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Abstract Weconsider a generalization of a one-dimensional stochastic process known in the
physical literature as Lévy-Lorentz gas. The process describes the motion of a particle on the
real line in the presence of a randomarray ofmarked points, whose nearest-neighbor distances
are i.i.d. and long-tailed (with finite mean but possibly infinite variance). The motion is a
continuous-time, constant-speed interpolation of a symmetric random walk on the marked
points. We first study the quenched random walk on the point process, proving the CLT and
the convergence of all the accordingly rescaled moments. Then we derive the quenched and
annealed CLTs for the continuous-time process.
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1 Introduction

For as long as they have existed, random walks have been used as models for a wide range
of transport processes in fields as diverse as physics, chemistry and biology.

For a homogeneous randomwalk on a lattice, under the hypothesis of finite variance of the
distribution of jumps, classical results include the central limit theorem (CLT), the functional
CLT (a.k.a. invariance principle), and normal diffusion, defined as an asymptotically linear
time-dependence of the variance of the walker’s position.

While the success of homogeneous random walks in capturing the main features of trans-
port in regular media is nowadays apparent, in many interesting situations the walker moves
in a complex and/or disordered environment. In such cases, correlations induced by spa-
tial inhomogeneities can have a strong impact on the transport properties, which cannot be
simulated by a simple homogenous model [17,25,26]. This led (already 40 years ago) to
the definition of a class of processes called random walks in random environment (RWRE),
where the transition probabilities are themselves random functions of space (cf. [30] for a
review). This rich class of walks is typically studied from two different viewpoints: that of the
quenched processes, where one focuses on the dynamics for a typical fixed environment, and
that of the annealed (or averaged) processes, where the interest is on the effect of averaging
over the environments.

On a related note, recent years have witnessed a growing interest around anomalous
diffusive processes, where the variance of a moving particle has a super- or sub-linear growth
in time. In the physical literature, such anomalous behavior has been observed in many
systems: Lorentz gases with infinite horizon, rotating flows, intermittent dynamical systems,
etc. [27].

Several models have been put forth to describe such situations. Undoubtedly, the simplest
among them are the homogeneous random walks whose transition probabilities have an
infinite second moment (and possibly an infinite first moment too) [16]. Especially in the
physical literature, they are sometimes dubbed Lévy flights. Though Lévy flights easily break
normal diffusion, their defining feature is also theirmost serious drawback, in that the variance
of the walker’s position is infinite at all times, failing to reproduce the superlinear time-
dependence that is typical of many systems of interest, such as those mentioned earlier. More
realistic models are then considered, called Lévy walks: here the jumps are still picked from
a long-tailed distribution but the walker needs a certain time to complete a jump (typically a
time proportional to the length of the jump, implying constant speed) [12,29].

Not much work has been done on systems that combine long-tailed jumps and disordered
media. To the authors’ knowledge, the first such examples are the Lévy flights perturbed
by random drift fields introduced in [15]. In this case the cause of the anomalous diffu-
sion is the distribution of the jumps. Two more recent models are those of [3,24]; though
rather different from one another, both systems are defined by a “normal” (meaning, sim-
ple, standard) dynamics on an “anomalous” environment, which forces long jumps and is
therefore responsible for the anomalous behavior. In this sense, the models are representa-
tive of the many physical situations (human mobility, epidemics, network routing, etc.) in
which anomalous diffusion is caused by the complexity of an underlying network (such as a
small-world network). The system presented in [3], called by the authors Lévy-Lorentz gas,
is the starting point of our investigation; we will come back to it momentarily. The only
examples of long-tailed random walks in random environment these authors have found in
the rigorous mathematical literature are the long-range walks on point processes studied in
[5,10,11,22].
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24 A. Bianchi et al.

A surge of interest in this topic has lately come from the physics of materials, since a
new glassy material has been devised, through which light exhibits anomalous properties
that can be experimentally controlled [4]. The design of this so-called Lévy glass suggests an
interpretation of the motion of light in it by way of a Lévy walk in a disordered environment,
as studied in [1,2,6–8] (with varying degrees of approximation). These papers focus on the
annealed versions of the models, and no rigorous proof is given.

Inspired by the above models, the system we study here is a generalization of the Lévy-
Lorentz gas mentioned earlier. A random array of points, called targets, is given on the real
line, such that the distances between two neighboring targets are i.i.d. with finite mean; they
are, however, allowed to have infinite variance, which is the interesting case here. A particle
moves with unit speed between the targets, driven by a random walk that is independent of
all the rest. More in detail, we assume that the origin is always a target and that the particle
starts from there. A random integer ξ is drawn from a given distribution, upon which the
particle starts to travel towards the ξ th target.When the target has been reached the procedure
repeats from there.

This is therefore a continuous-time random walk, whose trajectories have long inertial
segments due to a random environment, which is why we speak of a random walk in a
Lévy random environment. These are our results: for the (discrete-time) random walk on the
point process, we prove the quenched CLT and the convergence of all the normally rescaled
moments to those of a suitable Gaussian. Then, by comparison, we derive the quenched
CLT for the continuous-time process. These results imply the annealed CLT for both the
continuous- and discrete-time walks.

The paper is organized as follows. In Sect. 2.1 we give the precise definitions of all
the processes associated with our random walk. In Sect. 2.2 we present our main results,
whose proofs are found in Sect. 3, although some technical results are gathered in “Technical
Lemmas” in Appendix Section. Section 3.2 presents a construction that is also of independent
interest: a dynamical system describing the annealed process from the point of view of the
particle.

2 Model and Main Results

2.1 Definition of the Model

We start by defining the following marked point process on R: let ζ := (ζ j , j ∈ Z) be a
sequence of i.i.d. positive random variables with finite mean μ, and define the variables ωk ,
k ∈ Z, via

ω0 := 0, ωk := ωk−1 + ζk . (2.1)

The process ω := (ωk, k ∈ Z) will be also referred to as the environment, and the single
points ωk as the targets. We denote the set of all possible environments by �en, and the law
just defined on it by P .

We are particularly interested in long-tailed ζ j , with infinite variance, distributed for
instance in the basin of attraction of an α-stable distribution, with α ∈ (1, 2). Environments
of this type are usually called Lévy environments in the physical literature [1,3,7].

