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Abstract A fundamental aspect of biological information processing is the ubiquity of
sequence–function relationships—functions that map the sequence of DNA, RNA, or pro-
tein to a biochemically relevant activity. Most sequence–function relationships in biology are
quantitative, but only recently have experimental techniques for effectively measuring these
relationships been developed. The advent of such “massively parallel” experiments presents
an exciting opportunity for the concepts and methods of statistical physics to inform the
study of biological systems. After reviewing these recent experimental advances, we focus
on the problem of how to infer parametric models of sequence–function relationships from
the data produced by these experiments. Specifically, we retrace and extend recent theoretical
work showing that inference based on mutual information, not the standard likelihood-based
approach, is often necessary for accurately learning the parameters of these models. Closely
connectedwith this result is the emergence of “diffeomorphicmodes”—directions in parame-
ter space that are far less constrained by data than likelihood-based inference would suggest.
Analogous to Goldstone modes in physics, diffeomorphic modes arise from an arbitrarily
broken symmetry of the inference problem. An analytically tractable model of a massively
parallel experiment is then described, providing an explicit demonstration of these fundamen-
tal aspects of statistical inference. This paper concludes with an outlook on the theoretical
and computational challenges currently facing studies of quantitative sequence–function
relationships.

Keywords Sequence–function relationships · Mutual information · Likelihood ·
Diffeomorphic modes · Sort-Seq

B Justin B. Kinney
jkinney@cshl.edu

1 Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory,
Cold Spring Harbor, NY 11724, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-015-1398-3&domain=pdf
http://orcid.org/0000-0003-1897-3778


1204 G. S. Atwal, J. B. Kinney

1 Introduction

Amajor long-term goal in biology is to understand how biological function is encoded within
the sequences of DNA, RNA, and protein. The canonical success story in this effort is the
genetic code: given an arbitrary sequence of messenger RNA, the genetic code allows us to
predict with near certainty what peptide sequence will result. There are many other biological
codes we would like to learn as well. How does the DNA sequence of a promoter or enhancer
encode transcriptional regulatory programs? How does the sequence of pre-mRNA govern
which exons are kept and which are removed from the final spliced mRNA? How does the
peptide sequence of an antibody govern how strongly it binds to target antigens?

Amajor difference between the genetic code and these other codes is that while the former
is qualitative in nature, the latter are governed by sequence–function relationships that are
inherently quantitative. Quantitative sequence–function relationships1 describe any function
that maps the sequence of a biological heteropolymer to a biologically relevant activity (Fig.
1a). Perhaps the simplest example of such a relationship is how the affinity of a transcription
factor protein for its DNA binding site depends on the DNA sequence of that site (Fig. 1b).
Such relationships are a key component of the more complicated relationship between the
DNA sequence of a promoter or enhancer (which typically binds multiple proteins) and the
resulting rate of mRNA transcription (Fig. 1c). In both of these cases, the activities of interest
(affinity or transcription rate) can vary over orders ofmagnitude and yet still be finely tuned by
adjusting the corresponding sequence (binding site or promoter/enhancer). Similarly, other
sequence–function relationships, like the inclusion of exons during mRNA splicing or the
affinity of a protein for its ligand, are fundamentally quantitative.

The study of quantitative sequence–function relationships presents an exciting opportunity
for the concepts and methods of statistical physics to shed light on biological systems. There
is a natural analogy between biological sequences and the microstates of physical systems,
as well as between biological activities and physical Hamiltonians. Yet we currently lack
answers to basic questions a statistical physicist might ask, such as “what is the density of
states?” or “is a relationship convex or glassy?” The answers to such questions may well
have important consequences for diverse fields including biochemistry, systems biology,
immunology, and evolution.

Experimental methods for measuring sequence–function relationships have improved
dramatically in recent years. In the mid 2000s, multiple “high-throughput” methods for mea-
suring the DNA sequence specificity of transcription factors were developed; these methods
include protein binding microarrays (PBMs) [2,3], Escherichiacoli one-hybrid technology
(E1H) [4], and microfluidic platforms [5]. The subsequent development and dissemination
of ultra-high-throughput DNA sequencing technologies then led, starting in 2009, to the cre-
ation of a number of “massively parallel” experimental techniques for probing a wide range
of sequence–function relationships (Table 1). These massively parallel assays can readily
measure the functional activity of 103 to 108 sequences in a single experiment by coupling
standard bench-top techniques to ultra-high-throughput DNA sequencing.

Massively parallel experiments are very unlike conventional experiments in physics: they
are typically very noisy and rarely provide direct readouts of the quantities that one cares
about. Moreover, the noise characteristics of these measurements are difficult to accurately
model. Indeed, such noise generally exhibits substantial day-to-day variability. Although
standard inferencemethods require an explicit model of experimental noise, it is still possible

1 These have also been called quantitative sequence-activity maps, or QSAMs [1].
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Fig. 1 Sequence–function relationships in biology. a A sequence–function relationship maps a biological
sequence (blue bar) to a biologically relevant activity (yellow star). b One of the simplest sequence–function
relationships is how the affinity (star) of a transcription factor protein (magenta) for its DNA binding site
depends on the sequence of that site (blue). c A more complicated sequence–function relationship describes
how the rate of mRNA transcription depends on the DNA sequence of a gene’s promoter region. At the lac
promoter of E.coli, this transcription rate (star) depends on how strongly both the transcription factor CRP
(purple) and the RNA polymerase holoenzyme (RNAP; orange) bind their respective sites within the promoter
region (blue)

to precisely learn quantitative sequence–function relationships from massively parallel data
even when noise characteristics are unknown [27,28].

The ability to fit parametric models to these data reflects subtle but important distinctions
between two objective functions used for statistical inference: (i) likelihood, which requires
a priori knowledge of the experimental noise function and (ii) mutual information [29], a
quantity based on the concept of entropy, which does not require a noise function. In contrast
to the conventional wisdom that more experimental measurements will improve the model
inference task, the standard maximum likelihood approach will typically never learn the right
model, even in the infinite data limit, if one uses an imperfect model of experimental noise.
Model inference based on mutual information does not suffer from this ailment.

