
n and its

velocity vi ∈ R
n where n ≥ 1 is both the spatial and velocity dimension. For a given particle

i we can order the other particles relatively to their distance to i . More precisely, we have
the following:

Definition 1 (Rank) Consider N particles located at x1, . . . , xN . Consider the i-th particle
and order the list

(|x j − xi |
)
j=1,...,N , j �=i by increasing order and denote by RN (i, j) ∈

{1, . . . , N − 1} the position of the j-th item in this list. If two indices j and j ′ are such that
|x j − xi | = |x j ′ − xi |, then we choose arbitrarily an ordering between these two numbers.
We define RN (i, i) = 0. Now, we define the rank of j with respect to i as:

r N (i, j) = RN (i, j)

N − 1
∈

N−1⋃

k=1

{ k

N − 1

}
.

We introduce a function K : r ∈ [0, 1] �→ K (r) ∈ [0,∞) such that
∫ 1

0
K (r) dr = 1.

We define

K N (r) = K (r)
∑N−1

k=1 K
(

k
N−1

) ,

in order to have for any i ∈ {1, . . . , N }:
N∑

j=1
j �=i

K N (r N (i, j)
) =

N−1∑

k=1

K N
(

k

N − 1

)
= 1.

In this way, for any i ∈ {1, . . . , N }, the collection (πi j )
N
j=1, j �=i , where

πN
i j = K N (r N (i, j)

)
,

defines a discrete probability measure on the set { j ∈ {1, . . . , N }, j �= i}.
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Consider N particles {(x1(t), v1(t)), . . . , (xN (t), vN (t))}which are subject to the follow-
ing dynamics (previously referred to as the “Choose the Leader” dynamics [8,9]):

– The dynamics is a succession of free-flights and collisions.
– During free-flight, particles follow straight trajectories

{
ẋi = vi ,

v̇i = 0 .

– At Poisson random times with a rate equals to N , particles undergo the following colli-
sions process: Pick a particle i in {1, . . . , N } with uniform probability 1/N and perform
a collision, i.e. pick a collision partner j in the set { j ∈ {1, . . . , N }, j �= i} with
probability πN

i j and perform:
{

(xi , x j ) remains unchanged,
(vi , v j ) is changed into (v j , v j ).

Remark 1 It is a priori unclear that the dynamics will be non-trivial in the limit N → ∞ for
a rate of the Poisson process equal to N . This will appear clearly in the section dealing with
the passage to the limit N → ∞ (see Sect. 4).

Since the rank of j with respect to i is an intrinsic property of the positions of the pair of
particles and does not depend on how they are numbered, we have the following properties
of the rank:

Remark 2 Let (x1, . . . , xN ) be a set on N particles.

(i) The rank r N (i, j), and hence πN
i j , is a function of (x1, . . . , xN ), i.e.

r N (i, j) = r N (i, j)(x1, . . . , xN ).

More precisely, we consider the rank r N (i, j) as a function of L∞(RnN ).
(ii) The rank is permutation invariant, i.e. for any permutation σ ∈ SN where SN denotes

the set of permutations of {1, . . . , N }, we have
r N (σ (i), σ ( j))

(
xσ(1), . . . , xσ(N )

) = r N (i, j)(x1, . . . , xN ).

The aim of this article is to study the limit of this dynamics when the number of particles
goes to ∞. To do so we will assume that the propagation of chaos property holds true i.e.

f (N )
(
Z1, · · · , ZN ,t

) =
N∏

�=1

f (1)
N (Z�, t), ∀Z ∈ R

2nN , ∀t ∈ [0,∞).

Assuming that f (1)
N → f and ρ

(1)
N := ∫

f (1)
N dv → ρ = ∫

f dv, then in the limit N → ∞,
we will prove that f is a solution of the kinetic equation:

∂ f

∂t
(x, v) + v · ∇x f (x, v) = ρ(x)

∫
f (x ′, v) K

(
Mρ

(
x, |x ′ − x |)) dx ′ − f (x, v),

where Mρ is the partial mass of ρ and is defined by

Mρ(x, s) =
∫

x ′∈B(x,s)
ρ(x ′) dx ′,

and where B(x, s) = {y ∈ R
n | |y − x | ≤ s} is the ball centred at x and of radius s > 0.
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Remark 3 The conservation of mass property holds true by Lemma 5 applied to H = K .

In the following section, we derive the master equation for this process, Sect. 3.1, and the
first marginal equation for indistinguishable particles, Sect. 3.2. Then, in Sect. 3.3, we derive
the master equation under the assumption of propagation of chaos.

3 Master Equation and Propagation of Chaos

3.1 Master Equation

To simplify the notation, when no confusion is possible, we will denote x := (x1, . . . , xN ),
v := (v1, . . . , vN ), Zi := (xi , vi ), Z := (Z1, . . . , ZN ) and dZ := dx1 dv1 . . . dxN dvN .

