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Abstract In this study, gaseous flow through amicro/nano-channel is investigated via a novel
two relaxation time lattice Boltzmann method. In this method, the slip velocity at the fluid-
solid interface is realized by defining the free relaxation parameter. Furthermore, in order
to capture the non-linear phenomena associated with the Knudsen layer, the wall function
correction is employed. To this respect, different available wall functions are implemented.
The objective of the study is to provide a comparative study on the accuracy, range of
applicability and computational efficiency of these wall functions in a wide range of Knudsen
numbers. The results of the present study are compared against direct simulation Mont
Carlo and information preservation data. It is found that only a few of the implemented wall
functions are capable of predicting the flow behavior with reasonable accuracy, particularly
when the Knudsen number lies in the transition flow regime.

Keywords Micro/nano-channel ·Two relaxation time lattice Boltzmannmethod ·Knudsen
layer · Wall function

1 Introduction

According to the increasing interest in development of micro/nano-fabricated devices in
recent years, the study of rarefied gas dynamics becomes an appealing field of research
in fluid mechanics. It has been demonstrated that the Boltzmann equation can accurately
describe the basic physics of such micro/nano-flows. However, the complicated form of the
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collision operator in the Boltzmann equationmakes it extremely difficult to solve the equation
using the available numerical methods.

On the other hand, the behavior of micro/nano-scale flows can successfully be described
using the direct simulation Monte Carlo (DSMC) method. However, this is also computa-
tionally expensive and impractical for many three dimensional systems, particularly in the
low Mach number limit.

The lattice Boltzmann method (LBM) is an alternative tool for simulation of rarefied
gas flows. Although, this method is originated from the lattice gas automata (LGA), it can
be viewed as a special discretization scheme for the Boltzmann equation [1,2]. However,
it has been criticized that most of the available lattice Boltzmann models are insufficient
for prediction of finite Knudsen number flows. The reason for this deficiency lies in the
fact that the standard LBM, which generally works at the Navier–Stokes level, does not
necessarily converge to the Boltzmann equation, particularly at high Knudsen numbers.
Therefore, several efforts have been devoted to extend the validity of LBM to high Knudsen
number flows by developing higher orders of the lattice Boltzmann equation (LBE) [1,3–
6]. The main idea behind this approach is that by employing higher orders of the Gauss-
Hermite quadrature (a finer set of discrete velocity space) and retaining higher order terms
of the Hermite expansion, the LBM will converge to the Boltzmann equation. However, in
practice, there are several barriers against developing the higher order LBMfor capturing non-
equilibrium effects of rarefied gas flows. For instance, it is found that the discrete velocities
of the high-order models of LBM may not match the lattice nodes and consequently, the
computational efficiency and simple algorithm of LBM cannot be guaranteed in such a
situation [1,7]. Moreover, it has been demonstrated that the accuracy of results does not
necessarily increase by implementing a finer set of discrete velocities [4]. This means that,
there is no guarantee that by implementing a finer set of discrete velocities, the corresponding
LBM leads to more accurate predictions. Therefore, introducing a general higher order LBM,
which can provide accurate predictions with reasonable computational efficiency over a wide
range of Knudsen numbers, is still a challenging issue in the field.

The second choice for capturing theKnudsen layer phenomena using theLBMis to employ
wall distance functions. In this approach, an external expression will be implemented in order
to model the effect of solid walls on the mean free path (MFP) of the gas. In this approach, the
main challenging issue is obtaining an appropriate expression, which is capable of predicting
the variation of the free path in the Knudsen layer region. Using wall distance functions was
first proposed by Zhang et al. [8] in order to extend the validity of the continuum based LBM
into high Knudsen numbers. They developed a formula for the reduction of MFP due to gas-
wall interactions. Based on the classical theory of probability density, which was proposed
by Stops [9] and by using a second order slip velocity model, Guo et al. [10] investigated
rarefied gas flows bounded by two parallel plates in the transition regime. According to this
model, Xu and Guo [11] investigate the effect of rarefaction level, pressure ratio and aspect
ratio on the pressure distribution along a micro-channel in the slip and transition regimes.
On the other hand, Arlemark et al. [12] derived an effective MFP expression by using the
integrated form of the probability distribution function, which is relatively easy to implement
in comparison with Stops original expression. More recently, Dongari et al. [13] proposed a
power law based effective MFP for flows confined between two planar plains by considering
the boundary limiting effects on the free path of molecules. They claimed that the new
function covers a wider range of Knudsen numbers in comparison with previous models.
They further developed a new power law model which is capable of describing the effect of
curved surfaces on the effectiveMFP of the rarefied gas flows. The feasibility of this model is
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also examined for the isothermal rarefied gas flow confined between two concentric rotating
cylinders [14].

