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Abstract The Tutte polynomial of a graph, or equivalently the q-state Potts model partition
function, is a two-variable polynomial graph invariant of considerable importance in both
statistical physics and combinatorics. The computation of this invariant for a graph is NP-
hard in general. In this paper, we focus on two iteratively growing scale-free networks, which
are ubiquitous in real-life systems. Based on their self-similar structures, we mainly obtain
recursive formulas for the Tutte polynomials of two scale-free networks (lattices), one is
fractal and “large world”, while the other is non-fractal but possess the small-world property.
Furthermore, we give some exact analytical expressions of the Tutte polynomial for several
special points at (x, y)-plane, such as, the number of spanning trees, the number of acyclic
orientations, etc.

Keywords Tutte polynomial · Potts model · Spanning trees · Acyclic orientations ·
Asymptotic growth constant · Scale-free network

1 Introduction

The Tutte polynomial T (G; x, y) of a graph G, due to Tutte [1], is a polynomial in two vari-
ables which plays an important role in several areas of sciences. Though originally studied in
algebraic graph theory as a generalization of counting problems related to graph coloring and
nowhere-zero flow, it has many interesting connections with statistical mechanical model as
the Potts model [2,3], the Abelian Sandple Model, as well as the Jones polynomial from knot
theory. It is also the source of several central computational problems in theoretical computer
science. For a thorough survey on the Tutte polynomial, wewould like refer the reader toRefs.
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[4–9]. In a strong sense it contains every graphical invariant that can be computed by deleting
and contraction operations which are natural reductions for many networks model. The Tutte
polynomial for a particular point at (x, y)-plane is related to much combinatorial information
and algebraic properties of a graph, including the number of spanning trees, the number of
acyclic orientations, the dimension of the bicycle space and many more. Moreover, the Tutte
polynomial contains several other polynomial invariants, such as the chromatic polynomial,
the flow polynomial and the all terminal reliability polynomial as partial evaluations.

Generally, theTutte polynomial or the partition functionofPottsmodels is computationally
intractable. In both fields of combinatorics and statistical physics, the Tutte polynomials of
some graphs (or lattices) have been studied by many different methods (see Refs. [10–16]).
It is worth mentioning that, about twenty years ago, a q-state Potts model of the diamond
hierarchical lattice had been considered by Derrida et al. [17,18]. After that a lot of work
have been done on hierarchical model (see Refs. [19–22]). Recently, on the basis of the
subgraph expansion definition of the Tutte polynomial, a very useful method for computing
the Tutte polynomial, called the subgraph-decompositionmethod, was used to study the Tutte
polynomial of the Sierpiński and Hanoi graphs in [23]. This technique is highly suited for
computing the Tutte polynomial of self-similar graphs, and some applications of it can be
found in [24–26].

The two classes of scale-free networks (lattices) under consideration, are two different
novel network structures based on the diamond hierarchical lattice augmented by adding a
new edge in each iteration (see Ref. [27–29]), both of which display the striking scale-free
behavior, with their degree distribution P(k) obeying a power law form P(k) ∼ k−γ . By
locating the new adding edge in two different ways, one is “large world”, while the other
possesses the small-world property. This two scale-free networks have attracted awide spread
attention from the viewpoint of complex networks (see Refs. [30–34]).

In this paper, we focus our attention on computation of the Tutte polynomial of this two
classes of scale-free networks, by using a subgraph-decomposition method. We determine
the recursive formula for computing the Tutte polynomial. Furthermore, the chromatic poly-
nomial of the small-word self-similar networks can be solved efficiently by applying a useful
technique. In particular, as special cases of the general Tutte polynomial, we mainly obtain:

– the number of spanning trees (see Eqs. 33 and 53);
– the number of acyclic orientations (see Eq. 61);
– the number of acyclic root-connected orientations (see Eqs. 42 and 63);
– the number of indegree sequences of strongly connected orientations (see Eq. 46).

2 Preliminaries

In this section, we briefly discuss some necessary background that will be used for our
calculations. We use standard graph terminology and the words “network” and “graph”
synonymously. Let G be a graph with its vertex set V (G) and edge set E(G). A spanning
subgraph H = (V (H), E(H)) is a subgraph of G such that H has the same vertex set as G
and E(H) ⊆ E(G). In particular, a spanning tree of G is a spanning subgraph of G which
is a tree. The number of spanning trees of a graph G is also called complexity of G. An
orientation of graph G is the digraph defined by the choice of a direction for every edge of
E(G). A directed cycle of a digraph is a set of edges forming a cycle of the graph such that
they are all directed accordingly with a direction for the cycle. A digraph is acyclic if it has
no directed cycle, and it is strongly connected if for every pair of vertices there is a directed

123



716 H. Chen, H. Deng

cycle containing them. A sink for a digraph is a vertex with no outgoing edge. The indegree
sequence of an orientation is a mapping defined on V associating with v ∈ V the indegree
of v.

A network is said to be scale-free [35] if its degree obeys, at least asymptotically, the
following distribution: P(x) = Cx−γ (x ≥ xmin), where C and γ > 1 are positive constants.
The requirement of γ > 1 ensures that P(x) can be normalized. In a real network, γ is
typically in the range 2 < γ ≤ 3 [36], although occasionally it may lie beyond these bounds.
By the definition, in a scale-free network, most vertices have a low degree, while these exist
a small number of vertices with large degree, which is in contrast to other networks with an
exponential or a Poisson degree distribution, where large-degree vertices are absent.