As the collisions occur at Poisson times with rate N , the master equation in weak form is,
for all test function φN : Z �→ φN (Z):

∂t

∫
f (N )(Z) φN (Z) dZ −

N∑

i=1

∫
f (N )

(
Z)(vi · ∇xi

)
φN (Z) dZ

= N
∫
⎡

⎢⎢
⎣

1

N

N∑

i, j=1
j �=i

πN
i j (x) φN (Z1, . . . , xi , v j , . . . , x j , v j , . . . ZN

)− φN (Z)

⎤

⎥⎥
⎦ f (N )(Z) dZ

= N
∫
⎡

⎢⎢
⎣

1

N

N∑

i, j=1
j �=i

∫
πN
i j (x) φN (Z1, . . . , xi , v

′
i , . . . , x j , v j , . . . ZN

)
δ
(
v′
i − v j

)
dv′

i

−φN (Z)

⎤

⎥⎥
⎦ f (N )(Z) dZ. (1)

By exchanging the notations vi and v′
i we obtain the following master equation in the strong

form:

∂t f
(N )(Z) =

N∑

i=1

f (N )(Z)
(
vi · ∇xi

)+ NL f (N )(Z),

where the operator L is defined by

L f (N )(Z) := 1

N

N∑

i, j=1
i �= j

πN
i j (x) δ(vi − v j )

∫
f (N )(Z1, . . . , xi , v

′
i , . . . ZN ) dv′

i − f (N )(Z).

We now state a property which will be needed in the remainder of this article, namely that
if f (N )(t) is permutation invariant at time t = 0 then it stays permutation invariant for all
times.

Lemma 1 (Invariance under permutation) Define for all σ ∈ SN ,

σ f (N )(Z) := f (N )
(
Zσ(1), . . . ,Zσ(N )

)
.
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Then we have:

L(σ f (N )) = σ
(
L f (N )

)
.

As a consequence, if f (N )(t) is permutation invariant at time t = 0, i.e. σ f (N )(t)|t=0 =
f (N )(t)|t=0 for all σ ∈ SN , then it is permutation invariant for all times.

Proof To emphasise the dependence in Z, we can rewrite the operator L as:

L f (N )(Z) = 1

N

N∑

i, j=1
i �= j

πN
i j

(
x(Z)

)
δ
(
Vi (Z) − Vj (Z)

)
Pi f

(N )(Z) − f (N )(Z),

with x(Z) = x, Vi (Z) = vi and

Pi f
(N )(Z) =

∫
f (N )

(
Z1, . . . , xi , v

′
i , . . . ZN

)
dv′

i .

First note that, setting σZ = (
Zσ(1), . . . , Zσ(N )

)
, we have

Vi (Z) = Vσ(i)(σZ) , and Pi (σ f (N ))(Z) = Pσ(i) f
(N )(σZ).

Therefore by applying the σ−1 permutation to the double sum and using the permutation
invariance of the rank, see Lemma 2 (ii), we obtain

Lσ f (N )(Z) = 1

N

N∑

i, j=1
i �= j

πN
i j (x(Z)) δ

(
Vi (Z) − Vj (Z)

)
Pi
(
σ f (N )

)
(Z)

− (
σ f (N )

)
(Z)

= 1

N

N∑

i, j=1
i �= j

K N [r N (i, j)
]
(x(Z)) δ

(
Vi (Z) − Vj (Z)

)
Pσ(i) f

(N )(σZ)

− (
σ f (N )

)
(Z)

= 1

N

N∑

i ′, j ′=1
i ′ �= j ′

K N [r N (σ−1(i ′), σ−1( j ′))
](
x(Z)

)
δ
(
Vσ−1(i ′)(Z)

− Vσ−1( j ′)(Z)
)
Pi ′ f

(N )(σZ) − (σ f (N ))(Z)

= 1

N

N∑

i ′, j ′=1
i ′ �= j ′

K N [r N (i ′, j ′)
](
x(σZ)

)
δ
(
Vi ′(σZ)

− Vj ′(σZ)
)
Pi ′ f

(N )
(
σZ
)− f (N )

(
σZ
)

= (L f (N ))(σZ) = σ L∂t f
(N )(Z).

The above property states that σ−1Lσ = L , for all σ ∈ SN . Supposing that L is a bounded
operator, we deduce that σ−1Lkσ = Lk , for all k ∈ N and consequently σ−1eLσ = eL .
Now, the solution of the problem ∂t f (N ) = NL f (N ) with f (N )|t=0 = f (N )

0 can be written

f (N )(t) = eNLt f (N )
0 . We deduce that σ f (N )(t) = eNLtσ f (N )

0 . Therefore, if σ f (N )
0 = f (N )

0 ,
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then σ f (N )(t) = f (N )(t), for all t ≥ 0. If L is not bounded, the same property remains true
thanks to an approximation argument. �

3.2 First Marginal Equation for Indistinguishable Particles

In the remainder of this article, we will suppose that f (N ) is invariant under permutations
which physically means that the particles are indistinguishable. This allows us to define the
k-particle marginal as

f (k)
N

(
Z1, . . . , Zk, t

) =
∫

f (N )
(
Z1, . . . , ZN , t

)
dZk+1 . . . dZN . (A1)

and f (k)
N is still invariant under permutations of (Z1, . . . , Zk).