It is also worth noting that some studies attempt to extend the validity of the continuum
based methods into the transition flow regime by introducing the effective viscosity term as
a function of the Knudsen number. This approach is mainly based on the effective viscosity
proposed by Karniadakis et al. [15]. In this context, Shokouhmand and Isfahani [16] showed
that modifying the viscosity using the expression of Karniadakis et al. [15] improves the
prediction of rarefied gas flows to some extent. Li et al. [17] employed a Bosanquet-type
effective viscosity obtained by Michalis et al. [18] in order to consider the effect of rarefac-
tion on the fluid viscosity. In general, the effective MFP obtained by using wall functions
depends on the normal distance from the wall, while these effective viscosity correlations
are independent of the distance from the wall because they are averaged over the cross sec-
tion of the corresponding geometry. In the context of the effective viscosity, several other
expressions are also proposed from different viewpoints [19,20]. These expressions can be
implemented along with different continuum based methods in order to study high Knudsen
number flows. However, these models mainly employ fitting data on the Boltzmann equation
solution, which can limit their applications [14]. Another approach is introduced by Toschi
and Succi [21] in order to study rarefied gas flows using hydrodynamics models such as the
D2Q9 LBE. They introduced a virtual wall collision model to limit the runaway behavior
of particles at high Knudsen numbers. Numerical results show that this approach is able to
capture the gas flow behavior in micro-channels at moderate Knudsen numbers.

Another important issue associated with micro/nano-gas flow simulations using LBM is
how to choose the appropriate lattice Boltzmann model. In general, LBM can be classified
into single relaxation time (SRT) and multiple relaxation time (MRT) models. For most of
fluid dynamics problems the choice of SRT or MRT makes a negligible difference in the
final results. However, it is criticized that LBM with only one relaxation time might not
be a reliable method for investigation of rarefied gas flows, since this model suffers from
numerical artifacts associated with boundary conditions [22–24]. For instance, in [24] it is
shown that the slip velocity obtained by the SRT-LBE includes an error term related to the
grid resolution. In other words, it is observed that a part of slip velocity predicted by SRT-LBE
using Bhatnagar–Gross–Krook collision model is due to numerical artifacts. This deficiency
leads to incorrect results even in simple rarefied gas flow simulations. Furthermore, this error
becomes more significant as the Knudsen number increases [24]. Consequently, simulation
of rarefied gas flows using the standard SRT-LBE model is questionable. To overcome this
deficiency, MRTmodel has been successfully implemented [11,25,26]. However, this model
is computationally more complicated than the SRT model.

Recently, we demonstrated that LBE with two relaxation times (TRT) is a potential tool
for investigation of finite Knudsen number flows [27]. It has been found that by defining the
free relaxation parameter, TRTmodel can appropriately overcome the deficiencies of the SRT
model. In a separate study, we proposed a generalized TRT model based on the wall function
approach, which can satisfactorily predict micro/nano-gas flows in the slip and transition
flow regimes [28]. It is also shown by a test case that while the difference between TRT and
MRT results is less than 1 %, the computational run time of TRT is significantly lower than
MRT code. Therefore, TRT-LBE provides great potential for investigating rarefied gas flows.

As it is mentioned above, several studies of LBM have been devoted to study micro/nano-
scale gas flows using the wall function approach. It is found that this approach is capable
of describing the rarefied gas flow behavior in the transition regime. However, the lack of
information about the applicability, accuracy and computational efficiency of these wall
functions has motivated the present study to compare the available wall functions from
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different viewpoints. To this respect, the general TRT model developed in our previous work
[28] is employed in order to investigate the gas flow behavior in a micro/nano-channel by
using various wall function relations. Some of the considered wall functions are implemented
for the first time in the framework of the lattice Boltzmann method, while the others have
been implemented using SRT or MRT models in previous studies of the LBM [8,26,29,30].
The accuracy of results is evaluated with respect to the available published data in a wide
range of Knudsen numbers.