In order to define our continuous-time process, we need to introduce two intermediate
random walks (RWs). Let Z± be the positive/negative integers, and N the non-negative
integers. Take ξ := (ξi , i ∈ Z

+) to be a sequence of i.i.d. Z-valued random variables, with
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density p := (pk, k ∈ Z), where pk = p−k (symmetry condition), pk+1 ≤ pk , ∀k ≥ 0
(half-monotonicity), and such that

vp :=
∑

k

k2 pk ∈ (0,∞). (2.2)

Denote by S := (Sn, n ∈ N) the RW with increments provided by the ξi , that is

S0 := 0, Sn :=
n∑

i=1

ξi , for n ≥ 1. (2.3)

This is called the underlying random walk. It is defined on the probability space (ZN, Q),
endowed with the σ -algebra generated by cylinder functions.

The second RW is defined, for each environment ω ∈ �en, as

Yn ≡ Y ω
n := ωSn , for n ∈ N. (2.4)

In rough terms, Y := (Yn, n ∈ N) performs the same jumps as S, but on the points of ω. We
call it the random walk on the point process. The associated probability space is (ωN, Qω),
where Qω is the probability induced on ωN by Q via (2.4) (more precisely, Qω is defined on
the σ -algebra generated by cylinder functions). In particular, for all n ∈ N and k ∈ Z,

Qω (Yn = ωk) = Q(Sn = k). (2.5)

Once we fix the environment and the realization of the dynamics, that is, for any given
pair (S, ω) ∈ (ZN,�en), we can define the sequence of collision times τ(n) ≡ τ(n; S, ω)

via

τ(0) := 0, τ (n) :=
n∑

k=1

∣∣ωSk − ωSk−1

∣∣ , for n ≥ 1. (2.6)

Notice that, since the length of the nth jump of the walk is given by |ωSn − ωSn−1 |, τ(n)

represents the global length of the trajectory up to time n.
Finally, the process we are interested in is the continuous-time process X (t) ≡ Xω(t)

defined by

X (t) := Yn + sgn (ξn+1) (t − τ(n)) , for t ∈ [τ(n), τ (n + 1)), (2.7)

where sgn is the sign function. In other words, X := (X (t), t ∈ [0,∞)) is the process whose
trajectories interpolate those of the walk Y and whose speed is 1 (save at collision times). In
light of the discussion made in the introduction, we describe the above as a continuous-time
random walk on a Lévy random environment.

Remark 1 Notice that ξn+1 = 0 ⇔ Sn+1 = Sn ⇔ τ(n + 1) = τ(n). Therefore (2.7) is
never used in the case ξn+1 = 0, which makes the definition of sgn(0) irrelevant there. More
importantly, the self-jumps of the underlying RW (namely, Sn+1 = Sn) are simply not seen
by the process X (t). This implies that we can remove any lazy component of S = (Sn) by
redefining

p′
0 := 0, p′

j := p j∑
k 
=0 pk

, for j 
= 0. (2.8)

(Notice that
∑

k 
=0 pk > 0, because vp > 0.) In particular, the case where S is a simple
symmetric RW, called Lévy-Lorentz gas in [3], is included in our results.
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26 A. Bianchi et al.

Indicate with C := C([0,∞);R) the space of all continuous paths from [0,∞) to R,
endowed with the Skorokhod topology. We denote by Pω the quenched law of X , which is
the probability induced by Q on C by the definitions (2.4)–(2.7).

Finally, we use P for the annealed law of the process, defined on the space C × �en by

P(G × F) =
∫

F
Pω(G)P(dω). (2.9)

This is the law that describes the entire randomness of the system.

2.2 Main Results

In order to state our main results we need to name a few parameters pertaining to the under-
lying RW S. Let

M :=
∑

k∈Z
|k| pk = 2

∞∑

k=1

k pk (2.10)

be its mean absolute jump, and denote

q̄ := sup

{
q ≥ 0

∣∣∣∣∣
∑

k

|k|q pk < ∞
}

. (2.11)

By our initial assumptions, q̄ ≥ 2. The following is standard:

Proposition 1 S verifies the standard CLT, namely,

lim
n→∞

Sn√
n

d= N (0, vp). (2.12)

Also, denoting by EQ the expectation w.r.t. Q (the law of S),

mq := lim
n→∞

EQ(|Sn |q)

nq/2 (2.13)

exists at least for all q ≥ 0, q 
= q̄ . For q ∈ [0, q̄), it is finite and equals the qth absolute
moment of N (0, vp); for q ∈ (q̄,∞), it is infinite.

For the sake of completeness, we give the proof of Proposition 1 at the beginning of the
next section. Observe that, if q̄ > 2, the proposition says that (Sn/

√
n) converges weakly to a

suitable Gaussian, together with all the moments of order≤ 2. If q̄ = 2, the proposition does
not ensure that the second moment converges, but its proof guarantees that EQ(|Sn |2)/n is
bounded above and below [this follows from (3.1)–(3.2) below and the fact that EQ(|ξ1|2) =
vp < ∞ by hypothesis]. We describe this situation by saying that the underlying RW is
totally diffusive.

The purpose of this paper is to show that the random walk on the point process Y is
also totally diffusive and its continuous-time interpolation X verifies the CLT, both in the
quenched sense, i.e., in a fixed environment, for almost every environment. Recalling that μ
denotes the mean of the random variables ζi , these are our results:

Theorem 1 For P-a.e. ω ∈ �en,

lim
n→∞

Yn√
n

d= N (0, μ2 vp
)
. (2.14)

The convergence is in distribution, relative to the law Pω on C.
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Random Walks in a One-Dimensional... 27

Theorem 2 Let Eω denote the expectation w.r.t. the measure Qω. If q ∈ [0, q̄), then

lim
n→∞

Eω(|Yn |q)

nq/2 = μqmq . (2.15)

If also q ∈ 2N + 1, then

lim
n→∞

Eω(Y q
n )

nq/2 = 0. (2.16)

Both statements hold for P-a.e. ω ∈ �en.

Theorem 3 For P-a.e. ω ∈ �en,

lim
t→∞

X (t)√
t

d= N
(
0,

μ

M
vp

)
. (2.17)

The convergence is in distribution, relative to the law Pω on C.