Proposition 1 (First marginal equation for indistinguishable particles)Assume (A1). For any
test functions satisfying

φN (Z1, . . . , ZN ) = φ(Z1) , (2)

we have

∂t

∫
f (1)
N (Z1) φ(Z1) dZ1 =

N∑

i=1

∫
f (1)
N (Z) (vi · ∇xi ) φ(Z) dZ

+ (N − 1)
∫

πN
12(x) φ

(
x1, v2

)
f (N )(Z) dZ

+ (N − 1)
∫

πN
21(x) φ(Z1) f

(N )(Z) dZ

+ (N − 1)(N − 2)
∫

πN
23(x) φ(Z1) f

(N )(Z) dZ

− N
∫

φ(Z1) f (1)
N (Z1) dZ1.

Remark 4 Since πN
i j = K N (r N (i, j)) and K N (r) = K (r)/

∑
K (k/(N − 1)), πN

i j is of
order 1/N . Hence the first three terms are of order 1 while the last two ones are of order N .
Section 4 will be devoted to the study of these terms and to the proof that the difference of
the last two terms is of the same order as the first three ones.

Proof Separating the cases i = 1 �= j , j = 1 �= i , and i ≥ 2, j ≥ 2, the master equation (1)
gives

∂t

∫
f (N )(Z) φ(Z) dZ

=
N∑

j=2

A(1)
j +

N∑

i=2

A(2)
i +

N∑

i=2

N∑

j=2, j �=i

Ai, j − N
∫

φ(x1, v1) f
(N )(Z) dZ, (3)

with

A(1)
j :=

∫
πN
1 j (x) φ(x1, v j ) f

(N )(Z) dZ,

A(2)
i :=

∫
πN
i1 (x) φ(Z1) f

(N )(Z) dZ,

Ai, j :=
∫

πN
i j (x) φ(Z1) f

(N )(Z) dZ.
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To compute the first term A(1)
j , we perform the change of variables Z ′

2 = Z j and Z ′
j = Z2,

which leads to:

A(1)
j =

∫
πN
1 j

(
x1, x

′
j , . . . , x

′
2, . . . , xN

)
φ
(
x1, v

′
2

)
f (N )

(
Z1, Z

′
j , . . . , Z

′
2, . . . , ZN

)

× dZ1 dZ
′
j . . . dZ ′

2 . . . dZN .

Using the permutation invariance of the rank (see Lemma 2 (ii)), we have

πN
1 j

(
x1, x

′
j , . . . , x

′
2, . . . , xN

)
= πN

12

(
x1, x

′
2, . . . , x

′
j , . . . , xN

)
.

Therefore, dropping the primes and using the permutation invariance of f (N ), we obtain

A(1)
j =

∫
πN
12(x) φ(x1, v2) f

(N )(Z) dZ,

which does not depend on j .
Similarly, we have

A(2)
i =

∫
πN
i1

(
x1, xi , . . . , x2, . . . , xN

)
φ(Z1) f (N )

(
Z1, Zi , . . . , Z2, . . . , ZN

)

× dZ1 dZi . . . dZ2 . . . dZN

so that, using the permutation invariance of the rank, see Lemma 2 (ii), and the permutation
invariance of f (N ) as previously, we obtain

A(2)
i =

∫
πN
21(x) φ(Z1) f

(N )(Z) dZ ,

which does not depend on i .
Also, we have with i ≥ 2, j ≥ 2 and i �= j :

Ai, j =
∫

πN
i j (x1, xi , x j . . . , x2, . . . , x3, . . . , xN ) φ(Z1)

× f (N )(Z1, Zi , Z j , . . . , Z2, . . . , Z3, . . . ZN )

× dZ1 dZi dZ j . . . dZ2 . . . dZ3 . . . dZN .

Then using the permutation invariance of the rank, see Lemma 2 (ii), and the permutation
invariance of f (N ) as previously, we obtain

Ai, j =
∫

πN
23(x) φ(Z1) f (N )(Z) dZ .

For the last term of (3) we obviously have
∫

φ(Z1) f
(N )(Z) dZ =

∫
φ(Z1) f (1)

N (Z1) dZ1.

Collecting all these identities, we obtain the identity stated in Proposition 1. �

3.3 Propagation of Chaos

Assume now that the propagation of chaos property holds true i.e.

f (N )
(
Z1, · · · , ZN , t

) =
N∏

�=1

f (1)
N (Z�, t), ∀Z ∈ R

2nN , ∀t ∈ [0,∞), (A2)
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and define:

ρ
(1)
N (x) =

∫
f (1)
N (x, v) dv.

