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Abstract We study the metastable dynamics of a discretised version of the mass-conserving
stochastic Allen–Cahn equation. Consider a periodic one-dimensional lattice with N sites,
and attach to each site a real-valued variable, which can be interpreted as a spin, as the con-
centration of one type of metal in an alloy, or as a particle density. Each of these variables is
subjected to a local force deriving from a symmetric double-well potential, to a weak ferro-
magnetic coupling with its nearest neighbours, and to independent white noise. In addition,
the dynamics is constrained to have constant total magnetisation or mass. Using tools from
the theory of metastable diffusion processes, we show that the long-term dynamics of this
system is similar to a Kawasaki-type exchange dynamics, and determine explicit expressions
for its transition probabilities. This allows us to describe the system in terms of the dynamics
of its interfaces, and to compute an Eyring–Kramers formula for its spectral gap. In particular,
we obtain that the spectral gap scales like the inverse system size squared.

Keywords Metastability · Kramers’ law · Stochastic exit problem · Allen–Cahn equation ·
Kawasaki dynamics · Interface · Spectral gap
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1 Introduction

The low-temperature dynamics of spatially extended systems often displays metastability:
these systems can spend considerable amounts of time in configurations that have higher
energy than their ground state. Well-known examples of such phenomena are supercooled
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water, which remains liquid at temperatures below 0 ◦C, a supersaturated gas, which does
not condensate although this would be thermodynamically more favourable, and a wrongly
magnetised ferromagnet.

Much research effort has been dedicated to the study of metastable lattice systems, such
as the Ising model at low temperature. This has led to very precise results on the time the
system spends in metastable equilibrium, on the way it moves from a metastable to a stable
state by creating a critical droplet, and on the shape of this droplet. See for instance [14] for
a review on Ising models with Glauber (spin flip) dynamics and lattice gases with Kawasaki
(particle/hole exchange) dynamics, and [27] for results based on the theory of large deviations.
A considerably more difficult case arises when there is no underlying lattice given a priori,
but particles instead evolve inRd , and one wants to describe processes such as crystallisation.
For recent results in this direction, see for instance [15,19,23].

Another type of models whose metastable behaviour is understood in detail are diffusion
processes described by stochastic differential equations with weak noise. A general large-
deviation approach to these equations goes back to the work of Freidlin and Wentzell [20],
which provides many results on transition times between attractors and on the long-time
dynamics. In the case of reversible diffusions (that is, those satisfying a detailed balance
condition), metastable timescales are governed by the so-called Eyring–Kramers formula,
derived heuristically in [18,25], and first proved in a mathematically rigorous way in [10,11].
See for instance [4] for a recent survey on various methods of proof and extensions of the
result.

A spatially extended systemof coupleddiffusions,which canbe consideredof intermediate
difficulty between lattice systems with discrete spins and systems of particles evolving inRd ,
was introduced in [6,7]. In this model, the spins are still attached to a lattice (which is periodic
and one-dimensional of size N ), but they take values inR instead of {−1,+1}. Each spin feels
a local symmetric double-well potential withminima in±1, and is coupled ferromagnetically
to its nearest neighbours. In addition, each spin is subjected to independent white noise. For
weak coupling, the dynamics of this system was shown to be similar to that of an Ising
model with Glauber spin-flip dynamics. Indeed, the energy of configurations increases with
the number of interfaces, defined as pairs of neighbouring spins having different sign. As a
consequence, the system favours configurations with few clusters of spins having the same
sign.On the other hand,when the coupling scales like N 2, the system converges as N → ∞ to
an Allen–Cahn SPDE with space-time white noise, whose metastable behaviour was studied
in [2,9].

A natural question that arises is whether one can construct a similar system, with contin-
uous spins attached to a discrete lattice, but whose dynamics for weak coupling resembles
Kawasaki exchange dynamics instead of Glauber spin-flip dynamics. In other words, one
would like to impose that the total magnetisation (or the total mass in lattice gas termi-
nology) is conserved. A simple way of doing this is to start with the potential energy of the
system considered in [6,7], and to constrain it to the hypersurfacewhere the sum of all spins is
constant, say equal to zero. This is nothing but the discretised version of the mass-conserving
Allen–Cahn equation introduced in [29]. The objective of the present work is to study the
metastable dynamics of this model.

It is quite easy to see that in the uncoupled limit, the potential energy of the constrained
system is minimal when exactly half the sites have value +1, while the other half have
value −1. Such states have a clear particle system interpretation: just consider each +1 as
a particle and each −1 as a hole. As in the unconstrained case, for weak positive coupling,
the energy of configurations increases with the number of interfaces. Therefore the ground
state consists of the configurations having exactly one cluster of particles and one cluster
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336 N. Berglund, S. Dutercq

Fig. 1 Example of evolution of the constrained system (2.7) with N = 512 sites. Space goes from left to
right, and time from top to bottom. Blue and red correspond to spin values close to −1 and 1 respectively.
The system starts in a configuration with 40 interfaces, many of which disappear quickly. At the end of the
simulation, the number of interfaces has been reduced to 4. Parameter values are ε = 0.02 and γ = 16. This
coupling intensity, which is much larger than considered in this work, has been chosen to obtain transitions
on an observable timescale (Color figure online)

of holes, separated by two interfaces. Higher-energy configurations have more clusters and
more interfaces. Thus if the system starts in an excited state withmany interfaces, one expects
that its clusters will gradually merge, reducing the number of interfaces, until the ground state
is reached (Fig. 1).

While our analysis will show that this picture is essentially correct, there is a complication
due to the fact that particle/hole configurations are not the only local minima of the potential
energy. Somewhat unexpectedly, there turn out to be many more “spurious” local minima,
whose coordinates are not close to ±1. The way around this difficulty is to realise that all
spurious configurations have a higher energy than the particle/hole configurations. Therefore
the long-term dynamicswill spendmost of the time near the particle/hole configurations, with
occasional transitions between them. Our main result is the characterisation of this effective
dynamics.

This paper is organised as follows. In Sect. 2, we give a precise definition of the considered
model. In Sect. 3, we describe the potential landscape of the model, meaning that we find
all local minima of the potential energy, and describe how they are connected by saddles
with one unstable direction. Section 4 uses the notion of metastable hierarchy to show that
the dynamics indeed concentrates on particle/hole configurations, and derives the effective
dynamics on these states. In Sect. 5 we use this information to characterise the evolution of
interfaces, andwe derive a sharp estimate for the spectral gap of the system,which determines
the relaxation time to equilibrium. Section 6 contains concluding remarks, while most proofs
are postponed to the appendix.

Notations If i ≤ j are integers,�i, j� denotes the set {i, i + 1, . . . , j}. The cardinality of a
finite set A is denoted by |A|, and A = B ·∪C indicates that A = B∪C with B andC disjoint.
We write 1A for the indicator function of the set A, 1ln or simply 1l for the identity matrix of
size n × n, and 1 for a column vector with all components equal to 1. Finally, we write Eμ[·]
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for expectations with respect to the law of the diffusion process started with distribution μ,
and E

x [·] in case μ is concentrated in a single point x .

2 Definition of the Model

Consider the potential Vγ : RN → R defined by

Vγ (x) =
N∑

i=1

U (xi ) + γ

4

N∑

i=1

(xi+1 − xi )
2, U (ξ) = 1

4
ξ4 − 1

2
ξ2, (2.1)

where N ≥ 2 is an integer and γ ≥ 0 is a coupling parameter.We also make the identification
xN+1 = x1, that is, we consider periodic boundary conditions. Thus x can be considered
either as an element of RN , or as an element of R�, where � is the periodic lattice Z/NZ.

The potential Vγ allows to define a diffusion process by the stochastic differential equation

dxt = −∇Vγ (xt ) dt + √
2ε dWt , (2.2)

where Wt is an N -dimensional Wiener process, and ε ≥ 0 is a small parameter measuring
noise intensity. The dynamics of this system has already been studied in [6,7]. Here we are
interested in a different system, obtained by constraining the diffusion to the hyperplane

S =
{
x ∈ R

N :
N∑

i=1

xi = 0

}
. (2.3)

To define its dynamics, let R be an orthogonal matrix mapping the unit normal vector to
S to the N th canonical basis vector eN . Let V̂γ (y) = Vγ (R−1y), and define the dynamics by

dyi,t = −∂ V̂γ (y)

∂yi,t
dt + √

2ε dWi,t , i = 1, . . . , N − 1,

yN ,t = 0, (2.4)

where W1,t , . . . ,WN−1,t are independent Brownian motions. Then xt is by definition the
process xt = R−1yt . It is easy to check that this definition does not depend on the choice of
R.

An equivalent way of defining the dynamics is to write

dyt = [−∇ V̂γ (yt ) + 〈∇ V̂γ (yt ), eN 〉eN
]
dt + √

2ε dWt (2.5)

whereWt is an (N −1)-dimensionalWiener process. Indeed, the extra term precisely ensures
that the N -th component of the drift termvanishes. Transformingback,weobtain the equation

dxt =
[
−∇Vγ (xt ) + 1

N
〈∇Vγ (xt ), 1〉1

]
dt + √

2ε dW̃t , (2.6)

where 1 denotes the vector with all components equal to 1 (hence the normalisation 1/N ),
and W̃t = R−1Wt is a Brownian motion on S. When written in components, the resulting
dynamics takes the form

dxi,t =
[
f (xi,t ) + γ

2
(xi+1,t − 2xi,t + xi−1,t ) − 1

N

N∑

j=1

f (x j,t )

]
dt + √

2ε dW̃ j,t (2.7)

123



338 N. Berglund, S. Dutercq

where f (ξ) = −U ′(ξ) = ξ − ξ3 (and the W̃ j,t are no longer independent). Note that this is
a discretised version of the mass-conserving Allen–Cahn SPDE

∂t u(t, x) = γ�u(t, x) + f (u(t, x)) − 1

L

∫ L

0
f (u(t, y)) dy + √

2ε ξ(t, x) (2.8)

with space-time white noise ξ on S. The nonlocal integral term indeed ensures that the total
mass
∫ L
0 u(t, x) dx is conserved. This equation was introduced in [29] in the case without

noise, and considered recently in [1] in the case with noise.
Systems of the form (2.2) admit a unique invariant probability measure with density

μ(x) = 1

Z
e−V (x)/ε, (2.9)

where Z is the normalisation constant, and are reversible with respect to μ. Analogous
statements hold true for the system constructed here (except that μ is concentrated on the
hyperplane S). The questions we thus ask are the following:

• How long does the system take to relax to equilibrium?
• What are the typical paths taken to achieve equilibrium, when starting in an atypical

configuration?
• Can the system be approximated by a coarse-grained process visiting only local minima

of the potential? What does this coarse-grained process look like?

3 Potential Landscape

3.1 The Transition Graph

For a general system of the form (2.2), let

S = {x ∈ R
N : ∇Vγ (x) = 0

}
(3.1)

be the set of all stationary points of Vγ . A stationary point x� ∈ S is called non-degenerate if
its Hessian matrix ∇2Vγ (x�) has a nonzero determinant. We will assume for simplicity that
all stationary points of Vγ are nondegenerate (see however [8] for results on systems with
degenerate stationary points).

TheMorse index of a nondegenerate stationary point x� is the number of negative eigen-
values of the Hessian ∇2Vγ (x�) (i.e., the number of directions in which Vγ decreases near
x�). For each k ∈ �0, N�, let Sk denote the set of stationary points of index k. The set S0 of
local minima of Vγ and the set S1 of saddles of index 1 (or 1-saddles) are the most important
for the stochastic dynamics for small ε.

By the stable manifold theorem, each 1-saddle has a one-dimensional unstable manifold
consisting in two connected components. Along each component, the value of Vγ has to
decrease, and therefore (since Vγ is confining) both components have to converge to a local
minimum of Vγ . Let G = (S0, E) be the unoriented graph in which two elements of S0
are connected by an edge in E if and only if there exists a 1-saddle z ∈ S1 whose unstable
manifold converges to these local minima.