A network is said to possess the small-world [37] property if the leading scaling of its
average distance grows proportionally to, or slower than, the logarithm of the number of
vertices in the network. In general, a small-world network is a type of mathematical graph
in which most vertices are not be reached neighbors of one another, but most vertices can be
reached from every other by a small number of steps.

A network is said to be fractal if it has a finite fractal dimension, otherwise it is non-fractal.
Generally, the fractal dimension of a network can be obtained by applying a box-covering
method defined as follows [38]. One uses boxes, each having a linear size lB , to cover
all vertices in the network, such that for any pair of verities in each box, their distance in
their original network is less than lB . Let NB denoted the minimum possible number of
boxes required to cover all vertices in the whole network. Then the fractal dimension or box
dimension, denoted by dB (0 < dB < ∞), of the network is given by NB ≈ l−dB

B [39].
For a fractal network, the number of vertices is a power function of its average distance. In
contrast, for a non-fractal network, its size is an exponential function of its average distance.
Self-similarity refers to the scale invariance of the degree distribution under coarse-graining
with different box size lB as well as under the iterative operations of coarse-graining with
fixed lB . Intuitively, a self-similar network is exactly or approximately similar to a part of
itself. Note that fractality and self-similarity do not always imply each other. A fractal is
always self-similar, but a self-similar network may be not fractal [40].

There are several very different, but nevertheless equivalent, definitions of the Tutte poly-
nomial. Here, we will present the subgraph expansion definition which is often the easiest
way to prove the properties of the Tutte polynomial. The Tutte polynomial T (G; x, y) of the
graph G is defined as

T (G; x, y) =
∑

H⊆G

(x − 1)r(G)−r(H)(y − 1)n(H), (1)

where the sum runs over all the spanning subgraphs H of G, r(G) = |V (G)| − k(G) is the
rank of H and n(G) = |E(G)| − |V (G)| + k(G) is the nullity of H and k(G) is the number
of components of G.

The connection between the partition function of Potts model and the Tutte polynomial is
given in [6]

ZG(q, v) = qk(G)vn−k(G)T (G; (q + v)/v, v + 1). (2)

Moreover, it is worth mentioning that the chromatic polynomial P(G, q) occurs as a special
limiting case, namely the zero-temperature limit of the anti-ferromagnetic Potts model

ZG(q,−1) = P(G, q) = (−q)k(G)(−1)n(G)T (G; 1 − q, 0). (3)
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It is well-known in [5,6] that the evaluation of the Tutte polynomial for a particular point
at (x, y)-plane is related to some combinatorial information and algebraic properties of the
graph considered.

(1) T (G; 1, 1) = NST (G), i.e., the number of spanning trees of G;
(2) T (G; 1, 0) = the number of acyclic root-connected orientations of G;
(3) T (G; 1, 2) = the number of spanning connected subgraphs of G;
(4) T (G; 2, 1) = the number of spanning forests of G;
(5) T (G; 2, 2) = 2|E(G)|, i.e., the number of spanning subgraphs of G;
(6) T (G; 2, 0) = NAO (G), the number of acyclic orientations of G;
(7) T (G;−1,−1) = (−1)|E(G)|(−2)dim(B), where B is the bicyclic space of G;
(8) T (G; 0, 1) = the number of indegree sequences of strongly connected orientations of

G.

3 Tutte Polynomial of a Fractal Scale-Free Network

In this section, we give the computational formulas of the Tutte polynomial of a fractal
scale-free network Gn in detail.

We begin by giving the definition and relevant structural properties of the network under
consideration, as shown in Fig. 1. The fractal scale-free network Gn = (Vn, En), n ≥ 0,
with the vertex set Vn and edge set En , can be constructed as follows:

For n = 0, G0 is the complete graph K2.
For n ≥ 1, Gn can be constructed from four copies of Gn−1 by merging four groups of

vertices and adding a new edge. Specifically, let Xn and Yn , hereafter called special vertices
of Gn , be the leftmost and the rightmost vertex of Gn . Xn and Xn are combined into the
special vertex Xn+1 of Gn+1, Yn and Yn are combined into the special vertex Yn+1 of Gn+1,
and a new edge en is added between two vertices combined by Yn and Xn . The construction
of Gn+1 is illustrated in Fig. 2.

We can see that the network Gn is self-similar from Fig. 2, which is another typical
features of real systems and suggests an alternative network construction method. And it is
easy to obtain that the order and the size of the network Gn are |Vn | = (2 × 4n + 4)/3 and
|En | = (4n+1−1)/3, respectively. Then the average degree after n iterations is 〈k〉n = 2|En |

|Vn | ,
which approaches 4 in the infinite n limit. The graph is fractal with a fractal dimension
equal to 2 [31]. It has a power-law degree distribution P(k) ∝ k−3, for large n. Therefore,

n = 2

n = 0

n = 1 n = 3

Fig. 1 First three iterations of the scale-free fractal network
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Fig. 2 Illustration for the construction of Gn+1

it is scale-free, a common property shared by many real-life networks. For very large n,
the average distance dn of Gn , scale as dn ∼ |Vn |1/2 [31], shows that the graph is not
small-world but “large-world”. Notice that real-life networks, e.g., global network of avian
influenza outbreaks, display a similar “large-world” phenomenon. To investigate the Tutte
polynomial T (Gn; x, y), first of all, we partition the set of the spanning subgraph of Gn into
two disjoint subsets:

– G1,n denotes the set of spanning subgraphs of Gn , where two special vertices Xn and Yn
of Gn belong to the same component;

– G2,n denotes the set of spanning subgraphs of Gn , where two special vertices Xn and Yn
of Gn do not belong to the same component.

