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Abstract The Boltzmann equation governing the motion of trace amounts of ions in a dilute
gas that may contain a small amount of reactive neutral is written in terms of moments. The
resulting moment equations are equivalent toMaxwell’s equations of change. Four smallness
factors are introduced, governing time derivatives, spatial gradients, reactive moments, and
non-reactive moments that are of minor importance. The first approximation equations in
paper 1 of this series are obtained by keeping the time derivatives but setting the other
smallness factors equal to zero. The second approximation equations derived here are shown
to extend the first-approximation equations for ion drift velocity and energy to situations
where diffusion occurs orwhere there are infrequent chemical reactions. They also give results
for the temperature tensor, the heat flux vector and the dyadic energy. Numerical applications
to ion motion in drift-tube mass spectrometers show that the successive approximations
appear to be converging.

Keywords Boltzmann equation · Gaseous ions · Ion diffusion · Ion mobility · Kinetic
theory · Transport in gases

1 Introduction

The nonlinear Boltzmann equation [4] is the foundation for understanding the motion of
trace amounts of charged particles through dilute gases [20], but its exact solution is still not
possible in general circumstances. A solution of the Fourier-transformedBoltzmann equation
for a particular Maxwell-type interaction model has been obtained [3,16,17] and it is now
called the BKW solution. For other interactions, the nonlinear collision term is not separable
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in energy and angle and no major simplification is achieved by this method [6,13,48]. In the
present case, we are interested in situations where trace amounts of ions move through dilute
gases and ion-ion interactions are so few that they can be ignored; the collision term in the
Boltzmann equation is thus automatically linear and the equation much easier to solve.

An integral transform for solving the homogeneous and isotropic (but still nonlinear)
Boltzmann equation, called the “temperature transform” method [2], can be directly applied
both to Maxwell molecules and very-hard particles. However, we are interested here in any
type of interaction and in situations that may be inhomogeneous or anisotropic, so we cannot
use this method.

An iterative method for solving the Boltzmann equation has been described [7,33]. It
is based on a perturbation scheme in terms of the deviation from equilibrium, and there-
fore resembles the method used below for solving the Boltzmann equation for gaseous ion
transport and reaction.

Prigogine and Xhrouet [27] were the first to consider the kinetic theory of chemically
reacting gases. They assumed that the reactive terms are perturbations of the non-reactive
collision terms, as would be true if the cross sections for gas phase reactions are much smaller
than those for non-reactive collisions. There were many subsequent treatments of chemical
reactions in gases [10,24,32]. What is significant from the present point of view is that
consideration has seldom been given to what happens when one of the reactants is present in
trace amounts.

A statistical-mechanical theory of gaseous ion-molecule reactions was given by Viehland
and Mason [44] for trace ions moving in a dilute gas under the influence of an electrostatic
field. It assumed that ion-neutral reactions were infrequent, either because the cross sections
were small, as above, or because the gas was composed primarily of inert substances but
also contained a small amount of a reactive neutral. In the late 1980s [26,28–30] the concept
of a reaction was extended to include electron attachment and detachment (ionization of the
neutrals), and such effects were allowed to become large. Research along these lines through
2006 was summarized in the book by Robson [31], and it has continued at a slow but steady
rate since then. In order to keep this paper as short as possible, however, we will assume
below that reactions are infrequent.

In the first paper [47] of this series, general moment equations were developed from the
Boltzmann equation. This moment theory was uniform in the sense that it applied to any
type of experiment in which trace amounts of electrons or atomic ions move through dilute
atomic gases under the influence of electric and/or magnetic fields of arbitrary strength and of
arbitrary dependence upon space or time. Since we are going to specifically include diffusion
in this paper, the word uniform should not be taken as implying that there are no ion density
gradients.

As is always the case with moment theories, a method of truncation had to be devised in
[47] in order to provide a series of successive approximations that led to equations that are
mathematically tractable and converge rapidly to accurate results that can be compared to
experimental measurements. Two such methods were developed, the two-temperature (2T)
and multi-temperature methods. In this paper we shall consider only the 2T method, which is
based on the recognition that the temperature of the trace amount of ions (i.e., their average
ion kinetic energy) can be much larger than the gas temperature.

The first-approximation results (explained more fully below) were applied in [47] to
several types of experiment. For drift-tube mass spectrometers (DTMS), the results of the 2T
approach for the gaseous ion mobility and average kinetic energy were shown to be exactly
the same as those of the (more limited) 2T kinetic theory [43,45]; these results are known
to be accurate within approximately 10% at all values of the gas temperature, T , and the
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ratio, E/N , of the electrostatic field strength to the gas number density. For ion mobility
spectrometers (IMS) at or near atmospheric pressure, the 2T results gave the fundamental
low-field mobility equation [12,15,18,21,36] that follows from the fundamental ionmobility
equation [14,34] in the zero-field limit where the ions and neutrals are both characterized by
a single temperature; it too is known to be accurate. Applications of the first approximation
moment methods to ion cyclotron resonance [46], differential mobility spectrometry [25],
ion traps [9,38–41] and other apparatus were also described.

The objectives of this paper are to:

1. Obtain the coupled set of differential equations that arise in second approximation of
the 2T moment theory presented in first approximation in [47]. The accuracy of the first
approximations for DTMS and IMS suggest that similar calculations should be even
more accurate in higher approximations.

2. Show how the moment theory can incorporate such effects as diffusion and ion-neutral
reactions; such effects were not part of the first-approximation equations.

3. Show the similarities and differences between this theory and momentum-transfer theory
[20,31,34].

4. Make numerical applications that show explicitly that the second approximation of the
2T moment theory is not much different than the first, and hence that convergence is
likely to be occurring.

This paper is restricted to atomic ions of mass m and charge q moving through a dilute,
atomic gas. Also present may be a small amount of a reactive neutral that may be molecular
or atomic. Because the ions are assumed to be present in trace amounts, mixtures of ions
are described by a superposition of results for each separate ion. For the sake of readability,
many of the derivations carried out in this research are relegated to electronic supplementary
material (ESM).