Roughly speaking, the stochastic system behaves for small noise intensity ε like aMarkov-
ian jump process (or continuous-time Markov chain) on S0, with jump rates related to the
potential differences between local minima and 1-saddles. This is the basic idea implemented
in [20, Chapter 6], and there are many refinements on which we will comment in more detail
below.
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Fig. 2 Transition graph of the unconstrained system for N = 4 and γ = 0. Black and white circles represent
respectively coordinates equal to 1 and to −1. The two configurations (1, −1, 1,−1) and (−1, 1, −1, 1) are
not shown, because they correspond to non-optimal transitions as soon as γ > 0

In the case of the potential (2.1) without constraint, the potential landscape has been
analysed in [6]. In particular, the following properties have been obtained:

• If γ = 0, the set of stationary points is given by S = {−1, 0, 1}N . The local minima
are given by S0 = {−1, 1}N and the 1-saddles are those stationary points that have
exactly one coordinate equal to 0. They connect the local minima obtained by replacing
the 0 coordinate by −1 or +1. Thus the graph G is an N -dimensional hypercube, with
transitions consisting in the reversal of the sign of one coordinate,which canbe interpreted
as spin flips.

• There exists a critical coupling γ ∗(N ), satisfying γ ∗(N ) ≥ 1
4 for all N , such that the

transition graph G is the same for all γ ∈ [0, γ ∗(N )). Thus the local minima and allowed
transitions are the same for weak positive coupling as in the uncoupled case. What
changes, however, is that some transitions are easier than others when γ > 0: the system
prefers transitions that minimise the number of interfaces, that is, the number of nearest
neighbours with a different sign (Fig. 2). The stochastic dynamics is thus very close to
the one of an Ising model with Glauber spin-flip dynamics.

• For γ increasing beyond γ ∗(N ), the system undergoes a number of bifurcations that
reduce the number of stationary points. In particular, for γ > 1/(2 sin2(π/N )) the system
synchronises: there are only two local minima given by±(1, 1, . . . , 1), connected by the
only 1-saddle which is at the origin.

Our aim is now to obtain similar results for the graph G of the constrained system, starting
with the uncoupled case γ = 0 and then moving to small positive γ .

3.2 The Uncoupled Case

We consider in this section the dynamics of the constrained system in the uncoupled case
γ = 0. The above definitions of S0, S1 and G can be adapted to the constained case, either
by considering the N − 1 first equations in (2.4), or by solving a constrained optimisation
problem. In particular, the stationary points have to satisfy

∇V0(x) = λ1 (3.2)

for a Lagrange multiplier λ ∈ R (this is indeed consistent with (2.6)). In addition, the
constraint x ∈ S has to be satisfied.
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340 N. Berglund, S. Dutercq

In components, the condition (3.2) becomes

x3i − xi = λ, i = 1, . . . , N . (3.3)

Let λc = 2
3
√
3
. The equation ξ3−ξ = λ has three real solutions if |λ| < λc, two real solutions

if |λ| = λc and one real solution otherwise. The last case is incompatible with the constraint
x ∈ S, while the second case can only occur if N is a multiple of 3, because then the two
solutions of ξ3 − ξ = λ have a (−2 : 1) ratio.

We henceforth assume that |λ| < λc, and denote by α0, α1, α2 the distinct roots of ξ3 −
ξ − λ. Then each xi solving (3.3) has to be equal to one of the α j . We let a j be the number
of occurrences of α j , and reorder the α j in such a way that a0 ≤ a1 ≤ a2. We denote such a
stationary point by the triple (a0, a1, a2). Observe that we necessarily have a0+a1+a2 = N .

Proposition 3.1 (Local minima and 1-saddles for γ = 0) Assume that N is not a multiple
of 3, and let x� be a critical point with triple (a0, a1, a2). Then

• if 2a1 > a0 + a2, then x� is a stationary point of index a0;
• if 2a1 < a0 + a2, then x� is a stationary point of index a2 − 1.

We give the proof in “The uncoupled case” in Appendix 1. It is based on the construction
of an orthogonal basis around each stationary point, in which the Hessian matrix is block-
diagonal with blocks of size 3 at most, so that the signs of its eigenvalues can be determined.

Remark 3.2 The case 2a1 = a0+a2 can only occur if N is a multiple of 3, because a0+a2 =
N − a1 would imply a1 = N/3. In case N is a multiple of 3, there exist one-parameter
families of degenerate stationary points [17]. For simplicity we exclude this situation in all
that follows. ♦

Proposition 3.1 yields the following classification of local minima and saddles of index 1:

1. Local minima x� ∈ S0 necessarily have triple (0, a, N − a) with N/3 < a ≤ N/2.
2. Saddles of index 1 either have triple (1, a, N − a − 1) with N/3 < a ≤ (N − 1)/2, or

they have triple (N − 2 − a, a, 2) with N/2 − 1 ≤ a ≤ 2 and a < N/3. The latter case
can only occur if N = 4, and corresponds to the triple (1, 1, 2).

Example 3.3 (The case N = 4) If N = 4, then S0 contains 6 points, consisting of all possible
permutations of (1, 1,−1,−1). In addition, there are 12 saddles of index 1, consisting of all
possible permutations of (1,−1, 0, 0). Each of these saddles connects the two local minima
obtained by replacing one 0 by 1 and the other one by −1, and vice versa [17, Section 2.4,
22]. The associated transition graph is an octahedron (Fig. 3). �

We will henceforth limit the discussion to the case where N = 2M is even, N ≥ 8 and
N is not a multiple of 3. Then the 1-saddles necessarily correspond to triples of the form
(1, a, N − a − 1). In order to ease notations, we write kmax = �N/6� and
• Bk for the set of all local minima with triple (0, M − k, M + k), where k ∈ �0, kmax�;
• Ck for the set of all 1-saddles with triple (1, M − k, M + k − 1), where k ∈ �1, kmax�.

Simple combinatorics shows that the cardinalities of these families are

|B0| =
(
2M

M

)
, |Bk | = 2

(
2M

M + k

)
, |Ck | = 2(2M)!

1!(M − k)!(M + k − 1)! (3.4)
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Fig. 3 Transition graph of the
constrained system for N = 4
and γ = 0. Black and white
circles represent respectively
coordinates equal to 1 and to −1.
A few 1-saddles associated with
edges of the graph are shown,
with blue circles indicating
coordinates equal to 0

where k ∈ �1, kmax�. The factors 2 are due to the fact that except for B0, there are always
two choices for the signs of coordinates.

One can obtain explicit expressions for the coordinates of all these stationary points,
see (7.3) in “The uncoupled case” in Appendix 1. Here it will suffice to know that local
minima in B0 simply have M coordinates equal to +1 and M coordinates equal to −1.
These stationary points are expected, and admit a simple interpretation in terms of a particle
system: we just associate each coordinate equal to +1 with the presence of a particle, and
each coordinates equal to −1 with the absence of a particle, that is, a hole.

The other families of local minima B1, . . . , Bkmax have more complicated coordinates,
which do not allow for an interpretation as a particle system. In fact their presence comes a
bit as a surprise, so that we will call them spurious configurations. We will however show
below that they have a higher energy than the configurations in B0, and therefore they will
not play an important rôle when the system is observed on a sufficiently long timescale.

Example 3.4 (The case N = 8) If N = 8, there are two families of local minima B0 and B1,
and one family of 1-saddles C1 (Fig. 4).

• The family of local minima B0 corresponds to the triple (0, 4, 4), and contains all points
that have 4 coordinates equal to +1 and 4 coordinates equal to −1. They can thus be
interpreted as configurations with 4 particles and 4 holes.

• The family of local minima B1 corresponds to the triple (0, 3, 5). It contains all points
with 3 coordinates equal to 5/

√
19 and 5 coordinates equal to −3/

√
19, as well as all

configurations with opposite signs.
• The family of 1-saddles C1 corresponds to the triple (1, 3, 4). It contains all points with

1 coordinate equal to −1/
√
7, 3 coordinates equal to 3/

√
7 and 4 coordinates equal to

−2/
√
7, as well as all configurations with opposite signs. �

Now that we have determined all stationary points in S0 and S1, we have to find the
structure of the transition graph G = (S0, E). In other words, we have to determine which
local minima are connected by a given 1-saddle. This question is answered in the following
result.
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B0 C1 B1

Fig. 4 Example of transition rules for N = 8. The coordinates for family B0 are =1 and =−1. Those
for C1 are = −1/

√
7, = 3/

√
7 and = −2/

√
7. Those for B1 are = 5/

√
19 and = −3/

√
19 (Color

figure online)

Theorem 3.5 (Transition graph for γ = 0) Each 1-saddle in Ck connects exactly one local
minimum in Bk−1 with one local minimum in Bk. More precisely, if the coordinates of the
saddle have values α′

0, α
′
1, α

′
2, and those of the local minima are respectively α1, α2 and

α′′
1 , α

′′
2 , then the connection rules are given by

α1 ←→ α′
0 ←→ α′′

2 1 coordinate,

α1 ←→ α′
1 ←→ α′′

1 M − k coordinates, (3.5)

α2 ←→ α′
2 ←→ α′′

2 M + k − 1 coordinates.

We give the proof in “The uncoupled case” in Appendix 1. It is based on the construction
of two continuous paths connecting a given point in Ck to one point in Bk−1 and one point
in Bk , such that the potential decreases along the path when moving away from the saddle.
Figure 4 illustrates the connection rule in the case N = 8. See also [5, Fig. 5].

Using the relations (3.4), one easily checks that the number of saddles in Ck is indeed
equal to the number of allowed connections between elements in Bk−1 and Ck as well as Bk

and Ck .

3.3 The Case of Weak Positive Coupling

It follows from basic perturbation arguments that the transition graph G will persist for small
positive coupling intensity γ . Indeed, if we assume that N is not a multiple of 3, then all
stationary points for γ = 0 are nondegenerate, so that the implicit function theorem shows
that they still exist for small positive coupling, and move at most by a distance of order γ . In
addition, perturbation results for the eigenvalues of matrices such as the Bauer–Fike theorem
(see for instance [21]) show that the signature of nondegenerate stationary points does not
change for small γ . Finally, the proof of Theorem 3.5 essentially relies on the relation (7.10),
whose coefficients depend continuously on γ .

The drawback of this argument is that while it shows that for any N < ∞, there exists
a critical coupling γ ∗(N ) > 0 such that the transition graph does not change for 0 ≤ γ <

γ ∗(N ), it does not yield a good control on the critical coupling as N → ∞. To obtain a lower
bound on γ ∗(N ) which is uniform in N (at least for k fixed), we adapt from [6] an argument
based on symbolic dynamics to obtain the following result.

Theorem 3.6 (Persistence of the transition graph for small positive γ )There exists a constant
c > 0, independent of N , such that the stationary points of the families Bk and Ck persist
for

γ ≤ c

(
1

6
− k

N

)2
, (3.6)

without changing their index. In the particular case of stationary points of the family B0, we
have the sharper result that they persist at least as long as γ < 7

3 − √
5 � 0.097.
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The proof is given in “The case of small positive coupling” in Appendix 1. It also provides
a criterion allowing to sharpen the bound (3.6) for families other than B0, cf. (7.38), which
however is not essential in what follows.

The important aspect of this result is that all families of stationary points Bk or Ck with k
N

bounded away from 1
6 are ensured to exist up to a positive critical coupling independent of

N . Only stationary points with k = N
6 −O(N )might disappear at a critical γ which vanishes

in the large-N limit.

4 Metastable Hierarchy

Now that the structure of the transition graph G is understood, we have access to information
on timescales of the metastable process. A convenient way of doing this relies on the concept
ofmetastable hierarchy, which is an ordering of the local minima from deepest to shallowest.
We summarise this construction in Sect. 4.1, before applying it to our case in Sect. 4.2. A
more refined hierarchy can be obtained for small positive coupling γ among the local minima
of the family B0, which have a particle interpretation; we do this in Sect. 4.3.

4.1 Metastable Hierarchy and Eyring–Kramers Law

We consider in this section a general reversible diffusion process in R
N of the form (2.2),

with potential V of class C2.
Definition 4.1 (Communication height) Let x� be a local minimum of V and let A ⊂ R

N .
The communication height from x� to A is the nonnegative number

H(x�, A) = inf
γ :x�→A

sup
t∈[0,1]

V (γ (t)) − V (x�), (4.1)

where the infimum runs over all continuous paths γ : [0, 1] → R
N such that γ (0) = x� and

γ (1) ∈ A. Any path γ realising (4.1) is called a minimal path from x� to A.