Remark 2 In view of Remark 1, let us observe that Theorem 3 must not depend of the choice
of p0, the lazy component of S. However, as per definitions (2.2) and (2.10), vp and M do.
On the other hand, if we define v′

p and M ′ by using (p′
k) in lieu of (pk) in (2.2), (2.10), it is

immediate to check that v′
p/M ′ = vp/M .

The quenched CLTs easily imply the annealed CLTs:

Corollary 1 The limits (2.14) and (2.17) hold for the annealed processes as well, that is,
w.r.t. the measure P on C × �en.

Theorems 1 and 2 provide a complete characterization of the quenched process Y . As for
the physically more relevant process X , it is an open question whether a similar scaling for
the quenched moments holds. In the annealed case, heuristic arguments and numerical sim-
ulations suggest that the second moment does not always grow linearly in time. In particular
[7], if the distribution of the distance between targets behaves like d P(ζ0 ≤ z)/dz ∼ z−1−α ,
for z → ∞, the second moment is expect to scale like

E
(
X (t)2

) ∼
{

t5/2−α, 1 ≤ α ≤ 3/2;
t, α > 3/2.

(2.18)

3 Proofs

In this section we prove our results. The most elaborate proof, that of Theorem 3, requires
a representation of the annealed process as a dynamical system ‘from the point of view of
the particle’. We present this system in Sect. 3.2. The technical Lemmas which offer little
insight on the flow of the proofs are given in the Appendix.

We start with the standard results about the underlying RW.

Proof of Proposition 1 The CLT is a well-known result for a finite-variance RW. The conver-
gence of the rescaled moments is in general not so well-known. For this reason we provide
a short proof, though other references may be found in the literature (e.g. [28]).

Denoting χn := (∑n
i=1 ξ2i

)1/2
, Burkholder’s inequality [9, Theorem 3.2] states that, for

all q > 1, there exist constants Cq > cq > 0 such that

cq‖χn‖q ≤ ‖Sn‖q ≤ Cq‖χn‖q , (3.1)
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28 A. Bianchi et al.

where ‖ · ‖q denotes the Lq -norm w.r.t. Q. For 1 < q < q̄, EQ(|ξi |q) :=∑k |k|q pk < ∞.
By (3.1), EQ(|Sn |q) = ‖Sn‖q

q is asymptotic to

‖χn‖q
q =

∥∥∥∥∥

n∑

i=1

ξ2i

∥∥∥∥∥

q/2

q/2

≤
(

n∑

i=1

∥∥ξ2i
∥∥

q/2

)q/2

= nq/2EQ
(|ξ1|q

)
. (3.2)

This implies that theq th absolutemoment of (Sn/
√

n) is bounded above inn. Since the process
convergesweakly toN (0, vp), a simple argument [14, Example 2.5] shows that, ∀q ′ ∈ [0, q),
the (q ′)th absolute moment of (Sn/

√
n) converges to the (q ′)th absolute moment ofN (0, vp).

Since q was arbitrary, the conclusion holds for all q ∈ [0, q̄).
On the other hand, when q ∈ (q̄,∞), EQ(|Sn |q) behaves like

∥∥∥∥∥

n∑

i=1

ξ2i

∥∥∥∥∥

q/2

q/2

≥ EQ

(
n∑

i=1

|ξi |q
)

= ∞, (3.3)

having used the inequality (a + b)q/2 ≥ aq/2 + bq/2 (holding for a, b ≥ 0 and q/2 ≥ 1) and
the fact that EQ(|ξi |q) = ∞. ��
3.1 The random walk on the Point Process

Proof of Theorem 1 This proof follows that of Theorem 1.13 of [5]. By the definition (2.1)
of ω, we have

ωn =
⎧
⎨

⎩

∑n
k=1 ζk, n > 0;

0, n = 0;
−∑0

k=n+1 ζk, n < 0.
(3.4)

The strong law of large numbers on (ζk) can be expressed as follows: fixed b ∈ R, for P-a.e.
ω ∈ �en,

lim
j→∞

ω[bj]
j

= bμ, (3.5)

where [r ] denotes the integer part of r ∈ R.
Since Yn = ωSn , we get that, for a ∈ R, ε > 0 and P-a.e. ω ∈ �en,

lim
n→∞ Qω

(
Yn√

n
≤ a

)
≤ lim

n→∞

[
Q

(
ωSn√

n
≤ a,

Sn√
n

>
a

μ
+ ε

)
+ Q

(
Sn√

n
≤ a

μ
+ ε

)]

≤ lim
n→∞

[
Q

(ω[( a
μ

+ε)
√

n]√
n

≤ a

)
+ Q

(
Sn√

n
≤ a

μ
+ ε

)]

= �

(
a

μ
√

vp
+ ε′

)
, (3.6)

where ε′ := ε/
√

vp , � is the distribution function of the standard normal, and we have used
(3.5) and (2.12). Analogously,

lim
n→∞ Qω

(
Yn√

n
≤ a

)
≥ �

(
a

μ
√

vp
− ε′

)
, (3.7)

and altogether one gets the desired convergence. ��
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Proof of Theorem 2 The basic ingredients of the proof are the convergence of the moments
of (Sn/

√
n) and the law of large numbers for ωn , cf. (3.5).

By the latter, for every ε > 0 and P-a.e. ω, there exists k0 ≡ k0(ε, ω) such that, for all
|k| ≥ k0,

∣∣∣
ωk

k
− μ

∣∣∣ < ε. (3.8)

In particular there exists c ≡ c(ω) > 0 such that |ωk | ≤ c|k|, for all k ∈ Z. Let us fix a
P-typical ω. Recalling that Yn = ωSn , we have:

Eω(|Yn |q)

nq/2 = EQ

( |ωSn |q
|Sn |q

|Sn |q
nq/2

)

= EQ

(
1{|Sn |≥k0}

|ωSn |q
|Sn |q

|Sn |q
nq/2

)
+ EQ

(
1{|Sn |<k0}

|ωSn |q
|Sn |q

|Sn |q
nq/2

)

≤ (μ + ε)q EQ

( |Sn |q
nq/2

)
+ cq Q (|Sn | < k0)

1/r ′
EQ

( |Sn |rq

nrq/2

)1/r

, (3.9)

where in the last step we have used Hölder’s inequality with r > 1 and 1/r ′ +1/r = 1. Now
choose r so that rq < q̄. By Proposition 1,

lim
n→∞ Q (|Sn | < k0) = 0; (3.10)

lim
n→∞ EQ

( |Sn |q
nq/2

)
= mq ; (3.11)

lim
n→∞ EQ

( |Sn |rq

nrq/2

)
= mrq < ∞. (3.12)