2 General Moment Equations

The Boltzmann equation for the motion of trace amounts of ions or electrons through a dilute
mixture of atomic gases under the influence of an external electric field E and an external
magnetic field B is [4,20][

∂

∂t
+ v · ∇ + q

m
(E + v × B) · ∇v

]
f (r, v, t) = (J + JR) f (r, v, t). (1)

The operators ∇ and ∇v are gradient vectors in physical space and in velocity space, respec-
tively, and r and v are the ion position and velocity at time t . Both E and B are assumed to
be known (possibly as functions of r and t , but not v). Finally, the ion velocity distribution
function f is normalized to the ion number density, i.e.,

n(r, t) =
∫

f (r, v, t)dv. (2)

We have assumed in Eq. (1) that ion-neutral reactions are infrequent enough that the
Boltzmann collision operator can be written as a sum of a large, non-reactive operator, J ,
and a small, reactive operator, JR , that describes interactions inwhich the ion identity changes.
The terms large and small indicate that JR can be ignored except in situations where J acts
on a collisional invariant (ion mass, velocity or kinetic energy) and hence vanishes.
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The non-reactive operator is defined [4,20] so that

J f (r, v, t) = ∑
j
x j
∫ ∫ [

f
(
r, v′, t

)
f j
(
V j

′)− f (r, v, t) f j
(
V j

)]
× ∣∣v − V j

∣∣ σ j
(∣∣v − V j

∣∣ ,� j
)
d� j dV j ,

(3)

where the primed and unprimed velocities refer to post- and pre-collision values for the
ions (v) and neutrals (V j , with subscripts indicating the species, j , with mass Mj and mole
fraction x j ). The differential scattering cross section, σ j , is a function of the relative speed,∣∣v − V j

∣∣, and the scattering angles, � j ; it is this quantity that connects the pre- and post-
collision velocities by means of the ion-neutral interaction potentials.

The reactive operator is defined [44] in terms of the total cross sections for ion reaction,
Q∗(εR), with reactive neutrals having mole fractions xR and velocities V R:

JRψ(v) =
∑
R

xRψ(v)

∫
fR(V R)Q∗(εR) |v − V R| dV R. (4)

Here the relative kinetic energy is

εR = 1

2
μR |v − V R|2 , (5)

and μR is the reduced mass for the ion-reactive neutral pair.
The various neutral gases are in equilibrium, since the ions are present in trace amounts

and since the neutrals are not directly affected by the external fields. Therefore, their velocity
distribution functions are Maxwellian, i.e.,

f j (V j ) = N (Mj/2πkBT )3/2 exp(−MjV
2
j /2kBT ), (6)

and similarly for fR(V R). Here N , the total number density of the gas, arises because we
have placed the mole fractions in Eqs. (3) and (4).

To obtain moment equations, we multiply Eq. (1) from the left by any function, ψ(v),
of the velocity alone and integrate over all velocities. After integration by parts and making
use of the inverse collision properties [5] of the collision operators, each of the terms in the
resulting equation can be expressed as moments of the ion velocity distribution function,
f (r, v, t), that are defined as

< ψ >= 1

n(r, t)

∫
f (r, v, t)ψ(v)dv. (7)

The dependences of the moments upon r and t , have been left implicit, reflecting (but not
limited to) the common situation where the other moments vary much less rapidly with these
quantities than does n(r, t). The resulting equation is

∂
∂t n(r, t) < ψ > +∇ · n(r, t) < ψv > − q

m n(r, t)〈(E + v×B) · ∇vψ〉
+ n(r, t)N 〈Jψ〉 + n(r, t)N 〈JRψ〉 = 0.

(8)

Eq. (8) is equivalent to Maxwell’s equation of change [22,31], an alternative approach to the
Boltzmann equation for the description of the transport properties of gases. Neither equation
can be obtained unambiguously from a more fundamental theory, but they can be derived
from one another. In the complete absence of chemical reactions, Eq. (8) is identical to
the equation obtained by Kihara [15], although his derivation starting from the Boltzmann
equation required that matrix elements of J must be symmetric and positive definite. A
derivation that does not include these limiting requirements was given in 1975 [43] using
essentially the same procedure as above.
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Since 〈J1〉 = 0 by conservation of mass, the rate equation of continuity obtained by using
ψ = 1 in Eq. (8) is

∂

∂t
n(r, t) + ∇ · n(r, t) < v > +n(r, t)Nk = 0, (9)

where the (two-body) reaction rate coefficient, k, is discussed in [44] and in Appendix A of
ESM. Using Eq. (9) to eliminate the time derivative of n(r, t) in favor of its spatial gradients,
Eq. (8) can be written as

ε0
∂

∂t
< ψ > − q

m
〈(E + v×B) · ∇vψ〉 + N 〈Jψ〉 = R(ψ), (10)

where
R(ψ) = ε1 [(〈ψ〉〈v〉 − 〈ψv〉) · ∇ ln n(r, t) + 〈ψ〉∇ · 〈v〉 − ∇ · 〈vψ〉]

+ ε2 [Nk〈ψ〉 − N 〈JRψ〉] . (11)

Here the εi are smallness factors discussed below; for present purposes, they can be assumed
to be equal to one. The operator J is scalar (doesn’t change the angles of any vector upon
which it operates), linear (because the ions are present in trace amounts), local (independent
of r) and instantaneous (independent of t).

It should be noted that Eq. (10) is exact, which means that it has the same level of
mathematical rigor as the Boltzmann equation from which it was derived, i.e. both assume
that reactive ion-neutral reactions are infrequent compared to nonreactive ones, that we are
working in the hydrodynamic regime where initial and/or boundary conditions are supplied
independently, and that ion-ion interactions are negligible (no space charge effects). Eq. (10)
also shares the general disadvantage of anymomentmethod: the equation for a simplemoment
involves more complicated moments, i.e., ones with higher powers of the ion velocity, so the
hierarchy must somehow be truncated before it can be put to practical use.

3 Two-Temperature Moment Equations

From this point on, we will consider only the 2T approach for a single-component gas
(possibly containing a small amount of a reactive neutral). In order to relate the quantity
〈Jψ〉 in Eq. (10) to the matrix elements of J that are tabulated in [43], we cannot use
spherical harmonics as was done in [47]. Instead, we use the Burnett functions [20,43],

ψ
(r)
l,m̂(W) = Wl S(r)

l+ 1
2
(W 2)P

|m̂|
l (cos θ)eim̂φ, (12)

where W is the magnitude of the dimensionless ion velocity,

W =
(

m

2kBTi

) 1
2

v. (13)

Here θ and φ are the spherical polar angles chosen with respect to the space-fixed, ẑ axis

defined by E, and the m̂ index should not be confused with the ion mass. The P
|m̂|
l are

associated Legendre polynomials, the S(r)
l+ 1

2
are the Sonine polynomials that are identical

with the generalized Laguerre polynomials Ll+1/2
r , kB is Boltzmann’s constant, and Ti is the

ion temperature defined by requiring that

3

2
kBTi =

〈
1

2
mv2

〉
. (14)
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The Burnett functions are orthogonal on the inner-product space defined by the equation,
(
ψ