The communication height measures how high one cannot avoid climbing in the potential
landscape to go from x� to A. Assuming A does not intersect the basin of attraction of x�

and all stationary points of V are nondegenerate, it is not difficult to show that the supremum
in (4.1) is reached at a 1-saddle z� of V (see for instance [8, Section 2]). In that case, one has
H(x�, A) = V (z�) − V (x�).

A notion of metastable order of local minima was introduced in [11]. In our case, due to
the fact that many minima have the same or almost the same potential value, we introduce
the following generalisation of this concept to partitions of the set of local minima. Typically,
we will apply this definition to cases where the points in each element of the partition have
approximately or exactly the same potential height.

Definition 4.2 (Metastable hierarchy of a partition) A partition S0 = P1 ·∪ P2 ·∪ . . . ·∪ Pm
of the set S0 of local minima of V is said to form a metastable hierarchy if there exists a
constant θ > 0 such that for all k ∈ �2,m�, one has

H

(
x�,

k−1⋃

i=1

Pi

)
≤ min

y�∈P


H

(
y�,

k⋃

i=1

Pi \ P


)
− θ (4.2)

for all x� ∈ Pk and all 
 ∈ �1, k − 1�. In this case, we write

P1 ≺ P2 ≺ · · · ≺ Pm . (4.3)
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H2 H3

H4

x2

x3

x1

x4

z3

z2

z4

Fig. 5 Example of a 4-well potential, with its disconnectivity tree. The metastable order is given by x�
1 ≺

x�
2 ≺ x�

3 ≺ x�
4. The communication heights Hk = H(x�

k , {x�
1, . . . , x�

k−1}) = V (z�k ) − V (x�
k ) provide the

Arrhenius exponents for mean transition times and small eigenvalues of the generator L. Prefactors in the
Eyring–Kramers law (4.4) are given in terms of second derivatives of the potential at the local minima x�

k and
1-saddles z�k

Inwords, it is easier, starting in anypoint in Pk , to reach a lower-lying set P
 in the hierarchy
than it is, starting in such an P
, to reach any other set among P1, . . . Pk . A graphical way
of constructing the hierarchy relies on the so-called disconnectivity tree [12]; it is illustrated
in Fig. 5 in a simple case where all Pk = {x�

k } are singletons. The leaves of the tree have
coordinates (x�

k , V (x�
k )); each leaf is connected to the lowest saddle reachable from it, and the

procedure is repeated after discarding the shallower local minimum whenever two branches
join.

In the particular case where all Pk are singletons, the following result by Bovier, Gayrard
and Klein connects the metastable hierarchy with certain first-hitting times and with small
eigenvalues of the infinitesimal generator L = ε� − ∇V (x) · ∇ of the diffusion.

Theorem 4.3 (Eyring–Kramers law for nondegenerate potentials [11]) Assume the local
minima of V admit a metastable order x�

1 ≺ · · · ≺ x�
m. For each k ∈ �1,m�, denote by τk

the first-hitting time of the ε-neighbourhood of {x�
1, . . . , x

�
k }, and let λk by the kth smallest

eigenvalue of−L. Assume further that for each k, there is a unique 1-saddle z�k such that any
minimal path from x�

k to {x�
1, . . . , x

�
k−1} reaches communication height only at z�k . Then for

each k ∈ �2,m�, one has

E
x�
k
[
τk−1
] = 2π

|λ−(z�k)|

√
|det∇2V (z�k)|
det∇2V (x�

k )
e[V (z�k )−V (x�

k )]/ε[1 + O(ε1/2|log ε|3/2)], (4.4)

where ∇2V (x) denotes the Hessian matrix of V at x, and λ−(z�k) is the unique negative
eigenvalue of ∇2V (z�k). Furthermore, λ1 = 0 and there exists a constant θ1 > 0 such that

λk = 1

E
x�
k
[
τk−1
]
[
1 + O(e−θ1/ε)

]
(4.5)

holds for all k ∈ �2,m�.
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Fig. 6 Value of the potential V0
along a path
B0 → C1 → B1 → . . . in the
case N = 20 (not to scale). The
associated disconnectivity tree
shows that the Bk are indeed in
metastable order. Thus the
long-time dynamics will
concentrate on the set B0 of
particle–hole configurations

C1

C2

C3

B0

B1

B2

B3

This result tells us in particular that if the system starts at a stationary point at the end of
the metastable hierarchy, it will spend longer and longer amounts of time going down the
hierarchy (possibly visiting other local minima in between), before reaching the ground state
x�
1. In particular, the spectral gap λ2−λ1 = λ2 of the system, which gives the exponential rate

of convergence to equilibrium, depends to leading order only on the second local minimum
in the hierarchy x�

2, and on the saddle z�2 connecting it to the ground state.

4.2 Hierarchy on the Families Bk

Unfortunately, Theorem 4.3 does not apply to our situation, because one cannot find a hier-
archy for singletons. This is due to the fact that the potential Vγ has many symmetries, and
therefore many stationary points have the same potential height, preventing us from fulfill-
ing (4.2) with a positive θ . In particular, in the uncoupled case γ = 0, the system is invariant
under the group G = SN × Z2, where SN is the symmetric group describing permutations
of the N coordinates, and the factor Z2 = Z/2Z accounts for the x �→ −x symmetry. The
families Bk and Ck each form a group orbit under G, that is, they are equivalence classes of
the form {gx : g ∈ G}.

However, we will be able to draw on results of [5], which generalise Theorem 4.3 to
Markovian jump processes invariant under a group of symmetries, and the extension of these
results to diffusion processes [16,17]. In particular, [5, Thm 3.2] shows that if the system
starts with an initial distribution which is uniform on some Bk , then a very similar result
to Theorem 4.3 holds true. The only difference is that the prefactor in the Eyring–Kramers
law (4.4) has to be multiplied by a factor which can be explicitly computed in terms of
stabilisers of the group orbits.

The following result provides a metastable order on the Bk , which is exactly what is
required to apply the theory from [5,16,17] in the uncoupled case.
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Theorem 4.4 (Metastable hierarchy on the Bk) If γ = 0, then the families Bk satisfy a
metastable order given by

B0 ≺ B1 ≺ · · · ≺ Bkmax . (4.6)

Furthermore, any minimal path from Bk to Bk−1 reaches communication height only on
saddles in Ck. The hierarchy (4.6) still applies for sufficiently small positive γ , the only
difference being that all points inside a given Bk do not necessarily have the same potential
value.

We give the proof in “Hierarchy of the Bk” in Appendix 2. The situation is illustrated
in Fig. 6. As k increases from 0 to kmax, the potential height of the Bk increases, while the
barrier height between Ck and Bk decreases. See “Hierarchy of the Bk” in Appendix 2 for
explicit expressions for these potential values. Applying [5, Thm 3.2], we obtain in particular
the following result.

Corollary 4.5 For k ∈ �1, kmax�, let τk−1 be the first-hitting time of the ε-neighbourhood of
B0 ∪ · · ·∪ Bk−1. If the initial distribution μ of the system is concentrated on Bk ∪ · · ·∪ Bkmax

and invariant under G, then for γ = 0 one has

E
μ
[
τk−1
] = 2π

|λ−(z�k)|(M + k)

√
|det∇2V0(z�k)|
det∇2V0(x�

k )
e[V0(z�k )−V0(x�

k )]/ε[1 + O(ε1/2|log ε|3/2)],
(4.7)

where x�
k is any local minimum in Bk, z�k is any saddle in Ck, and M = N/2.

Proof Theorem 3.2 in [5] shows that in the case of a symmetric initial distribution, the usual
Eyring–Kramers formula (4.4) has to be multiplied by the factor |Gx�

k
∩Gx�

k−1
|/|Gx�

k
|, where

Gx = {g ∈ G : g(x) = x} is the stabiliser of x . If k ≥ 1, then |Gx�
k
| is the number of

permutations that leave invariant any element in Bk , and is equal to (M − k)!(M + k)!.
Similarly, |Gx�

k
∩ Gx�

k−1
| is the number of permutations leaving invariant any two elements

in Bk and Bk−1 connected in the transition graph G, which is equal to (M − k)!(M + k − 1)!.
��

Note the extra factor (M + k)−1 in (4.7). In fact, M + k is also the number of saddles in
Ck that are connected with any given element of Bk (cf. [5, Eq. (2.25)]). The interpretation
of this factor is that since the system has M + k different ways to make a transition from a
given x�

k ∈ Bk to Bk−1, the transition time is divided by this factor.
The above result will still apply for small positive coupling, but with a more complicated

expression for the prefactor. This is because the system is no longer invariant underSN ×Z2,
but under the smaller group DN × Z2, where DN is the dihedral group of symmetries of a
regular N -gon. The important aspect for us is that we still have a control of the time needed to
reach the family of stationary points B0, which lie at the bottom of the hierarchy and have an
interpretation in terms of particle–hole configurations. The dynamics among configurations
in B0 is much slower than the relaxation towards B0, because it involves crossing the potential
barrier from B0 to B1 via C1. We will analyse it in more detail in the next section.

4.3 Hierarchy on B0 and Particle Interpretation

We assume in this section that 0 < γ � γc, where γc is the critical coupling below which
all stationary points in B0, B1 and C1 exist without bifurcating. The central observation in
order to classify points in B0 is that if x�(γ ) is any critical point of Vγ , then
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Vγ

(
x�(γ )
) = V0

(
x�(0)
)+ γ

4

N∑

i=1

(
x�
i+1(0) − x�

i (0)
)2 + O(γ 2). (4.8)

This is because V0(x�(γ )) = V0(x�(0)) + O(γ 2), as the first-order term in γ vanishes
since ∇V0(x�(0)) = λ1 is orthogonal to x�(γ ) − x�(0), which belongs to the hyperplane
S. The first term on the right-hand side of (4.8) is constant on each Bk and each Ck . The
second term is determined by the number of nearest-neighbour coordinates of x�(0) that are
different, which we are going to call interfaces of the configuration.

In particular, if x�(0) ∈ B0, we know that all its components have values ±1. We define
its number of interfaces as

I1/−1(x
�) =

N∑

i=1

1{x�
i (0)�=x�

i+1(0)} (4.9)

so that we have

Vγ

(
x�(γ )
) = V0

(
x�(0)
)+ γ I1/−1(x

�) + O(γ 2) (4.10)

where V0(x�(0)) = − 1
4N . Furthermore, we define the number of interfaces at site i as

I1/−1(x
�, i) = 1{x�

i−1(0)�=x�
i (0)} + 1{x�

i (0)�=x�
i+1(0)} ∈ {0, 1, 2}. (4.11)

Interpreting each 1 as a particle and each −1 as a hole, it is natural to introduce the
following terminology:

• a site i with 2 interfaces will be called an isolated particle or hole;
• a sequence of at least 2 contiguous particles or holes will be called a cluster;
• a site with 1 interface lies at the boundary of a cluster;
• a site without interface belongs to the bulk of a cluster.

Lemma 4.6 Let x� be a critical point in B0 and write M = N
2 ≥ 4. Then the following

properties hold.

1. The total number of interfaces I1/−1(x�) is even.
2. If I1/−1(x�) = 2, then x� consists in a cluster of M particles and a cluster of M holes.
3. If I1/−1(x�) > M, then x� has at least one isolated site.
4. Among the x� ∈ B0 with I1/−1(x�) ∈ �4, M�, there exist both configurationswith isolated

sites and configurations without isolated sites.