In conclusion,

lim sup
n→∞

Eω(|Yn |q)

nq/2 ≤ (μ + ε)qmq . (3.13)

Similarly, for the lower bound,

EQ

( |ωSn |q
|Sn |q

|Sn |q
nq/2

)
≥ (μ − ε)q EQ

(
1{|Sn |≥k0}

|Sn |q
nq/2

)

= (μ − ε)q EQ

( |Sn |q
nq/2

)
− (μ − ε)q EQ

(
1{|Sn |<k0}

|Sn |q
nq/2

)

≥ (μ−ε)q EQ

( |Sn |q
nq/2

)
−(μ−ε)q Q (|Sn | < k0)

1/r ′
EQ

( |Sn |rq

nrq/2

)1/r

,

(3.14)

which, by the same arguments as above, gives

lim inf
n→∞

Eω(|Yn |q)

nq/2 ≥ (μ − ε)qmq . (3.15)

Assertion (2.15) follows from (3.13), (3.15) and the arbitrariness of ε. The limit (2.16) is
proved in a similar fashion upon rewriting

Eω(Y q
n )

nq/2 = Eω

(
1{Sn≥0} |Yn |q)

nq/2 − Eω

(
1{Sn<0}| Yn |q)

nq/2 . (3.16)

��
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3.2 The Point-of-View-of-the-Particle Dynamical System

In this section we introduce a process, or rather a dynamical system, that describes the point
of view of the particle for the RW on the point process.

Keeping in mind the definitions and notation of Sect. 2.1, let (ZZ
+
, Qo) denote the prob-

ability space of the sequences ξ = (ξi , i ∈ Z
+), namely, Qo is the probability for Z+ copies

of i.i.d. Z-valued variables with density p = (pk , k ∈ Z). Indicate with σξ the left shift on
this space. Evidently, σξ preserves Qo and is ergodic. This process is isomorphic to the RW
(Sn, n ∈ N), by construction of the latter. When conjugated with the natural isomorphism,
σξ acts on (ZN, Q) as: (Sn, n ∈ N) �→ (Sn+1 − S1, n ∈ N).

Further denote by ((R+)Z, Po) the probability space of the sequences ζ := (ζ j , j ∈ Z),
where Po is the Bernoulli measure based on the variables ζ j defined in Sect. 2.1. Indicate
with σζ the left shift on this space: σζ is an ergodic automorphism of ((R+)Z, Po). Again,
there is a natural isomorphism between ((R+)Z, Po) and (�en, P). Upon conjugation with
it, σζ acts on (�en, P) as: (ωk, k ∈ Z) �→ (ωk+1 − ω1, k ∈ Z). Also, σ−1

ζ acts as: (ωk, k ∈
Z) �→ (ωk−1 − ω−1, k ∈ Z).

Set � := Z
Z

+ × (R+)Z and ν := Qo ⊗ Po, and define T : � −→ � via

T (ξ, ζ ) :=
(
σξ (ξ), σ

ξ1
ζ (ζ )

)
. (3.17)

We think of (�, ν, T ) as a dynamical system. Let us call ξ the dynamical variable and ζ

the environmental variable, or simply the environment. Fix an initial condition (ξ, ζ ). The
first component of the dynamical variable, ξ1, determines the jump that the underlying RW
is about to make, namely Y1 = ωξ1 . Applying T translates the environment by the quantity
−Y1 (corresponding to |ξ1| discrete shifts in the direction opposite to the jump), and shifts the
dynamical variable, so that the system is ready for the next jump (determined by ξ2) under
the pretense that Y1 is the origin.

In other words, this dynamical system describes the annealed process from the point of
view of the particle (PVP). This is why we call it the PVP dynamical system.

Theorem 4 (�, ν, T ) is measure-preserving and ergodic.

The proof of this Theorem is found in “Ergodicity of the PVPDynamical System” Appen-
dix Section. The isomorphisms ξ ↔ S and ζ ↔ ω, mentioned earlier, entail that Theorem 4
is equivalent to the following:

Corollary 2 The mapping

((Sn, ωk) , n ∈ N, k ∈ Z) �→ ((
Sn+1 − S1, ωk+S1 − ωS1

)
, n ∈ N, k ∈ Z

)
(3.18)

on (ZN × �en, Q ⊗ P) is measure-preserving and ergodic.

The following technical Lemma, needed in the proof of themain result, will also be proved
in “Ergodicity of the PVP Dynamical System” Appendix Section.

Lemma 1 For ζ ∈ (R+)Z, set Fζ := Z
Z

+ × {ζ } (in the remainder, any such set will be
referred to as an horizontal fiber of �). Then,

T (Fζ ) =
⋃

k∈Z
Fσ k

ζ (ζ ). (3.19)
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Random Walks in a One-Dimensional... 31

Furthermore (with a minor abuse of notation) indicate with Qo( · | Fζ ) the measure on Fζ

induced by Qo via the identification Fζ
∼= Z

Z
+

. T pushes this measure to

T∗Qo( · | Fζ ) =
∑

k∈Z
pk Qo

(
· |Fσ k

ζ (ζ )

)
. (3.20)

3.3 CLT of the Lévy Walk

We will prove Theorem 3 by controlling the continuous-time walk (X (t)) through the
discrete-time walk (Yn). To this goal, it is convenient to introduce a quantity which counts
the number of collisions of the process X (t) up to time t . Formally, for every t ∈ R

+, set

n(t) ≡ n(t; S, ω) := max {m ∈ N | t ≥ τ(m)} . (3.21)

This is a sort of inverse function of the collision time τ(n), defined in (2.6). In point of fact,
when τ(n) is strictly monotonic (which occurs when S has no lazy component, cf. Remark
1), n(t) is a suitable piecewise extension of the inverse of τ(n).