(r)
l,m̂, ψ

(r ′)
l ′,m̂′

)
= π− 3

2
∫
exp(−W 2)ψ

(r)∗
l,m̂ (W)ψ

(r ′)
l ′,m̂′(W)dW

= δl,l ′δm̂,m̂′δr,r ′ ,
(15)

where the * represents complex conjugation. Eq. (15) implies that a good, zero-order approx-
imation to the ion velocity distribution function is [43,45,47]

f (r, v, t) = n(r, t)(m/2πkBTi )
3/2 exp(−mv2/2kBTi ). (16)

Due to the properties of J already mentioned, Eqs. (12)–(16) also imply [43] that the
collision term in Eq. (10) can be written as

〈Jψ
(r)
l,m̂(W)〉 =

∞∑
s=0

ar,s(l)〈ψ(s)
l,m̂(W)〉, (17)

where the matrix elements,

ar,s(l) =
(
ψ

(s)
l,m̂, Jψ

(r)
l,m̂

)
(
ψ

(s)
l,m̂, ψ

(s)
l,m̂

) , (18)

must be diagonal with respect to the l and m̂ indices, but otherwise independent of m̂.
It is known [1,20,23,43] how to evaluate the matrix elements in terms ofm, M, T, Ti and

the ion-neutral interaction potential, so we will assume here that these quantities are known.
It should be noted [43,45] that all of the ar,s(l) have approximately the samemagnitude when
s ≤ r , and that they become progressively smaller as s increases above r . This suggests the
following treatment of Jψ in Eq. (10). We write a particular function ψ(v) in terms of the
ψ

(r)
l,m(W), use Eq. (17) to evaluate 〈Jψ

(r)
l,m(W)〉, place the terms that arise with s ≤ r on the

left-hand side of the equation, place the other terms (proportional to εs−r
3 , where ε3 is another

smallness parameter) on the right-hand side along with R(ψ), and then convert the ψ
(r)
l,m(W)

back into functions of v. This complicated procedure is used because Ti can be a function of
r and t , and hence one must avoid replacing functions of v with functions of W in the terms
in Eq. (10) that involve time derivatives and spatial gradients.

Reasons were given in [47] why the terms in R(ψ) are generally small in the experiments
of interest here. Briefly, the terms multiplied by ε1 involve the ratio of ∇n(r, t) to n(r, t),
the experiments are conducted with ∇n(r, t) < n(r, t) � N , and the terms involve the
difference between the product of two averages and the average of the product. The terms
multiplied by ε2 are small because they are proportional to the small mole fraction of the
reactive neutral or because the cross section for reaction ismuch smaller than the non-reactive
cross sections.

It follows that R(ψ) and the ar,s(l) terms with s > r must be ignored in the first of
the series of successive approximations. This is why the ion diffusion coefficients and ion-
neutral reactions were not treated in [47]. Here we shall show how these terms lead to a
second approximation and the effects that this has on solutions of the moment equations.

We note before proceeding that there is no requirement that each of the εi have the same
degree of “smallness”. In paper 1 [47] we set ε0 = 1 but the others equal to zero. The reason
for the special treatment of the smallness for the time derivative is that it does not couple
different moments like the others do; of course, ε0 = 0 in steady-state situations where E
and B do not vary with time. The second approximation considered here will be obtained by
allowing only one power of any εi to be retained, with no products like ε1ε3. In applications
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Uniform Moment Theory for Charged Particle 181

of the second approximation equations, one must separately set each εi to 0 or 1, depending
upon the experimental conditions to which the theory is being applied.

4 Moment Equation for Ion Velocity

We start by considering the function ψ(v) = vz and following the procedure just described.
We get

< Jvz >= (2kBTi/m)1/2〈Jψ
(0)
1,0(W)〉

= a0,0(1)〈vz〉 +
∞∑
s=1

εs3a0,s(1)〈vz S(s)
3/2(W

2)〉. (19)

The quantity Na0,0(1) is the momentum-transfer collision frequency discussed in [47] and
given the symbol ξ(Tef f ). It may be written as

Na0,0(1) = 8N

3

M

m + M

(
2kBTef f

πμ j

) 1
2

�̄(1,1)(Tef f ) = ξ(Tef f ), (20)

so it is directly proportional to the momentum-transfer collision integral, �̄(1,1)(Tef f ), that
is one of the many transport collision integrals that can be described using quantum, semi-
classical or classical mechanics [20]. In classical mechanics, they are energy averages of the
transport cross sections, Q̄(l)(ε):

�̄(l,s)(T ) = [
(s + 1)!(kBT )s+2

]−1

×
∞∫
0
Q̄(l)(ε̄) exp

(
− ε̄

kBT

)
ε̄s+1d ε̄.

(21)

The Q̄(l)(ε̄) are averages over impact parameters of the scattering angle, θ(b, ε̄) :

Q̄(l)(ε̄) = 2π

[
1 − 1 + (−1)l

2(l + 1)

]−1 ∞∫
0

{
1 − cosl θ(b, ε̄)

}
bdb. (22)

The scattering angle is determined in turn by an integral of the ion-neutral interaction poten-
tial, V (r), over the ion-neutral separation, r :

θ(b, ε̄) = π − 2b
∞∫
rm

[
1 − b2

r2
− V (r)

ε̄

]− 1
2 dr

r2
. (23)

Here rm is the distance of closest approach, the largest positive real root of the bracketed
quantity. Note also that the constants in Eqs. (21) and (22) have been chosen so that both the
transport cross sections and collision integrals are πσ 2 when the interaction potential is that
between rigid spheres of diameter σ ; the over-bars in Eqs. (21)–(23) serve as a reminder of
this.

We see from Eqs. (20) and (21) that ξ(Tef f ) depends upon m, M , the reduced mass μ,
V (r), and the effective temperatures that are related to Ti and T by the equation

Tef f = mT + MTi
m + M

. (24)
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182 L. A. Viehland

Since J is a scalar operator, Eq. (19) may be written as

N 〈Jv〉 = ξ(Tef f )

[
〈v〉 +

∞∑
s=1

εs3c0,s(1)

〈
vS(s)

3
2

(W 2)

〉]
, (25)

where

cr,s(l) = ar,s(l)

a0,0(1)
. (26)

This means that the moment equation for ion velocity obtained by using ψ(v) = v in Eq.
(10) can be written as the vector equation,

ε0
∂
∂t 〈v〉 − q

m (E + 〈v〉 × B) + ξ(Tef f )〈v〉
= R(v) − ξ(Tef f )

∞∑
s=1

εs3c0,s(1)
〈
vS(s)

3/2(W
2)
〉
.