2 TRT-LBE

Recently, Norouzi and Esfahani [28] demonstrated that LBEwith two relaxation times can be
a promising method for modeling of finite Knudsen number flows. Accordingly, we employ
this model in order to simulate micro/nano-channel flows in the present study. The general
form of the TRT-LBE can be expressed as follows:

fi (x + eiδt, t + δt) − f (x, t) = �( fi ) (1)

where fi , x , t , δt and ei are the particle distribution function, position, time, time step and
discrete velocity, respectively. The collision operator in the TRT model can be defined as
[31]:

� = (ns − f s)

τs
+ (na − f a)

τa
(2)

where n is the equilibrium distribution function, τ is the relaxation timewhich will be defined
later and letters s and a represent the symmetric and anti-symmetric parts of the collision
process, respectively. The fluid density and velocity can be calculated as:

ρ =
∑

fi (3a)

u = 1

ρ

∑
ei fi (3b)

In this study the D2Q9 system is employed, in which the equilibrium distribution function
can be written as:

ni = ρωi

[
1 + 3ei .u + 9

2
(ei .u)2 − 3

2
u2

]
(4)

where ω0 = 4/9, ωi = 1/9(i = 1 − 4) and ωi = 1/36 (i = 5 − 8) are the corresponding
weight coefficients related to the velocity ei . The symmetric and anti-symmetric parts of the
particle distribution function can be expressed by:

f si = 1

2
( fi + fī ) (5a)

f ai = 1

2
( fi − fī ) (5b)

where ī is the direction opposite to i . The fluid viscosity can also be obtained as follows:

ν = c2s
(
τ s − 1

2

)
δt (6)

where cs = RT is the sound speed, in which R and T denote the universal gas constant and
temperature, respectively. Pressure can also be computed by an equation of state as follows:

P = c2sρ (7)
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Fig. 1 Geometry of Poiseuille
gas flow through two parallel
plates with height H and length L
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3 Wall Function Implementation

As the Knudsen number increases, the non-equilibrium effects of the Knudsen layer, which
are usually ignored in the continuum regime, start to dominate the gas flow behavior [32].
Consequently, in order to simulate rarefied gas flows in the transition regime, the Knudsen
layer must be captured properly. However, it has been demonstrated that the standard LBM,
which is mainly developed for solving the Navier–Stokes equations at the hydrodynamics
level, fail to work in such situations. In the present study, the wall function technique is
employed in order to overcome this difficulty. Accordingly, the value of effective MFP will
be defined by the following expression:

λe = λψ(y, Kn) (8)

where λ and ψ are the gas MFP and wall function correction, respectively and y is the
distance from the lower wall (see Fig. 1). In this context, Zhang et al. [8] proposed the
following geometry dependent wall function for flows through micro/nano-channels:

ψ(y, Kn) = 1

1 + 0.7
[
exp(−Cy/λ) + exp(−C(H − y)/λ)

] (9)

where C = 1 is obtained from the Kramers’ problem [8]. This model is recognized as ψ1

in the present study. Guo et al. [33] proposed another relation, in which the wall function is
only dependent on the Knudsen number and not on the distance from the wall boundaries:

ψ(Kn) = 2

π
arctan

(√
2Kn−3/4) (10)

This expression states that the wall function is averaged over the cross section of the channel.
Here, the term ψ2 is used to specify this model. Stops derived an exponential wall distance
function by using the solid angle analysis, which can be written as [9]:

ψ(y, Kn) = 1

2

[
2 +

( y

λ
− 1

)
exp

(
− y

λ

)
−

( y

λ

)2
Ei

( y

λ

)

+
(H − y

λ
− 1

)
exp

(
− H − y

λ

)
−

(H − y

λ

)2
Ei

(H − y

λ

)]

(11)
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Fig. 2 Functional behavior of normalized effective MFP for different Knudsen numbers. Comparison of wall
functions with MD data [34]. a Kn = 0.2 and 1, b Kn = 0.5 and 2