Lemma 2 In view of the definitions (2.6) and (3.21), which depend on (S, ω) ∈ Z
N × �en,

we have that, (Q ⊗ P)-almost surely, equivalently, P-almost surely,

lim
n→∞

τ(n)

n
= Mμ; (3.22)

lim
t→∞

t

n(t)
= Mμ. (3.23)

Proof By (2.6) we see that τ(n) is the Birkhoff sum of the function

g(S, ω) := |ωS1 − ωS0 | = |ωS1 | = |ωξ1 |, (3.24)

on Z
N × �en, relative to the dynamics (3.18). So (3.22) follows by Corollary 2 and the

Birkhoff Theorem: for (Q ⊗ P)-a.e. choice of (S, ω) ∈ Z
N × �en,

lim
n→∞

τ(n)

n
=
∫

ZN×�en

g d(Q ⊗ P)

=
∫

ZZ+×�en

|ωξ1 | d(Qo ⊗ P)

=
∑

k∈Z
pk

∫

�en

|ωk | d P

=
∑

k∈Z
pk |k|μ = Mμ, (3.25)

having used some of the notation and arguments given in Sect. 3.2.
Moreover, since by definition n(t) → ∞, almost surely, as t → ∞, (3.22) implies that

lim
t→∞

τ(n(t) + 1)

n(t)
= lim

t→∞
τ(n(t))

n(t)
= Mμ. (3.26)

But

lim
t→∞

∣∣∣∣
t

n(t)
− τ(n(t))

n(t)

∣∣∣∣ ≤ lim
t→∞

(
τ(n(t) + 1)

n(t)
− τ(n(t))

n(t)

)
= 0, (3.27)

giving (3.23). ��
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Lemma 3 For P-a.e. ω ∈ �en (equivalently, Po-a.e. ζ ∈ (R+)Z) and every � ∈ Z,

lim
n→∞ Eω

(
ωSn+� − ωSn+�−1

) = lim
n→∞ Eω

(
ζSn+�

) = μ. (3.28)

Also, given any positive sequence ψn = o(
√

n), n → ∞, the above limits are uniform for
|�| ≤ ψn (for a fixed ω, or ζ ).

Proof To start with, the first equality of (3.28) follows trivially by the definitions of ω and
ζ , so we prove the second one.

Again, we use the machinery of Sect. 3.2. Set h(ξ, ζ ) := ζ�. By (3.17) and (2.3) we write

h ◦ T n(ξ, ζ ) = h
(
σ n

ξ (ξ), σ
Sn
ζ (ζ )

)
= ζSn+�. (3.29)

Now, recall the definitions given in the statement of Lemma 1. Observe that taking the
expectation Eω is tantamount to integrating over the fiber Fζ w.r.t. the measure Qo( · | Fζ ),
where ζ corresponds to ω via (2.1). Hence, with the notation

p(n)
j :=

∑

k1+···+kn= j

pk1 . . . pkn = Q(Sn = j), (3.30)

we get

Eω

(
ζSn+�

) =
∫

Fζ

(h ◦ T n) d Qo
( · | Fζ

)

=
∑

k1,...,kn

pk1 . . . pkn

∫
h d Qo

(
· | F

σ
k1+···+kn
ζ (ζ )

)

=
∑

j∈Z
p(n)

j

∫
h d Qo

(
· | F

σ
j
ζ (ζ )

)

=
∑

j∈Z
p(n)

j ζ j+�. (3.31)

In the second equality above, we have applied Lemma 1 recursively n times: the summation
is over Zn and each integral is taken over the horizontal fiber specified by the integration
measure. In the fourth equality we have used that h is constant along horizontal fibers.

At this point we want to apply Lemma 6 of the Appendix with a j := ζ j+� and p(n) as
above. We need to check the hypotheses of the Lemma. First off, p(n) verifies condition (i)
because it is symmetric and half-monotonic (this is, e.g. a consequence of Lemma 7, as p
is symmetric and half-monotonic by assumption). It also verifies condition (ii), because the
underlying RW satisfies the CLT. ��
Remark 3 This is the only point in the paper where the half-monotonicity of p is used.

As for the hypothesis on a, we use the ergodicity of the process ζ . Thus, for Po-a.e.
ζ ∈ (R+)Z,

lim
k→∞

1

k

k−1∑

j=0

a j = lim
k→∞

1

k

−k∑

j=−1

a j = E(ζ1) = μ. (3.32)

So Lemma 6 can be applied almost surely in ζ , equivalently in ω. Using the notation of that
Lemma, (3.31) becomes

Eω

(
ζSn+�

) =
∑

j∈Z
p(n)

j a j = En(a), (3.33)
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showing that, for P-a.e. ω ∈ �en, (3.33) converges to (3.32), as n → ∞, which proves the
limit (3.28).

Finally, observe that the underlying random walk is strongly aperiodic by hypothesis: this
implies (rather easily) that, as n → ∞, p(n)

j−� − p(n)
j = o(p(n)

j ), uniformly in j ∈ Z and

|�| ≤ ψn . Since (3.33) can be rewritten as Eω(ζSn+�) =∑ j p(n)
j−� ζ j , its limit is the same as

for � = 0, uniformly for |�| ≤ ψn .
We are now ready to prove our main theorem (we will not prove the obvious Corollary 1).

Proof of Theorem 3 Let us define n̄(t) := [t/Mμ]. Compare n̄(t) to n(t): for fixed t , the
former is a constant while the latter is a random variable on (ωN, Qω). For P-a.e. ω ∈ �en,
we have that, Qω-almost surely,

lim
t→∞

n(t) − n̄(t)

t
= 0 (3.34)

(this follows form Lemma 2 and Fubini’s Theorem). Moreover, by Theorem 1 and the defi-
nition of n̄(t),

lim
t→∞

Yn̄(t)√
t

d= N
(
0,

μ

M
vp

)
, (3.35)

for P-a.e. ω. Since X (t) always lies between Yn(t) and Yn(t)+1, it is easy to see that
∣∣∣∣

X (t)√
t

− Yn̄(t)√
t

∣∣∣∣ ≤ max
{ |Yn(t)−Yn̄(t)|√

t
,

|Yn(t)+1−Yn̄(t)|√
t

}

≤ |Yn(t)−Yn̄(t)|√
t

+ |Yn(t)+1−Yn̄(t)|√
t

. (3.36)

In light of (3.35), and using Slutzky’s Theorem [18, Theorem 13.18], Theorem 3 will be
proved once we prove that, P-almost surely, the two terms in the second line of (3.36)
converge to 0 in distribution, and thus in probability, w.r.t. Qω. We will only show the
convergence of the first term, the second one being completely analogous.