Mutual-information-based inference is unable to pin down the values of model parame-
ters along certain directions in parameter space known as “diffeomorphic modes” [28]. This
inability is not a shortcoming of mutual information, but rather reflects a fundamental dis-
tinction between how diffeomorphic and nondiffeomorphic directions in parameter space are
constrained by data. Analogous to the emergence of Goldstone modes in particle physics
due to a specific yet arbitrary choice of phase, diffeomorphic modes arise from a somewhat
arbitrary choice of the sequence-dependent activity that one wishes to model. Likelihood,
in contrast to mutual information, is oblivious to the distinction between diffeomorphic and
nondiffeomorphic modes.

We begin this paper by briefly reviewing a variety of massively parallel assays for prob-
ing quantitative sequence–function relationships. We then turn to the problem of learning
parametric models of these relationships from the data that these experiments generate. After
reviewing recent work on this problem [28], we extend this work in three ways. First, we
show that “diffeomorphic modes” of the parametric activity model that one wishes to learn
are “dual” to certain transformations of the corresponding model of experimental noise (the
“noise function”). This duality reveals a symmetry of the inference problem, thereby estab-
lishing a close analogywithGoldstonemodes. Next we compute and compare theHessians of
likelihood and mutual information. This comparison suggests an additional analogy between
this inference problem and concepts in fluid mechanics. Finally, we work through an ana-
lytically tractable model of a massively parallel experiment of protein–DNA binding. This
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Table 1 Massively parallel experiments used for studying various sequence–function relationships

Sequence Activity System Name Publication

DNA binding sites Protein–DNA
binding affinity

Purified protein Bind-n-Seq Zykovich et al. [6]

HT-SELEX Zhao et al. [7]

Jolma et al. [8]

EMSA-Seq Wong et al. [9]

SELEX-Seq Slattery et al. [10]

Promoter/
enhancer DNA

Transcription rate Purified protein Patwardhan et al. [11]

Bacteria Sort-Seq Kinney et al. [12]

Cell culture MPRA Melnikov et al. [1]

Mouse liver Patwardhan et al. [13]

Yeast Sharon et al. [14]

Mouse retina CRE-Seq Kwasniesk et al. [15]

Protein Ligand binding Phage display DMS Fowler et al. [16]

Cellular growth rate Yeast EMPIRIC Hietpas et al. [17]

Toxin activity Bacteria Adkar et al. [18]

H1N1 binding Yeast display Whitehead et al. [19]

GPCR expression Bacteria Schlinkmann et al. [20]

RNA mRNA translation Bacteria Holmqvist et al. [21]

sRNA targeting Bacteria qSortSeq Peterman et al. [22]

mRNA translation Cell culture Oikonomou et al. [23]

mRNA translation Cell culture FACS-Seq Noderer et al. [24]

Replication origins DNA replication Yeast ARS-Seq Liachko et al. [25]

Endonuclease sites DNA cutting Purified protein Thyme et al. [26]

Columns show the type of sequences interrogated, the sequence activity assayed, the biological system on
which the experiments were performed, the name (if any) of the experimental technique, and the publication
describing the method. This table is not exhaustive; it only describes some of the earliest experiments in each
type of system

example explicitly illustrates the differences between likelihood- and mutual-information-
based approaches to inference, as well as the emergence of diffeomorphic modes.

It should be noted that the inference of receptive fields in sensory neuroscience is another
area of biology in which mutual information has proved useful as an objective function, and
that work in this area has also provided important insights into basic aspects of machine
learning [30–34]. Indeed, the problem of learning quantitative sequence–function relation-
ships in molecular biology is very similar to the problem of learning receptive fields in
neuroscience [28]. The discussion of this problem in the neuroscience context, however, has
largely avoided in-depth analyses of how mutual information relates to likelihood, as well as
of how diffeomorphic modes emerge.

2 Massively Parallel Experiments Probing Sequence–Function
Relationships

All of the massively parallel experiments in Table 1 share a common structure (Fig. 2a).
The first step in each experiment is to generate a large set of (roughly 103 to 108) different
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Fig. 2 Overview ofmassively parallel experiments for studying quantitative sequence–function relationships.
a The input to each experiment is a library of different sequences that one wishes to test. The output is one or
more bins of sequences; each sequence in each bin is randomly selected from the library with a weight that
depends on a measurement of that sequence’s activity (star). b The resulting data set consists of a list of (non-
unique) sequences, each sequence assigned to either the input library or one of the output bins. c Illustration of
experimental methods for measuring the sequence-dependent binding energy of purified transcription factor
proteins. The input library typically consists of random DNA flanked by constant sequence. This library DNA
is mixed with the protein of interest and binding is allowed to come to equilibrium. DNA bound by protein
is then separated from unbound DNA, e.g. by running complexes on a gel (shown), then sequenced along
with a sample from the input library. d Sort-Seq [12] is a massively parallel experiment that uses a library
of mutagenized sequences to probe the mechanisms of transcriptional regulation employed by a specific wild
type promoter of interest. Mutant promoters are cloned upstream of the GFP gene, and E. coli cells harboring
these expression constructs are sorted into bins using FACS. The mutant promoters in each bin, as well as
promoters from the input library, are then sequenced

sequences to measure. This set of sequences is called the “library.” Multiple different types
of libraries can be used depending on the application. One then performs an experiment that
takes this library as input, and as output provides a set of one or more “bins” of sequences.
Each output bin contains sequences selected from the library with a weight that depends
on the measured activity of that sequence. Finally, a sample of sequences from each of the
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(a)

(b)

Fig. 3 The lac promoter region studied in [12]. a Sort-Seq was used to dissect a 75bp region of the E.
coli lac promoter using a library consisting of wild type sequences mutagenized at 12% per nucleotide, i.e.,
each library sequence had nine mutations on average. b The resulting data were used to learn a quantitative
sequence–function relationship, the mathematical form of which reflected an explicit biophysical model of
transcriptional regulation. This model included two “energy matrices” describing the sequence-dependent
binding energy of CRP (Q) and RNAP (P) to their respective sites. It also included a value for the interaction
energy γ between these two proteins

output bins, as well as from the input library, are determined using ultra-high-throughput
DNA sequencing. The resulting data thus consists of a long list of (typically non-unique)
DNA sequences, each assigned to a corresponding bin (Fig. 2b). It is from these data that we
wish to learn quantitative models of sequence–function relationships.