We remark that ρ(1)
N is a probability density.

We have the following proposition:

Proposition 2 (First marginal equation with propagation of chaos) Assume (A2). For any
test functions satisfying (2), we have

∂t

∫
f (1)
N (Z1) φ(Z1) dZ1

=
N∑

i=1

∫
f (1)
N (Z)

(
vi · ∇xi

)
φ(Z) dZ + (

AN )+ (
BN )+ (

CN )+ (
DN ), (4)

with

(
AN ) = 1

SN (K )

∫
φ(x1, v2) f (1)

N (Z1) f (1)
N (Z2)

× K
(
r N (1, 2)(x)

) N∏

�=3

ρ
(1)
N (x�) dx� dZ1 dZ2,

(
BN ) = 1

SN (K )

∫
φ(Z1) f (1)

N (Z1)K
(
r N (2, 1)(x)

) N∏

�=2

ρ
(1)
N (x�) dx� dZ1,

(
CN ) = N − 2

SN (K )

∫
φ(Z1) f (1)

N (Z1)K
(
r N (2, 3)(x)

) N∏

�=2

ρ
(1)
N (x�) dx� dZ1,

(
DN ) = −N

∫
φ(Z1) f (1)

N (Z1) dZ1,

where SN (K ) is given by

SN (K ) = 1

N − 1

N−1∑

k=1

K

(
k

N − 1

)
.

We note that SN (K ) is the Riemann sum approximation of
∫ 1
0 K (r) dr . Since we assume

∫ 1
0 K (r) dr = 1, SN (K ) converges to 1 as N goes to ∞. Hence (AN ) and (BN ) are of order
1, while (CN ) and (DN ) are of order N . In the next section we will prove that the difference
(CN ) + (DN ) is actually of order 1.

Proof This result is a direct consequence of Proposition 1, integrating in v when possible.
We then use that

K N = K

(N − 1)SN (K )
,

to obtain the stated result. �
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4 Limit Equation

For a density ρ, define the partial mass of ρ centred in x and of radius s by:

Mρ(x, s) =
∫

|x−x ′|≤s
ρ
(
x ′) dx ′ .

We now state the main theorem of this article:

Theorem 1 (Limit equation) Assume (2). If

lim
N→∞ f (1)

N → f and lim
N→∞ ρ

(1)
N → ρ =

∫
f dv,

then, in the limit N → ∞, for all test functions φ we have:

∂t

∫
f (Z) φ(Z) dZ

=
∫

φ(x1, v2) f (Z2) ρ(x1) K
(
Mρ(x1, |x2 − x1|

)
dx1 dZ2

−
∫

φ(Z1) f (Z1) dZ1,

or, in strong form:

∂ f

∂t
(x, v) + v · ∇x f (x, v) = ρ(x)

∫
f (x ′, v) K

(
Mρ

(
x, |x ′ − x |)) dx ′ − f (x, v).

This result will be obtained by passing to the limit when N → ∞ in (4). To pass to the
limit in the transport term of (4) is classical and we refer the reader to classical textbooks on
the subject. We divide the proof of this theorem in two sections. Section 4.1 is dedicated to
the analysis of the terms (AN ) and (BN ) of (4). We prove that in the limit these two terms are
of order 1 and can be expressed by means of the partial mass (see Proposition 4). The proofs
rely on a combinatorial interpretation of the rank and on the fact that the integrals can be seen
as the expectation of a suitable random variable (see Lemma 2). In Sect. 4.2 we use the same
idea of interpreting the integrals occurring in the expression of (CN ) as the expectation of a
suitable random variable: the integral is dealt with in Lemma 3 and the sum (CN ) + (DN )

will be proved to be of order 1 as stated in Proposition 5.
The main common difficulty while using the expectation interpretation of these terms is

to evaluate truncated binomial sums. To handle this computation, the proofs will make an
intensive and crucial use of the Bernstein polynomial approximation:

Proposition 3 (Bernstein polynomial approximation, [18]) Let f be a function defined on
[0, 1]. The n-th Bernstein polynomial associated with f is defined by

Bn( f ; x) :=
n∑

i=0

f

(
i

n

)(
n

i

)
xi (1 − x)n−i .

If f ∈ C2[0, 1] then

Bn( f ; x) = f (x) + x(1 − x)

2n
f ′′(x) + o

(
1

n

)
.
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4.1 Evaluation of (AN) and (BN )

We first express the integrals involved in (AN ) and (BN ) in terms of the partial mass and
determine the leading order behaviour of these quantities when N is large:

Proposition 4 (Evaluation of (AN ) and (BN )) Under the assumptions of Theorem 1, we
have for large N

SN (K ) × (AN )

=
∫

φ(x1, v2) ρ
(1)
N (Z1) f (1)

N (Z2) K
(
M

ρ
(1)
N

(
x1, |x1 − x2|

))
dx1 dZ2 + o(1),

and

SN (K ) × (BN )

=
∫

φ(Z1) f (1)
N (Z1) K

(
M

ρ
(1)
N

(x2, |x1 − x2|)
)

ρ
(1)
N (x2) dZ1 dx2 + o(1).