Applying the Portemanteau Theorem [18, Theorem 13.16], it will suffice to prove that,
given an ω for which (3.34) holds, and a bounded Lipschitz function f : R → R,

lim
t→∞ Eω

(
f

( |Yn(t) − Yn̄(t)|√
t

))
= f (0). (3.37)

So, fix ε > 0. By (3.34), one can find a ‘bad’ set B1 ⊂ ωN, with Qω(B1) ≤ ε/6‖ f ‖∞, and
a function φ : R+ −→ R

+, with limt→∞ φ(t)/t = 0, such that

|n(t) − n̄(t)| ≤ φ(t) (3.38)

for all realizations of the dynamics in ωN \ B1. Moreover, by (2.12), there exist another bad
set B2 ⊂ ωN, again with Qω(B2) ≤ ε/6‖ f ‖∞, and a constant C > 0 such that, for all
realizations in ωN \ B2,

∣∣Sn(t) − Sn̄(t)
∣∣ ≤ C

√|n(t) − n̄(t)|. (3.39)

Altogether, for all realizations in ωN \ (B1 ∪ B2),
∣∣Sn(t) − Sn̄(t)

∣∣ ≤ C
√

φ(t). (3.40)
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We split the average in the l.h.s. of (3.37) in two parts, restricting it, respectively, to B1∪B2

and its complement G := ωN \ (B1 ∪ B2). For the first part, we estimate

Eω

(
1B1∪B2

∣∣∣∣ f

( |Yn(t) − Yn̄(t)|√
t

)
− f (0)

∣∣∣∣

)
≤ 2‖ f ‖∞ Qω(B1 ∪ B2) ≤ 2

3
ε, (3.41)

where 1A denotes the indicator function of A ⊂ ωN. For the second part, if c is the Lipschitz
constant of f , we write

Eω

(
1G

∣∣∣∣ f

( |Yn(t) − Yn̄(t)|√
t

)
− f (0)

∣∣∣∣

)
≤ c√

t
Eω

(
1G
∣∣Yn(t) − Yn̄(t)

∣∣) . (3.42)

By definition of the processes Y , ω, and ζ (cf. Sect. 2.1),

Yn(t) − Yn̄(t) = ωSn(t) − ωSn̄(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Sn(t)−Sn̄(t)∑

�=1

ζSn̄(t)+�, if Sn(t) > Sn̄(t);
0, if Sn(t) = Sn̄(t);

−
Sn(t)−Sn̄(t)+1∑

�=0

ζSn̄(t)+�, if Sn(t) < Sn̄(t).

(3.43)

Therefore, using also (3.40),

Eω

(
1G
∣∣Yn(t) − Yn̄(t)

∣∣) < Eω

⎛

⎝1G

Sn(t)−Sn̄(t)∑

�=0

ζSn̄(t)+�

⎞

⎠

≤
(

C
√

φ(t) + 1
)

sup
|�|≤C

√
φ(t)+1

Eω

(
ζSn̄(t)+�

)
. (3.44)

Since, for t → ∞, n̄(t) ∼ t and φ(t) = o(t), Lemma 3 can be applied to the leftmost term
of (3.44). Accordingly, (3.42) and (3.44) imply

Eω

(
1G

∣∣∣∣ f

( |Yn(t) − Yn̄(t)|√
t

)
− f (0)

∣∣∣∣

)
≤ C ′

√
φ(t)

t
≤ ε

3
, (3.45)

for some constant C ′ > 0 and all t large enough. This, together with (3.41), gives (3.37), and
concludes the proof of Theorem 3. ��
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Appendix: Technical Lemmas

Ergodicity of the PVP Dynamical System

In this section we give the prove the ergodicity of the PVP dynamical system introduced in
Sect. 3.2, and another related result.

Proof of Theorem 4 We follow the same ideas as in [13,20,21]. Let us first prove that T
preserves ν.

Set A := B × C , where B is an elementary cylinder of ZZ
+
and C is a measurable subset

of (R+)Z. It is not hard to see that T −1(A) =⊔k∈Z Bk × σ−k
ζ (C), where

Bk :=
{
(k, ξ1, ξ2, . . .) ∈ Z

Z
+ ∣∣∣ (ξ1, ξ2, . . .) ∈ B

}
. (4.1)

By the choice of B and by definition of Qo, Qo(Bk) = pk Qo(B). Also, by the Po-invariance
of σζ , Po(σ

−k
ζ (C)) = Po(C). This shows that

ν
(
T −1(A)

) =
∑

k∈Z
ν
(

Bk × σ−k
ζ (C)

)
=
∑

k∈Z
pk Qo(B)Po(C) = ν(A). (4.2)

This then extends to allmeasurable sets A, proving our first assertion. For the second assertion
we need a Lemma. ��
Lemma 4 Every T -invariant set A ⊆ � is of the form A = Z

Z
+ × C mod ν (meaning that

the equality holds up to ν-null sets), where C is a measurable set of (R+)Z.

Proof of Lemma 4 We first give some preliminary definitions and results. Let us endow Z
Z

+

with the distance

d(ξ, ξ ′) := [min
{
n ∈ Z

+ ∣∣ ξn 
= ξ ′
n

}]−1
. (4.3)

This is an ultrametric distance, namely, ∀ξ, ξ ′, ξ ′′ ∈ Z
Z

+
,

d(ξ, ξ ′′) ≤ max
{
d(ξ, ξ ′), d(ξ ′, ξ ′′)

}
, (4.4)

and its (open) balls are the cylinders

Bε(ξ) :=
{
ξ ′ ∈ Z

Z
+ ∣∣ ξ ′

i = ξi , ∀i = 1, 2, . . . , [ε−1]
}

, (4.5)

where, once again, [·] indicates the integer part of a real number. This makes ZZ
+
a Polish

ultrametric space, which is an observation that will soon be useful.
Given Bε(ξ), as in (4.5), and an elementary cylinder B ⊆ Bε(ξ), namely B ={

ξ ′ ∣∣ ξ ′
i = ξi , ∀i = 1, 2, . . . , k

}
, with k ≥ [ε−1], it is easy to see that

Qo
(
σξ (B)

)

Qo
(
σξ (Bε(ξ))

) = Qo(B)

Qo
(Bε(ξ)

) . (4.6)