Some of the earliest massively parallel experiments were designed to measure the speci-
ficity of purified transcription factors for their DNA binding sites [6–10] (Fig. 2c). The library
used in such studies consists of a fixed-length region of random DNA flanked by constant
sequences used for PCR amplification. This library is mixed with the transcription factor of
interest, after which protein–bound DNA is separated from unbound DNA, e.g., by running
the protein–DNA mixture on a gel. Protein–bound DNA is then sequenced, along with the
input library.

Using a library of random DNA to assay protein–DNA binding has the advantage that the
same library can be used to study each protein. This is particularly useful when performing
assays on many different proteins at once (e.g., [8,35]). On the other hand, only a very small
fraction of library sequences will be specifically bound by the protein of interest. Moreover,
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because proteins typically bind DNA in a non-specific manner, such experiments are often
performed serially in order to achieve substantial enrichment.2

The first massively parallel experiment to probe how multi-protein–DNA complexes reg-
ulate transcription in living cells was Sort-Seq [12] (Fig. 2d). The sequence library used in
this experiment was generated by introducing randomly scattered mutations into a “wild
type” sequence of interest, specifically, the 75 bp region of the promoter of the lac gene in
E. coli depicted in Fig. 3a. A few million of these mutant promoters were cloned upstream
of the green fluorescent protein (GFP) gene. Cells carrying these expression constructs were
grown under conditions favorable to promoter activity and were then sorted into a small
number of bins according to each cell’s measured fluorescence. This partitioning of cells
was accomplished using fluorescence-activated cell sorting (FACS) [41], a method that can
readily sort ∼104 cells per second. The mutant promoters within each sorted bin as well as
within the input library were then sequenced, yielding measurements for ∼2 × 105 variant
promoter sequences. We note that advances in DNA sequencing have since made it possible
to accumulate much more data, and it is no longer difficult to measure the activities of ∼107

different sequences in this manner.
Massively parallel experiments usingmutagenized sequences providedata about sequence–

function relationships within a localized region of sequence space centered on the wild type
sequence of interest. Measuring these local relationships can provide a wealth of information
about the functional mechanisms of the wild type sequence. For instance, the Sort-Seq data
of [12] allowed the inference of an explicit biophysical model for how CRP and RNAP work
together to regulate transcription at the lac promoter (Fig. 3b). In particular, the authors used
their data to learn quantitative models for the in vivo sequence specificity of both CRP and
RNAP. Model fitting also enabled measurement of the protein–protein interaction by which
CRP is able to recruit RNAP and up-regulate transcription.

Mutagenized sequences have also been used extensively for “deep mutational scanning”
experiments on proteins. In this context, selection experiments onmutagenized proteins allow
one to identify protein domains critical for folding and function. A variety of deep mutational
scanning experiments are described in [42].

3 Inference Using likelihood

The inference of quantitative sequence–function relationships frommassively parallel exper-
iments can be phrased as follows. Data consists of a large number of sequences {Sn}Nn=1, each
sequence S having a corresponding measurement M . Due to experimental noise, repeated
measurements of the same sequence S can yield different values for M . Our experiment
therefore has the following probabilistic form:

(1)

If we assume that the measurements for each sequence are independent, and if we have an
explicit parametric form for p(M |S), then we can learn the values of the parameters by
maximizing the per-datum log likelihood,

2 This serial enrichment approach is known as SELEX and is much older than ultra-high-throughput DNA
sequencing; see [36–40].
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joint likelihood likelihood with fixed 
noise function
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Fig. 4 Schematic illustration of how likelihood L(θ, π) depends on the model θ and the noise function π in
the N → ∞ limit. a, b L will typically have a correlated dependence on θ and π . If π is set equal to the correct
noise function π∗, then L will be maximized by the correct model θ∗. However, if π is set to an incorrect
noise function π ′, L will typically attain a maximum at an incorrect θ ′

L = 1

N

N∑

n=1

log p(Mn |Sn). (2)

In what follows we will refer to the quantity L simply as the “likelihood.”
In regression problems such as this, one introduces an additional layer of structure. Specifi-

cally,we assume themeasurementM of each sequence S is a noisy readout of someunderlying
activity R that is a deterministic function of that sequence. We call the function relating R
to S the “activity model” and denote it using θ(S). This activity model is ultimately what
we want to understand. The specific way the activity R is read out by measurements M is
then specified by a conditional probability distribution, π(M |R), which we call the “noise
function.”3 Our experiment is thus represented by the Markov chain

(3)

The corresponding likelihood is

L(θ, π) = 1

N

N∑

n=1

logπ(Mn |θ(Sn)). (4)

The model we adopt for our experiment therefore has two components: θ , which describes
the sequence–function relationship of interest, and π , which we do not really care about.

Standard statistical regression requires that the noise function π be specified up-front.
π can be learned either by performing separate calibration experiments, or by assuming a
functional form based on an educated guess. This can be problematic, however. Consider
inference in the large data limit, N → ∞, which is illustrated in Fig. 4. Likelihood is
determinedbyboth themodel θ and the noise functionπ (Fig. 4a). Ifweknow the correct noise
function π∗ exactly, then maximizing L(θ, π∗) over θ is guaranteed to recover the correct

3 We use the term “noise function” in order to be consistent with the terminology of [28] and to avoid
deviating too much from the more standard terms “noise model” and “error model” used in the statistics and
machine learning literature. We emphasize, however, that π defines much more than just the characteristics of
experimental noise; π entirely specifies the relationship between measurements M and the underlying activity
R. Were it not for prior terminology, the term “measurement function” might be preferable to “noise function.”
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model θ∗. However, if we assume an incorrect noise function π ′, maximizing likelihood will
typically recover an incorrect model θ ′ (Fig. 4b).