Proof Denote by Nc the number of clusters, by Ni the number of isolated sites, and by
p = I1/−1(x�) the number of interfaces. Then we have p = Nc + Ni, which is necessarily
even. Since clusters have at least two sites, N ≥ 2Nc + Ni, implying Nc ≤ N − p and thus
Ni ≥ 2p − N . Thus if p > M , then Ni > 0. If 4 ≤ p ≤ M , then a possible configuration
consists in p−2 clusters of size 2, leaving at least 4 sites that can be split into 2 more clusters.
Another possibility is to have p − 2 isolated sites, leaving at least N − 2 sites that can again
be split into 2 clusters. If p = 2, we necessarily have 2 clusters of equal size. ��

This result motivates the following notation for configurations in B0:

• A2 denotes the set of all configurations with interface number I1/−1(x�) = 2;
• for even p ∈ �4, M�, Ap denotes the set of all configurations x� ∈ B0 with p interfaces

having at least one isolated site, and A′
p denotes the set of configurationswith p interfaces

having no isolated site;
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B0

B0

B1

C1

C1

Fig. 7 Example of an allowed transition, from a configuration in B0 with two interfaces to a configuration in
B0 with 4 interfaces. The net effect is that a particle has hopped by two sites

• for even p ∈ �M + 1, N�, Ap denotes the set of configurations with p interfaces (which
all have at least one isolated site).

We now need to determine the communication heights between configurations in these
different sets for small positive γ . For this, we have to take into account the fact that any
transition between two configurations in B0 involves crossing two 1-saddles in C1, separated
by an element of B1 (Fig. 7). The communication height will thus be determined by the
highest of the two saddles. Examining the different possible cases yields the following result,
which is proved in “Hierarchy on B0” in Appendix 2.

Proposition 4.7 (Transitions between configurations in B0) Let x�
1(γ ), x�

2(γ ) ∈ B0 be two
particle/hole configurations, and denote by p = I1/−1(x�

1(0)) the number of interfaces of
x�
1(0). Then a transition between these configurations is possible if and only if x�

2(0) is
obtained by interchanging a particle and a hole in x�

1(0). The interface number of x�
2(0)

satisfies

I1/−1
(
x�
2(0)
) ∈ {p − 4, p − 2, p, p + 2, p + 4}. (4.12)

The communication height from x�
1(γ ) to x�

2(γ ) admits the expansion

H
(
x�
1(γ ), x�

2(γ )
) = H (0) + γ H (1)(x�

1(0), x
�
2(0)
)+ O(γ 2), (4.13)

where

H (0) = V0(C1) − V0(B0) = M(M − 1)

4(M2 − 3M + 3)
(4.14)

depends only on M = N
2 , while H

(1)(x�
1(0), x

�
2(0)) also depends on p and on the number of

interfaces of the two exchanged sites as detailed in Table 1.

Table 1 shows that all allowed transitions between particle/hole configurations have simple
physical interpretations. In particular, only the last four types of transitions decrease the
number of interfaces. Types V.b and V.c can be viewed as an isolated particle merging with

123



Interface Dynamics of a Metastable Mass-Conserving… 349

Table 1 List of allowed transitions between elements of B0, viewed as a particle moving into a hole

Transition �p H (1)(x�
1(0), x�

2(0)
)

Saddle

I

. . . . . . . . .
+4

10M2 − 36M + 36 − 3p

4(M2 − 3M + 3)
[0, 2, p + 2]

II.a

. . . . . . . . .
+2

2(M − 3)2 − 3p

4(M2 − 3M + 3)
[0, 2, p]

II.b

. . . . . . . . .
II.c

. . . . . .

III

. . . . . . . . .
0

−2M2 + 6M − 3p

4(M2 − 3M + 3)
[1, 1, p − 1]

IV.a

. . . . . . . . .
0

−6M2 + 12M − 3p

4(M2 − 3M + 3)
[0, 2, p − 2]

IV.b

. . . . . . . . .
IV.c

. . . . . .
IV.d

. . . . . .
V.a

. . . . . . . . .
−2

V.b

. . . . . . . . .
V.c

. . . . . .
VI

. . . . . . . . .
−4

The different columns show, respectively, the type of transition, the change �p of the number of interfaces,
the first-order correction to the communication height, and the numbers of interfaces of types α′

0/α
′
1, α

′
0/α

′
2

and α′
1/α

′
2 of the highest saddle encountered during the transition (“Hierarchy on B0” in Appendix 2)

another particle (isolated or at the boundary of a cluster), type V.a as a particle splitting from
another one to fill a hole between two particles, and type VI as an isolated particle jumping
into a hole between two particles. Types I and II are just the reversed versions of types VI
and V, while all transitions of type III and IV are their own reverse.

Figure 8 shows the allowed transitions in the case N = 8; only transitions thatminimise the
communication height are shown. Figure 9 shows the case N = 16. Note that in accordance
with Lemma 4.6, only configurations with p ≤ M interfaces appear in the two types Ap

(with isolated particles and/or holes) and A′
p (without isolated particles and/or holes).
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A8

A6 A6

A4 A4

A4

A2

VI

V

VI

V

III

V

Fig. 8 Minimal transitions between particle/hole configurations in B0 for N = 8. Arrows indicate transitions
that decrease the energy, and are labelled according to Table 1. Each node displays only one representative of
an orbit for the group action of DN × Z2. The other elements of an orbit are obtained by applying rotations,
reflections and interchanging particles and holes. Blue nodes represent stationary points in B1. Not shown are
transitions within the families Ap and A′

p , which are of type III or IV

A16 A12 A8 A4

A14 A10 A6 A2

A8

A6

A4

Fig. 9 Minimal transitions between particle/hole configurations in B0 in the case N = 16. Arrows indicate
transitions that decrease the energy

The first-order correction H (1) to communication heights depends not only on the number
M of particles, but also on the number p of interfaces. This is a nonlocal effect of the
mass-conservation constraint. However, in the limit M → ∞, the four possible corrections
converge respectively to 5

2 ,
1
2 , − 1

2 and − 3
2 , i.e. they no longer depend on p.
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With this information at hand, it is now possible to determine the metastable hierar-
chy among the families Ap and A′

p . The result, which is proved in “Hierarchy on B0” in
Appendix 2, reads as follows.

Theorem 4.8 (Metastable hierarchy of particle/hole configurations) Let M ′ be the largest
even number less or equal M = N

2 . Then

A2 ≺ A′
4 ≺ A′

6 ≺ · · · ≺ A′
M ′−2 ≺ A′

M ′ ≺ A4 ≺ A6 ≺ · · · ≺ AN−2 ≺ AN . (4.15)

defines a metastable order of the families Ap and A′
p.

5 Analysis of the Dynamics

5.1 Interface Dynamics

The transition rules and communication heights given in Proposition 4.7 and the metastable
hierarchy obtained in Theorem 4.8 yield complementary information on the dynamics
between particle/hole configurations in B0. Recall that the process behaves essentially as a
Markovian jump processwith transition rates of order e−H(x�

i ,x
�
j )/ε, while the hierarchy (4.15)

classifies the states according to the time the process spends in them in metastable equilib-
rium.

At the bottom of the metastable hierarchy, we find the set A2 of configurations having one
cluster ofM particles: this constitutes the ground state of the system, which can be interpreted
as a solid or condensed phase. At the top of the hierarchy on B0, we find the set AN of states
with N interfaces. These consist in M isolated particles, and can be interpreted as a gaseous
phase.

The transition graph implied by Proposition 4.7 (and illustrated in Figs. 8 and 9) shows
that when starting in the configuration AN , the most likely transitions gradually decrease the
number p of interfaces, in steps of 2 or 4. Thus the system tends to gradually build clusters
of increasing size. As the communication heights given in Table 1 increase as p decreases,
this condensation process becomes slower as the size of clusters increases. This is different
from the usual Kawasaki dynamics, in which the transition rates depend only on the change
�p of the number of interfaces. Note in particular that for given p, transitions of type IV, V
and VI all occur at the same rate.

When the number p of interfaces reaches M (meaning that there are on average 2 particles
per cluster), new configurations A′

p become possible. These consist of p clusters separated by
at least 2 sites, and appear as dead ends on the transition graph. The metastable order (4.15)
shows that these configurations are actually more stable than those of type Ap , p ≥ 4, which
have isolated particles or holes, and act as gateways to configurationswith fewer interfaces. In
particular, configurations in A′

4 are thosewith the longest metastable lifetime. The system can
spend considerable time trapped in configurations with p ≥ 2 clusters of particles, separated
by p clusters of holes (as seen in Fig. 1).

5.2 Spectral Gap

Another interesting information on the process that can be obtained from its metastable
hierarchy is its spectral gap. We already know that the generator L admits the eigenvalue 0,
which is associated with the invariant distribution (2.9). This eigenvalue is simple because
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the process is irreducible and positive recurrent. The spectral gap is thus given by the smallest
nonzero eigenvalue λ2 of −L, which governs the rate of relaxation to equilibrium.

At first glance, one might think that the spectral gap has order e−(Vγ (z�)−Vγ (y�))/ε , where
z� is a 1-saddle inC1 and y� is a local minimum in B1. Indeed, this is the inverse of the longest
transition time obtained in Corollary 4.5. However, the corollary only applies to symmetric
initial distributions, and transitions from B1 to B0 via C1 are not the slowest processes of
the system. In fact, this role is played by transitions between configurations in A2, which
occur via saddles in C1, leading to a spectral gap of order e−(Vγ (z�)−Vγ (x�))/ε, where x� is a
local minimum in A2 rather than B1. Applying the theory for symmetric processes in [5], we
obtain the following result. Its proof is given in “Proofs: spectral gap” in Appendix 3.

Theorem 5.1 (Spectral gap) If ε is small enough, then the smallest nonzero eigenvalue of
−L is given by

λ2 = 4 sin2
(

π

N

) |λ−(z�)|
2π

√
det∇2Vγ (x�)

|det∇2Vγ (z�)| e
−[Vγ (z�)−Vγ (x�)]/ε[1 + O(ε1/2|log ε|3/2)],

(5.1)

where x� is any configuration in A2, and z� is any saddle in C1 whose limit as γ → 0 has
exactly 3 interfaces. In particular, we have

Vγ (z�) − Vγ (x�) = M(M − 1)

4(M2 − 3M + 3)
+ γ

M2 − 6M + 6

2(M2 − 3M + 3)
+ O(γ 2)

= 1

4
+ 1

2
γ + O(N−1) + O(γ 2). (5.2)

Furthermore,

|λ−(z�)|
√

det∇2Vγ (x�)

|det∇2Vγ (z�)| = √
2

[
M2 − 3M + 3

(M − 3
2 )

√
M(M − 3)

]M−2

+ O(γ )

= √
2 + O(N−1) + O(γ ). (5.3)

The fact that the spectral gap (5.1) decays like N−2 for large N is highly nontrivial. It is
related to the fact that the symmetry group DN × Z2 admits irreducible representations of
dimension 2, and its computation requires the full power of the theory developed in [5].

Physically, this result means that some transitions between states in A2 require a time of
order N 2 e1/4ε, i.e., increasing as the square of the system size when the noise intensity ε

is constant. In other words, the motion of interfaces slows down like N−2 when the system
becomes large.

6 Conclusion

Let us briefly summarise the main results obtained in this work.

• Using the concept of metastable hierarchy, the long-term dynamics of the system can
be reduced to an effective process jumping between particle/hole configurations. These
configurations exist as long a the coupling intensity γ is smaller than a critical value,
bounded below by a constant independent of the system size.
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• The effective dynamics tends to reduce the number of interfaces, and slows down as
this number decreases. As soon as the average size of clusters reaches 2, the system
can get trapped in configurations without isolated sites, which are more stable than any
configuration with isolated sites.

• The spectral gap is of order N−2 e−1/4ε, which decreases as the square of the inverse of
the system size. This means that transitions between the N configurations forming the
ground state A2 slow down as N increases.

We emphasise that all results obtained here apply for arbitrarily large but finite system
size N . In fact, some quantities like the number θ defining the metastable hierarchy go to
zero in the limit N → ∞, so that the orders (4.6) and (4.15) only make sense for finite N . We
do not claim either that the error terms of order ε1/2|log ε|3/2 in (5.1) and (4.7) are uniform
in N , though results obtained in a similar situation in [3] indicate that they probably are.