(27)

The first approximation to Eq. (27) is obtained by setting ε0 equal to one and neglecting the
right-hand side. The second approximation is obtained by retaining the right-hand side but
truncating the sum so that only one power of ε3 is kept (i.e., keeping only s ≤ 1). This gives

ε0
∂
∂t 〈v〉 − q

m (E + 〈v〉 × B) + ξ(Tef f )

[
〈v〉 + ε3c0,1(1)

〈
vS(1)

3
2

(W 2)

〉]

= ε1 [(〈v〉〈v〉 − 〈vv〉) · ∇ ln n(r, t) + 〈v〉∇ · 〈v〉 − ∇ · 〈vv〉]
+ε2 [Nk〈v〉 − N 〈JRv〉] .

(28)

The new moment on the left-hand side of this equation may be written as〈
vS(1)

3
2

(W 2)

〉
=
〈
v

(
5

2
− W 2

)〉
= 5

2
〈v〉 − m

2kBTi
〈vv2〉. (29)

5 Moment Equation for Effective Temperature

Next we consider ψ(v) = (1/2)mv2. Following the same procedure as above, we get〈
J

(
1

2
mv2

)〉
= kBTi

〈
J

[
3

2
ψ

(0)
0,0(W) − ψ

(1)
0,0(W)

]〉
. (30)

Therefore from Eq. (17),〈
J
( 1
2mv2

)〉 = kBTi
[ 3
2a0,0(0) − a1,0(0)

]
+kBTi

∞∑
s=1

[
3
2ε

s
3a0,s(0) − εs−1

3 a1,s(0)
] 〈

S(s)
1
2

(W 2)

〉
.

(31)

It is known [43] that a0,s(0) = 0 for all s, because of conservation of mass. Therefore Eq.
(20) simplifies Eq. (31) to

N
〈
J ( 12mv2)

〉 = −kBTiξ(Tef f )c1,0(0)

〈
S(0)

1
2

(W 2)

〉

−kBTiξ(Tef f )
∞∑
s=1

εs−1
3 c1,s(0)

〈
S(s)

1
2

(W 2)

〉
.

(32)

Now 〈
S(0)

1
2

(W 2)

〉
= 〈1〉 = 1, (33)
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and the ion temperature defined by Eq. (14) means that〈
S(1)

1
2

(W 2)

〉
=
〈
3

2
− W 2

〉
= 0. (34)

In addition, we note from the Appendix of [43] and Eq. (24) that

c1,0(0) = − 3m

m + M

(
1 − T

Ti

)
= −3m(Tef f − T )

MTi
. (35)

Therefore, puttingψ(v) = (1/2)mv2 in Eq. (10) and using qs. (14), (24) and (34)–(35) gives
the moment equation for the effective temperature,

ε0
m
μ

∂
∂t

( 3
2kBTef f

)− qE · 〈v〉 + 2ξ(Tef f )
m
M

[ 3
2kB(Tef f − T )

]
= R

( 1
2mv2

)+ kBTiξ(Tef f )
∞∑
s=2

εs−1
3 c1,s(0)

〈
S(s)

1
2

(W 2)

〉
.

(36)

The first approximation to Eq. (36) is obtained by setting ε0 =1 and neglecting the right-hand
side. The second approximation is obtained by retaining the right-hand side of Eq. (36) and
truncating the sum so that only the terms with s ≤ 2 are kept. This gives

ε0
m
μ

∂
∂t

( 3
2kBTef f

)− qE · 〈v〉 + 2ξ(Tef f )
m
M

[ 3
2kB(Tef f − T )

]
= ε1

[{( 3
2kBTi

) 〈v〉 − 1
2m〈vv2〉} · ∇ ln n(r, t)

+ ( 3
2kBTi

)∇ · 〈v〉 − 1
2m∇ · 〈vv〉2]

+ε2
[
Nk

( 3
2kBTi

)− N
〈
JR
( 1
2mv2

)〉]
+ε3

[
kBTiξ(Tef f )c1,2(0)

〈
S(2)

1
2

(W 2)

〉]
.

(37)

The new moment that arises in Eq. (37) is not one that is discussed in momentum-transport
theories of gaseous ion transport [31]; using Eq. (14) it can be shown that〈

S(2)
1
2

(W 2)

〉
= 1

2

〈
15

4
− 5W 2 + W 4

〉
= 1

2

(
m

2kBTi

)2

〈v4〉 − 15

8
. (38)

This equation can be written in terms of the effective temperature rather than Ti , by using
Eq. (24).

In order to obtain the second approximation expressions for the ion drift velocity and the
effective temperature, we must add first-approximation equations for the new moments that
arise in Eqs. (28–30) and (37, 38). (The new moments involving ion-neutral reactions are
discussed in Appendix A of ESM.)

6 Moment Equation for 〈v4〉, 〈vv2〉 and 〈vv〉
Following the same procedure with ψ(v) = v4 and using Eqs. (33) and (34), we find that

N 〈Jv4〉 =
(
2kBTi
m

)2

ξ(Tef f )

[
2c2,0(0) − 5c1,0(0) + 2c2,2(0)

〈
S(2)

1
2

(W 2)

〉

+ 2
∞∑
s=3

{
εs−2
3 c2,s(0)

〈
S(s)

1
2

(W 2)

〉}

−5
∞∑
s=2

εs−1
3 c1,s(0)

〈
S(s)

1
2

(W 2)

〉]
. (39)
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Putting ψ(v) = v4 in Eq. (10) then gives a second approximation for 〈v4〉. The first
approximation is all that is needed to go with the second approximation moment equations
for ion velocity and effective temperature. It is

ε0
∂
∂t 〈v4〉 − 4q

m E · 〈vv2〉 +
(
2kBTi
m

)2
ξ(Tef f )

×
[
2c2,0(0) − 5c1,0(0) + 2c2,2(0)

〈
S(2)

1
2

(W 2)

〉]
= 0.

(40)

For ψ(v) = vv2 we get

N 〈Jvv2〉 =
(
2kBTi
m

)
ξ(Tef f )

[{
5

2
c0,0(1) − c1,0(1)

}
〈v〉 − c1,1(1)

〈
vS(1)

3
2

(W 2)

〉

+5

2

∞∑
s=1

εs3c0,s(1)

〈
vS(s)

3
2

(W 2)

〉

−
∞∑
s=2

εs−1
3 c1,s(1)

〈
vS(s)

3
2

(W 2)

〉]
. (41)

Putting ψ(v) = vv2 in Eq. (10) then gives the first approximation equation

ε0
∂
∂t 〈vv2〉 − q

m (
3kBTi
m )E − 2q

m E · 〈vv〉 + 3q
m B × 〈vv2〉 + ξ(Tef f )

×
{(

2kBTi
m

) [
5
2 − c1,0(1) − 5

2c1,1(1)
]
〈v〉 + c1,1(1)〈vv2〉

}
= 0.