For n ≥ 0, G1,n ∪ G2,n is a partition of spanning subgraphs of Gn . Next, let Tn(x, y) =
T (Gn; x, y) be the Tutte polynomial of Gn , and for n ≥ 1, T1,n(x, y) and T2,n(x, y) denote
the following polynomials:

– T1,n(x, y) = ∑
H∈G1,n

(x − 1)r(Gn)−r(H)(y − 1)n(H);

– T2,n(x, y) = ∑
H∈G2,n

(x − 1)r(Gn)−r(H)(y − 1)n(H).

Then we have
Tn(x, y) = T1,n(x, y) + T2,n(x, y). (4)

In order to obtain Tn(x, y), we need to find the recursive formulas on T1,n(x, y) and
T2,n(x, y). For this purpose, we analyze the relation between the spanning subgraphs of
Gn+1 and the spanning subgraphs of Gn . Note that Gn+1 is obtained from four copies of
Gn by merging some special vertices and adding a new edge en , any spanning subgraph of
Gn+1 consists of S and four spanning subgraphs from the four copies Gi

n (i = 1, 2, 3, 4) of
Gn , respectively, where S may be {en} or ∅ (the empty set). Indeed, a spanning subgraph H
of Gn+1 is uniquely determined by the restriction of H to the four copies Gi

n (denoted by
Hi (i = 1, 2, 3, 4), respectively) and S, and vice versa. Therefore, the Tutte polynomial of
Gn+1 can be written as

Tn+1(x, y) =
∑

H=(
4⋃

i=1
Hi )

⋃
S;Hi⊆Gi

n

(x − 1)r(Gn+1)−r(H)(y − 1)n(H), (5)

where the sum runs over all spanning subgraphs Hi of Gi
n (i = 1, 2, 3, 4) and S. Now, we

need to know how r(H) and n(H) depend on r(Hi ) and n(Hi ) (i = 1, 2, 3, 4). Note that
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|V (Gn+1)| = 4|V (Gn)| − 4, |E(H)| = ∑4
i=1 |E(Hi )| + 1 for S = {en} and |E(H)| =∑4

i=1 |E(Hi )| for S = ∅, there are two cases to be considered.

Case 1 S = {en}.
In this case, the spanning subgraph H of Gn+1 contains the new adding edge {en}, and

|E(H)| = ∑4
i=1 |E(Hi )| + 1.

Subcase 1 If k(H) =
4∑

i=1
k(Hi ) − 3, then

r(H) = |V (H)| − k(H) = (4|V (Gn)| − 4) −
(

4∑

i=1

k(Hi ) − 3

)
=

4∑

i=1

r(Hi ) − 1. (6)

Moreover, we have

n(H) = |E(H)| − r(H) =
(

4∑

i=1

|E(Hi )| + 1

)
−

(
4∑

i=1

r(Hi ) − 1

)
=

4∑

i=1

n(Hi ) + 2 (7)

and

r(Gn+1) − r(H) = (|V (Gn+1)| − 1) −
(

4∑

i=1

r(Hi ) − 1

)
=

4∑

i=1

(r(Gn) − r(Hi )). (8)

Thus,

(x − 1)r(Gn+1)−r(H)(y − 1)n(H) = (y − 1)2
4∏

i=1

(x − 1)r(Gn)−r(Hi )(y − 1)n(Hi ). (9)

Subcase 2 If k(H) =
4∑

i=1
k(Hi ) − 4, then

r(H) = |V (H)| − k(H) = (4|V (Gn)| − 4) −
(

4∑

i=1

k(Hi ) − 4

)
=

4∑

i=1

r(Hi ). (10)

Moreover, we have

n(H) = |E(H)| − r(H) =
(

4∑

i=1

|E(Hi )| + 1

)
−

(
4∑

i=1

r(Hi )

)
=

4∑

i=1

n(Hi ) + 1 (11)

and

r(Gn+1) − r(H) = (|V (Gn+1)| − 1) −
(

4∑

i=1

r(Hi )

)
=

4∑

i=1

(r(Gn) − r(Hi )) − 1. (12)

Hence,

(x − 1)r(Gn+1)−r(H)(y − 1)n(H) = y − 1

x − 1

4∏

i=1

(x − 1)r(Gn)−r(Hi )(y − 1)n(Hi ). (13)
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Subcase 3 If k(H) =
4∑

i=1
k(Hi ) − 5, then we can obtain, similarly, that

(x − 1)r(Gn+1)−r(H)(y − 1)n(H) = 1

(x − 1)2

4∏

i=1

(x − 1)r(Gn)−r(Hi )(y − 1)n(Hi ). (14)

Case 2 S = ∅.
In this case, the spanning subgraph H of Gn+1 does not contain the new adding edge en ,

and |E(H)| = ∑4
i=1 |E(Hi )|.