4 Inference Using Mutual Information

Information theory provides an alternative inference approach. Suppose we hypothesize a
specific model θ , which gives predictions R. Denote the true model θ∗ and the corresponding
true activity R∗. The dependence between S, M , R∗, and R will then form a Markov chain,

(5)

From the simple fact that M depends on R only through the value of R∗, any dependence
measure D that satisfies the data processing inequality (DPI) [29] must satisfy

D[R; M] ≤ D[R∗; M]. (6)

Therefore, in the set of possible models θ , the true model is guaranteed to globally maximize
the objective function D(θ) ≡ D[R; M].

One particularly relevant dependence measure that satisfies DPI is mutual information, a
quantity that plays a fundamental role in information theory [29].4 For the massively parallel
experiments such as those in Fig. 2, R is continuous and M is discrete. In these cases, mutual
information is given by

I (θ) = I [R; M] =
∑

M

∫
dR p(R, M) log

p(R, M)

p(R)p(M)
, (7)

where p(M, R) is the joint distribution of activity predictions and measurements resulting
from the model θ . If one is able to estimate p(M, R) from a finite sample of data, mutual
information can be used as an objective function for determining θ without assuming any
noise function π .

It should be noted that there are multiple dependence measures D that satisfy DPI. One
might wonder whether maximizing multiple different dependence measures would improve
on the optimization of mutual information alone. The answer is not so simple. In [28] it
was shown that if the correct model θ∗ is within the space of models under consideration,
then, in the large data limit, maximizing mutual information is equivalent to simultaneously
maximizing every dependence measure that satisfies DPI. On the other hand, one rarely has
any assurance that the correct model θ∗ is within the space of parameterized models one is
considering. In this case, considering different DPI-satisfying measures might provide a test
for whether θ∗ is noticeably outside the space of parameterized models. To our knowledge,
this potential approach to the model selection problem has yet to be demonstrated.

5 Relationship Between Likelihood and Mutual Information

A third inference approach is to admit that we do not know the noise function π a priori, and
to fit both θ and π simultaneously by maximizing L(θ, π) over this pair. It is easy to see why
this makes sense: the division of the inference problem into first measuring π , then learning
θ using that inferred π , is somewhat artificial. The process that maps S to M is determined

4 See [43] for an extended discussion of mutual information as a measure of statistical association.
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by both θ and π and thus, from a probabilistic point of view, it makes sense to maximize
likelihood over both of these quantities simultaneously.

We now show that, in the large N limit, maximizing likelihood over both θ and π is equiv-
alent to maximizing the mutual information between model predictions and measurements.
Here we follow the argument given in [28]. In the large N limit, likelihood can be written

L(θ, π) =
∑

M

∫
dR p(R, M) logπ(M |R) (8)

= I (θ) − D(θ, π) − H [M], (9)

where

D(θ, π) =
∑

M

∫
dR p(R, M) log

p(M |R)

π(M |R)
, (10)

is the Kullback–Leibler divergence between the assumed noise function π and the observed
noise function p(M |R), and H [M] = −∑M p(M) log p(M) is the entropy of the measure-
ments, which does not depend on θ . To maximize L(θ, π) it therefore suffices to maximize
I (θ) over θ alone, then to set the noise function π(M |R) equal to the empirical noise function
p(M |R), which causes D(θ, π) to vanish.

Thus, when we are uncertain about the noise function π , we need not despair. We can, if
we like, simply learn π at the same time that we learn θ . We need not explicitly model π in
order to do this; it suffices instead to maximize the mutual information I (θ) over θ alone.

The connection between mutual information and likelihood can further be seen in a quan-
tity called the “noise-averaged” likelihood. This quantity was first described for the analysis
of microarray data [27]; see also [28]. The central idea is to put an explicit prior on the
space of possible noise functions, then compute likelihood after marginalizing over these
noise functions. Explicitly, the per-datum log noise-averaged likelihood Lna(θ) is related to
L(θ, π) via

eNLna(θ) =
∫

dπ p(π) eNL(θ,π). (11)

We will refer to Lna simply as “noise-averaged likelihood” in what follows.
Under fairly general conditions, one finds that noise-averaged likelihood is related to

mutual information via

Lna(θ) = I (θ) − �(θ) − H [M]. (12)

Here, the effect of the noise function prior p(π) is absorbed entirely by the term�(θ). Under
weak assumptions, �(θ) vanishes in the N → ∞ limit and thus p(π) becomes irrelevant
for the inference problem [27,28].

6 Diffeomorphic Modes

Mutual information has a mathematical property that is important to account for when using
it as an objective function: themutual information between any two variables is unchanged by
an invertible transformation of either variable. So if a change in model parameters, θ → θ ′,
results in changes in model predictions R → R′ that preserves the rank order of these
predictions, then
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mutual information
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Fig. 5 Illustration of diffeomorphic and nondiffeomorphic modes. a A diffeomorphic mode vdif at a point θ
in parameter space is a vector that will (regardless of the underlying data) be tangent to a level curve of I (θ).
All other vectors (e.g., vnon) correspond to nondiffeomorphic modes. b Moving θ along a nondiffeomorphic
mode results in a sort of “diffusion” in which the R values assigned to different sequences change rank order.
Here, the probability distribution p(R|M) is illustrated (for fixed M) in gray. The motion of individual R
values upon such a change in θ are indicated by arrows. c Changing θ along a diffeomorphic mode, however,
results in a “flow” of R values that maintains their rank order

I (θ) = I [M; R] = I [M; R′] = I (θ ′), (13)

and θ and θ ′ are judged to be equally valid.
By using mutual information as an objective function, we are therefore unable to constrain

any parameters of θ that, if changed, produce invertible transformations ofmodel predictions.
Such parameters are called “diffeomorphic parameters” or “diffeomorphic modes” [28]. The
distinction between diffeomorphicmodes and nondiffeomorphicmodes is illustrated in Fig. 5.