(42)

Finally, we consider

ψ(v) = v2z =
(
2kBTi
m

)[
1

2
ψ

(0)
0,0(W) − 1

3
ψ

(1)
0,0(W) + 2

3
ψ

(0)
2,0(W)

]
(43)

and

ψ(v) = vxvz = −
(
kBTi
3m

)[
ψ

(0)
2,−1(W) + ψ

(0)
2,1(W)

]
. (44)

Following the same path as above, we get results fromEqs. (43) and (44) that can be combined
into a single tensor equation,

N 〈Jvv〉 = ξ(Tef f )

[
c0,0(2)

〈(
vv − 1

3
v2U

)〉
− 1

3
c1,0(0)

(
2kBTi
m

)
U

+
∞∑
s=1

εs3c0,s(2)

〈(
vv − 1

3
v2U

)
S(s)

5
2

(W 2)

〉

− 1

3

∞∑
s=2

εs−1
3 c1,s(0)

(
2kBTi
m

) 〈
S(s)

1
2

(W 2)

〉
U

]
, (45)

where U is a unit tensor of rank two. Putting ψ(v) = vv in Eq. (10) then gives the following
tensor equation of rank two in first approximation,

ε0
∂
∂t 〈vv〉 − q

m (E〈v〉 + 〈v〉E − B × 〈vv〉 + 〈vv〉 × B) + ξ(Tef f )

×
[
c0,0(2)

〈(
vv − 1

3v
2U
)〉− (

2kBTi
3m

)
c1,0(0)U

]
= 0.

(46)

It will be shown below that < vv > is related to the temperature tensor, < vv2 > to the heat
flux vector, and < v4 > to the dyadic energy, each in the laboratory frame of reference.
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7 Drift-Tube Mass Spectrometers

7.1 Theory of the Instrument

Drift-tube mass spectrometers (DTMS) are instruments that are cylindrically-symmetric
along the ẑ axis defined by a (possibly strong) electrostatic field, but in which there are
no magnetic fields. Therefore, ε0 = 0 and, on the average, the ions move only along the ẑ
axis with an average speed that is usually written as vd . In our previous work [47], several
additional assumptions were made that are valid in the absence of diffusion, reaction and
other complicating factors that we now want to consider. Hence we must carefully examine
the way in which experimental data in DTMS are analyzed in order to be sure that our the-
oretical quantities match exactly with the quantities that are being measured. We will focus
on the most common ways [8] that raw DTMS data are analyzed; a guide to other analyses
is given in Sec. 3-6-C of [20].

The most elementary analysis of drift-tube data computes vd by dividing the known
distance between the ion source and the ion detector by the measured difference between
the injection time of the ions (i.e., the peak of the injection-time distribution function) and
the time at which the maximum ion intensity arrives at the detector (i.e., the peak of the
arrival-time distribution function). All effects due to spatial gradients (of the ion number
density and other moments) and due to reactions are ignored. This is completely consistent
with the first approximation result [47],

vd = qE

mξ(Tef f )
. (47)

The effective ion temperature under these circumstances is

3

2
kBTef f = 3

2
kBT + qME

2mξ(Tef f )
vd = 3

2
kBT + 1

2
Mv2d . (48)

These results were discussed more extensively in [47].
A more elaborate analysis of drift-tube data is based on Fick’s First Law of Diffusion,

which indicates that the ion flux in the absence of an external field is directly proportional to
the gradient of the ion number density. In DTMS, it is assumed that space-charge effects are
negligible and that the flux is given by the equation [20]

J(r, t) = n(r, t)〈v〉 = n(r, t)vd − D · ∇n(r, t). (49)

Here vd is the drift velocity vector and D is the diffusion tensor characterizing the motion of
the ions through the gas; both quantities are in the laboratory frame. It is further assumed that
there is no gain of ions from an external source during the movement of an ion swarm down
the tube but that there can be a loss due to chemical reaction. Therefore, the rate equation of
continuity obtained from Eqs. (9) and (49) is

∂

∂t
n(r, t) + ∇ · n(r, t)vd − ∇ · D · ∇n(r, t) = −kNn(r, t). (50)

Next, it is assumed that neither vd nor D vary with time or position and that the effects of
reaction on them are neglible. We thus get Fick’s Second Law of Diffusion (also known as
the diffusion equation) in the form

∂

∂t
n(r, t) + vd · ∇n(r, t) − D : ∇∇n(r, t) = −kNn(r, t). (51)
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Here : indicates a full contraction between the tensorD and two copies of the gradient vector
∇. It is important to note [20,31] that experimental measurements in this type of DTMS are
analyzed by means of Eq. (51), not Eq. (49).

Using general arguments [20], it can be shown that vd must lie along ẑ, and that D is
a diagonal tensor whose value along the electric field (D‖) is different than its value (D⊥)

along the perpendicular directions.Moreover, it is necessary to add a source term,β(r, t), that
represents an input of ions at the beginning of the drift region. Therefore Eq. (51) becomes
(in Cartesian coordinates)

∂

∂t
n(x, y, z, t)=

[
D⊥

(
∂2

∂x2
+ ∂2

∂y2

)
+D‖

∂2

∂z2
− vd

∂

∂z
− kN

]
n(x, y, z, t)+β(x, y, z, t).

(52)
The solution of Eq. (52) has been developed by Gatland [8] for a delta-function input of ions
with an initial ion surface density, s. Since the ions detected in a DTMS are those that exit
the drift tube on the cylindrical axis (x = y = 0), the solution of primary interest is the axial
ion number density,

n(0, 0, z, t) = s exp(−Nkt)

(4πD‖t)1/2

[
1 − exp

(
− r20
4D⊥t

)]
exp

(
− (z − vd t)2

4D‖t

)
. (53)

Here r0 is the radius of the ion entrance aperture. Then the axial ion flux density from an exit
aperture of area a is

�(0, 0, z, t) = sa exp(−Nkt)

4(πD‖t)
1
2

(vd + z
t )

×
[
1 − exp

(
− r20

4D⊥t

)]
exp

(
− (z−vd t)2

4D‖t

)
.