Subcase 1 If k(H) =
4∑

i=1
k(Hi ) − 3, then

r(H) = |V (H)| − k(H) = (4|V (Gn)| − 4) −
(

4∑

i=1

k(Hi ) − 3

)
=

4∑

i=1

r(Hi ) − 1. (15)

Moreover, we have

n(H) = |E(H)| − r(H) =
(

4∑

i=1

|E(Hi )|
)

−
(

4∑

i=1

r(Hi ) − 1

)
=

4∑

i=1

n(Hi ) + 1 (16)

and

r(Gn+1) − r(H) = (|V (Gn+1)| − 1) −
(

4∑

i=1

r(Hi ) − 1

)
=

4∑

i=1

(r(Gn) − r(Hi )). (17)

Thus,

(x − 1)r(Gn+1)−r(H)(y − 1)n(H) = (y − 1)
4∏

i=1

(x − 1)r(Gn)−r(Hi )(y − 1)n(Hi ). (18)

Subcase 2 If k(H) =
4∑

i=1
k(Hi ) − 4, then

r(H) = |V (H)| − k(H) = (4|V (Gn)| − 4) −
(

4∑

i=1

k(Hi ) − 4

)
=

4∑

i=1

r(Hi ). (19)

Moreover, we have

n(H) = |E(H)| − r(H) =
(

4∑

i=1

|E(Hi )|
)

−
(

4∑

i=1

r(Hi )

)
=

4∑

i=1

n(Hi ) (20)

and

r(Gn+1) − r(H) = (|V (Gn+1)| − 1) −
(

4∑

i=1

r(Hi )

)
=

4∑

i=1

(r(Gn) − r(Hi )) − 1. (21)

Thus, we have

(x − 1)r(Gn+1)−r(H)(y − 1)n(H) = 1

x − 1

4∏

i=1

(x − 1)r(Gn)−r(Hi )(y − 1)n(Hi ). (22)
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Xn Yn Xn Yn

Fig. 3 Two types of spanning subgraphs in Gn : Type I (left), Type II (right)

For convenience, we use solid lines to join the two special vertices when the corresponding
spanning subgraph of Gn belongs to G1,n ; Otherwise, we use dotted lines instead of solid
lines. Two different types of spanning subgraphs are shown in Fig. 3.

Theorem 1 The Tutte polynomial Tn+1(x, y) of Gn+1 is given by

Tn+1(x, y) = T1,n+1(x, y) + T2,n+1(x, y) (23)

where the polynomials T1,n+1(x, y)and T2,n+1(x, y) satisfy the following recursive relations:

T1,n+1(x, y) = y(y − 1)T 4
1,n + 4y

x − 1
T 3
1,nT2,n + 2x + 2

(x − 1)2
T 2
1,nT

2
2,n, (24)

T2,n+1(x, y) = 2y + 2

x − 1
T 2
1,nT

2
2,n + 4x

(x − 1)2
T1,nT

3
2,n + x

(x − 1)2
T 4
2,n (25)

with the initial conditions T1,0(x, y) = 1, T2,0(x, y) = x − 1.

Proof The initial conditions are easily verified. The strategy of the proof is to study all
possible configurations of the spanning subgraph Hi in Gi

n (i = 1, 2, 3, 4), and analyze
the contributions of the configurations to T1,n(x, y) or T2,n(x, y). As shown in Table 1, a
configuration produces a basic term of form T i

1,nT
j
2,n (i+ j = 4), and by the previous analysis,

each basic term has to be multiplied by a factor (y−1)2, y−1
x−1 ,

1
(y−1)2

or y−1, 1
x−1 according

to Case 1 and Case 2, respectively. From Table 1, we can establish Eqs. (24–25), and the
proof is completed. ��

According to Eq. (25), it is easy to prove by induction on n that x − 1 divides T2,n(x, y)
in Z [x, y]. Thus, we can rewrite T2,n(x, y) as (x − 1)Nn(x, y) in Z [x, y], and Theorem 1
can be reduced to the following:

Theorem 2 The Tutte polynomial Tn+1(x, y) of Gn+1 is given by

Tn+1(x, y) = T1,n+1(x, y) + (x − 1)Nn+1(x, y) (26)

where the polynomial T1,n+1(x, y), Nn+1(x, y) satisfy the following recursive relations:

T1,n+1(x, y) = y(y − 1)T 4
1,n + 4yT 3

1,nNn + (2x + 2)T 2
1,nN

2
n , (27)

Nn+1(x, y) = (2y + 2)T 2
1,nN

2
n + 4xT1,nN

3
n + x(x − 1)N 4

n (28)

with the initial conditions T1,0(x, y) = 1, N0(x, y) = 1.

Corollary 1 For a positive integer n, the Tutte polynomial Tn(x, y) of Gn along the line
y = x is given by

Tn(x, x) = x(x2 + 5x + 2)
4n−1
3 . (29)
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Table 1 All combinations and corresponding contributions

Proof By taking y = x in Theorem 2, we have

T1,n(x, x) = x(x − 1)T 4
1,n−1 + 4xT 3

1,n−1Nn−1 + (2x + 2)T 2
1,n−1N

2
n−1, (30)

Nn(x, x) = (2x + 2)T 2
1,n−1N

2
n−1 + 4xT1,n−1N

3
n−1 + x(x − 1)N 4

n−1, (31)

and T1,0(x, x) = N0(x, x) = 1. It can be obtained easily that T1,n(x, x) = Nn(x, x) by
induction on n (In fact, the functions satisfy Nn(x, y) = T1,n(y, x), they are symmetric alone
the line y = x). Substituting it into Eq. (31) and using the initial condition N0(x, x) = 1, we
have

Nn(x, x) = (x2 + 5x + 2)N 4
n−1 = (x2 + 5x + 2)

4n−1
3 . (32)

By Eq. (26), Tn(x, x) = T1,n(x, x) + (x − 1)Nn(x, x) = xNn(x, x) = x(x2 + 5x + 2)
4n−1
3 .