So this holds for any measurable B ⊆ Bε(ξ). If B is not necessarily a subset of Bε(ξ), we
can only state that

Qo
(
σξ (B) | σξ (Bε(ξ))

) ≥ Qo (B |Bε(ξ)) . (4.7)

[This follows from (4.6), replacing B with B ∩Bε(ξ) and using the general inclusion σξ (B ∩
Bε(ξ)) ⊆ σξ (B) ∩ σξ (Bε(ξ)).] ��
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Now, recall the definitions of Fζ and Qo(· | Fζ ) from the statement of Lemma 1. It follows
from the above arguments that Fζ is a Polish ultrametric space endowed with the Borel mea-
sure Qo(· | Fζ ). By [23, Proposition2.10], Lebesgue’s Density Theorem holds. In particular,
ifBε(ξ, ζ ) denotes the ball of center (ξ, ζ ) and radius ε in Fζ [corresponding toBε(ξ) ⊂ Z

Z
+

through the identification Fζ
∼= Z

Z
+
], we have the following:

Lemma 5 Let A be a measurable subset of � and ζ ∈ (R+)Z be such that A ∩ Fζ is
measurable (this happens for Po-a.e. ζ ). Then, a.e. (ξ, ζ ) ∈ A ∩ Fζ , relative to Qo(· | Fζ ),
is a density point of A ∩ Fζ . This means that

lim
ε→0+ Qo (A |Bε(ξ, ζ )) := lim

ε→0+
Qo
(

A ∩ Bε(ξ, ζ ) | Fζ

)

Qo
(Bε(ξ, ζ ) | Fζ

) = 1.

Wefinally come to the actual proof of the Lemma. Let us first assume ν(A) > 0, otherwise
one sets C := ∅ and the proof is finished. Then, by contradiction, we assume that A is not of
the type A = Z

Z
+ × C mod ν, that is, it is not a union of horizontal fibers, modulo null sets.

Therefore, for a small enough δ > 0, the set

Cδ :=
{
ζ ∈ (R+)Z

∣∣∣ δ ≤ Qo(A | Fζ ) ≤ 1 − δ
}

(4.8)

has positive Po-measure. Set A′ :=⊔ζ∈Cδ
(A ∩ Fζ ). By Fubini, ν(A′) > 0.

We claim that we can find a point (ξ, ζ ) ∈ A′ which is both a recurrent point to A′ w.r.t.
T (i.e.,

T n(ξ, ζ ) ∈ A′, (4.9)

for countably many values of n), and a density point of A ∩ Fζ , relative to Qo( · | Fζ ). This is
true because, by Poincaré’s Recurrence Theorem, ν-a.a. points in A′ recur to A′. By Fubini
and the definition of A′, this implies that, for Po-a.a. ζ ∈ Cδ , (ξ, ζ ) is a recurrent point
(to A′), for Qo-a.e. ξ ∈ A′ ∩ Fζ . Now, consider a typical ζ in the sense just described and
exclude from the recurrent points contained in A′ ∩ Fζ those that are not density points of
A′ ∩ Fζ . By Lemma 5 this amounts to excluding a negligible set of points. Any remaining
point verifies our claim (in fact, A′ ∩ Fζ = A ∩ Fζ , by definition of A′).

Therefore, we can find a large enough n that verifies (4.9) and

Qo
(

A |B1/n(ξ, ζ )
)

> 1 − δ. (4.10)

Notice that, via (3.17) and (2.3), it is easy to find an expression for the iterates of (ξ, ζ ):

T n(ξ, ζ ) :=
(
σ n

ξ (ξ), σ
Sn
ζ (ζ )

)
. (4.11)

The abovemakes it clear that T n acts on Fζ by operating n shifts in the dynamical variable and

mapping the environment to the new environment σ Sn
ζ (ζ ). But, by (4.5), σ n

ξ (B1/n(ξ)) = Z
Z

+
.

Therefore, T n(B1/n(ξ, ζ )) = F
σ

Sn
ζ (ζ )

. On the other hand, using the invariance of A, (4.7)

and (4.10), we can write

Qo

(
A | F

σ
Sn
ζ (ζ )

)
= Qo

(
T n(A) | T n (B1/n(ξ, ζ )

) )

≥ Qo
(

A |B1/n(ξ, ζ )
)

> 1 − δ, (4.12)
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which, in view of (4.8), shows that σ Sn
ζ (ζ ) /∈ Cδ . But (4.9) and (4.11) imply that σ Sn

ζ (ζ ) ∈ Cδ ,
which is the sought contradiction.

Therefore A = Z
Z

+ × C mod ν, for some C ⊆ (R+)Z. We still need to prove that C
is measurable. If not, by [19, LemmaA.1], there exists a measurable C ′ such that C�C ′ is
contained in a null set, implying A = Z

Z
+ × C ′ mod ν.

To end the proof of Theorem 4 suppose, again by contradiction, that the system has an
invariant set A, which, by the above Lemma, must be of the form A = Z

Z
+ × C mod ν, with

0 < Po(C) < 1. By the ergodicity of σζ , there must be a subset C ′ ⊆ C , with

Po(C
′) > 0, (4.13)

such that σζ (C ′) ⊆ Cc := (R+)Z \ C .
For ζ ∈ C ′, set Bζ,1 := {(ξ, ζ ) ∈ Fζ | ξ1 = 1

}
. Then

Qo
(
Bζ,1 | Fζ

) = Qo

({
ξ ∈ Z

Z
+ ∣∣∣ ξ1 = 1

})
= p1 > 0, (4.14)

by the assumptions on (pk) (symmetry, half-monotonocity, and positive variance; see, how-
ever, Remark 4). Also, T (Bζ,1) = Fσζ (ζ ) and σζ (ζ ) ∈ Cc. Therefore, setting Ao :=
⊔

ζ∈C ′ Bζ,1, one has that T (Ao) ⊆ Z
Z

+ × Cc, with ν(Ao) > 0 [the latter inequality coming
from (4.13), (4.14) and Fubini’s Theorem]. This contradicts the invariance of A and thus
proves the Theorem.