(54)

By adjusting the quantities in Eq. (54) until the equation fits the observed ion flux density at
the detector, one obtains values of vd , D‖, D⊥ and k at particular values of T and E/N .

Appendix B of ESM shows that the second-order moment equations that are consistent
with the theory of the instrument just presented are:

〈v〉
[
1 − ε2

Nk

ξ(Tef f )

]
+ ε3c0,1(1)

〈
vS(1)

3
2

(W 2)

〉
= qE

mξ(Tef f )
, (55)

3
2kBTef f = 3

2kBT + ε3
2 kB

(
M
μ
Tef f − T

)
c1,2(0)

〈
S(2)

1
2

(W 2)

〉
+ MqE·〈v〉

2mξ(Tef f )

+ ε2
Nk

ξ(Tef f )
3
4kB

(
M
μ
Tef f − T

) (56)

and

D = −
(

〈v〉〈v〉−〈vv〉
)

ξ(Tef f )
+ ξ ′(Tef f )

3kBξ(Tef f )

[
ξ(Tef f ) + ξ ′(Tef f )(Tef f − T )

]−1

×
[{

M
μ

( 32kBTef f ) − 3
2kBT

}
〈v〉 − M

2 〈vv〉2 − Mq
m E · D

]
〈v〉.

(57)

Before these equations can be put to use, however, we must consider the new moments that
arise in them.
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7.2 Drift Velocity

Appendix C of ESM shows how the equations in Secs. 6 and 7.1 can be used to give the
following second-order expression for a DTMS experiment:

vd

[
1 − ε2

Nk

ξ(Tef f )

]
= ε

{
1 + ε3

c0,1(1)

c1,1(1)

[
2

3

c1,0(0)

c0,0(2)
+ c1,0(1) +

(
m

kBTi

)
2ε2

c0,0(2)

]}
,

(58)
where

ε = qE

mξ(Tef f )
(59)

Note that the first approximation (where ε2 = ε3 = 0) to the ion drift speed is vd = ε, which
is exactly the same as Eq. (47) and as the equation obtained by a “bottom-up” approach
to momentum-transfer theory [34]. Note also that the second approximation, which has
ε2 = ε3 = 1 and cannot be obtained by momentum-transfer theory, depends upon the square
of E/N through its dependence upon ε2. In addition, the second approximation differs from
the result obtained from the 2T theory [43] (where ε2 = 0) because we have used Cartesian
tenors for the moment equations, rather than spherical tensors. Finally, it should be noted
that the infrequent ion-neutral reactions affect Eq. (58) only by shifting the drift velocity by a
dimensionless amount that is equal to the ratio of N times the reaction rate coefficient to the
collision frequency for momentum transfer; this is consistent with ignoring reaction effects
in Eq. (50) except for the rate coefficient shown explicitly.

7.3 Effective Temperature

Starting fromEqs. (56) and (58), Appendices C andDof ESMallow us to obtain the following
second-order expression for a DTMS experiment:

3

2
kBTef f = 3

2
kBT + 1

2
Mεvd + 1

2
kB

(
M

μ
Tef f − T

)

×
(

ε3
c1,2(0)

c2,2(0)

(
5

2
c1,0(0) − c2,0(0) +

(
m

2kBTi

)
2ε2

c1,1(1){
3

2
+ 1

c0,0(2)

[
c0,0(2) + 2

3
c1,0(0) + 2m

kBTi
εvd

]}
− 2

c1,1(1)

(
m

2kBTi

)[
5

2
− c1,0(1)

−5

2
c1,1(1)

]
εvd

)
+ ε2

3

2

Nk

ξ(Tef f )

)
, (60)

Eq. (60) shows that in first approximation (ε2 = ε3 = 0)we have the same result as obtained
by momentum-transfer theory [31]:

3

2
kBTef f = 3

2
kBT + 1

2
Mεvd = 3

2
kBT + 1

2
Mv2d . (61)

From Eqs. (24) and (61) we obtain the Wannier formula [20],

3

2
kBTi = 3

2
kBT + 1

2
mv2d + 1

2
Mv2d . (62)

The second approximation, given by the full version of Eq. (60) with ε2 = ε3 = 1, is a new
result. We note that, in order to remain consistent, we can modify the correction terms in Eqs.
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(58) and (60) by replacing vd by ε and Ti by the right-hand side of Eq. (62). The versions of
Eqs. (58) and (60) so obtained differ slightly from those obtained in the 2T theory [43] with
ε2 = 0, due again to our use of Cartesian tensors. Finally, note that Eq. (60) indicates that
ion-neutral reactions cause an additional term to occur in the Wannier formula, whereas the
terms proportional to ε3 act only to modify the final term in Eqs. (61) and (62).

7.4 Temperature Tensor

We define the temperature tensor in the laboratory frame, T, as

kBT = m〈vv〉. (63)

From Eq. (63) and Eq. (C4) in ESM, the temperature tensor can be written in first approxi-
mation as

kBT = 2

c0,0(2)
mvdvd + kBTi

[
1 + 2

3

c1,0(0)

c0,0(2)

]
U. (64)

This shows that the temperature tensor does not have off-diagonal components in DTMS
experiments, a fact that can be established by more general arguments than used here. The
components of T along x̂ x̂ and ŷ ŷ are the same and are generally labeled T⊥. Then using
Eqs. (62) and (64) and inserting the explicit expression [43] for c1,0(0) we get the first
approximation result

kBT⊥ = kBT + A⊥Mv2d , (65)

where

A⊥ = m + M

3M
− 2

3c0,0(2)

m

M
. (66)

Similarly, the component of T along ẑ ẑ is generally labeled T‖, with

kBT‖ = kBT + A‖Mv2d , (67)

where

A‖ = m + M

3M
+ 4

3c0,0(2)

m

M
. (68)

A second-order approximation forT cannot be obtained until the second-order approximation
is established for 〈vv〉, which would require a third-order approximation for the ion drift
velocity and effective temperature.

It is obvious from Eqs. (65)–(68) that

3

2
kBTi = 1

2
kBT‖ + kBT⊥ = 3

2
kBT + 1

2
mv2d + 1

2
Mv2d , (69)

i.e., the present results for energy partitioning are consistent in first approximation with the
Wannier equations [20] for the ion and effective temperatures.