��
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Since the number of spanning trees is NST (G) = T (G; 1, 1), from Corollary 1, we can
obtain immediately that

– the number of spanning trees of Gn is

NST (Gn) = Tn(1, 1) = 8
4n−1
3 = 24

n−1 (33)

which was also obtained in [31] by employing the decimation technique;

– the asymptotic growth constant of the spanning trees of Gn is

lim
n→∞

ln NST (Gn)

|V (Gn)| = 3

2
ln 2 ≈ 1.0397. (34)

Similarly,

Tn(−1,−1) = (−1) × (−2)
4n−1
3 = (−1)

4n+1−1
3 (−2)

4n−1
3 = (−1)|E(Gn)|(−2)dim(B) (35)

by taking x = −1 in Corollary 1. So, we exactly obtain that

– the dimension of the bicycle space of Gn is

dim(B) = 4n − 1

3
. (36)

Now, we consider the number of acyclic root-connected orientations of Gn . Let x = 1
and y = 0 in Theorem 2, we have Tn(1, 0) = T1,n(1, 0), and

T1,n(1, 0) = 4T 2
1,n−1(1, 0)N

2
n−1(1, 0), (37)

Nn(1, 0) = 2T 2
1,n−1(1, 0)N

2
n−1(1, 0) + 4T1,n−1(1, 0)N

3
n−1(1, 0). (38)

A useful relation yields from Eqs. (37) and (38)

Nn(1, 0)

T1,n(1, 0)
= 1

2
+ Nn−1(1, 0)

T1,n−1(1, 0)
. (39)

It implies that
Nn(1, 0)

T1,n(1, 0)
= n

2
+ N0(1, 0)

T1,0(1, 0)
, (40)

and

Nn(1, 0) = n + 2

2
T1,n(1, 0) (41)

since T0(1, 0) = 1, N0(1, 0) = 1.
Substituting Eqs. (41) into (37) and using the initial condition T1,0(1, 0) = 1, we obtain

that

– the number of acyclic root-connected orientations of Gn is

T1,n(1, 0) = (n + 1)2T 4
1,n−1(1, 0) =

n∏

i=1

(i + 1)2×4n−i
. (42)

Similarly, we can obtain the indegree sequences of strongly connected orientations of Gn .
By taking x = 0 and y = 1 in Theorem 2, we have Tn(0, 1) = T1,n(0, 1) − Nn(0, 1), and

T1,n(0, 1) = 4T 3
1,n−1(0, 1)Nn(0, 1) + 2T 2

1,n−1(0, 1)N
2
n−1(0, 1), (43)
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n = 2

n = 0

n = 1 n = 3

Fig. 4 First three iterations of the small-world and scale-free network

Nn(0, 1) = 4T 2
1,n−1(0, 1)N

2
n−1(0, 1). (44)

Using the same techniques, we can obtained

T1,n(0, 1) = n + 2

2
Nn(0, 1) and Nn(0, 1) =

n∏

i=1

(i + 1)2×4n−i
. (45)

And

– the number of indegree sequences of strongly connected orientations of Gn is

Tn(0, 1) = n + 2

2
Nn(0, 1) − Nn(0, 1) = n

2
Nn(0, 1) = n

2

n∏

i=1

(i + 1)2×4n−i
. (46)

4 Tutte Polynomial of a Non-fractal Scale-Free Network

In the previous section, we have studied the Tutte polynomial of a fractal scale-free network,
which is “large-world”. In fact, except some fractal “large-world” scale-free networks, many
other real-life networks are non-fractal and small-world [36].

If the newly added edge connects the two special merging vertices in each iteration, we can
obtain another scale-free network G ′

n which presents some typical properties of real-world
networks, see Fig. 4. Obviously, the graphG ′

n has the same number of vertices and edges as in
the previous networkGn . It is scale-free, andhas anobvious small-world characteristic, and its
geometrical properties are similar to pseudofractal graphs studied in [41]. Its average length
of paths increases logarithmically with its number of vertices and its clustering coefficient
is very high. In deed, this small-world network constitutes the extreme case q = 1 of the
random construction in [28], where an edge is chosen with probability q at each step.

In this section, we devote to studying the Tutte polynomial for the non-fractal and small-
world network G ′

n . The analysis of this small-world network is completely analogous to that
of the previous fractal scale-free networkGn , we only provide the results and skip the details.
In the absence of confusion, we use the same notations as the last section.

Theorem 3 For n ≥ 1, the Tutte polynomial Tn(x, y) of the network G ′
n is given by

Tn(x, y) = T1,n(x, y) + (x − 1)Nn(x, y), (47)
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where the polynomials T1,n(x, y) and Nn(x, y) satisfy the following recursive relations:

T1,n(x, y) = y(y − 1)T 4
1,n−1 + 4yT 3

1,n−1Nn−1 + 2y(x − 1)T 2
1,n−1N

2
n−1

+ 4T 2
1,n−1N

2
n−1 + 4(x − 1)T1,n−1N

3
n−1 + (x − 1)2N 4

n−1, (48)

Nn(x, y) = 4T 2
1,n−1N

2
n−1 + 4(x − 1)T1,n−1N

3
n−1 + (x − 1)2N 4

n−1 (49)

with the initial conditions T1,0(x, y) = 1 and N0(x, y) = 1.