It should be noted that the exponential integral function Ei in the above expression has been
proved to be difficult to calculate using either analytical or numerical methods. Alternatively,
Arlemark et al. [12] proposed another relation based on the integrated form of the probability
distribution function using Simpson’s numerical integral method, which can be written as a
simple series function:

ψ(y, Kn) = 1− 1

82

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp
(

− y
λ

)
+ exp

(
− H−y

λ

)
+ 4

7∑
i=1

exp

(
− y

λ cos
[

(2i−1)π
28

]

)

+ 4
7∑

i=1
exp

(
− H−y

λ cos
[

(2i−1)π
28

]
)

+ 2
6∑

i=1
exp

(
− y

λ cos
[

π i
14

]
)

+ 2
6∑

i=1
exp

(
− H−y

λ cos
[

π i
14

]
)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

Following the same idea, Dongari et al. [13] claimed that a power law based wall function
can describe the effect of solid surfaces on the effective MFP more accurately. Accordingly,
they proposed an expression for gas molecules confide by two planar planes as follows [13]:

ψ(y, Kn) = 1 − 1

96

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(
1 + r

λ

)−2 +
(
1 + H−r

λ

)−2 + 4
8∑

i=1

(
1 + r

λ cos[ (2i−1)π
32 ]

)−2

+ 4
8∑

i=1

(
1 + H−r

λ cos[ (2i−1)π
32 ]

)−2 + 2
7∑

i=1

(
1 + r

λ cos[ iπ16 ]
)−2

+ 2
7∑

i=1

(
1 + H−r

λ cos[ iπ16 ]
)−2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(13)

In this section, the behavior of the considered wall functions (ψ1, Arlemark, exponential
and power law models) is investigated for different Knudsen numbers. For this reason, the
variation of normalized effective MFP (i.e., λe/λ) is plotted along the cross section of the
channel for different Knudsen numbers. Figure 2a represents the results for Kn = 0.2 and
1 and Fig. 2b is obtained for Kn = 0.5 and 2. In order to evaluate the accuracy of these
wall functions, the molecular dynamics (MD) data of Dongari et al. [34] is employed in this
study. As can be seen, at low Knudsen numbers (Kn = 0.2), the Knudsen layer only affects
the near wall region. As the Knudsen number increases, the Knudsen layer spreads into the
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bulk region of the flow field as well. It can also be observed that ψ1 model is incapable of
following the correct trend even at lowKnudsen numbers. This deficiency can be attributed to
the fact that thismodel is originally obtained for theKramers’ problem and therefore, it cannot
provide accurate predictions for Poiseuille gas flows in micro/nano-channels, particularly as
the Knudsen number increases in the transition regime. When Kn = 0.2, all of the considered
wall functions except ψ1 model are in good agreement with MD data [34], but the power
law model provides the best prediction in the near wall region at this level of rarefaction.
For Kn = 0.5 and 1, the power law model still presents the most accurate results among the
considered relations, although it over predicts the value of the MFP, particularly in the bulk
region. Finally, at Kn = 2 when the rarefaction effects dominate the flow behavior, the power
law model significantly over predicts the effective MFP in the near wall region as well as
the bulk region. However, the exponential and Arlemark models provide better predictions
in the near wall region, although they significantly underestimate the value of MFP far away
from the walls.

4 Boundary Conditions

Several slip schemes have been developed to capture the slip velocity at the wall using the
lattice Boltzmann model. The diffuse scattering [35], diffuse-bounce back [24] and bounce
back-specular [36] boundary conditions are the most representative ones. In this study, we
implement the method proposed in [28] in order to realize the slip velocity at the wall. In this
method the bounce back boundary condition is applied to the walls of the channel and the
slip velocity is realized by defining an effective anti-symmetric relaxation time. It has been
demonstrated that this method can appropriately eliminate the artifacts in prediction of slip
velocity at the wall, if the relaxation parameters are defined properly [28]. On the other hand,
this method utilizes the standard bounce back at the solid nodes. Therefore, there is no need
to implement the combination factor, which is mainly used in the diffuse-bounce back and
bounce back-specular boundary conditions, in order to specify the portion of particles that
reflects specularly or diffusively when they hit the wall [37]. Consequently, this approach
can achieve faster computational performance and it can provide better numerical stability
as well. In this method, the second order slip velocity model is employed in order to derive
the effective anti-symmetric relaxation time as follows [28]:

τ a =
[√

6πH(A1 + 2A2Kne)

8
+ 8τ s − 1

16τ s − 8

]
(14)

where Kne = ψKn is the effective Knudsen number. It should be noted that the Knudsen
number varies across the length of the channel as follows:

Kn = KnoPo
P(x)

(15)

where, Kno and Po are the Knudsen number and pressure at the outlet of the channel [30].
Also, A1 and A2 are the coefficients of the second order slip velocity model which are given
by:

A1 = 2 − σ

σ
(1 − 0.1817σ) (16a)

A2 = 1

π
+ A2

1

2
(16b)
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in which σ = 1 is the tangential accommodation coefficient.
The symmetric relaxation time is also a function of Knudsen number as follows [27,30]:

τ s = 1

2
+

√
6

π
KneH (17)

Therefore, the relaxation time becomes a function of the gas MFP as follows:

τ s = 1

2
+

√
6

π
ψ × λ (18)

The average pressure boundary condition is imposed at the inlet and outlet of the channel by
using the extrapolation scheme introduced in [24].

5 Results and Discussion

In this part, some numerical results for the gas flow in a micro/nano-channel are presented. A
grid independence study is performed to determine the appropriate grid resolution. Accord-
ingly, the grid size Nx × Ny = 1100 × 11 is utilized in all simulations, unless otherwise
stated. Furthermore, in all cases, the Mach number is lower than 0.043 which satisfies the
low Mach number assumption of the LBM.

The velocity profiles normalized by the average velocityUave are given in Fig. 3. Here, the
constant pressure boundary condition is applied to the inlet and outlet of the channel with the
pressure ratio Pin/Pout = 2 and the DSMC solution [15] is employed in order to evaluated
the accuracy of the present LBEmodel using various wall distance functions. As can be seen,
at the early transition flow regime (Fig. 3a), the velocity profiles of all models are almost
similar and the wall function correction plays a negligible role in the near wall region. In this
case, the LBE without using wall function correction can satisfactorily present the velocity
slip at the wall. As the Knudsen number increases, the deviation between different models
becomes remarkable. For instance, at Kn = 1 (Fig. 3b) ψ1 and ψ2 models significantly over
predict the slip velocity at the wall and under predict the maximum velocity at the centerline
of the channel, although they still provide better predictions rather than the standard TRT
model without using wall function corrections. On the other hand, the more sophisticated
models (i.e., power law, Arlemark and exponential models) remain relatively accurate at this
Knudsen number. For Kn = 5 (Fig. 3c) the power law, Arlemark and exponential models
over predict the slip velocity at the wall and under predict the maximum velocity at the
centerline of the channel. However, they can significantly improve the accuracy of velocity
profiles in comparison with the standard TRT-LBE without using wall functions. In contrast,
ψ1 model and the LBE without using wall functions fail to work at Kn = 5. At the upper
bound of the transition regime (Fig. 3d), the exponential, Arlemark and power low functions
can still capture the Knudsen layer effects reasonably. However, the results deviate from
those obtained by DSMC method, particularly in the near wall region. The differences of
slip velocities obtained by the present LBE using the exponential, power law and Arlemark
models with those obtained by DSMC method for Kn = 10 are about 4.25, 4.98 and 5.02 %,
respectively. It is evident that the exponential relation is in a slight better agreement with
DSMC results at the channel walls. On the other hand, the agreement between the centerline
velocity predicted by these wall functions and those obtained by DSMCmethod deteriorates
as the Knudsen number exceeds 5. It should be pointed out that the present LBE model using
ψ1 correction function and also without using wall functions encounters some numerical
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Fig. 3 Comparison of the present TRT-LBEvelocity profiles using different wall functionswithDSMC results
[15] at different Knudsen numbers

instabilities for Kn = 10 and therefore, it cannot produce reasonable results. In order to
overcome this deficiency, a more robust initial condition may be helpful.

The above comparison clearly reveals that the wall function corrections, which are based
on the probability distribution function (i.e., exponential, Arlemark and power law models),
can significantly improve the prediction of velocity profiles in the transition flow regime.
However, the other models (i.e., ψ1 and ψ2 models) work only at the early transition flow
regime. Similarly, in Zhang et al. [8] it is reported that ψ1 model provides an improvement
in the LBE predictions up to Kn ∼ 0.5. This conclusion is in agreement with the present
observations.