To prove this result we first interpret the integrals involved in (AN ) and (BN ) as expec-
tations of suitable random variables. We first state the

Lemma 2 Under the assumptions of Theorem 1, we have for N large,

∫
K
(
r N (1, 2)(x)

) N∏

�=3

ρ
(1)
N (x�) dx� = K

(
M

ρ
(1)
N

(
x1, |x1 − x2|

))+ o(1) ,

and
∫

K
(
r N (2, 1)(x)

) N∏

�=2

ρ
(1)
N (x�) dx�

=
∫

K
(
M

ρ
(1)
N

(x2, |x1 − x2|)
)

ρ
(1)
N (x2) dx2 + o(1) .

Proof We first give a combinatorial interpretation of the rank and then use it to interpret the
various expressions involved in the statement of the Lemma as expectations over suitably
chosen random variables.
•Let us fix x1 and x2. The rank r N (1, 2) is equal to the number of points x3, . . . , xN belonging
to the ball B = B(x1, |x2 − x1|) = {x : |x − x1| ≤ |x2 − x1|} plus one unit, scaled by the
factor N − 1, i.e.

r N (1, 2)(x) = #{ j ∈ {3, . . . , N } : x j ∈ B} + 1

N − 1
.

Denote PR be the probability such that RN (1, 2) = R where RN (1, 2) = (N − 1) r N (1, 2).
To have RN (1, 2) = R, we have to choose R − 1 particles amongst N − 2 to lie in B. The
probability that one of the R − 1 particles belongs to B is equal to

p := M
ρ

(1)
N

(
x1,

∣∣x2 − x1
∣∣) ,

while the probability that one of the N − 2 − (R − 1) remaining particles lies in R
n \ B is

1 − p. Therefore,

PR =
(
N − 2

R − 1

)
pR−1 (1 − p)N−2−(R−1). (5)
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• Now, x1 and x2 being fixed, the quantity

∫
K
(
r N (1, 2)(x)

) N∏

�=3

ρ
(1)
N (x�) dx�,

can be interpreted as the expectation of K (r N (1, 2))when N−2 points x3, . . . , xN are drawn
according to independent identically distributed probabilities with density ρ

(1)
N (x) dx . It will

be denoted E{K (r N (1, 2)(x))}.
By (5), we compute

E

{
K
(
r N (1, 2)(x)

)}
=

N−1∑

R=1

K

(
R

N − 1

)(
N − 2

R − 1

)
pR−1 (1 − p)N−2−(R−1)

=
M∑

R=0

K

(
R + 1

M + 1

)(
M

R

)
pR (1 − p)M−R,

with M = N − 2. Since, for N large, K ((R + 1)/(M + 1)) = K (R/M)+ o(1) (remarking
that R/M ≤ 1),

E

{
K
(
r N (1, 2)(x)

)}
=

M∑

R=0

K

(
R

M

)(
M

R

)
pR (1 − p)M−R + o(1).

Using Bernstein’s approximation, Proposition 3, we obtain

E

{
K
(
r N (1, 2)(x)

)}
= K (p) + o(1) .

Which is the first statement.
• The identity

∫
K
(
r N (2, 1)(x)

) N∏

�=3

ρ
(1)
N (x�) dx� = K

(
M

ρ
(1)
N

(x1, |x2 − x1|)
)

+ o(1),

is obtained in an analogous way by exchanging the role of 1 and 2. We then have to integrate
by ρ

(1)
N (x2) dx2 to obtain the stated result. �


Proof of Proposition 4 Inserting the expressions of Lemma 2 in (AN ) and (BN ) we readily
obtain the stated result. �

4.2 Evaluation of (CN )+ (DN )

Similarly to the previous section, the aim of this section is to determine the leading order
behaviour of (CN ) + (DN ) when N is large:

Proposition 5 (Evaluation of (CN )+ (DN ))Under the assumptions of Theorem 1, we have

(CN ) + (DN ) = −
∫

φ(Z1) f (1)
N (Z1) dZ1

−
∫

φ(Z1) f (1)
N (Z1) ρ

(1)
N (x2) K

(
M

ρ
(1)
N

(x2, |x1 − x2|
)
dx2 dZ1 + o(1).
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Like in the previous section, the first step of the proof consists of interpreting some of the
integrals involved in (CN ) as an expectation over a suitable random variable (see Lemma 3)
and then the remaining integral (see Lemma 4). The proof of Proposition 5 will then just be
a collection of these estimates with terms coming from

∫
K (s) ds.