We can determine the number of spanning trees of G ′
n and its asymptotic constants. By

Theorem 3, we obtain that Tn(1, 1) = T1,n(1, 1) and

Tn(1, 1) = 4T 3
n−1(1, 1)Nn−1(1, 1) + 4T 2

n−1(1, 1)N
2
n−1(1, 1), (50)

Nn(1, 1) = 4T 2
n−1(1, 1)N

2
n−1(1, 1). (51)

Eqs. (50) and (51) together yield a useful relation given by Tn(1,1)
Nn(1,1)

= Tn−1(1,1)
Nn−1(1,1)

+ 1 with the
initial conditions T1(1, 1) = N0(1, 1) = 1. Thus, Tn(1, 1) = (n + 1)Nn(1, 1). By Eq. (51),
we can obtain that

Nn(1, 1) = 2(22n+1−2)/3
n∏

i=1

i2
2n−2i+1

. (52)

So, we have

– the number of spanning trees of G ′
n is

NST (G ′
n) = Tn(1, 1) = (n + 1)Nn(1, 1) = (n + 1) · 2(22n+1−2)/3

n∏

i=1

i2
2n−2i+1

, (53)

– the asymptotic growth constant of the spanning trees is

lim
n→∞

ln NST (G ′
n)

|V (G ′
n)|

≈ 0.8974. (54)

It is less than the asymptotic growth constant of the previously “large world” scale-free
network.

Since the chromatic polynomial P(G; λ) can be specialized by the Tutte polynomial, i.e.,

P(G; λ) = (−1)r(G)λk(G)T (G; 1 − λ, 0), (55)

we can use the chromatic polynomial to compute the Tutte polynomial at y = 0.
A useful technique for computing of the chromatic polynomial is given in [4]. If the

intersection of G and H is the complete graph Kt (i.e. G ∩ H = Kt ), then

P(G ∪ H ; λ) = P(G; λ) · P(H ; λ)

P(G ∩ H ; λ)
(56)

and the chromatic polynomial for the complete graph Kt is given by

P(Kt ; λ) = λ(λ − 1)(λ − 2) · · · (λ − t + 1). (57)

Note that the small-world network G ′
n can be also obtained from four replicas of G ′

n−1
by merging with four edges of the unique 4-cycle in the graph G ′

1, i.e., Gn = G4
n−1 ∪

(G3
n−1 ∪ (G2

n−1 ∪ (G1
n−1 ∪ G ′

1))), where G
1
n−1 ∩ G ′

1 = K2, G2
n−1 ∩ (G1

n−1 ∪ G ′
1) = K2,

G3
n−1 ∩ (G2

n−1 ∪ (G1
n−1 ∪ G ′

1)) = K2, G4
n−1 ∩ (G3

n−1 ∪ (G2
n−1 ∪ (G1

n−1 ∪ G ′
1))) = K2 and
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Gi
n−1 (i = 1, 2, 3, 4) are replicas of G ′

n−1. By using Eq. (56) four times, we can establish
the following relation

P(G ′
n; λ) = P4(G ′

n−1; λ) · P(G ′
1; λ)

P4(K2; λ)
, (58)

where P(G ′
1, λ) = λ(λ − 1)(λ − 2)2 and P(K2, λ) = λ(λ − 1), Eq. (58) is solved to yield

P(G ′
n; λ) = λ(λ − 1)(λ − 2)

2×(4n−1)
3 . (59)

And, it is easy to see that the network Gn is 3-colorable.
Using the relationship of the Tutte polynomial and the chromatic polynomial in Eq. (55),

we have
T (G ′

n; x, 0) = x(1 + x)
2×(4n−1)

3 . (60)

From Eq. (60), we can obtain that

– the number of acyclic orientations of G ′
n is

NAO(G ′
n) = T (G ′

n; 2, 0) = 2 × 3
2×(4n−1)

3 , (61)

– the asymptotic growth constant on the number of acyclic orientations of G ′
n is

lim
n→∞

ln NAO (G ′
n)

|V (G ′
n)|

= ln 3 ≈ 1.0986, (62)

– the number of acyclic root-connected orientations of G ′
n is

Tn(1, 0) = T (G ′
n; 1, 0) = 2

2×(4n−1)
3 . (63)

5 Conclusion

The scale-free behavior is ubiquitous in the real-life natural and social network systems.
In this paper, we have studied the Tutte polynomials of two classes of scale-free networks:
one is fractal and “large world”, the other is non-fractal and small-world. Based on the
subgraph-decomposition technique, we obtain the recursive formulas for computing their
Tutte polynomials. In particular, the chromatic polynomial for the small-world and self-
similar networks can be determined exactly. As a application of these formulas, we obtained
some invariants on these two classes of scale-free networks, which including the number of
spanning trees, the number of acyclic root-connected orientations and the number of acyclic
orientations, etc.

Acknowledgments Project supported by Hunan Provincial Innovation Foundation for Postgraduate
(CX2015B162) and the National Natural Science Foundation of China (61572190).

