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Abstract A central goal of synthetic biology is to design sophisticated synthetic cellular
circuits that can perform complex computations and information processing tasks in response
to specific inputs. The tremendous advances in our ability to understand and manipulate
cellular information processing networks raises several fundamental physics questions: How
do the molecular components of cellular circuits exploit energy consumption to improve
information processing? Can one utilize ideas from thermodynamics to improve the design
of synthetic cellular circuits and modules? Here, we summarize recent theoretical work
addressing these questions. Energy consumption in cellular circuits servesfivebasic purposes:
(1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying
signal, and (5) erasing memory. We demonstrate these ideas using several simple examples
and discuss the implications of these theoretical ideas for the emerging field of synthetic
biology. We conclude by discussing how it may be possible to overcome these limitations
using “post-translational” synthetic biology that exploits reversible protein modification.

Keywords Energy · Thermodynamics · Biochemical networks · Nonequilibrium physics ·
Synthetic biology · Systems biology · Biological physics
Cells live in complex and dynamic environments. They sense and respond to both exter-
nal environmental cues and to each other through cell-to-cell communication. Adapting to
changing environments often requires cells to perform complex information processing, and
cells have developed elaborate signaling networks to accomplish this feat. These biochemical
networks are ubiquitous in biology, ranging from the quorum-sensing [57] and chemotaxis
networks [78] in single-celled organisms to developmental networks in higher organisms [54].
Inspired by both these natural circuits and physical computing devices, synthetic biologists
are designing sophisticated synthetic circuits that can perform complicated “computing-
like” behaviors. Synthetic biologists have designed gene circuits executing a wide range of
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functionalities including switches [32], oscillators [28], counters [31], and even cell-to-cell
communicators [21].

Despite these successes, many challenges to harnessing the full potential of synthetic
biology persist [18,20,46,47,59,63,67,72]. While there are guiding principles to synthetic
biology [86], actual construction of synthetic circuits often proceeds in an ad-hoc manner
through a mixture of biological intuition and trial-and-error. Furthermore, the functionality
and applicability is limited by a dearth of biological components [48]. For this reason, it would
be helpful to identify general principles that can improve the design of synthetic circuits and
help guide the search for new biological parts. One promising direction along these lines
is recent work examining the relationship between the information processing capabilities
of these biochemical networks and their energetic costs (technically this is usually a cost
in free energy, but for the sake of brevity we will refer to this as energy). Energetic costs
place important constraints on the design of physical computing devices [50] as well as on
neural computing architectures in the brain and retina [79], suggesting that thermodynamics
may also influence the design of cellular information processing networks. As the field of
synthetic biology seeks to assemble increasingly complex biochemical networks that exhibit
robust, predictable behaviors, natural questions emerge: What are the physical limitations
(thermodynamic and kinetic) on the behavior and design of these biological networks? How
can one use energy consumption to improve the design of synthetic circuits?

In a classic paper written at the advent of modern computing [50], Landauer asked anal-
ogous questions about physical computing devices. He argued that a central component of
any general purpose computing device is a memory module that can be “reset” to a prede-
fined state, and pointed out that such a device must obey certain thermodynamic and kinetic
constraints. In particular, he convincingly argued that resetting memory necessarily leads to
power dissipation, implying that heat generation and energy consumption are unavoidable
consequences of the computing process itself. The paper also outlined three general sources
of error resulting from kinetic and thermodynamic considerations: incomplete switching
between memory states due to long switching times, the decay of stored information due to
spontaneous switching, and what he called a “Boltzmann” error due to limited energy sup-
plies. Furthermore, the paper showed that there exist fundamental trade-offs between these
types of errors and energetic costs in these memory devices. These considerations suggested
general strategies for designing new devices and parts for physical memory modules.