6.1 Criterion for Diffeomorphic Modes

Following [28], we now derive a criterion that can be used to identify all of the diffeomorphic
modes of a model θ .5 Consider an infinitesimal change in model parameters θ → θ + dθ ,
where the components of dθ are specified by

dθi = εvi (14)

for small ε and for some vector vi in θ -space. This change in θ will produce a corresponding
change in model predictions R → R + dR, where

dR = ε
∑

i

vi
∂R

∂θi
. (15)

In general, the derivative ∂R/∂θi can have arbitrary dependence on the underlying sequence
S. This transformation will preserve the rank order of R-values only if dR is the same for all
sequences having the same value of R. The change dR must therefore be a function of R and
have no other dependence on S. A diffeomorphic mode is a vector field vdif (θ) that has this
property at all points in parameter space. Specifically, a vector field vdif (θ) is a diffeomorphic
mode if and only if there is a function h(R, θ) such that

∑

i

vdifi (θ)
∂R

∂θi
= h(R, θ). (16)

5 Here, as throughout this paper, we restrict our attention to situations in which R is a scalar. The case of
vector-valued model predictions R is worked out in [28].
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6.2 Diffeomorphic Modes of Linear Models

As a simple example, consider a situation in which each sequence S is a D-dimensional
vector and R is an affine function of S, i.e.

R = θ0 +
D∑

i=1

θi Si , (17)

for model parameters θ = {θ0, θ1, . . . , θD}. The criterion in Eq. (16) then gives

vdif0 (θ) +
D∑

i=1

vdifi (θ)Si = h(R, θ). (18)

Because the left hand side is linear in S and R is linear in S, the function h(R, θ) must be
linear in R. Thus, h must have the form

h(R, θ) = a(θ) + b(θ)R (19)

for some functions a(θ) and b(θ). The corresponding diffeomorphic mode is

vdifi (θ) =
{
a(θ) i = 0

b(θ)θi i = 1, 2, . . . , D
, (20)

which has two degrees of freedom. Specifically, the a component of vdif corresponds to
adding a constant to R while the b component corresponds to multiplying R by a constant.

Note that if we had instead chosen R = ∑D
i=1 θi Si , i.e. left out the constant component

θ0, then there would be only one diffeomorphic mode, corresponding to multiplication of
R by a constant. This fact will be used when we analyze the Gaussian selection model in
Sect. 8.

6.3 Diffeomorphic Modes of a Biophysical Model of Transcriptional Regulation

Diffeomorphic modes can become less trivial in more complicated situations. Consider the
biophysical model of transcriptional regulation by the E. coli lac promoter (Fig. 3). This
model was fit to Sort-Seq data in [12]. The form of this model is as follows. Let S denote a
4 × D matrix representing a DNA sequence of length D and having elements

Sbl =
{
1 if base b occurs at position l

0 otherwise
(21)

where b ∈ {A,C,G, T } and l = 1, 2, . . . D. The binding energy Q of CRP to DNA was
modeled in [12] as an “energy matrix”: each position in the DNA sequence was assumed to
contribute additively to the overall energy. Specifically,

Q =
∑

b,l

θblQ Sbl + θ0Q, (22)

where θQ =
{
θ0Q, θblQ

}
are the parameters of this energymatrix. Similarly, the binding energy

P of RNAP to DNA was modeled as

P =
∑

b,l

θblP Sbl + θ0P . (23)
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Both energies were taken to be in thermal units (kBT ). The rate of transcription R resulting
from these binding energies was assumed to be proportional to the occupancy of RNAP at
its binding site. This transcription rate is given by

R = Rmax
e−P + e−P−Q−γ

1 + e−Q + e−P + e−P−Q−γ
, (24)

where γ is the interaction energy between CRP and RNAP (again in units of kBT ) and Rmax

is a scalar.
Because the binding sites for CRP and RNAP do not overlap, one can learn the parame-

ters θQ and θP from data separately by independently maximizing I [Q; M] and I [P; M].
Doing this, however, leaves undetermined the overall scale of each energy matrix as well as
the chemical potentials θ0P and θ0Q . The reason is that the energy scale and chemical poten-
tial are diffeomorphic modes of energy matrix models and therefore cannot be inferred by
maximizing mutual information.

However, if Q and P are inferred together by maximizing I [R; M] instead, one is now
able to learn both energy matrices with a physically meaningful energy scale. The chemi-
cal potential of CRP, θ0Q , is also determined. The only parameters left unspecified are the

chemical potential of RNA polymerase, θ0P , and the maximal transcription rate Rmax. The
reason for this is that in the formula for R in Eq. (24) the energies P and Q combine in a
nonlinear way. This nonlinearity eliminates three of the four diffeomorphic modes of P and
Q.6 See [28] for the derivation of this result.

6.4 Dual Modes of the Noise Function

Diffeomorphic transformations of model parameters can be thought of as being equivalent
to certain transformations of the noise function. Consider the transformation of model para-
meters

θi → θ ′
i = θi + εvi , (25)

where ε is an infinitesimal number and vi is a vector in θ -space.7 For any sequence S, this
transformation induces a transformation of the model prediction

R → R′ = R + ε
∑

i

vi
∂R

∂θi
. (26)

To see the effect this transformation has on likelihood, we rewrite Eq. (4) as,

L(θ, π) = 〈logπ(M |R)〉data , (27)

where 〈·〉data indicates an average taken over the measurements Mn and predictions Rn for
all of the sequences Sn in the data set. The change in likelihood resulting from Eq. (26) is
therefore given by

L(θ ′, π) = L(θ, π) + ε

〈
∂ logπ(M |R)

∂R

∑

i

∂R

∂θi
vi

〉

data

. (28)

6 The one additional diffeomorphic mode is created by the introduction of the parameter Rmax.
7 For the sake of clarity we suppress the θ -dependence of vdif , ṽdif , and h(R) in what follows.
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Now suppose that there is a noise function π ′ that has an equivalent effect on likelihood,
i.e.,

L(θ ′, π) = L(θ, π ′) + O(ε2), (29)

for all possible data sets {Sn, Mn}. We say that this transformation of the noise function
π → π ′ is “dual” to the transformation θ → θ ′ of model parameters. The transformed noise
function will necessarily have the form

logπ ′(M |R) = logπ(M |R) + εṽ(M, R) (30)

for some function ṽ(M, R). To determine ṽ we consider the transformation of likelihood
induced by π → π ′:

L(θ, π ′) = L(θ, π) + ε 〈ṽ(M, R)〉data . (31)

Comparing Eqs. (28) and (31), we see that π → π ′ will be dual to θ → θ ′ for all possible
data sets if and only if

∂ logπ(M |R)

∂R

∑

i

∂R

∂θi
vi = ṽ(M, R) (32)

for all sequences S.
For general choice of vector v, no function ṽ will exist that satisfies Eq. (32). The reason is

that ∂R/∂θi will typically depend on the sequence S independently of the value of R. In other
words, for a fixed value of M and R, the left hand side of Eq. (32) will retain a dependence on
S. The right hand side, however, cannot have such a dependence. The converse is also true:
for general choice of the function ṽ, no vector v will exist such that Eq. (32) is satisfied for
all sequences. This is evident from the simple fact that v is a finite dimensional vector while
ṽ is a function of the continuous quantity R and therefore has an infinite number of degrees
of freedom.