Appendix: Other Scale-Free Networks

In this section, we consider the Tutte polynomial of other typical scale-free networks, which
include the diamond hierarchical lattice [27,29], the (1,3)-flower [42,43], the Apollonian
network [44] and the pseudo-fractal scale-free web [41].
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L2

L0

L1 L3

Fig. 5 First three iterations of the Diamond hierarchical lattice

F0

F1 F2 F3

Fig. 6 First three iterations of the (1,3)-flower

Diamond Hierarchical Lattice If the newly added edge is ignored at each iterative genera-
tion, then the scale-free network Gn(or G ′

n) considered above becomes the famous diamond
hierarchical lattice Ln (see Fig. 5), also known as (2,2)-flower in [42], a particular case
of (x, y)-flower (x ≥ 1, y ≥ 2) presents in [45]. And the contributions to T1,n(x, y) and
T2,n(x, y) are degraded into the case of S = ∅, and listed on the right of Table 1. So, the
Tutte polynomial Tn(x, y) of Ln is given by

Tn(x, y) = T1,n(x, y) + (x − 1)Nn(x, y), (64)

where the polynomials T1,n(x, y) and Nn(x, y) satisfy the following recursive relations:

T1,n(x, y) = (y − 1)T 4
1,n−1 + 4T 3

1,n−1Nn−1 + 2(x − 1)T 2
1,n−1N

2
n−1, (65)

Nn(x, y) = 4T 2
1,n−1N

2
n−1 + 4(x − 1)T1,n−1N

3
n−1 + (x − 1)2N 4

n−1. (66)

If x = y = 1, then Tn(1, 1) = T1,n(1, 1) and T1,n(1, 1) = Nn(1, 1). Thus, Tn(1, 1) =
4T 4

n−1(1, 1). Since the initial value T0(1, 1) = 1, we can obtain that the number of spanning
trees of Ln is

NST (Ln) = Tn(1, 1) = 2
2
3 (4n−1) (67)

and the asymptotic growth constant of the spanning trees of Ln is

lim
n→∞

ln NST (Ln)

|V (Ln)| = ln 2 ≈ 0.6931. (68)

(1,3)-Flower Having the same degree sequence with the (2,2)-flower, the (1,3)-flower Fn
[42,43] (see Fig. 6) is scale-free, its degree distribution obeys P(k) ∝ k−3, and it is small-
word but non-fractal. Choosing two adjacent vertices with the highest degree as the special
vertices in each iteration, we partition similarly the spanning subgraph of Fn into two disjoin
subsets and obtain the following recursive relation:

Tn(x, y) = T1,n(x, y) + (x − 1)Nn(x, y), (69)
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where the polynomials T1,n(x, y) and Nn(x, y) satisfy the following recursive relations:

T1,n(x, y) = (y − 1)T 4
1,n−1 + 4T 3

1,n−1Nn−1 + 3(x − 1)T 2
1,n−1N

2
n−1 (70)

+ (x − 1)2T1,n−1N
3
n−1, (71)

Nn(x, y) = 3T 2
1,n−1N

2
n−1 + 3(x − 1)T1,n−1N

3
n−1 + (x − 1)2N 4

n−1 (72)

with the initial conditions T1,0(x, y) = 1 and N0(x, y) = 1.
Similarly, if x = y = 1, then Tn(1, 1) = T1,n(1, 1) and

T1,n(1, 1) = 4T 3
1,n−1(1, 1)Nn−1(1, 1), (73)

Nn(1, 1) = 3T 2
1,n−1(1, 1)N

2
n−1(1, 1). (74)

From Eqs. (73) and (74), we have

T1,n(1, 1) =
(
4

3

)n

Nn(1, 1). (75)

Since the initial value N0(1, 1) = 1, we can obtain

NST (Fn) = Tn(1, 1) = 3
4n−3n−1

9 4
2×4n+3n−2

9 (76)

and

lim
n→∞

ln NST (Fn)

|V (Fn)| = 1

6
(4 ln 2 + ln 3) ≈ 0.6452. (77)

which are coincideswith the results in [42] based on the relationship between the determinants
of submatrices in the Laplacian matrix.

On the other hand, the (1,3)-flower Fn can be constructed bymerging four replicas of Fn−1

with four edges of C4 = F1. By applying Eq. (56) four times, the chromatic polynomial of
the (1,3)-flower is given by

P(Fn; λ) = P4(Fn−1; λ) · P(C4; λ)

P4(K2; λ)
. (78)

where the chromatic polynomial of the cycle graph Cn is given in [7]

P(Cn; λ) = (λ − 1)n + (−1)n(λ − 1) (79)

and P(C4; λ) = (λ − 1)λ(λ2 − 3λ + 3). Then, from Eq. (78), we have

P(Fn; λ) = (λ − 1)λ(λ2 − 3λ + 3)
4n−1
3 (80)

and by Eq. (55), we have

T (Fn; x, 0) = x(x2 + x + 1)
4n−1
3 . (81)

Thus, the number of acyclic orientations of the (1,3)-flower and its asymptotic constant are
given by

NAO (Fn) = T (2, 0) = 2 × 7
4n−1
3 (82)

and

lim
n→∞

ln NAO(Fn)

|V (Fn)| = 1

2
ln 7 ≈ 0.9730. (83)
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A0 A1 A2 A3

Fig. 7 Apollonian networks A0, A1, A2 and A3

Γ2Γ1Γ0

Fig. 8 Pseudofractal scale-free Web �0, �1, �2

In addition, the number of acyclic root-connected orientations of the (1,3)-flower is given by
T (1, 0) = 3(4n−1)/3.