A different situation of interest, not considered here, arises when the coupling intensity
γ grows like N 2. Then one expects that the system converges to a mass-conserving Allen–
Cahn SPDE on a bounded interval, which has considerably fewer metastable states. Indeed,
an analogous scenario was obtained in [7], where the unconstrained systemwith γ ∼ N 2 was
shown to have only 2 local minima, and at most 2N saddles of index 1. If, by contrast, one has
1 � γ � N 2, a scaling argument shows that the system should converge to an Allen–Cahn
SPDE on a growing domain, which admits more metastable states; see in particular [28,31]
for results in the unconstrained case, and [26] for a recent convergence result in dimension
2.

The behaviour of the constrained system for lattices of dimension larger than 1 remains
so far an open problem. The phenomenology is expected to be different, because the energy
of clusters then depends not only on the size of their interfaces, but also on the size of their
bulk. This can result in scenarios where the interface dynamics accelerates once a critical
droplet size has been reached, as is well known for lattice systems with standard Kawasaki
dynamics [14].

Acknowledgments The idea of studying the constrained process considered in this work goes back to a
question Erwin Bolthausen asked after a talk given in Zürich by the first author on the unconstrained model
studied in [6,7].

Appendix 1: Proofs: Potential Landscape

The Uncoupled Case

Proof of Proposition 3.1 Consider a critical point x� of the constrained system with triple
(a0, a1, a2). Recall that this means that x� has a j coordinates equal to α j , j = 0, 1, 2, where
the α j are distinct roots of ξ3 − ξ − λ for some λ ∈ (−λc, λc). By Vieta’s formula, these
roots satisfy

α0 + α1 + α2 = 0. (7.1)

We always have a0 + a1 + a2 = N , and by convention a0 ≤ a1 ≤ a2. Note that we may
assume a0 �= a2, since otherwise all a j would be equal, and thus N would be a multiple of
3, which is excluded by assumption.

Combining (7.1) with the constraint
∑

x�
i = a0α0 + a1α1 + a2α2 = 0 yields the relation

(a1 − a0)α1 + (a2 − a0)α2 = 0. (7.2)
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Solving for α2 and using the fact that all α3
j − α j are equal, a short computation shows that

α0 = ±(a1 − a2)R
1/2,

α1 = ±(a2 − a0)R
1/2, (7.3)

α2 = ±(a0 − a1)R
1/2,

where

R = a2 + a1 − 2a0
(a1 − a0)3 + (a2 − a0)3

= 1

a20 + a21 + a22 − a0a1 − a0a2 − a1a2
. (7.4)

We now turn to determining the signature of the Hessian at these critical points of the
potential Vγ restricted to the hyperplane S. This signature does not depend on the parametri-
sation of S, so that it is equal to the signature of the Hessian of

Ṽγ (x1, . . . , xN−1) = Vγ (x1, . . . , xN−1,−x1 − · · · − xN−1). (7.5)

Computing the Hessian of Ṽγ at x� shows that it has the form

H =
⎛

⎜⎝
(3α2

0 − 1)1la0 0 0

0 (3α2
1 − 1)1la1 0

0 0 (3α2
2 − 1)1la2−1

⎞

⎟⎠+ (3α2
2 − 1)

⎛

⎜⎜⎝

1 · · · 1
...

. . .
...

1 · · · 1

⎞

⎟⎟⎠ ,

(7.6)

where 1la denotes the identity matrix of size a. We now distinguish between the following
cases.

1. (a0, a1, a2) = (0, 0, N ). Then x� = 0, and one easily sees that −H is positive definite,
so that x� is a saddle of index N − 1.

2. a0 = 0 and a1 ≥ 1. Using the expressions (7.3), we obtain that 3α2
1 − 1 > 0 and

3α2
2 − 1 has the same sign as 2a1 − a2. Let e1, . . . , eN−1 denote the canonical basis

vectors. Then {e1 − ei }i∈�2,a1� are eigenvectors of H with eigenvalue 3α2
1 − 1, and

{ea1+1 − ei }i∈�a1+2,N−1� are eigenvectors of H with eigenvalue 3α2
2 − 1.

To find the remaining two eigenvalues, let u =∑a1
i=1 ei and v =∑N−1

i=a1+1 ei . These two
vectors span an invariant subspace of H , in which the action of H takes the form

M =
(
3α2

1 − 1 + a1(3α2
2 − 1) (a2 − 1)(3α2

2 − 1)

a1(3α2
2 − 1) a2(3α2

2 − 1)

)
. (7.7)

Computing the determinant and the trace of M, one sees that if 2a1 > a2, then the
two eigenvalues of M are strictly positive, so that x� is a stationary point of index 0. If
2a1 < a2, then M has one strictly positive and one strictly negative eigenvalue, and x�

has index a2 − 1.
3. a0 ≥ 1. In that case one finds that 3α2

1 − 1 > 0, while 3α2
0 − 1 has the same sign as

(2a2 − a1 − a0)(a0 − 2a1 + a2) and 3α2
2 − 1 has the same sign as (2a0 − a1 − a2)(a0 −

2a1 + a2). Here it is better to invert the rôles of α1 and α2 in the expression for H .
Similarly to the previous case, one finds a0 − 1 eigenvectors with eigenvalue 3α2

0 − 1,
a2 − 1 eigenvectors with eigenvalue 3α2

2 − 1 and a1 − 2 eigenvectors with eigenvalue
3α2

1 − 1 (these eigenvectors are of the form e1 − ei , ea0+1 − ei and ea0+a2+1 − ei for
appropriate ranges of i).
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To find the other eigenvalues, let u =∑a0
i=1 ei , v =∑a0+a2

i=a0+1 ei andw =∑N−1
i=a0+a2+1 ei .

These span an H -invariant subspace, in which the action of H takes the form

M =
⎛

⎜⎝
3α2

0 − 1 + a0(3α2
1 − 1) a2(3α2

1 − 1) (a1 − 1)(3α2
1 − 1)

a0(3α2
1 − 1) 3α2

2 − 1 + a2(3α2
1 − 1) (a1 − 1)(3α2

1 − 1)

a0(3α2
1 − 1) a2(3α2

1 − 1) a1(3α2
1 − 1)

⎞

⎟⎠ .

(7.8)

In this case, one finds TrM > 0, and detM has the same sign as a0 − 2a1 + a2. If
detM < 0, then M has two strictly positive and one strictly negative eigenvalue, and
x� has index a0. If detM > 0, computing the term of degree 1 of the characteristic
polynomial of M one concludes that all eigenvalues of M are strictly positive, and that
x� has index a2 − 1. ��

Proof of Theorem 3.5 Let z� ∈ Ck be a 1-saddle. Its triple can be written (1, a − 1, N − a)

where a = N
2 − k + 1 ∈ � N

2 + 1 − kmax,
N
2 �. We shall construct a path �, connecting z� to

a point x� ∈ Bk−1 of triple (0, a, N − a), and such that the potential V0 is decreasing along
�. An analogous construction holds for the connection from z� to a local minimum in Bk .

In fact it will turn out to be sufficient to use a linear path. Reordering the components if
necessary, we may assume that x� = (α1, . . . , α1, α2, . . . , α2) with α1 repeated a times and
α2 repeated N − a times, and z� = (α′

0, α
′
1, . . . , α

′
1, α

′
2, . . . , α

′
2), with α′

1 repeated a − 1
times and α′

2 repeated N − a times. Note that these points indeed satisfy the connection
rules (3.5). Let �(t) = t z� + (1 − t)x� and set h(t) = V0(�(t)). Then a direct computation
shows that

h′(t) = (α′
0 − α1)

[
((1 − t)α1 + tα′

0)
3 − ((1 − t)α1 + tα′

0)
]

+ (a − 1)(α′
1 − α1)

[
((1 − t)α1 + tα′

1)
3 − ((1 − t)α1 + tα′

1)
]

+ (N − a)(α′
2 − α2)

[
((1 − t)α2 + tα′

2)
3 − ((1 − t)α2 + tα′

2)
]
. (7.9)

The properties of the α j and α′
j yield h′(0) = h′(1) = 0. Since h′(t) is a polynomial of

degree 3, it can be written as

h′(t) = Kt (t − 1)(t − ψ) (7.10)

for some K , ψ ∈ R. Computing the coefficient of t3 in (7.9) yields K > 0. Thus if we
manage to show that ψ > 1, we can indeed conclude that h′(t) < 0 on (0, 1), showing that
h(t) is decreasing as required. The conditionψ > 1 is equivalent to having h′′(1) < 0. Using
the expressions (7.3) of the α j , one obtains after some algebra that

h′′(1) = 2(ω′)2
[
(a − 1)(9a − 8N ) + aN 2 − a2N

]− 4ωω′N (N − a)(a − 2)

− ω2aN (N − a) + 3(ωω′)2(N − a)
[
aN 3 − 3a2N 2 + 3Na2

− (a − 1)(9a2 − 9aN + 4N 2)
]
, (7.11)

whereω = (N 2−3aN +3a2)−1/2 andω′ = (N 2−3aN +3(a2−a+1))−1/2 stem from the
terms R1/2 in (7.3). Using the fact that ωω′N (N − a)(a− 2) > 0, rearranging and replacing
ω and ω′ by their values, the condition h′′(1) < 0 can be seen to be true if the condition
g(a) < 0 holds, where

g(a) = 9(8N − 27)a4 − 3(56N 2 − 156N − 81)a3 + 3N (48N 2 − 101N − 156)a2

− N 2(56N 2 − 74N − 303)a + 2N 3(4N 2 − 37). (7.12)
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Fig. 10 The domain D in the
(γ, λ)-plane defined in (7.14) (the
boundaries of D are not straight
line segments, although they look
straight). For all (γ, λ) ∈ D, the
equation ∇Vγ (x) = λ1 admits
3N stationary points. The smaller
domain corresponds to the
parameter values where
stationary points of the family B0
can exist in the hyperplane S

γ

λ

1
4

λc

−λc

D

To check the condition, first observe that if N ≥ 4 then g(4)(a) > 0 for all a. Next check
that g(3)( N2 ) < 0 for N ≥ 4 to conclude that g(3)(a) < 0 for all a ≤ N

2 . Proceeding in
a similar way with the second and first derivatives of g, one reaches the conclusion that
g(a) is decreasing for a ≤ N

2 if N ≥ 4. It thus remains to show that g is negative at the left
boundary of its domain of definition. This follows by checking the slightly stronger condition
g( N3 + 4

3 ) < 0. ��
The Case of Small Positive Coupling

To prove Theorem 3.6, we proceed in two steps. First we ignore the constraint that stationary
points x� should belong to the hyperplane S, and prove that the equation

∇Vγ (x) = λ1 (7.13)

admits exactly 3N solutions for all (γ, λ) in a given domain. Then we obtain conditions on
(γ, λ) guaranteeing that these stationary points belong to S.

Let λc = 2
3
√
3
and define

D = {(γ, λ) ∈ [0, 1
4 ] × [−λc, λc] : |λ| + γ α̂(λ) ≤ λc(1 − γ )3/2

}
, (7.14)

where α̂(λ) is the largest root of x3 − x − |λ|. The set D is shown in Fig. 10. A simpler
sufficient condition for being in D is obtained by observing that

D ⊃ D′ = {(γ, λ) ∈ [0, 2
9 ] × [−λc, λc] : |λ| ≤ λc(1 − 9

2γ )
}
, (7.15)

owing to the fact that α̂(λ) ∈ [1, 2√
3
] for |λ| ≤ λc.

Proposition 7.1 If (γ, λ) ∈ D, then (7.13) admits exactly 3N solutions, depending continu-
ously on γ and λ.

Proof The proof, in the spirit of [24], is based on the construction of a horseshoe-type map
admitting an invariant Cantor set on which the dynamics is conjugated to the full shift on 3
symbols. First note that we may assume 0 < γ ≤ 1

4 , the case γ = 0 having already been
dealt with. Let fλ(x) = x − x3 + λ and consider the map T : R2 → R

2 given by

T (x, y) =
(
2x − y − 2

γ
fλ(x), x

)
. (7.16)
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V− V0 V+

−z0 z0 x

y

H−

H0

H+

−z0

z0

x

y

Fig. 11 The sets Vσ andHσ constructed in the proof of Proposition 7.1. The square is the set [αmin, αmax]2.
The Vσ are bounded below by g(x) − αmax and above by g(x) − αmin. Each Vσ is mapped by T to the
corresponding Hσ . Iterating T forward and backward in time produces an invariant Cantor set contained in
the intersections of the Vσ andHσ

This is an invertible map, with inverse T−1 = � ◦ T ◦ � where � is the involution given by
�(x, y) = (y, x). Furthermore, the relation T (xn, xn−1) = (xn+1, xn) is equivalent to

x3n − xn − γ

2

(
xn+1 − 2xn + xn−1

) = λ. (7.17)

This shows that fixed points of T N are in one-to-one correspondence with solutions of (7.13).
Our aim is thus to show that when (γ, λ) ∈ D, the map T has exactly 3N periodic orbits
of (not necessarily minimal) period N . To this end, we construct some subsets of R2 which
behave nicely under the map T .