Lemma 3 Under the assumptions of Theorem 1, we have for large N

∫
K
(
r N (2, 3)(x)

) N∏

�=4

ρ
(1)
N (x�) dx�

= K (p23) − K ′(p23)
N

(
1 − χB(x2,|x2−x3|)(x1)

)

+ 1

N

[
p23(1 − p23)

2
K ′′(p23) + 2(1 − p23)K

′(p23)
]

+ o

(
1

N

)
,

where p23 = M
ρ

(1)
N

(x2, |x2 − x3|) only depends on x2 and x3 and

χB(x2,|x2−x3|)(x1) =
{
1 if x1 ∈ B(x2, |x2 − x3|)
0 otherwise.

Proof Similarly to the proof of Lemma 2, we interpret the quantity

∫
K
(
r N (2, 3)(x)

) N∏

�=4

ρ
(1)
N (x�) dx�,

as the expectation of K
(
r N (2, 3)(x)

)
when the N −4 points x4, . . . , xN are drawn according

to independent identically distributed probabilities with density ρ
(1)
N (x) dx . Two cases have

to be distinguished:

• First case: if x1 ∈ B(x2, |x2 − x3|) – Like in the proof of Lemma 2 we have

r N (2, 3) = #
{
j ∈ {4 . . . , N } | : x j ∈ B(x2, |x2 − x3|)

}+ 2

N − 1
.

Hence, setting p23 = M
ρ

(1)
N

(x2, |x2 − x3|) =: p,

E

{
K
(
r N (2, 3)(x)

)}
=

N−1∑

R=2

K

(
R

N − 1

)(
N − 3

R − 2

)
pR−2 (1 − p)N−3−(R−2)

=
M∑

R=0

K

(
R + 2

M + 2

)(
M

R

)
pR (1 − p)M−R,

with M = N − 3. By expanding K , we have, uniformly with respect to R ∈ {0, · · · , M}

K

(
R + 2

M + 2

)
= K

(
R

M

)
+ 2

M

(
M − R

M + 2

)
K ′
(

R

M

)
+ o

(
1

M

)
.

Since (M − R)/(M + 2) = 1 − M/R + o(1) we obtain uniformly with respect to R ∈
{0, · · · , M}

K

(
R + 2

M + 2

)
= K

(
R

M

)
+ 2

M

(
1 − R

M

)
K ′
(

R

M

)
+ o

(
1

M

)
.
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So, we obtain

E

{
K
(
r N (2, 3)(x)

)}
=

M∑

R=0

K

(
R

M

)(
M

R

)
pR (1 − p)M−R

+ 2

M

M∑

R=0

(
1 − R

M

)
K ′
(

R

M

)(
M

R

)
pR (1 − p)M−R + o (1) .

Using Bernstein’s approximation, Proposition 3, to K and to p �→ (1 − p)K ′(p) we obtain

E

{
K
(
r N (2, 3)(x)

)}
= K (p) + p(1 − p)

2M
K ′′(p) + 2(1 − p)

M
K ′(p) + o (1)

= K (p) + 2(1 − p)

N
K ′(p) + p(1 − p)

2N
K ′′(p) + o (1) . (6)

• Second case: if x1 /∈ B(x2, |x2 − x3|) – In this case,

r N (2, 3) = #
{
j ∈ {4 . . . , N } : x j ∈ B(x2, |x2 − x3|)

}+ 1

N − 1
.

Following the same step as before we compute, with p = M
ρ

(1)
N

(x2, |x2 − x3|)

E

{
K
(
r N (2, 3)(x)

)}
=

N−2∑

R=1

K

(
R

N − 1

)(
N − 3

R − 1

)
pR−1 (1 − p)N−3−(R−1),

which we rewrite

E

{(
r N (2, 3)(x)

)}
=

M∑

R=0

K

(
R + 1

M + 2

)(
M

R

)
pR (1 − p)M−R,

with M = N − 3. By expanding K , we have

K

(
R + 1

M + 2

)
= K

(
R

M

)
+ 1

M

(
1 − 2R

M

)
K ′
(

R

M

)
+ o

(
1

M

)
.

So, we have

E

{(
r N (2, 3)(x)

)}
=

M∑

R=0

K

(
R

M

)(
M

R

)
pR (1 − p)M−R

+ 1

M

M∑

R=0

(
1 − 2R

M

)
K ′
(

R

M

)(
M

R

)
pR (1 − p)M−R + o (1) .

Using Bernstein’s approximation (see Proposition 3), we obtain

E

{(
r N (2, 3)(x)

)}
= K (p) + p(1 − p)

2M
K ′′(p) + 1 − 2p

M
K ′(p) + o (1)

= K (p) + 2(1 − p)

N
K ′(p) − K ′(p)

N
+ p(1 − p)

2N
K ′′(p) + o (1) .