The goal of this review is to synthesize recent theoretical work on thermodynamics and
energy consumption in biochemical networks and discuss the implications of this work for
synthetic biology. Theoretical papers in this field are often highly technical and draw on new
results in non-equilibrium statistical mechanics. For this reason, our goal is to organize the
insights contained in these papers [2–4,8,16,16,33–38,40,41,44,49,62,65,68,69,73,74,76,
80,88] into a few simple, broadly applicable principles. We find that energy consumption in
cellular circuits tends to serve five basic purposes: (1) increasing specificity, (2) manipulating
dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. Further-
more, for each of these categories, there exist implicit tradeoffs between power consumption
and dynamics. We emphasize, however, that this list is not exhaustive and there exist other
functions of energy consumption in biology, both known and unknown.

In the future, energetic costs are likely to become an increasingly important consideration
in the design of synthetic circuits. Presently, synthetic biology is adept at making circuits that
can be controlled and manipulated by external users by, for example, adding or removing
small signaling molecules. A major challenge facing the field is to move beyond such exter-
nally controlled circuits to autonomous circuits that can function in diverse environments
for extended periods of time. Such autonomous circuits must be able to accurately sense the
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external environment, amplify small signals, and store information—processes that require
or can be improved through energy consumption. Energy consumption necessarily imposes
a fitness cost on cells harboring the synthetic circuit, and over many generations, even a
small fitness cost can cause synthetic circuits to be lost due to competition. For this rea-
son, understanding how the information processing capabilities of a biochemical network
are related to its energy consumption is an important theoretical problem in synthetic biol-
ogy.

Beyond synthetic biology, biochemical networks offer a unique setting to explore fun-
damental physics questions in non-equilibrium statistical mechanics. Recently there has
been a surge of interest among physicists in the relationship between information and ther-
modynamics [10,12]. For example, using sophisticated optical traps groups have recently
experimentally tested Landauers principle [14,43], and there is an active debate on how to
extend Landauers principle to quantum regimes [85]. A flurry of recent work has focused
on extending concepts like entropy and free-energy to non-equilibrium regimes, often using
information theoretic concepts [22,25,42,55,66,82,83]. Living systems are perhaps themost
interesting example of non-equilibrium systems, and thinking about information and thermo-
dynamics in the context of cells is likely to yield new general insights into non-equilibrium
physics.

1 Increasing Specificity

One common role of energy consumption in biochemical circuits is to increase the specificity
of an enzyme or signaling pathway. The most famous example of this is kinetic proofreading.
In a landmark paper [39], JohnHopfield showed how it is possible to increase the specificity of
an enzyme beyondwhat would be expected from equilibrium thermodynamics by consuming
energy and driving the system out of equilibrium. Kinetic proofreading-type mechanisms are
also thought to underlie the exquisite specificity of eukaryotic pathways such as the TCR
signaling network [81], in which a few-fold difference in the affinities between molecules
can lead to several orders of magnitude difference in response. A full review of kinetic
proofreading and all its applications is beyond the scope of this review, but we highlight
some important lessons for synthetic biology. (See Ninio [64], Ehrenberg [27], and Bennett
[11] for some of the important developments in kinetic proofreading.)

The first general principle that emerges from kinetic proofreading is that greater specificity
requires greater energy consumption. In particular, the error rate in kinetic proofreading
depends exponentially on the amount of energy consumed in each step of the proofreading
cascade. This increased specificity comes at the expense of amore sluggish dynamic response
(see [61,62] for an interesting exploration of this tradeoff). This highlights a second theme
about energy consumption: there generally exist trade-offs between greater specificity and
other desirable properties such as a fast dynamical response or sensitivity to small signals.

The latter trade-off is clearest in the context of non-specific activation of an output in a
synthetic circuit. For example, in a transcriptional synthetic circuit an output protein may
be produced at low levels even in the absence of an input signal. A common strategy for
dealing with such background levels of activation is to place a strong degradation tag on
the protein that increases its degradation rate [19]. This ensures that in the absence of an
activating signal, proteins are quickly degraded. However, increasing the degradation rate
clearly comes at a steep energetic cost as more proteins have to be produced to reach the
same steady-state. At the same time, the gene circuit loses sensitivity to small input signals
due to their fast degradation.
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Fig. 1 Consuming energy to increase modularity. a A transcription factor regulates downstream promoters
via direct coupling according to Eq. 1. Sequestration of the transcription factor upon binding to promoters can
lead to “retroactivity”, i.e. a change in the dynamics of the transcription factor levels as a result of coupling
to outputs. b Coupling the transcription factor through an insulating element consisting of a phosphoryla-
tion/dephosphorlyation cycle with fast dynamics reduces the effect of retroactivity