We can write T (x, y) = (g(x) − y, x) where g is the function

g(x) = 2x − 2

γ
fλ(x) = 2

γ

[
x3 − (1 − γ )x − λ

]
. (7.18)

It has a local minimum at z0 = √
(1 − γ )/3 and a local maximum at −z0. Furthermore, it is

strictly increasing on (−∞,−z0) and (z0,∞) and strictly decreasing on (−z0, z0). Let αmin

and αmax be the smallest and largest roots of x3 − x − λ. Note that max{αmax,−αmin} = α̂

and that

g(αmax) = 2αmax, g(αmin) = 2αmin. (7.19)

Furthermore one can check that

(γ, λ) ∈ D ⇒ g(−z0) ≥ 2αmax and g(z0) ≤ 2αmin. (7.20)

Denote by g−1− the inverse of g with range [αmin,−z0] and introduce the “vertical” strip
V− = {(x, y) : g−1− (y + αmin) ≤ x ≤ g−1− (y + αmax), αmin ≤ y ≤ αmax

}
(7.21)

(see Fig. 11). Then we see that T maps V− to the “horizontal” strip H− = �V−. Similarly,
if g−1

0 denotes the inverse of g with range [−z0, z0], then the strip
V0 = {(x, y) : g−1

0 (y + αmax) ≤ x ≤ g−1
0 (y + αmin), αmin ≤ y ≤ αmax

}
(7.22)
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is mapped by T toH0 = �V0. In the same way, one can construct a strip V+ defined via the
inverse g−1+ of g with range [z0, αmax], which is mapped toH+ = �V+. The property (7.20)
ensures that the strips Vσ have disjoint interiors, and the same holds for the Hσ .

Consider now any finite word ω = (ω−n, . . . , ωn+1) ∈ {−, 0,+}2(n+1), and associate
with it the set

Iω =
n+1⋂

k=−n

T k(Vωk ). (7.23)

The above properties of the strips imply that all Iω are non-empty, and have pairwise
disjoint interior. In fact, the union of all Iω converges as n → ∞ to a Cantor set invariant
under T . By a standard argument [24], for every doubly infinite sequence ω ∈ {−, 0,+}Z,
there exists an Iω ∈ [αmin, αmax]2 whose orbit visits Vωn at time −n and Hωn at time n + 1
for each n ∈ N0. In particular, for any of the 3N possible N -periodic sequences ω, we obtain
exactly one N -periodic orbit of T , which corresponds to one solution of (7.13). It depends
continuously on the parameters γ and λ, because the Iω depend continuously on them. ��

Let us point out that the above result is consistent with the previously obtained properties
of the system for γ = 0. Indeed, as γ → 0, the function g defined in (7.18) becomes
singular, switching between −∞ and +∞ at the roots of x3 − x − λ, which are precisely
the α j introduced in Section 1. As a consequence, the invariant Cantor set collapses on
{α0, α1, α2}2, and the stationary points are all N -tuples with these coordinates (there are
indeed 3N of them).

In order to deal with the constraint x� ∈ S, we will need some control on the size of the
sets Vσ ∩ Hσ ′ . The following lemma provides upper bounds on the widths of the Vσ (and
thus also on the heights of the Hσ ′ ) which will be sufficient for this purpose.

Lemma 7.2 Assume that (γ, λ) ∈ D, and denote by αmin < αc < αmax the three roots of
x3 − x − λ. Then

V− ⊂ [αmin, αmin + √
γ
]× [αmin, αmax

]
,

V0 ⊂ [αc − √
γ , αc + √

γ
]× [αmin, αmax

]
,

V+ ⊂ [αmax − √
γ , αmax

]× [αmin, αmax
]
. (7.24)

Proof Denote by x1 the x-coordinate of the top-right corner of V− (see Fig. 11). Then we
have the relations

x31 − (1 − γ )x1 − λ = γαmax,

α3
min − (1 − γ )αmin − λ = γαmin. (7.25)

Taking the difference of the two lines, writing x1 = αmin +�1 and recalling the definition
z0 = √

(1 − γ )/3 yields

�1h1(�1) = γ (αmax − αmin), h1(�) = 3(α2
min − z20) + 3αmin� + �2. (7.26)

One easily checks that the map � �→ h1(�)/� is decreasing. Since x1 ≤ −z0 and thus
�1 ≤ −z0 − αmin, it follows that

h1(�1)

�1
≥ h1(−z0 − αmin)

−z0 − αmin
= 2z0 − αmin. (7.27)

123



Interface Dynamics of a Metastable Mass-Conserving… 359

As a consequence, (2z0 − αmin)�
2
1 ≤ γ (αmax − αmin), so that we conclude that

V− ⊂
[
αmin, αmin +

(
γ (αmax − αmin)

2z0 − αmin

)1/2 ]
× [αmin, αmax

]
. (7.28)

Now we claim that αmax ≤ 2z0 holds for all (γ, λ) ∈ D. Indeed, if g is the function
defined in (7.18), then we have by (7.14)

g(2z0) = 2

γ

[
λc(1 − γ )3/2 − λ

] ≥ 2α̂(λ) (7.29)

for all (γ, λ) ∈ D. Hence by (7.19) we get g(2z0) ≥ 2αmax = g(αmax), showing as claimed
that αmax ≤ 2z0 since g is increasing on [z0,∞). Using this bound in (7.28) yields the first
relation in (7.24).

In a similar way, if x2 denotes the x-coordinate of the top-left corner of V0, one obtains
that �2 = αc − x2 satisfies

�2h2(�2) = γ (αmax − αc), h2(�) = 3(z20 − α2
c ) + 3αc� − �2. (7.30)

One obtains again that � �→ h2(�)/� is decreasing, and its smallest value, reached at
�2 = αc + z0, is equal to 2z0 − αc. The other relevant coordinates can be computed in the
same way, yielding

V0 ⊂
[
αc −
(

γ (αmax − αc)

2z0 − αc

)1/2
, αc +

(
γ (αc − αmin)

2z0 + αc

)1/2 ]
× [αmin, αmax

]
,

V+ ⊂
[
αmax −

(
γ (αmax − αmin)

2z0 + αmax

)1/2
, αmax

]
× [αmin, αmax

]
. (7.31)

The conclusion follows as before using αmax ≤ 2z0 and the symmetric relation −αmin ≤
2z0. ��

Fix a triple (a0, a1, a2), with as usual the ai increasing integers of sum N . We denote by
λ0 the common value of the α3

j − α j , where {α j } j∈{0,1,2} are given in (7.3). For arbitrary
λ ∈ [−λc, λc] we define the quantity

�0(λ) = 1

N

[
a0α0(λ) + a1α1(λ) + a2α2(λ)

]
, (7.32)

where the α j (λ) are three distinct roots of x3 − x −λ, numbered in such a way that α j (λ0) =
α j . By construction, we have �0(λ0) = 0.

Proposition 7.1 ensures the existence, for (γ, λ) ∈ D, of a continuous family x�(γ, λ) of
solutions of (7.13), such that x�(0, λ) has a j coordinates equal to α j (λ). We set

�γ (λ) = 1

N

N∑

i=1

x�
i (γ, λ). (7.33)

It follows directly from Lemma 7.2 that

�0(λ) − √
γ ≤ �γ (λ) ≤ �0(λ) + √

γ . (7.34)

If λ �→ �γ (λ) changes sign in D at some λ∗(γ ), then x�(γ, λ∗(γ )) is indeed a stationary
point of Vγ satisfying the constraint x� ∈ S. Assuming for the moment that such a point
exists, the following result characterises its signature.
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Lemma 7.3 Assume that (γ, λ) ∈ Int D′, where D′ ⊂ D is defined in (7.15). Then any
stationary point x� of the family Bk, with triple (a0, a1, a2) = (0, M − k, M + k), is a
local minimum of the constrained potential Vγ . Furthermore, there exists a constant c0 > 0
such that if γ ≤ c0

√
λc − |λ|, then any stationary point x� of the family Ck, with triple

(a0, a1, a2) = (1, M − k − 1, M + k), is a saddle of index 1 of the constrained potential Vγ .

Proof First we note that by definition of D′, the function g defined in (7.18) satisfies

g

(
− 1√

3

)
= 2

γ
(λc − λ) − 2√

3
>

4√
3

≥ 2αmax, (7.35)

which implies that points in V− have a first coordinate x satisfying x < −1/
√
3, and thus

3x2 > 1.By symmetry, points inV+ also have afirst coordinate satisfying3x2 > 1. Stationary
points x� in the family Bk have all coordinates in V±, since they are deformations of points
with all coordinates equal to αmin or αmax. The Hessian matrix Hγ of the unconstrained
potential at any stationary point x� defines the quadratic form

v �→ 〈v, Hγ v〉 =
N∑

i=1

(
3(x�)2 − 1

)
v2i + γ

2

N∑

i=1

(
vi − vi+1

)2
. (7.36)

This form is clearly positive definite if x� ∈ Bk , showing that x� is a local minimum of
the unconstrained potential. Thus it is also a local minimum of the constrained potential.

In the case where x� ∈ Ck , it has exactly one coordinate x in V0, for which one easily
checks that 3x2 < 1. Thus H0 has exactly one negative eigenvalue, showing that for γ = 0,
x� is a 1-saddle of the unconstrained potential. By Proposition 3.1, x� is also a 1-saddle of the
constrained potential, so that there exists a vector v ∈ S such that 〈v, H0v〉 < 0. In fact, one
can deduce from (7.8) that the negative eigenvalue of H0 is bounded above by−c1

√
λc − |λ|

for a c1 > 0, while its other eigenvalues are bounded below by c1
√

λc − |λ|. Since the second
term in (7.36) has an 
2-operator norm equal to γ (it is a discrete Laplacian, diagonalisable
by discrete Fourier transform), the Bauer–Fike theorem shows that x� remains a 1-saddle of
the unconstrained potential as long as γ < c2

√
λc − |λ| for some c2 > 0.