Eqs. (65) and (67) for T‖ and T⊥ have the same forms as obtained frommomentum-transfer
theory [31]. The expressions become exactly the same when the ion temperature tensor is
transformed from the laboratory frame to the frame of reference of the moving ion swarm
using the definition

kBTrel = m〈(v − vd)(v − vd)〉 = kBT − mvdvd , (70)

and when we identify the ratio, νv/νm , used in momentum-transfer theory as

υv

υm
=
(
1 + m

M

)
c0,0(2) − 2m

M
. (71)
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A microscopic definition of νv/νm cannot be obtained from momentum-transfer theory, but
we can use the tabulated expressions for matrix elements of the Boltzmann collision operator
[43] to find that

υv

υm
= 6

5
A∗(Tef f ) + 2m

5(m + M)

(
Ti − T

Tef f

) [
6C∗(Tef f ) − 5

]
, (72)

where

A∗(Tef f ) = �̄(2,2)(Tef f )

�̄(1,1)(Tef f )
(73)

and

C∗(Tef f ) = �̄(2,2)(Tef f )

�̄(1,1)(Tef f )
(74)

are ratios of collision integrals. For the Maxwell model, 6C∗(Tef f ) = 5, so Eqs. (72) and
(73) give

υv

υm
= 6

5

�̄(2,2)(Tef f )

�̄(1,1)(Tef f )
. (75)

Since �̄(2,2)(Tef f ) is the primary way in which the interaction potential governs the viscosity
of an atomic gas and �̄(1,1)(Tef f ) is the primary factor governing momentum-transfer, it is
clear why νv/νm has been called [31] the ratio of the collision frequency for viscosity to the
momentum-transfer collision frequency. We note again, however, that Eq. (75) is restricted
to the Maxwell model upon which momentum-transfer theory is based.

7.5 Heat Flux Vector

In the laboratory frame, we define the heat flux vector as

Q = m

2
〈vv2〉. (76)

Inserting eq. (C2) of ESM and Eq. (59) above into Eq. (76) shows that Q must lie entirely
along the direction of the electric field and have a magnitude, Q, such that

c1,1(1)Q = ε

[
3

2
kBTi + kBT‖

]
− vdkBTi

[
5

2
− c1,0(1) − 5

2
c1,1(1)

]
. (77)

Using the first approximation Eqs. (62), (67) and (68), this reduces to

Q = vd

{
5

2
kBTi +

[
4

3c0,0(2)
− 1

]
mv2d

c1,1(1)

}
. (78)

By transforming Eq. (77) to the frame of reference of the moving ion swarm, we get

Qrel = m

2
〈(v − vd)(v − vd) · (v − vd)〉 = Q −

(
3

2
kBTi

)
vd − kBTrel · vd . (79)

From Eq. (79) it may be shown that Qrel is directed along the electric field, but that its
magnitude is zero in first approximation. This must be true for the first approximation of
any odd moment in the relative frame of reference; as another example, 〈v − vd〉 = 0. This
is because the essential feature of the 2T moment theory is that the zero-order distribution
functions for both the ions and neutrals are isotropic. Only if we proceed to higher approx-
imation or consider Qrel in a multi-temperature moment theory [47] would we be able to
test the prediction [31] that Qrel is proportional to v3d for the Maxwell model.
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7.6 Dyadic Energy

In the laboratory frame, we define the scalar dyadic energy as

Ed =
〈(

1

2
mv2

)2
〉

=
(m
2

)2 〈v4〉. (80)

It is shown in Appendix E of ESM that in first approximation

Ed =
(m
2

)2 [(
2kBTi
m

)2 {15
4

+ 5
c1,0(0)

c2,2(0)
− 2

c2,0(0)

c2,2(0)

}

+ 20kBTi
mc2,2(0)

ε2 + 8

c2,2(0)c1,1(1)

{
4

3c0,0(2)
− 1

}
ε4
]

. (81)

It is possible to define a relative dyadic energy as

Ed =
〈(

1

2
m(v − vd) · (v − vd)

)2
〉

, (82)

but no simplifications occur and the result has the same general form as Eq. (81).

7.7 Diffusion Coefficients

Like the temperature tensor and heat flux vector, the ion diffusion coefficients do not arise
in first approximation of our theory. This means that the quantities appearing in the right-
hand side of Eq. (57) should be replaced by their first-approximation values. When this is
done, Appendix F of ESM shows that D is a diagonal tensor with equal components, D⊥,
perpendicular to the electric field and with a different component, D‖, along the field.

The expression for the perpendicular diffusion coefficient is simple,

qD⊥
K

= kBT⊥, (83)

where K is the usual ion mobility defined by the equation,

vd = K E. (84)

When the field strength is lowand T⊥ = T , Eq. (83) is thewell-known [20]Nernst-Townsend-
Einstein relation. Extensions to higher E/N values [20,45] involve finding approximate
expressions for T⊥, similar to Eqs. (65) and (67).

The parallel diffusion coefficient obtained in Appendix F of ESM is

qD‖
K

= [
kBT‖ − mv2d

] [
1 + K ′

2

]
+
[
Q

vd
− 3

2
kBTi

]
K ′

2
, (85)

where K ′ is the logarithmic derivative defined there. Eq. (85) becomes much simpler in
appearance when written in terms of the relative quantities, Qrel and T‖,rel :

qD‖
K

= kBT‖,rel
[
1 + (1 + �)K ′] , (86)

where

� = Qrel

vd

1

2kBT‖,rel
. (87)
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Thus the present results are in agreement with results obtained [31] frommomentum-transfer
theory, with the advantage of our approach being that the transport collision integrals, and
hence the influence of the ion-neutral interaction potential, are given explicitly. We note that
although relative quantities arise on the right-hand side of Eq. (86), the parallel diffusion coef-
ficients that it describes is measured in the laboratory frame. Although Eq. (85) is somewhat
more cumbersome, all of the quantities in it are in the laboratory frame.

8 Tests for Special Cases

Since the first approximation moment equations (with all εi equal to zero) are exact for the
Maxwell model, we turn for a first test of our second approximation equations to the Lorentz
model (m�M) for rigid spheres with diameter σ . The “exact” results (for ε3 = 1, but all
other εi equal to zero) are known [11] from numerical calculations for this model, in terms
of the dimensionless field strength,

ε∗ = 3
√

π

16kBT

(
m + M

m

) 1
2 qE

Nπσ 2 , (88)

and the dimensionless drift speed,

v∗
d =

(
M

2kBT

) 1
2

vd . (89)

In terms of these quantities, the first approximation to Eq. (58) is

v∗
d

[
1 + 2

3
(v∗

d)
2
]1/2

= ε∗. (90)

The second approximation obtained from Eqs. (58) and the matrix elements tabulated in the
Appendix of [43] is

v∗
d

[
1 + 2

3
(v∗

d)
2
]1/2

= 14

13
ε∗. (91)

Because we have used Cartesian tensors for the moment equations, our second approxima-
tion differs from the result obtained previously [43] using spherical tensors, which is (after
correcting a misprint):

v∗
d

[
1 + 2

3
(v∗

d)
2
]1/2

= 14

13
ε∗
{
1 + 5

7

(v∗
d)

2
[
3 + 2(v∗

d)
2
]− 3(ε∗)2

3
[
1 + (v∗

d)
2
] [
3 + 2(v∗

d)
2
]
}

. (92)

Fig. 1 shows the percentage deviations from the exact results of the various approximate
values. Both second-approximation results are in better agreement with the exact results than
are the first-approximation values, on an overall basis, even though the convergence is known
to be slow for the Lorentz model [42]. The present second-approximation values are more
accurate than the original second-approximation results, at least for this particular model.