2 Manipulating Dynamics

Another general role for energy consumption is tomanipulate dynamics. By coupling a chem-
ical reaction to energy sources such ATP or GTP, it is possible to change the dynamics of a
biochemical network. One of the most interesting recent examples of how energy consump-
tion can be used to change dynamics is the recent work of retroactivity [6,23,58]. The central
problem addressed in these papers is the observation that biochemical signal transduction
circuits often have their dynamical behavior altered upon coupling to external outputs due
to sequestration of proteins, a property dubbed “retroactivity”. Such coupling is particu-
larly undesired when there are a number of downstream outputs. These works demonstrate,
both theoretically and experimentally, that it is possible to introduce insulating elements
that reduce the magnitude of this retroactivity and thereby restore the modular dynamical
behavior of synthetic circuits. A key property of these insulating elements is that they utilize
enzymatic futile cycles and hence actively consume energy. Moreover, a detailed theoretical
analysis shows that the effectiveness of an insulating element is directly related to its energy
consumption [6].

To demonstrate these concepts, we will consider the simple example of a protein Z that is
produced at a time-dependent rate k(t) and is degraded at a rate δ (see Fig. 1). In addition, Z
regulates a family of promoters,with concentration ptot, by binding/unbinding to the promoter
to form a complex C at rates kon/off . The kinetics of this simple network is described by the
set of ordinary differential equations

dZ

dt
= k(t) − δZ − τ−1[konZ(ptot − C) − koffC],

dC

dt
= τ−1[konZ(ptot − C) − koffC], (1)

where we have introduced an overall dimensionless timescale τ for the binding/unbinding
dynamics. Notice that if τ−1 � 1, then the timescale separation between the Z and C
dynamics means that the Z dynamics are well approximated by setting dC

dt = 0 so that

dZ

dt
≈ k(t) − δZ . (2)
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Thus, when Z is coupled to a system with extremely fast dynamics, the retroactivity term,
τ−1[konZ(ptot − C) + koffC], is negligible.

This basic observation motivates the idea behind kinetic insulators. Instead of coupling Z
directly to the complex C , one couples Z to C indirectly through an intermediary insulating
element with fast kinetics. Similar analysis of this more complex network shows that this
dramatically decreases the amount of retroactivity. In practice, the insulating element is
a phosphorylation/dephosphorylation cycle with fast kinetics (see Fig. 1). The faster the
intermediary kinetics, and hence the more energy consumed by the futile cycle, the better
the quasi-static approximation and the more effective the insulator. (For simplicity, we don’t
provide the equations governing Fig. 1b. See [6,58] for details).

3 Reducing Variability

Biochemical circuits can also consume energy to reduce variability and increase reproducibil-
ity. One of the best studied examples of this is the incredibly reproducible response of
mammalian rod cells in response to light stimulation (see [15] and references therein). This
reproducibility of the rod cell response is especially surprising given that the response orig-
inates from the activation of a single rhodopsin molecule. A simple biophysically plausible
model for an active rhodopsin is that its lifetime is exponentially distributed (i.e. the deacti-
vation of rhodopsin is a Poisson process). In this case, the trial-to-trial variability, measured
by the squared coefficient of variation, CV 2 = σ 2/μ2, would be equal to 1. Surprisingly,
the actual variability is much smaller than this naive expectation.

Experiments indicate that discrepancy is at least partially explained by the fact that the
shut-off of active rhodopsin molecules proceeds through a multi-step cascade [15,26,70,71]
(i.e the active rhodopsin molecule starts in state 1, then transitions to state 2, etc. until it
reaches state L). If each of these steps were identical and independent, then from the central
limit theorem the coefficient of variation of the L step cascade would be L times smaller than
that of a single step, i.e. σ 2/μ2 = 1/L .