In order to investigate the performance of the wall functions in prediction of flow behavior,
the normalized mass flow rate, which is defined as m̄ = 2ṁ/(ρave

√
2RT ), where ρave is the

average density between the inlet and outlet, is plotted against the inlet Knudsen number.
The results are presented for a channel with aspect ratio 20 and pressure ratio 10/7 in order to
compare them against the IP-DSMC data [38]. As can be seen from Fig. 4, the standard LBE
model is incapable of describing the mass flow behavior for Knudsen numbers higher than
0.4. Furthermore, the LBE using ψ1 model can appropriately capture the Knudsen minimum
phenomenon, but it fails towork forKn> 1.On the other hand,ψ2 and power lawmodels over
predict the mass flow rate value in comparison with the IP data when the Knudsen number
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Fig. 4 Variation of normalized
mass flux against inlet Knudsen
number. Comparison of
IP-DSMC results [38] with
TRT-LBE using various wall
function models
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Fig. 5 Pressure deviation from the linear pressure for outlet Knudsen numbers of 0.0194 and 0.194. Com-
parison between DSMC and IP results (Data taken from [24]) with present TRT-LBE using different wall
functions

exceeds 1. Another important key point is that the present TRT-LBEusing the exponential and
Arlemark expressions remains in quite good agreement with the IP solution up to Kn = 10.

Pressure deviation from the linear pressure is recognized as one of the important features
of gas flows through micro/nano-channels. Figure 5 illustrates the variation of this parameter
across the length of the channel for outlet Knudsen numbers of 0.0194 and 0.194. Here,
PLindenotes the linear pressure distribution between the inlet and outlet of the channel and
normalized length is defined as X∗ = x/L , where L is the total length of the channel.
It is noted that in this part, the grid resolution 2100 × 21 is utilized. As can be seen, for
Kn = 0.0194, which is in the slip flow regime, TRT-LBE using the exponential, Arlemark,
power law and ψ2 wall functions slightly over predict the maximum pressure deviation in
comparisonwith that of theDSMCmethod.On the other hand,ψ1 model is in good agreement
with the DSMC data. Furthermore, the results of the present TRT-LBEmodel agree well with
the analytical solution of the Navier–Stokes equations using first order slip velocity model
[23]. This is expected because for Kn = 0.0194, the Knudsen layer plays a role in a very
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Fig. 6 Pressure deviation from
the linear pressure for outlet
Knudsen number of 0.388 using
different grid resolutions.
Comparison of the TRT-LBE
using Arlemark wall function
with DSMC and IP results and
first order slip Navier–Stokes
solution of [23]
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small region close to the wall surface. Therefore, the slip Navier–Stokes equations are still
applicable in this Knudsen number. Consequently, it can be concluded that the present TRT-
LBE converges to the slip Navier–Stokes solution at very lowKnudsen numbers, as expected.
For Kn = 0.194 (Fig. 5b), the maximum pressure deviations estimated by the exponential
and Arlemark models are about 0.038 and 0.037, respectively. These values are in quite good
agreement with the pressure deviation obtained by DSMC method, which is about 0.037.
The maximum pressure deviation of the power law model is also about 0.039, which lies
above the results of the exponential andArlemarkmodels. Furthermore, it canbeobserved that
ψ1 and ψ2 models give a maximum pressure deviation of about 0.045, which is significantly
higher than that of the DSMC method. However, they still provide better predictions rather
than the standard LBE without considering wall distance functions, in which the maximum
of pressure deviation is about 0.049.

In order to indicate the convergence behavior of the presentmodel, the pressure distribution
is obtained by using four different grid resolutions for the outlet Knudsen number of 0.388.
In this part, the Arlemark wall function is implemented and the results of the simulation are
compared against the analytical solution of the Navier–Stokes equations using first order slip
velocitymodel as well as the results of the DSMC and IP-DSMC approaches. As illustrated in
Fig. 6, the solution of the present LBEmodel converges under finemeshes. On the other hand,
although the converged solution over predicts the maximum pressure deviation with respect
to the DSMC and IP-DSMC data, it has significantly better prediction rather than the slip
Navier–Stokes solution. It should be pointed out that the solution of the slip Navier–Stokes
equations (in Figs. 5, 6) is obtained without using any improvement such as wall function
implementation.