For rigid spheres, Monte Carlo values have been determined [35] (again for ε3 = 1 but
all other εi equal to zero) for values of the ratio,

F =
(

3

8ε∗

) 1
2
(

πM

μ

) 1
4

v∗
d , (93)
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Fig. 1 Percentage deviations of the calculated drift velocities from the true values [11], as a function of the
dimensionless field strength, ε∗, for the Lorentz model of rigid spheres. The lowest (blue) results are the first
approximation values, the upper (red) results are the earlier second approximation values, while the middle
(purple) results are the present results in second approximation (Color figure online)

in the limit of large ε∗. Our first approximation results for F are the same as given previously
[43],

F4 = 27π

128

M

μ
. (94)

In order to obtain the second approximation, it is necessary to keep the correction terms in
both Eqs. (58) and (60) and to work out the high-field limits of many cr,s(l). Fig. 2 compares
the first two approximations with the Monte Carlo values, as a function of the mass ratio,
m/M . On an overall basis (i.e., except for small mass ratios), the second approximation
results are in better agreement with the Monte Carlo values than are the first approximation
values. Once again, the successive approximations to the moment equations appear to be
converging.

Another special case of interest in IMS iswhen the electrostatic field is soweak that Tef f =
Ti = T . In first approximation, we obtain from Eqs. (20), (58) and (59) the fundamental low-
field mobility equation [12],[15],[18],[21],[36] for the standard mobility,

K0 = NK

N0
= 3

8N0

(
π

2μkBT

) 1
2 q

�̄(1,1)(T )
. (95)

Here N0 is Loschmidt’s constant, the number density of an ideal gas at 273.15 K and 101.325
kPa. If we denote as K (1)

0 themobility given by Eq. (95) and as K (2)
0 the second approximation

mobility (again for ε3 = 1 but all other εi equal to zero), then Eq. (58) and thematrix elements
in the Appendix of [43] give

K (2)
0

K (1)
0

= 1 + e2
[
6C∗(T ) − 5

]2
10(3 − 6e + 4e2) − 3e2 [4B∗(T ) − 5] + 16(1 − e)eA∗(T )

, (96)
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Fig. 2 Dimensionless quantity, F , as a function of the ion-neutral mass ratio, m/M . The first approximation
is the lower (blue) curve, the second approximation is the upper (red) curve, and the Monte Carlo values [35]
are given by points with error bars (Color figure online)
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Fig. 3 Ratio of the first two approximations to the standard mobility at low field strengths, for rigid-sphere
interactions as a function of the ion-neutral mass ratio

where e = μ/m and

B∗(T ) = 5�̄(1,2)(Tef f ) − 4�̄(1,3)(Tef f )

�̄(1,1)(Tef f )
. (97)
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For Maxwell molecules where the ion-neutral interaction potential varies as the inverse-
fourth power of the separation, 6C∗(T ) = 5 and the two approximations become identical.
For rigid spheres, all three ratios of collision integrals are identically equal to 1.0, so the
ratio K (2)

0 /K (1)
0 becomes a function only of the ion-neutral mass ratio (equivalently, e).

Fig. 3 shows that K (2)
0 /K (1)

0 is very close to 1.00 for rigid spheres, except for small mass
ratios where we see in Fig. 1 that the first approximation is too low by just a bit more than
10%. Hence Fig. 3 indicates that, once again, the successive approximations to the moment
equations appear to be converging.

9 Conclusions

This paper gives the second in a series of successive approximations obtained by truncating
the 2T moment equations obtained from the Boltzmann equation using Burnett functions.
In first approximation, the only moments needed are the three Cartesian components of the
average ion velocity in the laboratory frame and the average ion energy; thus there is a closed
system of ordinary differential equations for one vector quantity and one scalar. The second
approximation is needed in order to treat, even approximately, the ion diffusion tensor and
the scalar rate coefficient for ion-neutral reactions. If we let all the smallness factors be 1,
the second approximation involves three more moments, equivalent to the ion temperature
tensor, the heat flux vector, and the (scalar) dyadic energy. The new moments are introduced
using the first approximation equations for them, which truncates the coupled set. Thus there
is a closed system of partial differential equations for two tensor, two vector, and three scalar
quantities. It would be straightforward to work out successively higher approximations, if
desired.

The approach illustrated here is not expected to describe accurately quantities such as
the ion diffusion and ion temperature tensors that are inherently anisotropic. Indeed, this
is the reason that the 2T kinetic theory [43,45] was replaced, first by a three-temperature
kinetic theory [19,42] and then by a Gram-Charlier theory [37]. Such theories are, however,
specifically designed for one particular type of experiment, DTMS. In contrast, the present
uniform theory can be applied to any type of experiment in which trace amounts of ions move
though dilute gases under the influence of external electric or magnetic fields of arbitrary
strength, as discussed previously [47] for the first approximation.

When applied to drift-tube mass spectrometers, our second approximation results are the
same as the results obtained by momentum-transfer theory in the special case where the ion-
neutral interactions follow the Maxwell model. For real ion-neutral interactions, the results
given here for the temperature tensor, heat flux vector, and dyadic energy are new.

Further analytical analysis of this uniform moment theory is not recommended, except
possibly for the second approximation using a multi-temperature approach with Cartesian
basis functions (see [47]). Instead, it is better to set up the partial differential equations
for the moments in successively higher approximations and then proceed from that point
by numerical methods. The key thing is that the present applications to drift-tube mass
spectrometry show that the successive approximations appear to be converging, in a global
sense, in a way that rivals or exceeds the well-established successive approximations in the
2T kinetic theory [43,45]. This gives us confidence in applying this uniform moment theory
to other experiments, including ion mobility spectrometry, ion traps, crossed electric and
magnetic fields, and collision-dominated ion cyclotron resonance. In such experiments, the
desired accuracy is not particularly high, so the first or second approximations should suffice.
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