Notice that in order for such a multi-step cascade to reduce variability it is necessary
that each of the transitions between the L states be irreversible. If they were not, then one
could not treat the L-steps as independent and the progression of the rhodopsin molecule
through the various states would resemble a random walk, greatly increasing the variability
[15]. For this reason, reducing variability necessarily consumes energy. Consistent with this
idea is the observation that the variability of rhodopsin seems to depend on the number of
phosphorylation sites present on a rhodopsin molecule [26].

In fact, it is possible to directly compute the coefficient of variation [9,60] as a function of
the ratio of the forward and backward rates at each step, θ . The logarithmof this ratio is simply
the free-energy consumed at each step, �G = log θ . Figure 2 shows that the coefficient of
variation is a monotonically decreasing function of �G and hence the energy consumed
by the cascade. Note that this decrease in the variability comes at the expense of a slower
dynamic response, since the mean completion time scales linearly in the cascade length.

Recent calculations have applied these ideas to the problem of a non-equilibrium receptor
that estimates the concentration of an external ligand [52]. It was shown that by forcing the
receptor to cycle through a series of L states, one can increase the signal-to-noise ratio and
construct a biochemical network that performs Maximum Likelihood Estimation (MLE) in
the limit of large L . Since MLE is the statistically optimal estimator, this work suggest that
it should be possible to improve the performance of synthetic biology based biodetectors by
actively consuming energy.
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Fig. 2 Reducing variability in a
multi-step cascade through
energy consumption. a A protein
(blue ovals) is repeatedly
phosphorylated L times. b The
coefficient of variation, defined as
the variance over the mean
squared of the time it takes to
complete L phosphorylations, as
a function of the free-energy
consumed during each step in the
cascade, �G, for
L = 1, 4, 16, 64 (Color figure
online)
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Moreover, this trade-off between variability and energy consumption is likely to be quite
general. Analytical arguments and numerical evidence suggest there may exist a general
thermodynamic uncertainty relation relating the variance, of certain quantities in biochemical
networks and the energy consumption [5,35,75]. In particular, achieving an uncertainty, σ 2,
in a quantity such as the number of consumed/produced molecules in a genetic circuit or the
number of steps in a molecular motor, requires an energetic cost of 2kBT/σ 2. This suggests
that any strategy for reducing noise and variability in synthetic circuits will require these
circuits to actively consume energy.

4 Amplifying Signal

Biochemical networks can also consume energy to amplify upstream input signals. Signal
amplification is extremely important in many eukaryotic pathways designed to detect small
changes in input such as the phototransduction pathway in the retina [24] or the T cell
receptor signaling pathway in immunology. In these pathways, a small change in the steady-
state number of input messenger molecules, d I , leads to a large change in the steady-state
number of output molecules, dO . The ratio of these changes is the number gain, often just
called the gain,

g0 = dO

d I
(3)

with g0 > 1 implying the ratio of output to input molecules is necessarily greater than 1.
Before proceeding further, it is worth making the distinction between the number gain,

which clearly measures changes in absolute number, with another commonly employed
quantity used to describe biochemical pathways called logarithmic sensitivity [24]. The log-
arithmic sensitivity, d log [O]

d log [I ] , measures the logarithmic change in the concentration of an
output signal as a function of the logarithmic change in the input concentration and is a
measure of the fractional or relative gain. Though logarithmic sensitivity and gain are often
used interchangeably in the systems biology literature, the two measures are very different
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Fig. 3 Amplifying signals in a
push–pull amplifier by
consuming energy. Schematic
illustrates a simple push–pull
amplifier where a kinase, Ea ,
modifies a protein from X to X∗
and a phosphatase, Ed , catalyzing
the reverse reaction. The plot
illustrates that larger gain can be
accomplished at the expense of a
slower response time τ
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[24]. To see this, consider a simple signaling element where a ligand, L binds to a protein
X and changes its conformation to X∗. The input in this case is L and the output is X∗. To
have g0 > 1, a small change in the number of ligands, dL must produce a large change in
the number of activated X∗. Notice that by definition, in equilibrium, dX∗

dL < 1 since each
ligand can bind only one receptor. If instead n ligands bind cooperatively to each X , then one
would have dX∗

dL < 1/n. Thus, cooperatively in fact reduces the number gain. In contrast, the

logarithmic sensitivity increases dramatically, d log [X ]
d log [L] = n. An important consequence of

this is that amplification of input signals (as measured by number gain) necessarily requires
a non-equilibrium mechanism that consumes energy.