(7)

• We obtain the result stated in Lemma 3 by noticing that Expression (7) is equal to the sum
of Expression (6) and an extra term −K ′(p)/N .
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Lemma 4 (Evaluation of SN (K ) × (CN )/(N − 2) ) Under the assumptions of Theorem 1,
we have

SN (K )

N − 2
× (CN ) =

(
1 + 1

N
+ K (1) − K (0)

2N

)∫
φ(Z1) f (1)

N (Z1) dZ1

− 1

N

∫
φ(Z1) f (1)

N (Z1) ρ
(1)
N (x2) K

(
M

ρ
(1)
N

(x2, |x2 − x3|
)
dx2 dZ1+o(1).

Proof Using Lemma 3 and separating the cases x1 ∈ B(x2, |x2 − x3|) and x1 /∈ B(x2, |x2 −
x3|), we can write

SN (K )

N − 2
× (

CN ) = (1) + (2) + o (1) ,

where, writing p for p23, i.e. p = M
ρ

(1)
N

(x2, |x2 − x3|), we have:

(1) = 1

N

∫

x1∈B(x2,|x2−x3|)
φ(Z1) f (1)

N (Z1)K
′(p) ρ

(1)
N (x2) ρ

(1)
N (x3) dx2 dx3 dZ1

+ o

(
1

N

)
,

and

(2) =
∫

φ(Z1) f (1)
N (Z1)

(
K (p) + 1 − 2p

N
K ′(p) + p(1 − p)

2N
K ′′(p)

)

× ρ
(1)
N (x2) ρ

(1)
N (x3) dx2 dx3 dZ1 + o

(
1

N

)
.

• For the term (1), we first notice that x1 ∈ B(x2, |x2 − x3|) is equivalent to saying that
x3 /∈ B(x2, |x1 − x2|) so that, for p = M

ρ
(1)
N

(x2, |x2 − x3|),

(1) = 1

N

∫

x3 /∈B(x2,|x1−x2|)
φ(Z1) f (1)

N (Z1)K
′(p) ρ

(1)
N (x2) ρ

(1)
N (x3) dx2 dx3 dZ1

+ o

(
1

N

)
.

By the change of variable stated in Lemma 5 and applied to H = K ′, ρ = ρ
(1)
N , x = x2, and

r = |x1 − x2| we have
∫

x3 /∈B(x2,|x1−x2|)
K ′ (M

ρ
(1)
N

(x2, |x2 − x3|)
)

ρ
(1)
N (x3) dx3

= K (1) − K
(
M

ρ
(1)
N

(x2, |x1 − x2|
)

.

Inserting this in (1) we obtain

N × (1) = K (1)
∫

φ(Z1) f (1)
N (Z1) dZ1

∫
ρ

(1)
N (x2) dx2

−
∫

φ(Z1) f (1)
N (Z1) ρ

(1)
N (x2) K

(
M

ρ
(1)
N

(x2, |x1 − x2|
)
dx2 dZ1 + o(1)

= K (1)
∫

φ(Z1) f (1)
N (Z1) dZ1

−
∫

φ(Z1) f (1)
N (Z1) ρ

(1)
N (x2) K

(
M

ρ
(1)
N

(x2, |x1 − x2|
)
dx2 dZ1+o(1). (8)
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• Using again the change of variable result of Lemma 5 together with integration by parts,
we compute:

∫ (
K (p) + 1 − 2p

N
K ′(p) + p(1 − p)

2N
K ′′(p)

)
ρ

(1)
N (x3) dx3

=
∫ 1

0

(
K ( p̃) + 1 − 2 p̃

N
K ′( p̃) + p̃(1 − p̃)

2N
K ′′( p̃)

)
d p̃

= 1 + 1

N
− K (0) + K (1)

2N
,

where p = M
ρ

(1)
N

(x2, |x2 − x3|). From this and Lemma 3, we deduce:

(2) =
(
1 + 1

N
− K (0) + K (1)

2N

)∫
φ(Z1) f (1)

N (Z1) dZ1 + o

(
1

N

)
. (9)

• Combining the two terms (8) and (9), we obtain the result stated in Lemma 4.

We are now ready to prove Proposition 5

Proof of Proposition 5 The proof is divided in two main steps.
• We first have

SN (K ) = 1

N − 1

N−1∑

k=1

K

(
k

N − 1

)

= K (1) − K (0)

2(N − 1)
+ 1

N − 1

(
K (0) + K (1)

2
+

N−2∑

k=1

K

(
k

N − 1

))

.

In the second term of this expression, we recognise the approximation of
∫ 1
0 K (s) ds by the

trapezoidal rule. As the trapezoidal rule is second order, it leads to

SN (K ) = K (1) − K (0)

2(N − 1)
+
∫ 1

0
K (s) ds + o

(
1

N

)

= K (1) − K (0)

2N
+ 1 + o

(
1

N

)
.