Proof of Lemma 1 The proof of Theorem 4 (see in particular (4.1)–(4.2) and the concluding
paragraph) shows that T maps Bζ,k := {

(ξ, ζ ) ∈ Fζ | ξ1 = k
}
onto Fσ k

ζ (ζ ), pushing the

measure Qo( · |Fζ ), restricted to Bζ,k , to pk Qo( · |Fσ k
ζ (ζ )). Since Fζ = ⊔

k∈Z Bζ,k , both

statements of the Lemma follow. ��

Remark 4 The proof of Lemma 1 helps to show that Theorem 4 holds under much weaker
assumptions on the underlying random walk: it suffices to require that vp > 0. This, in fact,
implies that pk > 0, for some k 
= 0. The proof of Theorem 4 still functions if, in the last
two paragraphs, one substitutes σζ with σ k

ζ (also ergodic) and Bζ,1 with Bζ,k .

Averaging

The next Lemma, which is needed in the proof of the main theorems (cf. Lemma 3), proves
an assertion that can be roughly described as follows: given a function a : Z −→ R and an
“expanding” sequence of probability densities on Z that are increasing on Z− and decreasing
on N, the expected value of a relative to these densities tends to its Cesaro average.

Lemma 6 Let a := (a j , j ∈ Z) ⊂ R be such that

lim
k→∞

1

k

k−1∑

j=0

a j = lim
k→∞

1

k

−k∑

j=−1

a j = ā.

For n ∈ N, let p(n) = (p(n)
j , j ∈ Z) be the density of a probability distribution on Z, whose

expectation we denote by En, such that:

(i) j �→ p(n)
j is increasing on Z

− and decreasing on N;

(ii) for all r ∈ N, En(1[−r,r ]) :=∑r
j=−r p(n)

j vanishes as n → ∞.
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Then

lim
n→∞ En(a) := lim

n→∞
∑

j∈Z
p(n)

j a j = ā.

Proof For k1, k2 ∈ Z, k1 ≤ k2, set

Uk1,k2(a) := 1

k2 − k1 + 1

k2∑

j=k1

a j . (4.15)

Define also

E+
n (a) :=

∞∑

j=0

p(n)
j a j , (4.16)

E−
n (a) :=

−∞∑

j=−1

p(n)
j a j . (4.17)

Let us approximate (4.16) and (4.17) separately. It is not hard to see (by “slicing” the density
p(n) horizontally) that

E+
n (a) =

∞∑

j=0

(
p(n)

j − p(n)
j+1

)
( j + 1)U0, j (a). (4.18)

Fix ε > 0. The hypotheses on a imply that ∃r ∈ N so large that, ∀ j > r ,

|U0, j (a) − ā| ≤ ε/2; (4.19)

|U− j,−1(a) − ā| ≤ ε/2. (4.20)

Set

E+
n,r (a) :=

∞∑

j=r+1

(
p(n)

j − p(n)
j+1

)
( j + 1)U0, j (a). (4.21)

(4.19) implies that ∣∣E+
n,r (a) − ā E+

n,r (1)
∣∣ ≤ ε

2
E+

n,r (1), (4.22)

with the understandable meaning that 1 also denotes the sequence that is identically equal to
1.

Analogously, the term (4.17) can be rewritten as

E−
n (a) =

∞∑

j=1

(
p(n)
− j − p(n)

− j−1

)
j U− j,−1(a), (4.23)

and, upon defining

E−
n,r (a) :=

∞∑

j=r+1

(
p(n)
− j − p(n)

− j−1

)
j U− j,−1(a), (4.24)

we get through (4.20) that
∣∣E−

n,r (a) − ā E−
n,r (1)

∣∣ ≤ ε

2
E−

n,r (1). (4.25)
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If we name En,r (·) := E+
n,r (·) + E−

n,r (·), we obtain from (4.22) and (4.25) that

∣∣En,r (a) − ā En,r (1)
∣∣ ≤ ε

2
En,r (1) ≤ ε

2
. (4.26)

On the other hand, it is clear from the above arguments that 1−En,r (1) = En(1)−En,r (1)
is a portion of the mass of p(n) contained in [−r, r ], which is measured by En(1[−r,r ]).
Therefore, defining A := max| j |≤r |a j | and using (ii), there exists N = N (ε, ā,A, r) such
that, for all n ≥ N ,

1 − En,r (1) ≤ En
(
1[−r,r ]

) ≤ ε

2(A + |ā|) . (4.27)

Notice that N can be thought of as a function of ε and the sequence a (for r is also a function
of ε and a). Finally, ∀n ≥ N ,

|En(a) − ā| ≤ ∣∣En(a) − En,r (a)
∣∣+ ∣∣En,r (a) − ā En,r (1)

∣∣+ ∣∣ā En,r (1) − ā
∣∣

≤ (A + |ā|) (1 − En,r (1)
)+ ∣∣En,r (a) − ā En,r (1)

∣∣

≤ ε/2 + ε/2, (4.28)

by (4.26) and (4.27). This completes the proof. ��
In the main body of the paper, Lemma 6 is used with p(n) being the probability density of

the underlying random walk at time n. In order to show that such densities verify condition
(i) above, we need another simple Lemma.

Lemma 7 If p and p′ are symmetric and half-monotonic densities on Z (see definitions in
Sect. 2.1), so is their convolution p ∗ p′.

Proof Let us first treat the special case p = q(r) and p′ = q(r ′), with r, r ′ ∈ N, where

q(r)
k =

{
(2r + 1)−1, −r ≤ k ≤ r;
0, |k| > r.

(4.29)

Assume r ≥ r ′: this is no loss of generality as the convolution is symmetric. It is easy to
calculate that

(
q(r) ∗ q(r ′)

)

j
= 1

2r + 1
·

⎧
⎪⎪⎨

⎪⎪⎩

1, | j | ≤ r − r ′;
r + r ′ + 1 − j

2r ′ + 1
, r − r ′ < | j | ≤ r + r ′;

0, | j | > r + r ′,
(4.30)

which is symmetric and half-monotonic. Now, a general p as in the statement of the Lemma
can be rewritten as p =∑∞

r=0(pr − pr+1)(2r + 1)q(r), and analogously for p′. Hence

p ∗ p′ =
∞∑

r=0

∞∑

r ′=0

(pr − pr+1)
(

p′
r ′ − p′

r ′+1

)
(2r + 1)

(
2r ′ + 1

)
q(r) ∗ q(r ′), (4.31)

which is symmetric and half-monotonic because it is a countable linear combination of
symmetric and half-monotonic densities, with positive coefficients. ��
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