The fact that energy consumption should be naturally related to the number gain and not
logarithmic gain can be seen using both biological and physical arguments. The fundamental
unit of energy is an ATP molecule. Since energy consumption is just a function of total
number of ATP molecules hydrolyzed, it is natural to measure gain using changes in the
absolute numbers and not concentrations. From the viewpoint of physics, this is simply the
statement that energy is an extensive quantity and hence depends on the actual number of
molecules.

In biochemical networks, this signal amplification is accomplished through enzymatic
cascades, where the input signal couples to an enzyme that can catalytically modify (e.g.
phosphorylate) a substrate. Such basic enzymatic “push–pull” amplifiers are the basic build-
ing block of many eukaryotic biochemical pathways, and are a canonical example of how
energy consumption can be used to amplify input signals (see Fig. 3). A push–pull amplifier
consists of an activating enzyme Ea and a deactivating enzyme Ed that interconvert a sub-
strate between two forms, X and X∗. Importantly, the post-translational modification of X is
coupled to a futile cycle such as ATP hydrolysis. The basic equations governing a push–pull
amplifier are

dX∗

dt
= �a(Ea)X − �d(Ed)X

∗, (4)

where �a(Ea) is the rate at which enzyme Ea converts X to X∗ and �d(Ed) is the rate at
which enzyme Ed converts X∗ back to X . This rate equation must be supplemented by the
conservation equation on the total number of X molecules,

X + X∗ = X tot. (5)

In the linear-response regimewhere the enzymeswork far from saturation, one can approx-
imate the rates in (4) as �a(Ea) ≈ ka[Ea] and �d(Ed) ≈ kd [Ed ], with ka = kcata /Ka and
kd = kcatd /Kd the ratios of the catalytic activity, kcat , to the Michaelis-Menten constant,
KM , for the two enzymes. It is straightforward to show that the steady-state concentration of
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activated proteins is

X̄∗ = X totka[Ea]
ka[Ea] + kd [Ed ] (6)

Furthermore, one can define a “response time”, τ , for the enzymatic amplifier to be the rate
at which a small perturbation from steady-state δX∗ = X∗ − X̄∗ decays. This yields (see
[24] for details)

τ = (ka[Ea] + kd [Ed ])−1. (7)

As discussed above, a key element of this enzymatic amplifier is that it works out of equi-
librium. Each activation/deactivation event where the substrate cycles between the states
X �→ X∗ �→ X is coupled to a futile cycle (e.g. ATP hydrolysis) and hence dissipates an
energy �Gcycle. At steady-state, the power consumption of the enzymatic amplifier is

P = ka[Ea]X̄�Gcycle = kd [Ed ]X̄∗�Gcycle. (8)

The input of the enzymatic amplifier is the number of activating enzymes Ea and the
output of the amplifier is the steady-state number of active substrate molecules X∗. This is
natural in many eukaryotic signaling pathways where Ea is often a receptor that becomes
enzymatically active upon binding an external ligand. Using (8), one can calculate the static
gain and find

g0 = (P/[Ea])τ (�Gcycle)
−1. (9)

This expression shows that the gain of an enzymatic cascade is directly proportional to the
power consumed per enzyme measured in the natural units of power that characterize the
amplifier: �Gcycle/τ . This is shown in Fig. 3 where we plot the gain as a function of power
consumption for different response times.