In fact, Eq. (32) will have a solution if and only if

∑

i

∂R

∂θi
vdifi = h(R) (33)

for some function h. Here we have added the superscript “dif” because this is precisely the
definition of a diffeomorphic mode given in Eq. (16). In this case, the function ṽdif dual to
this diffeomorphic mode vdif is seen to be

ṽdif (M, R) = ∂ logπ(M |R)

∂R
h(R). (34)

These findings are summarized by the Venn diagram in Fig. 6. Arbitrary transformations
of the model parameters θ will alter likelihood in a way that cannot be imitated by any
change to the noise function π . The reverse is also true: most changes to π cannot be
imitated by a corresponding change in θ . However, a subset of transformations of θ are
equivalent to corresponding dual transformations of π . These transformations are precisely
the diffeomorphic transformations of θ . This partial duality between θ and π has a simple
interpretation: the choice of how we parse an experiment into an activity model θ and a noise
function π is not unique. The ambiguity in this choice is parameterized by the diffeomorphic
modes of θ and the dual modes of π .
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degrees of freedom of 

model 
parameters

noise 
function

diffeomorphic modes of 
& dual modes of 

Fig. 6 Venn diagram illustrating the degrees of freedom of the likelihood L(θ, π) considered over all possible
data sets {Sn , Mn}. Altering the model parameters θ will typically change L(θ, π) in a way that cannot be
recapitulated by changes in the noise function π . Similarly, changes in π cannot typically be imitated by
changes in θ . However, diffeomorphic transformations of θ will affect L(θ, π) in the exact same way that dual
transformation of π will. The diffeomorphic modes of θ and the dual modes of π can therefore be thought of
as lying within the intersection of θ and π

7 Error Bars from Likelihood, Mutual Information, and Noise-Averaged
Likelihood

Wenow consider the consequences of performing inference using various objective functions
at large but finite N . Specifically, we discuss the optimal parameters and corresponding error
bars that are found by sampling θ from posterior distributions of the form

p(θ |data) ∼ eN F(θ) (35)

for the following choices of the objective function F(θ):

(a) F(θ) = L(θ, π∗) is likelihood computed using the correct noise function π∗.
(b) F(θ) = L(θ, π ′) where π ′ differs from π∗ by a small but arbitrary error.
(c) F(θ) = L(θ, π ′′) where π ′′ differs from π∗ by a small amount along a dual mode.
(d) F(θ) = I (θ) is the mutual information between measurements and model predictions.
(e) F(θ) = Lna(θ) is the noise-averaged likelihood.

To streamline notation, we will use 〈·〉 to denote averages computed in multiple different
contexts. In each case, the appropriate contextwill be specified by a subscript. As above 〈·〉data
will denote averaging over a specific data set {Sn, Mn}Nn=1. 〈·〉real will indicate averaging over
an infinite number of data set realizations. 〈·〉S , 〈·〉S,M , 〈·〉S|R , and 〈·〉S|R,M will respectively
denote averages over the distributions p(S), p(S, M), p(S|R), and p(S|R, M), the empirical
distributions obtained in the infinite data limit. 〈·〉θ will indicate an average computed over
parameter values θ sampled from the posterior distribution p(θ |data). Subscripts on cov(·)
or var(·) should be interpreted analogously.

7.1 Likelihood

Consider Eq. (35) with F(θ) = L(θ, π∗) at large but finite N . The posterior distribution
p(θ |data) will, in general, be maximized at some choice of parameters θo that deviates
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randomly from the correct parameters θ∗. At large N , p(θ |data) will become sharply peaked
about θo with a peak width governed by the Hessian of likelihood; specifically

covθ (θi − θoi , θ j − θoj ) = −H−1
i j

N
, (36)

where

Hi j = ∂2L(θ, π∗)
∂θi∂θ j

∣∣∣∣
θ∗

, (37)

is the Hessian of the likelihood. It is also readily shown (see Appendix 1) that this peak width
is consistent with the correct parameters θ∗, in the sense that

covreal(θ
∗
i − θoi , θ∗

j − θoj ) = covθ (θi − θoi , θ j − θoj ). (38)

In Appendix 1 we show that the Hessian of likelihood, Eq. (37), is given by

Hi j = −
∫

dR p(R)J (R)

〈
∂R

∂θi

∂R

∂θ j

〉

S|R

∣∣∣∣∣
θ∗

, (39)

where

J (R) =
∑

M

π∗(M |R)

[
∂ logπ∗(M |R)

∂R

]2
= −

∑

M

π∗(M |R)
∂2 logπ∗(M |R)

∂R2 (40)

is the Fisher information of the noise function π∗. This Fisher information is a nonnegative
measure of how sensitive our experiment is in the vicinity of R.8 We thus see that, as long
as the set of vectors ∂R/∂θi spans all directions in parameter space, the Hessian matrix Hi j

will be nonsingular. Using F(θ) = L(θ, π∗) will therefore put constraints on all directions
in parameter space, and these constraints will shrink with increasing data as N−1/2. This
situation is illustrated in Fig. 7a.