To show that this also holds for the constrained potential, we can use the fact that the
eigenvectors of a perturbed matrix move by an amount controlled by the size of the perturba-
tion (see for instance [13, Thm. 4.1]). In this way, we obtain the existence of an orthogonal
matrix Oγ such that δOγ = Oγ −1l has order γ /

√
λc − |λ| and Dγ = Oγ Hγ OT

γ is diagonal,
with the same eigenvalues as Hγ . It follows by Cauchy–Schwarz that

〈v, Hγ v〉 = 〈Oγ v, Dγ Oγ v〉
= 〈v, Dγ v〉 + 2〈δOγ v, Dγ v〉 + 〈δOγ v, Dγ δOγ v〉

≤
(

−c3
√

λc − |λ| + c4γ√
λc − |λ| + c5γ 2

λc − |λ|
)

‖v‖2 (7.37)

for constants c3, c4, c5 > 0. This shows that for γ /(λc−|λ|) sufficiently small, 〈v, Hγ v〉 < 0
and thus x� is a saddle of index at least 1 of the constrained system. However, the index cannot
be larger than for the unconstrained system, so that it must equal 1. ��
Proof of Theorem 3.6 If we denote by ±λ̂(γ ) the upper and lower boundaries of D, then a
sufficient condition for �γ to change sign is

�0(λ̂(γ )) >
√

γ and �0(−λ̂(γ )) < −√
γ . (7.38)
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Without limiting the generality, we assume λ0 ≥ 0. Then the first of the two conditions is the
more stringent one. For the family Bk , using the fact that αmin(λ) = − 1√

3
− O(

√
λc − λ )

near λc we obtain

�0(λ) = 1√
3

(
1

2
− 3k

N

)
− c

(
1

2
+ k

N

)√
λc − λ + O(λc − λ) (7.39)

for some constant c > 0. Since we also have λ̂(γ ) ≥ λc(1− 9
2γ ) = λc −√

3γ , inserting this
in (7.38) yields the result. The case of the families Ck is similar, noting that the bound on γ

in Lemma 7.3 ensuring that they remain 1-saddles is fulfilled under the condition (3.6).
In the case of the family B0, one can obtain sharper bounds by first noting that x� has

exactly half of its components in V− and the other half in V+. Using the bounds given in
Lemma 7.2, we see that (7.34) can be strengthened to

�0(λ) − 1

2
√

γ ≤ �γ (λ) ≤ �0(λ) + 1

2
√

γ . (7.40)

Furthermore, we have

�0(λ) = 1

2
αmin(λ) + 1

2
αmax(λ) = −1

2
αc(λ). (7.41)

A sufficient condition for the stationary point to exist is thus

− αc
(
λc(1 − 9

2γ )
)

>
√

γ . (7.42)

By definition of αc, this is equivalent to λc(1− 9
2γ ) >

√
γ (γ − 1). Taking the square yields

the condition 27γ 3 − 135γ 2 + 54γ − 4 < 0, which holds for γ < 7
3 − √

5. ��

Appendix 2: Proofs: Metastable Hierarchy

Hierarchy of the Bk

Proof of Theorem 4.4 When γ = 0, the value of the potential is constant on each family Bk

and Ck . Using the expressions (7.3) of the α j , one obtains for these values

V0(Bk) = − aN (N − a)

4(N 2 − 3aN + 3a2)
, V0(Ck+1) = −aN 2 − (a2 + 8a − 8)N + 9a(a − 1)

4(N 2 − 3aN + 3a2 − 3a + 3)
,

(8.1)

where a = M − k in both cases. Taking differences and simplifying yields

V0(Ck+1) − V0(Bk) = (a − 1)(2N − 3a)3

4(N 2 − 3aN + 3a2)(N 2 − 3aN + 3a2 − 3a + 3)
=: h1(a),

(8.2)

V0(Ck) − V0(Bk) = (N − a − 1)(3a − N )3

4(N 2 − 3aN + 3a2)(N 2 − 3(a + 1)N + 3a2 + 3a + 3)
=: h2(a).

Computing derivatives and proceeding in a similar way as in the proof of Theorem 3.5, one
obtains that a �→ h1(a) is decreasing, while a �→ h2(a) is increasing. Furthermore, it is
immediate to check that h1(N/2) = h2(N/2). We thus obtain the inequalities

. . . < V0(C2)− V0(B2)< V0(C1)− V0(B1)< V0(C1)− V0(B0)< V0(C2)− V0(B1)< . . .

(8.3)
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(cf. Fig. 6). To prove (4.6), we have to check that relation (4.2) holds for each Bk . Indeed, on
the one hand we have

H

(
Bk,

k−1⋃

i=0

Bi

)
= V0(Ck) − V0(Bk) (8.4)

for k ≥ 2, while on the other hand

H

(
B
,

k⋃

i=0

Bi \ B


)
≥ V0(C
) − V0(B
), 
 ∈ �2, k − 1�,

H

(
B0,

k⋃

i=1

Bi

)
= V0(C1) − V0(B0). (8.5)

Thus the result follows from (8.3).
When γ > 0 is sufficiently small, the same partition still forms a metastable hierarchy,

because the potential heights of the critical points depend continuously on γ . ��
Hierarchy on B0

Proof of Proposition 4.7 The fact that allowed transitions between elements in B0 corre-
spond to exchanging a particle and a hole follow directly from the connection rules (3.5).
Indeed, any element in B1, with triple (0, M − 1, M + 1), is connected to M + 1 elements of
B0, which differ by a particle/hole transposition (see also Fig. 4). Any such transition affects
at most 4 interfaces. Since the number of interface is always even, we obtain (4.12).

In order to compute communication heights, we have to determine the heights of 1-saddles
z� in C1. Recall that each of these saddles has 1 coordinate equal to α′

0, M − 1 coordinates
equal to α′

1 and M coordinates equal to α′
2, where

(α′
0, α

′
1, α

′
2) = ±ω′(1, 1 − M, M − 2), ω′ = (M2 − 3M + 3)−1/2. (8.6)

Plugging this into (4.10) yields

Vγ

(
z�(γ )
)

= V0
(
z�(0)
)+ γ

4
(ω′)2
[
M2 Iα′

0/α
′
1
(z�) + (M − 3)2 Iα′

0/α
′
2
(z�) + (2M − 3)2 Iα′

1/α
′
2
(z�)
]

+ O(γ 2), (8.7)

where, similarly to (4.9), Iα′
i /α

′
j
(z�) denotes the number of interfaces of type α′

i/α
′
j of z

�.
The first-order correction to the height of the saddle thus only depends on the triple

I (z�) = [Iα′
0/α

′
1
(z�), Iα′

0/α
′
2
(z�), Iα′

1/α
′
2
(z�)
]
, (8.8)

where we use square brackets in order to avoid confusion with the triple (0, M − 1, M + 1).
Note in particular that Iα′

0/α
′
1
(z�) + Iα′

0/α
′
2
(z�) = 2, since only 1 component of z� is equal to

α′
0. The following lemma allows to compare all these saddle heights. ��

Lemma 8.1 For all even p ∈ �2, N − 2�, the first-order terms V (1) in (8.7) satisfy

V (1)([2, 0, p]) > V (1)([0, 2, p]) > V (1)([1, 1, p − 1]) > V (1)([2, 0, p − 2]), (8.9)

where [a, b, c] stands for any saddle z� such that I (z�) = [a, b, c].
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Table 2 Interface numbers of the highest saddle encountered along aminimal path between two configurations
in B0, if the two exchanged sites i and j are not nearest neighbours

I II.a/b III IV.a/b V.a/b VI

η (0, 0) (0, 1)/(1, 0) (1, 1) (0, 2)/(2, 0) (1, 2)/(2, 1) (2, 2)

I (z�) [0, 2, p + 2] [0, 2, p] [1, 1, p − 1] [0, 2, p − 2] [0, 2, p − 2] [0, 2, p − 2]
The labels in the first row are the same as in Table 1, and η denotes the number of interfaces of i and j

Table 3 Interface numbers of
the highest saddle encountered
along a minimal path between
two configurations in B0, if the
two exchanged sites i and j are
nearest neighbours

II.c IV.c/d V.c

η (1, 1) (1, 2)/(2, 1) (2, 2)

I (z�) [0, 2, p] [0, 2, p − 2] [0, 2, p − 2]

Proof This follows from a straightforward computation, using (8.7) and the fact that (2M −
3)(M − 3) > 0. ��

It remains to apply these expressions to the different transitions in Table 1. Consider for
instance the transition shown in Fig. 7, which is of type II.b. The two saddles encountered
during the transition are of type [1, 1, p − 1] and [0, 2, p], where p = 2 is the number of
interfaces of the start configuration x�. Lemma 1 shows that the second saddle is the highest.
Combining this with the expression (4.10) of the height of x� yields

H (1) = 2(M − 3)2 + p(2M − 3)2

4(M2 − 3M + 3)
− p = 2(M − 3)2 − 3p

4(M2 − 3M + 3)
, (8.10)

which is precisely the expression given in the second line of Table 1.
The other cases are treated in a similar way. One just has to take care of the fact that

the transition rules (3.5) allow for two possible paths, depending on whether (α1, α2) =
(1,−1) + O(γ ) or (−1, 1) + O(γ ). It is thus necessary to determine the minimum of the
communication heights associated with these two paths. Table 2 shows the associated saddles
in cases where the exchanged sites are not nearest neighbours. Table 3 shows the same when
the exchanged sites are nearest neighbours. These saddle interface numbers are indeed those
shown in Table 1.

Proof of Theorem 4.8 In a similar way as in the proof of Theorem 4.4, we prove that the
relation (4.2) holds when the Ap and A′

p are ordered according to (4.15). Since all commu-
nication heights are the same when γ = 0, it will be sufficient to compare the first-order
coefficients H (1).

We start by showing that A2 ≺ A′
4 ≺ · · · ≺ A′

M ′ . For any p ∈ �4, M ′�, we note that

H (1)(A′
p, A2 ∪ A′

4 ∪ · · · ∪ A′
p−2) = H (1)(A′

p, Ap) = −2M2 + 6M − 3p

4(M2 − 3M + 3)
. (8.11)

Indeed, the highest saddle encountered along a minimal path from A′
p to A2 ∪ A′

4 ∪ . . . A′
p−2

occurs during the type-III transition from A′
p to Ap , and has interface number [1, 1, p − 1].

Since (8.11) is a decreasing function of p, the condition (4.2) is indeed satisfied.
Next we observe that

H (1)(A4, A2 ∪ A′
4 ∪ · · · ∪ A′

M ′) = H (1)(A4, A2) = −6M2 + 12M − 12

4(M2 − 3M + 3)
. (8.12)
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Indeed, here the minimal path goes directly from A4 to A2, via a saddle of type [0, 2, 2]. The
expression (8.12) is indeed smaller than (8.11) for p = M ′, the numerator of the difference
being bounded by 4M2 − 9M + 12 which is always positive.

Finally, we see that we have

H (1)(Ap, A2 ∪ · · · ∪ A′
M ′ ∪ A4 ∪ · · · ∪ Ap−2)

= H (1)(Ap, Ap−2) = −6M2 + 12M − 3p

4(M2 − 3M + 3)
, (8.13)

theminimal path reaching communication height on a saddle of type [0, 2, p−2]. Since (8.13)
is again a decreasing function of p, the claim follows. ��

Appendix 3: Proofs: Spectral Gap

In order to prove Theorem 5.1, we have to take into account the symmetries of the potential
Vγ . This will allow us to apply the theory in [5] on metastable processes that are invariant
under a group of symmetries,which relies on Frobenius’ representation theory of finite groups
(see for instance [30]).

The potential Vγ is invariant under the three transformations

r : (x1, . . . , xN ) �→ (x2, . . . , xN , x1),

s : (x1, . . . , xN ) �→ (xN , . . . , x1), (9.1)

c : (x1, . . . , xN ) �→ (−x1, . . . ,−xN ).

It is thus invariant under the groupG generated by these three transformations. This group can
be written G = DN ×Z2, whereDN is the dihedral group of symmetries of a regular N -gon
generated by r and s, while Z2 = {id, c} is the group generated by c, which commutes with r
and s. The group G has order 4N , and its elements can be written r i s j ck with i ∈ �0, N −1�
and j, k ∈ {0, 1}. It admits exactly 8 one-dimensional irreducible representations given by

πρστ (r
i s j ck) = ρiσ jτ k, ρ, σ, τ = ±1, (9.2)

and N − 2 irreducible representations of dimension 2, whose characters are

χ
,±(r i s j ck) = Tr π
,±(r i s j ck) = 2 cos

(
2i
π

N

)
δ j0(±1)k, 
 ∈ �1, N

2 − 1�. (9.3)

The basic idea of the approach given in [5] is that each of these N + 6 irreducible repre-
sentations provides an invariant subspace of the generator L of the Markovian jump process
on S0 that approximates the dynamics of the diffusion. Thus the restriction of L to each of
these subspaces yields a part of the spectrum of L . The eigenvalues of L can then be shown
to be close to the exponentially small eigenvalues of L [16,17]. We thus have to determine,
for each irreducible representation, the smallest eigenvalue of −L . We do this in two main
steps: first we show that the Arrhenius exponent of each smallest nonzero eigenvalue is given
by the potential difference between certain stationary points in C1 and in A2, and then we
compute the smallest prefactor of these eigenvalues.

Arrhenius Exponent

Each g ∈ G induces a permutation πg on the set of local minima S0, leaving invariant each
group orbit Oa = {ga : g ∈ G}. Since Vγ is G-invariant, the generator L commutes with all
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these permutations. Thus there exist subspaces which are jointly invariant under L and all
the πg . Each of the irreducible representations of G provides one of these subspaces.