Notice that the gain can be increased in twoways, by either increasing the power consump-
tion or increasing the response time. Thus, at a fixed power consumption, increasing gain
comes at the cost of a slower response. This is an example of a general engineering principle
that is likely to be important for many applications in synthetic biology: the gain-bandwidth
tradeoff [24]. In general, a gain in signal comes at the expense of a reduced range of response
frequencies (bandwidth). If one assumes that there is a maximum response frequency (ie a
minimal time required for a response, a natural assumption in any practical engineering sys-
tem), the gain-bandwidth tradeoff is equivalent to tradeoff between gain and response time.
For this reason, energy consumption is likely to be an important consideration for synthetic
circuits such as biosensors that must respond quickly to small changes in an external input.
More generally, the gain-bandwidth tradeoff highlights the general tension between signal
amplification, energy consumption, and signaling dynamics.

5 Erasing Memory

Memory is a central component of all computing devices. In a seminal 1961 paper [50],
Landauer outlined the fundamental thermodynamic and kinetic constraints that must be sat-
isfied by memory modules in physical systems. Landauer emphasized the physical nature of
information and used this to establish a connection between energy dissipation and eras-
ing/resetting memory modules. This was codified in what is now known as Landauer’s
principle: any irreversible computing device must consume energy.

The best understood example of a cellular computation from the perspective of statistical
physics is the estimation of a steady-state concentration of chemical ligand in the surrounding
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Fig. 4 A two-component network as a computational module. a Cellular network that calculates the Berg–
Purcell statistic for estimating the concentration of an external-ligand. b Table summarizing the relationship
between the network and standard computational elements and techniques

environment by a biochemical network. This problem was first considered in the seminal
paper [13] by Berg and Purcell who showed that the information a cell learns about its
environment is limited by stochastic fluctuations in the occupancy of the receptors that detect
the ligand. In particular, they considered the case of a cellular receptor that binds ligands at
a concentration-dependent rate and unbinds particles at a fixed rate. They argued that cells
could estimate chemical concentrations by calculating the average time a receptor is bound
during a measurement time.

In these studies, the biochemical networks downstream of the receptors that perform the
desired computations were largely ignored because the authors were interested in calculat-
ing fundamental limits on how well cells can estimate external concentrations. However,
calculating energetic costs requires an explicit model of the downstream biochemical net-
works that implement these computations. As Feynman [30] andLaundauer [51] emphasized,
“Information is physical.”

Recently, we considered a simple two-component biochemical network that directly com-
putes the Berg–Purcell estimator [56]. Information about external ligand concentration is
stored in the levels of a downstream protein (shown in Fig. 4). Such two-component net-
works are common in bacteria and are often used to sense external signals with receptors
phosphorylating a downstream response regulator. Receptors convert a downstream protein
from an inactive form to an active form at a state-dependent rate. The proteins are then
inactivated at a state-independent rate. Interestingly, one can explicitly map components and
functional operations in the network onto traditional computational tasks (see Fig. 4). Fur-
thermore, it was shown that within the context of this network, computing the Berg–Purcell
statistic necessarily required energy consumption. The underlying reason for this is that eras-
ing/resetting memory requires energy (we note that while Landauer emphasized that erasing
and not writing requires energy [50], a recent paper argues energy consumption is bounded by
writing to memory [74]). These results seem to be quite general and similar conclusions have
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been reached by a variety of authors examining other biochemical networks [16,35,36,66].
Note that there also exists an extensive literature on reversible computing which we will not
address here [1].

These ideas have important implications for synthetic biology. Much as memory is central
to the function of modern computers, biological memory modules are a crucial component of
many synthetic gene circuits [17,77]. Any reusable synthetic circuit must possess a memory
module that it can write and erase. Currently, synthetic circuits use two general classes of
reusable memory modules: protein-based bistable genetic switches [32] and recombinase-
basedDNAmemory [17,77] (we are ignoringDNAmutation-basedmemories that canonly be
used once [29]). In both cases, resetting thememory involves consuming energy by expressing
and degrading proteins (proteins involved in bistability and recombinases, respectively).
Although this energy consumption is fundamental to any reusable memory module, it is
desirable to find less energetically costly reusable memories that can still be stable over
many generations such as chromatin-based memory modules [45,46]. As synthetic circuits
become increasingly complex, these energetic costs are likely to be ever more important.