ApollonianNetworkWeapply our technique to determine the chromatic polynomial (or the
Tutte polynomial along y = 0) of the Apollonian network An , which is scale-free and small-
world [44], and its number of vertices is |V (An)| = (3n + 5)/2. The Apollonian network
is derived from the classic Apollonian packing (see Fig. 7), and can also be constructed
iteratively [46]. The Apollonian network An+1 can be constructed by using three copies of
An to cover a assured graph G∗ = K4 such that the intersection of each copy An and G∗ is
the complete graph K3. Using Eq. (56) three times, we have

P(An; λ) = P3(An−1; λ) · P(K4; λ)

P3(K3; λ)
. (84)

The chromatic polynomial of the Apollonian network An is

P(An; λ) = λ(λ − 1)(λ − 2)(λ − 3)
3n−1
2 , (85)

and from Eq. (55)

T (An; x, 0) = x(x + 1)(x + 2)
3n−1
2 . (86)

Thus, the number of acyclic orientations of An is given by

NAO(An) = T (An; 2, 0) = 3 × 23
n
. (87)

Consequently, the asymptotic growth constant is

lim
n→∞

ln NAO(An)

|V (An)| = 1

2
ln 2 ≈ 0.3466. (88)

Also, the number of acyclic root-connected orientations of the Apollonian network An is

given by T (1, 0) = 2 × 3
3n−1
2 .

Pseudo-fractal Scale-Free Web The studied pseudo-fractal scale-free network �n (see
Fig. 8) is a deterministic network and has attracted an amount of attention (see [41,47,48]).
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The network �n exhibits some typical properties of real networks. Its degree distribution
P(k) obeys a power law P(k) ∝ k1+ln 3/ln 2, and its clustering coefficient is 4/5. We can
easily compute the order and size of the network �n are |Vn | = (3n+1 + 3)/2 and |En | = 3n ,
respectively. They are the same with the Sierpiński gasket [49], which is a typical example
of fractal networks. Choosing two adjacent hubs (the most connected vertices) as the special
vertices in each iteration, and by the subgraph-decomposition technique, we can obtain the
following recursive relations of the Tutte polynomial Tn(x, y) of �n :

Tn(x, y) = T1,n(x, y) + (x − 1)Nn(x, y), (89)

where the polynomials T1,n(x, y) and Nn(x, y) satisfy the following recursive relations:

T1,n(x, y) = (y − 1)T 3
1,n−1 + 3T 2

1,n−1Nn−1 + (x − 1)T1,n−1N
2
n−1, (90)

Nn(x, y) = 2T1,n−1N
2
n−1 + (x − 1)N 3

n−1 (91)

with the initial polynomials T1,0(x, y) = x + y + 1 and N0(x, y) = x + 1.
Similarly, if x = y = 1, then Tn(1, 1) = T1,n(1, 1) and

T1,n(1, 1) = 3T 2
1,n−1Nn−1, (92)

Nn(1, 1) = 2T1,n−1N
2
n−1. (93)

Now, we denote T1,n(1, 1) by tn temporarily. By Eqs. (92) and (93), we have

tn
t3n−1

= 2

3
· tn−1

t3n−2

= · · · =
(2
3

)n−1 · t1
t30

= 2
(2
3

)n−1
. (94)

Since T1,1(x, y) = 3(x + y + 1)2(x + 1) and T1,0(x, y) = (x + y + 1), the number of
spanning trees in �n is

NST (�n) = tn = 2
(2
3

)n−1
t3n−1 = 2

3n+1−2n−3
4 3

3n+1+2n+1
4 , (95)

which coincides with the known result in [42] obtained by a re-normalization group method.
Moveover, the asymptotic growth of spanning trees of the network is

lim
n→∞

ln NST (�n)

|V (�n)| = 1

2
(ln 2 + ln 3) ≈ 0.89588. (96)

The pseudo-fractal graph �n can be constructed by merging three replicas of �n−1 with
three edges of K3. By applying Eq. (56) three times, the chromatic polynomial of the pseudo-
fractal scale-free graph is given by

P(�n; λ) = P3(�n−1; λ) · P(K3; λ)

P3(K2; λ)
. (97)

Since P(K3; λ) = λ(λ − 1)(λ − 2), P(K2; λ) = λ(λ − 1) and P(�0; λ) = P(K3; λ), we
have

P(�n; λ) = λ(λ − 1)(λ − 2)
3n+1−1

2 , (98)

and by Eq. (55)

T (�n; x, 0) = x(1 + x)
3n+1−1

2 . (99)
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Thus, the number of acyclic root-connected orientations of the pseudo-fractal graph �n can
be obtained by Tn(1, 0) = 2(3n+1−1)/2. And the number of acyclic orientations of the pseudo-
fractal scale-free graph and its asymptotic growth constant are given by

NAO(�n) = T (�n; 2, 0) = 2 × 3
3n+1−1

2 (100)

and

lim
n→∞

ln NAO(�n)

|V (�n)| = ln 3 ≈ 1.0986. (101)

It is less than the asymptotic growth constant for the number of acyclic orientations on the
two-dimension Sierpiński gasket, which is 1.27299 in [50].
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