Now consider what happens if instead we use a noise function π ′ that deviates from π∗
in a small but arbitrary way. Specifically, let

logπ ′(M |R) = logπ∗(M |R) + ε f (M, R) (41)

for some function f (M, R) and small parameter ε. It is readily shown (see Appendix 1) that
the maximum likelihood parameters θ ′ will deviate from θ∗ by an amount

〈
θ ′
i − θ∗

i

〉
real = −ε

∑

j

H−1
i j w j , where w j =

〈
∂ f

∂R

∂R

∂θ j

〉

S

∣∣∣∣
θ∗

. (42)

This expected deviation does not depend on N and will therefore not shrink to zero in the
large N limit. Indeed, for any choice of ε > 0, there will always be an N large enough such
that this bias in θ ′ dominates over the uncertainty due to finite sampling.

Is there any restriction on the types of biases in θ ′ that can be produced by the choice of
incorrect noise function π ′? In general, no. Because the Hessian matrix H is nonsingular,
one can always find a vector w such that the deviation of θ ′ from θ∗ in Eq. (42) points in any
chosen direction of θ -space. As long as the functions

gi (R) =
〈
∂R

∂θi

〉

S|R

∣∣∣∣∣
θ∗

(43)

8 In what follows we assume that J (R) > 0 almost everywhere. This just reflects the assumption that our
experiment actually does convey information about R through the measurements M it provides.
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(a) likelihood 
with the correct 
noise function

noise-averaged likelihood

likelihood
 with an incorrect 

noise function
(dual mode error)

mutual information

likelihood 
with an incorrect 

noise function
(arbitrary error)

(c)(b)

(e)(d)

Fig. 7 Posterior distributions on model parameters resulting from various objective functions. Each panel
schematically illustrates the posterior distribution p(θ |data) (gray shaded area) as it relates to the correct
model θ∗ (dot) along both diffeomorphic (abscissa) and nondiffeomorphic (ordinate) directions in parameter
space. a Likelihood with the correct noise function π∗ leads to a posterior distribution consistent with θ∗ in
all parameters. b Likelihood with a noise function π ′ that differs arbitrarily from π∗ will, in general, lead to
a posterior distribution that is inconsistent with θ∗ along both diffeomorphic and nondiffeomorphic modes. c
Likelihood with a noise function π ′′ that differs from π∗ only along a dual mode ṽdif leads to a posterior that
is inconsistent with θ∗ only along the diffeomorphic mode vdif (parallel to dashed line), but consistent with
θ∗ in all other directions (perpendicular to dashed line). d Using mutual information gives a posterior that
is consistent with θ∗; this posterior places constraints similar to likelihood along non-diffeomorphic modes
but places no constraints whatsoever along diffeomorphic modes. e Using noise-averaged likelihood results
in a posterior distribution similar to mutual information but with weak constraints on diffeomorphic modes
resulting from the noise function prior p(π)

are linearly independent for different indices i , a function f can always be found that generates
the vector w in Eq. (42).

We therefore see that arbitrary errors in the noise function will bias the inference of model
parameters in arbitrary directions. This fact presents a major concern for standard likelihood-
based inference: if you assume an incorrect noise function π , the parameters θ that you then
infer will, in general, be biased in an unpredictable way. Moreover, the magnitude of this
bias will be directly proportional to the magnitude of the error in the log of your assumed
noise function. This problem is illustrated in Fig. 7b.

There is a case that deserves some additional consideration. Suppose we use a noise
function π ′′ that differs from π∗ only along a dual mode ṽdif , i.e.,

logπ ′′(M |R) = logπ∗(M |R) + εṽdif (M, R). (44)
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The maximum likelihood parameters θ ′′ of L(θ, π ′′) will still deviate from θ∗ by an amount
that does not shrink to zero in the N → ∞ limit. However, this bias in parameter values will
be restricted to the diffeomorphic mode vdif to which ṽdif is dual, i.e.,

〈
θ ′′
i − θ∗

i

〉
real = −εvdifi . (45)

This state of affairs ain’t so bad since the incorrect noise functionwill lead tomodel parameters
that are inaccurate only along modes that we already know we cannot learn from the data.
This situation is illustrated in Fig. 7c; see Appendix 1 for the derivation of Eq. (45).

7.2 Mutual Information

The constraints on parameters imposed by using mutual information I (θ) as the objective
function F(θ) in Eq. (35) are determined by the Hessian

Ki j = ∂2 I (θ)

∂θi∂θ j

∣∣∣∣
θ∗

. (46)

Appendix 2 provides a detailed derivation of this Hessian, which after some computation is
found to be given by

Ki j = −
∫

dR p(R)J (R)

[〈
∂R

∂θi

∂R

∂θ j

〉

S|R
−
〈
∂R

∂θi

〉

S|R

〈
∂R

∂θ j

〉

S|R

]∣∣∣∣∣
θ∗

. (47)

Comparing Eqs. (47) and (39), we see that for any vector v in parameter space,

−
∑

i, j

Hi jviv j ≥ −
∑

i, j

Ki jviv j ≥ 0. (48)

Likelihood is thus seen to constrain parameters in all directions at least as much as mutual
information does. As expected, mutual information provides no constraint whatsoever in the
direction of any diffeomorphic mode vdif of the model, since

−
∑

i, j

Ki jv
dif
i vdifj =

∫
dR p(R)J (R)

[〈
h2(R)

〉
S|R − 〈h(R)〉2S|R

]∣∣∣
θ∗ = 0. (49)

The converse is also true: if there is no constraint on parameters along v, then v must be a
diffeomorphic mode. This is because

−
∑

i, j

Ki jviv j =
∫

dR p(R) J (R) var

(
∑

i

vi
∂R

∂θi

)

S|R

∣∣∣∣∣∣
θ∗

. (50)

Because J (R) is positive almost everywhere, the right hand side of Eq. (50) can vanish only
if
∑

i vi
∂R
∂θi

does not differ between any two sequences that have the same R value. There

must therefore exist a function h(R) such that h(R) = ∑
i vi

∂R
∂θi

for all sequences S. This is
precisely the requirement in Eq. (16) that v be a diffeomorphic mode.