6 Using Energy Consumption to Improve Synthetic Circuits

Energy consumption is a defining feature of most information processing networks found in
living systems. The theoretical work reviewed here provides new insights into biochemical
networks. The greatest difference between equilibrium and non-equilibrium systems is that
in equilibrium, the energy differences between states fundamentally determines the dynam-
ics of the system, while in a non-equilibrium system the energy differences and dynamics
become decoupled. This can be utilized in a variety of ways by biochemical networks and we
broadly divided up the useful cases into relatively independent roles: increasing specificity,
manipulating dynamics, reducing variability, amplifying signals, and erasing memory. We
believe that focusing on examples of each role will allow theorists and experimentalists to
establish a common language and further both non-equilibrium physics and synthetic biol-
ogy. One beautiful outcome of the interplay between theory and experiment is the recent
work showing that a kinetic insulator that actively consumes energy can restore modularity
and eliminate retroactivity in a simple synthetic circuit [58].

The theoretical results reviewed here can be summarized into several broad lessons on
energy consumption that may prove useful for synthetic biology as well as providing theorists
with future connections to experiments.

• Fundamental Trade-Offs The ultimate limits of response speed, sensitivity, and energy
consumption are in direct competition.

• Saturation of Trade-Offs Current works suggest that saturation effects are ubiquitous
[11,49,61,62,82] in energy consumption of biochemical networks and therefore only a
few ATP may be enough [52] to nearly achieve the fundamental limits.

• Futile Cycles are NOT Futile Futile cycles appear to be useless when only considering
energy costs, but can provide benefits in terms of the fundamental trade-offs.

• Reusable Logic Must Consume Energy This is just the biological realization of Lan-
dauer’s principle. Memory is especially important for circuits that function in stochastic
environments where it is necessary to time-average over stochastic input signals.

• Chains are Useful While it may seem redundant to have long chains of identical parts, if
the chain consumes energy this can improve specificity and reduce variation.
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• Time Reversal Symmetry While equilibrium systems respect time reversal symmetry
(forward and backwards flows are equivalent), energy consumption and non-equilibrium
systems necessarily break this symmetry. This is especially important for synthetic circuit
that seek to time-average stochastic inputs.

• Manipulate Time Scales Consuming energy can be useful to change the time scale of
dynamics, as illustrated by the example of retroactivity and the introduction of energy
consuming insulators.

• Information is Physical Theorists should heed Landauer and Feynman’s advice and
attempt to translate theoretical advances into physical/biological devices.

We will end by focusing on one specific example that we believe is especially timely for
synthetic biology. In naturally occurring biochemical networks, the primary source of energy
for biochemical networks are futile cycles associated with post-translational modifications
such as phosphorylation and methylation of residues. In contrast, energy dissipation in most
synthetic circuits takes the form of the production and degradation of proteins. From the view-
point of both energy and dynamics, protein degradation is an extremely inefficient solution to
the problem. Proteins are metabolically expensive to synthesize, especially when compared
to post-translational modifications. This may be one reason that most of the information
processing and computation in eukaryotic signaling pathways is done through enzymatic
cascades.

Designing synthetic circuits that can reap the full benefits of energy consumption requires
developing new biological parts based around post-translational modifications of proteins.
Such a “post-transcriptional” synthetic biology would allow to harness the manifold gains in
performance that come from actively consuming energy without the extraordinary metabolic
costs associated with protein synthesis. Currently, the power of this approach is limited
by the dearth of circuit components that act at the level of post-translational modifica-
tions of proteins. Two promising directions that are seeking to overcome these limitations
are phosphorylation-based synthetic signaling networks [7,53,84,87] and chromatin-based
synthetic biology [46] that exploits reversible chromatin marks such as acetylation and
methylation. In both cases, synthetic biologists are starting to engineer modular libraries
of enzymes (kinases, phosphatases, chromatin reader–writers) to post-translationally modify
specific protein substrates in response to particular signals. This will allow synthetic biology
to take advantage of the increased information processing capabilities that arise from energy
consumption.
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