Velocity defect is another important parameter for modeling gas flows through
micro-devices. This parameter, which exhibits the formation of Knudsen layer, can be
calculated by:

Velocity defect = |ULBE −UNS | (19)

which shows the difference between the slip velocity predicted by the TRT-LBE from that
of the Navier–Stokes equations using first order slip velocity model near the wall of the
channel. In Eq. (19) velocities are normalized by the maximum velocity at the centerline of
the channel. According to Fig. 7, for low Knudsen numbers the velocity defect is small. This
indicates that the effect of Knudsen layer is negligible at low Knudsen numbers. However, as
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Fig. 7 Difference of slip velocity
predicted by the TRT-LBE using
different wall functions from
solution of the slip Navier–Stokes
equations [23]
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Fig. 8 Required computational time of the present TRT-LBE using different wall functions for different grid
sizes at outlet Knudsen number of 5

the Knudsen number increases, the Knudsen layer plays a dominant role on the flow behavior
and causes a relatively large velocity defect at the fluid-solid interface, as expected.

It has been shown up to this point that the exponential, Arlemark and power law wall
functions provide the most accurate results among the examined wall functions. Clearly,
implementation of wall functions increases the computational cost of the model. In this sec-
tion, we aim to find how much the use of wall functions affects the overall computational
performance of the TRT-LBE model. For this reason, the power law, Arlemark and expo-
nential relations are applied to a micro/nano-channel with the outlet Knudsen number of
Kn = 5. The performance of these expressions is evaluated with respect to the standard TRT
model without using wall functions. The computations are done for two different lattice
sizes800 × 8 and 1100 × 11 on a system with Intel Core i5 CPU and 4 GB random access
memory (RAM). The convergence criterion is fixed at |(Un −Uo)/Uo| < 10−6, where U is
the average velocity at the outlet cross section of the channel and subscripts n and o represent
the new and old time steps, respectively. Also, the initial values of the velocity and density
are set to be u = 0 and ρ = 1.5, respectively. As can be seen from Fig. 8, the Arlemark model
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is the most expensive relation. This model requires about 21 min to satisfy the convergence
criterion for the coarse grid structure and about 49 min for the fine grid structure, which
are about ten times higher than the standard TRT-LBE without using wall functions. How-
ever, the exponential model has a significantly better performance. This model increases the
required computational time of the standard TRT model by about two times. Furthermore,
the required computational time of the power lawmodel is also higher than the standard LBE
by about six times. It should be emphasized that the standard forms of the considered wall
functions, which are available in the literature, are implemented in this study. These relations
are obtained by using numerical integration with specific number of subintervals. Clearly, by
using a different integration method or varying the number of subintervals one can imple-
ment these wall functions with different numerical efficiency. However, the above analysis
attempts to indicate that the computational performance of the available wall functions can
be widely different. Therefore, this parameter should also be taken into consideration in order
to simulate micro/nano-gas flows using the wall function approach.

6 Conclusions

The lattice Boltzmannmodel with two relaxation times and based on the idea of wall function
approach is employed in order to study rarefied gas flows in micro/nano-channels. Several
available wall functions are implemented and evaluated from different viewpoints. The veloc-
ity profiles indicate that the Arlemark, power law and exponential models can significantly
enhance the results obtained by the TRT-LBE up to Kn = 5. Beyond that, the accuracy of
the existing wall distance functions begins to degrade. On the other hand, there is some
disagreement between the mass flux predicted by the power law expression and reference
data for Knudsen numbers higher than 1, while the exponential and Arlemark models can
appropriately predict the mass flow behavior in the transition regime. Furthermore, the other
implemented expressions (ψ1 andψ2 models) are only applicable for the early transition flow
regime (Kn ∼ 0.1). Finally, a comparative study on the computational efficiency of the wall
functions is performed, which indicates that the computational cost of the Arlemark model is
rather expensive, while the exponential function provides significantly better computational
efficiency.Overall, the exponential relation seems tobe superior in termsof accuracy and com-
putational efficiency among the consideredwall function correlations. In addition, the applica-
bility of the existing wall functions for Knudsen numbers higher than 5 is still questionable.
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