Let π be one of the irreducible representations of G, and let d ∈ {1, 2} be its dimension.
Then [5, Lemma 3.6] shows that the associated invariant subspace, when restricted to Oa ,
has dimension dαπ

a , where

απ
a = 1

|Ga |
∑

h∈Ga

χ(h) ∈ �0, d�. (9.4)

Here χ = Tr π denotes the character of π , and Ga = {g ∈ G : ga = a} the stabiliser of a.
We call activewith respect to the irreducible representation π the orbits Oa such that απ

a > 0.
Only active orbits will occur in the restriction of L to the invariant subspace associated with
π ; they are represented by a block of size dαπ

a × dαπ
a .

We select three representatives x� ∈ A2, y� ∈ B1 and z� ∈ C1 such that x� is connected
to y� via z� in the transition graph G. A possible choice is

x� = (α1, . . . , α1, α1, α2 . . . , α2),

z� = (α′
1, . . . , α

′
1, α

′
0, α

′
2 . . . , α′

2), (9.5)

y� = (α′′
1 , . . . , α

′′
1 , α

′′
2 , α

′′
2 . . . , α′′

2 ),

where α1 = 1 + O(γ ), α2 = −1 + O(γ ) and α′
2 are each repeated M times, α′

1 and α′′
1 are

repeated M−1 times and α′′
2 is repeated M+1 times. The orbit Ox of x� is precisely A2, and

it has N elements. The orbits Oy of y� and Oz of z� have respectively 2N and 4N elements
(they are proper subsets of B1 and C1). The associated stabilisers are given by

Gx = {id, rMs, rMc, sc},
Gy = {id, rM−1s}, (9.6)

Gz = {id},
where id denotes the identity of G and M = N

2 . Note in particular that

|Gx |
|Gx ∩ Gy | = 4,

|Gy |
|Gx ∩ Gy | = 2. (9.7)

This means that each element in Gx is connected to 4 elements in Gy (via 4 saddles in Gz),
and that each element in Gy is connected to 2 elements in Gx (cf. [5, (2.25)]).

ThepossibleArrhenius exponents of eigenvalues of L are directly linked towhichorbits are
active for the different irreducible representations. We start with irreducible representations
of dimension 1, cf. (9.2).

Proposition 9.1 Let π be a 1-dimensional irreducible representation of G. Then

• if M is even, then Ox = A2 is active if and only if π(s) = π(c) = 1;
• if M is odd, then Ox = A2 is active if and only if π(r) = π(s) = π(c);
• if M is even, then Oy is active if and only if π(r) = π(s);
• if M is odd, then Oy is active if and only if π(s) = 1.

Proof The orbit Ox is active if and only if π(g) = 1 for all g ∈ Gx . Since π(id) = 1,
π(rMs) = π(r)Mπ(s), π(rMc) = π(r)Mπ(c) and π(sc) = π(s)π(c), this holds if and only
if π(r)M = π(s) = π(c). Similarly, the orbit Oy is active if and only if π(r)M−1 = π(s).

��
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The corresponding result for the 2-dimensional irreducible representations given in (9.3)
reads as follows.

Proposition 9.2 Let π
,± be a 2-dimensional irreducible representation. Then

• Ox = A2 is active for π
,+ if and only if 
 is even;
• Ox = A2 is active for π
,− if and only if 
 is odd;
• Oy is active for all representations π
,±.

Proof By (9.3) we have χ
,±(id) = 2, χ
,±(rMs) = 0, χ
,±(rMc) = ±2 cos(
π) and
χ
,±(sc) = 0. Thus the sum (9.4) for Ox is different from 0 for χ
,+ if and only if 
 is even,
and for χ
,− if and only if 
 is odd. Since χ
,±(rM−1s) = 0, the sum for Oy is always equal
to 1. ��
Corollary 9.3 The maximal Arrhenius exponent of all nonzero eigenvalues of the generator
is given by Vγ (z�) − Vγ (x�).

Proof [5, Thm. 3.5] provides an algorithm determining the Arrhenius exponents for each
irreducible representation π of dimension 1. They are obtained by replacing all inactive
orbits by a cemetery state, which is at the bottom of the metastable hierarchy, and ordering
all other orbits according to the usual hierarchy. If Ox = A2 is active and Oy is inactive for
π , then the largest communication height determining an Arrhenius exponent will be given
by Vγ (z�) − Vγ (x�). If M is even, the representation π−++ has the required property, while
if M is odd, this rôle is played by π−−−.

In the case of 2-dimensional representations, [5, Thm. 3.9] shows that all communica-
tion heights between active orbits yield Arrhenius exponents. The largest such exponent is
obtained if Ox and Oy are both active, and Proposition 1 shows that there are representations
for which this is the case. ��
Eyring–Kramers Prefactor

It remains to find the smallest prefactor associated with a transition of communication height
Vγ (z�)−Vγ (x�). In the case of one-dimensional representations, [5, Prop. 3.4] shows that the
usual Eyring–Kramers law given in Theorem 4.3 has to be corrected by a factor |Gx |/|Gx ∩
Gy | = 4 [cf. (9.7)].

In the case of two-dimensional irreducible representations π
,±, the relevant matrix ele-
ments are given in [5, Prop. 3.7]. Alternatively, one can compute these elements “by hand” in
the following way. We start by ordering the elements of the two orbits Ox and Oy according
to

Ox = {x�, r x�, . . . , r N−1x�},
Oy = {y�, ry�, . . . , r N−1y�, rMcy�, rM+1cy�, . . . , rM−1cy�}. (9.8)

The restriction of L to Ox ∪ Oy consists in the four blocks
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Lxx = −4qx1lN , Lyy = −2qy1l2N ,

Lxy = qx

⎛

⎜⎜⎜⎜⎝

1 1 (0) 1 1 (0)
. . .

. . .
. . .

. . .

(0)
. . . 1 (0)

. . . 1
1 1 1 1

⎞

⎟⎟⎟⎟⎠
, Lyx = qy

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1

1
. . . (0)
. . .

. . .

(0) 1 1
1 1

1
. . . (0)
. . .

. . .

(0) 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(9.9)

where 1ln denotes the n × n identity matrix, (0) stands for repeated zero entries, and

qx = |λ−(z�)|
2π

√
det∇2Vγ (x�)

det∇2Vγ (z�)
e−[Vγ (z�)−Vγ (x�)]/ε[1 + O(ε1/2|log ε|3/2)], (9.10)

whileqy is a positive constant of order e−[Vγ (z�)−Vγ (y�)]/ε . Equation (3.14) in [5] provides a set
of vectors spanning the invariant subspaces associatedwith a given irreducible representation.
Among these, we have to choose two linearly independent vectors for each orbit. A possible
choice is

ux = (2, χ(r), . . . , χ(r N−1), 0, . . . , 0),

urx = (χ(r N−1), 2, χ(r), . . . , χ(r N−2), 0, . . . , 0),

uy = (0, . . . , 0, 2, χ(r), . . . , χ(r N−1), 2, χ(r), . . . , χ(r N−1)),

ury = (0, . . . , 0, χ(r N−1), 2, χ(r), . . . , χ(r N−2), χ(r N−1), 2, χ(r), . . . , χ(r N−2)),

(9.11)

where χ = χ
,± is given by (9.3). In this basis, L takes the block form

Lπ
xx = −qx

(
4 0

0 4

)
, Lπ

yy = −qy

(
2 0

0 2

)
,

Lπ
xy = qx

(
2(χ(r) + 1) 2

−2 2

)
, Lπ

yx = qy

(
1 −1

1 (χ(r) + 1)

)
. (9.12)

We can now apply [5, Thm. 3.9], which states that the eigenvalues are equal to those of

Lπ
xx − Lπ

xy

(
Lπ
yy

)−1
Lπ
yx = −4 sin2

(

π

N

)
qx1l2. (9.13)

The result (5.1) follows, since the minimal value of the eigenvalues is reached for 
 = 1,
both orbits are active for the representation π1,−, and this value is smaller than for all one-
dimensional representations.

Remark 9.4 It is of course possible to obtain the same result directly from the expres-
sions (3.15) and (3.17) given in [5] for the inner products 〈u, Lv〉, where u and v are basis
vectors among (9.11), even though these vectors are not orthogonal. It suffices to use the fact
that the matrix elements of L can be obtained by computing
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⎛

⎜⎜⎜⎝

1
〈u, v〉
〈u, u〉

〈u, v〉
〈v, v〉 1

⎞

⎟⎟⎟⎠

−1⎛

⎜⎜⎜⎝

〈u, Lu〉
〈u, u〉

〈u, Lv〉
〈u, u〉

〈v, Lu〉
〈v, v〉

〈v, Lv〉
〈v, v〉

⎞

⎟⎟⎟⎠ (9.14)

where for instance 〈ux , urx 〉 = cos(
π/M)〈ux , ux 〉. ♦
The last element of the proof of Theorem5.1 is the following result on theHessianmatrices

of V0.

Proposition 9.5 The Hessian matrices of V0 at x� and z� satisfy

det∇2V0(x
�) = 2N−1,

det∇2V0(z
�) = −MM−2(M − 3)M (2M − 3)2M−2

(M2 − 3M + 3)2M−2 = −2N−2[1 + O(N−1)
]
,

λ−(z�) = − (M − 3)(2M − 3)

2(M2 − 3M + 3)
= −1 + O(N−1). (9.15)

Proof We have already obtained invariant subspaces of the Hessian matrices in the proof of
Proposition 3.1. However, since we used a non-isometric parametrisation of S, we cannot
use expressions such as (7.7) directly to determine the eigenvalues.

In the case of x� = (1, . . . , 1,−1, . . . ,−1), it is sufficient to note that for any vector u of
unit length in S, one has

d2

dt2
V0(x

� + tu)

∣∣∣∣
t=0

=
M∑

i=1

u2i U
′′(1) +

N∑

i=M+1

u2i U
′′(−1) = 2, (9.16)

showing that in fact ∇2V0(x�) = 21lN−1, which has determinant 2N−1.
In the case of the saddle z� given by (9.5), the expressions (7.3) for the α′

j yield

U ′′(α′
0) = 3(α′

0)
2 − 1 = − M(M − 3)

M2 − 3M + 3
= −1 + O(M−2),

U ′′(α′
1) = 3(α′

1)
2 − 1 = M(2M − 3)

M2 − 3M + 3
= 2 + 3M−1 + O(M−2),

U ′′(α′
2) = 3(α′

2)
2 − 1 = (M − 3)(2M − 3)

M2 − 3M + 3
= 2 − 3M−1 + O(M−2). (9.17)

We know from the proof of Proposition 3.1 that the (M−2)-dimensional subspace of S given
by S1 = {x1+· · ·+xM−1 = 0, xM = · · · = xN = 0} is invariant by the Hessian. Proceeding
as in (9.16) with a unit vector u ∈ S1 shows that U ′′(α′

1) is an eigenvalue of ∇2V0(z�) of
multiplicity M − 2. In an analogous way, the (M − 1)-dimensional invariant subspace of S
given by S2 = {x1 = · · · = xM = 0, xM+1 + · · · + xN = 0} carries the eigenvalue U ′′(α′

2)

with a multiplicity M − 1. This leaves a two-dimensional invariant subspace, for which we
may choose the orthonormal basis given by the vectors

v̂ = 1√
2M

(1, . . . , 1, 1,−1, . . . ,−1),

ŵ = 1√
M(M−1)

(−1, . . . ,−1, M − 1, 0, . . . , 0). (9.18)

The Hessian at (0, 0) of the map (t, s) �→ V0(z� + t v̂ + sŵ) is found to be the matrix
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1

2(M2 − 3M + 3)

(
4M2 − 15M + 15 −3

√
2(M − 1)(M − 2)

−3
√
2(M − 1)(M − 2) −2(M2 − 6M + 6)

)
, (9.19)

which has eigenvalues

2 and − (M − 3)(2M − 3)

2(M2 − 3M + 3)
= −1 + O(N−1). (9.20)

The result follows via a Taylor expansion of log(− det∇2V0(z�)). ��
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