As a consequence

N − 2

SN (K )
= N

1 − 2/N

1 + (K (1) − K (0))/2N + o(1/N )

= N − K (1) − K (0)

2
− 2 + o(1) . (10)

• Now collecting the estimate of Corollary 4 and (10) we obtain

(CN ) = N − 2

SN (K )
[(1) + (2)]

=
(
N − K (1) − K (0)

2
− 2

)∫
φ(Z1) f (1)

N (Z1) dZ1

+
(
1 + K (1) − K (0)

2

)∫
φ(Z1) f (1)

N (Z1) dZ1

−
∫

φ(Z1) f (1)
N (Z1) ρ

(1)
N (x2) K

(
M

ρ
(1)
N

(x2, |x1 − x2|
)
dx2 dZ1 + o (1) .
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And as

(DN ) = −N
∫

φ(Z1) f (1)
N (Z1) dZ1,

we obtain the statement of Proposition 5. �

4.3 Proof of Theorem 1

We have to pass to the limit in (4). By Propositions 4 and 5 we have

∂t

∫
f (1)
N (Z1) φ(Z1) dZ1 −

N∑

i=1

∫
f (1)
N (Z) (vi · ∇xi ) φ(Z) dZ

=
(

1

SN (K )
− 1

)∫
φ(Z1) f (1)

N (Z1) K
(
M

ρ
(1)
N

(x2, |x1−x2|)
)

ρ
(1)
N (x2) dZ1 dx2

+ 1

SN (K )

∫
φ(x1, v2) ρ

(1)
N (Z1) f (1)

N (Z2) K
(
M

ρ
(1)
N

(x1, |x1−x2|)
)
dx1 dZ2

−
∫

φ(Z1) f (1)
N (Z1) dZ1 + o(1).

As N goes to ∞, the second line goes to 0 since SN (K ) is the Riemann sum approximation
of
∫ 1
0 K (r) dr = 1. The convergence in the other terms is formally obvious and leads to the

stated result.

5 Discussion

5.1 Large-Time Behaviour

Consider a function homogeneous in space (t, x, v) �→ G(t, v). Since
∫
K = 1, byLemma5,

we get

∂G

∂t
(v) = −v · ∇xG(v) + G(v)

∫
K
(
Mρ(x, |x ′ − x |)) dx ′ − G(v) = 0 .

Hence any function homogeneous in space (t, x, v) �→ G(t, v) is a stationary solution.
Moreover, on a periodic spatial domain, we can expect that any solution converges at large-
times toward a function of this type. The proof of such a claim is left to future work.

5.2 Discrete Versus Continuous Approach

Wecanwonder if the large-time and large number of particles limits permute. It does not seem
the case. Indeed, the number of distinct velocities decreases when there is a finite number
of particles while, as discussed in the previous section, the distribution of velocities remains
constant in time in the case of a continuum of particles.

In the case of a finite number of particles the consensus in the direction the particles adopt
is longer and longer to obtain, see Figs. 1, 2 and 3.
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Fig. 1 Trajectories of the particles on the left, variance and number of different speed as functions of time in
the case of 10 particles taken randomly in [−10, 10] for the position and for the speed
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Fig. 2 Trajectories of the particles on the left, variance and number of different speed as functions of time in
the case of 20 particles taken randomly in [−10, 10] for the position and for the speed
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Fig. 3 Trajectories of the particles on the left, variance and number of different speed as functions of time in
the case of 70 particles taken randomly in [−10, 10] for the position and for the speed
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6 Conclusion

In this paper, we have investigated a system of particles interacting through leader following
interactions where the choice of the leader is determined by a topological rule. Under a prop-
agation of chaos assumption, we have shown that the large system size limit is described by a
spatially nonlocal kinetic model of Boltzmann type. This result heavily relies on approxima-
tion properties of Bernstein polynomials. Obviously, the very simple leader following model
considered in this paper offers many directions of complexification leading to biologically
or socially more realistic rules. An example could be the introduction of some noise, e.g.
the velocity after the interaction would be randomly selected according to a probability law
centred around the leader velocity. One could also think of the two particles joining their
average velocity up to some noise, in the spirit of [2]. Finally, binary interactions with the
closest neighbour could also be investigated.
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Appendix: Fundamental Lemma

Lemma 5 For any H,

I (x; r) :=
∫

Br (x)
H
(
Mρ(x, |x ′ − x |)) ρ(x ′) dx ′ =

∫ Mρ(x,r)

0
H(p) dp .

Proof First note that since

Mρ(x, s) =
∫

s̃<s

∫

ω∈Sn−1
ρ(x + s̃ ω) s̃n−1 ds̃ dω,

we have
d

ds
Mρ(x, s) =

∫

ω∈Sn−1
ρ(x + s ω) sn−1 dω.

Using the polar change of variables,

|x ′ − x | =: s x ′ − x

|x ′ − x | =: ω,

we have

I (x; r) =
∫

s<r

∫

ω∈Sn−1
ρ(x + s ω) H

(
Mρ(x, s)

)
sn−1 ds dω

=
∫

s<r

d

ds
Mρ(x, s) H

(
Mρ(x, s)

)
ds .

Setting p = Mρ(x, s), so that dp = d
ds Mρ(x, s) ds, we obtain the stated result. �
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