However, except along diffeomorphic modes, we can generally expect that the constraints
provided by likelihood and by mutual information will be of the same magnitude. This
situation is illustrated in Fig. 7d. Indeed, in the next section we will see an explicit example
where all nondiffeomorphic constraints imposed by mutual information are comparable to
those imposed by likelihood.
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Before proceeding, we note that the relationship between the Hessians of likelihood and
mutual information suggests an analogy to fluidmechanics. Consider a trajectory in parameter
space given by θi (t) = tvi , where t is time and v is a velocity vector pointing in the direction
of motion. This motion in parameter space will induce a motion in the prediction R(t) that
the model provides for every sequence S. The set of sequences {Sn} thus presents us with a
dynamic cloud of “particles” moving about in R-space. At t = 0, the quantity 〈Ṙ2〉S|R will be

proportional to the average kinetic energy of particles at location R. The quantity 〈Ṙ〉2S|R will
be proportional to the (per particle) kinetic energy of the bulk fluid element at R, a quantity
that does not count energy due to thermal motion. In this way we see that −∑i, j Hi jviv j

is a weighted tally of total kinetic energy, whereas −∑i, j Ki jviv j corresponds to a tally
of internal thermal energy only, the kinetic energy of bulk motion having been subtracted
out.

7.3 Noise-Averaged Likelihood

Noise-averaged likelihood provides constraints in between those of likelihood, computed
using the correct noise function, and those of mutual information. This is illustrated in
Fig. 7e.Whereasmutual informationprovides no constraintswhatsoever on the diffeomorphic
modes of θ , noise-averaged likelihood provides weak constraints in these directions. These
soft constraints reflect the Hessian of �(θ) in Eq. (12). The constraints along diffeomorphic
modes, however, have an upper bound on how tight they can become in the N → ∞ limit.
This is because such constraints only reflect our prior p(π) on the noise function, not the
information we glean from data.

8 Worked Example: Gaussian Selection

The above principles can be illustrated in the following analytically tractable model of a
massively parallel experiment, which we call the “Gaussian selection model.” In this model,
our experiment starts with a large library of “DNA” sequences S, each of which is actually a
D-dimensional vector drawn from a Gaussian probability distribution9

plib(S) = (2π)−D/2 exp

(
−|S − μ|2

2

)
. (51)

Here, μ is a D-dimensional vector defining the average sequence in the library. From this
library we extract sequences into two bins, labeled M = 0 and M = 1. We fill the M = 0
bin with sequences sampled indiscriminately from the library. The M = 1 bin is filled with
sequences sampled from this library with relative probability

p(M = 1|S)

p(M = 0|S)
= exp(a∗ + b∗R∗) (52)

9 For the sake of simplicity we set the covariance matrix of this distribution equal to the identity matrix.
The more general case of a non-identity covariance matrix yields the same basic results. Also, we note that,
while approximating discrete DNA sequences by continuous vectors might seem crude, it is only the marginal
distributions p(R|M) that matter for the inference problem. Most of the quantities R that one encounters in
practice are computed by summing up contributions from a large number of different nucleotide positions. In
such cases, the marginal distributions p(R|M) will often be nearly continuous and virtually indistinguishable
from the marginal distributions one might obtain from a Gaussian sequence library.
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Gaussian sequence 
distribution

+

enrichment experiment       library 
sequences

  selected 
sequences

Fig. 8 Illustration of the Gaussian selection model of a massively parallel experiment. Each assayed sequence
in this model is a D-dimensional vector. The library (corresponding to bin M = 0) consists of N0 sequences
S drawn from a Gaussian distribution plib(S) that is centered on a specific sequence μ. Bin M = 1 consists of
N1 sequences drawn from the distribution plib(S) then enriched by a factor of exp(b∗R∗) where R∗ = ST θ∗.
This enrichment procedure is analogous to selecting protein–bound DNA sequences where b∗R∗ is negative
the binding energy. Calculations in the text are performed in the N0  N1 limit

where the activity R∗ is defined as the dot product of S with a D-dimensional vector θ∗, i.e.,

R∗ = ST θ∗. (53)

We use NM to denote the number of sequences in each bin M , along with N = N0 + N1.
All of our calculations are performed in the limit where N1 is large but N0 is far larger.

More specifically, we assume that exp(a∗ + b∗R∗) � 1 everywhere that both p(S|M = 0)
and p(S|M = 1) are significant. We use ε to denote the ratio

ε ≡ p(M = 1)

p(M = 0)
= N1

N0
, (54)

and all of our calculations are carried out only to first order in ε. This model experiment is
illustrated in Fig. 8.

Our goal is this: given the sampled sequences in the two bins, recover the parameters θ∗
defining the sequence–function relationship for R∗. To do this, we adopt the following model
for the sequence-dependent activity R:

R = ST θ, (55)

where θ is the D-dimensional vector we wish to infer. From the arguments above and in
[28], it is readily seen that the magnitude of θ , i.e. |θ |, is the only diffeomorphic mode of the
model: changing this parameter rescales R, preserving rank order.

8.1 Bin-Specific Distributions

We can readily calculate the conditional sequence distribution p(S|M) for each bin M , as
well as the conditional distribution p(R|M) of model predictions. Because the sequences
sampled for bin 0 are indiscriminately drawn from plib, we have

p(S|M = 0) = plib(S) = (2π)−D/2 exp

(
−|S − μ|2

2

)
. (56)

The distribution of selected sequences is found to be

p(S|M = 1) = (2π)−D/2 exp

(
−|S − μ − b∗θ∗|2

2

)
. (57)
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The value of ε is found to be related to a∗, b∗, and θ∗ via

ε = exp

(
a∗ + b∗μT θ∗ + b∗2|θ∗|2

2

)
. (58)

Appendix 3 provides an explicit derivation of Eqs. (57) and (58).
We compute the distribution of model predictions for each bin as follows. For each bin

M , this distribution is defined as

p(R|M) =
∫

dS δ(R − θT S)p(S|M). (59)

This can be analytically calculated for both of the bins owing to the Gaussian form of each
sequence distribution. We find that

p(R|M = 0) = 1√
2π |θ | exp

(
− (R − μT θ)2

2|θ |2
)

, (60)

p(R|M = 1) = 1√
2π |θ | exp

(
− (R − [μ + b∗θ∗]T θ)2

2|θ |2
)

. (61)

See Appendix 3 for details.

8.2 Noise Function

Tocompute likelihood,wemust posit a noise functionπ(M |R). Based onour prior knowledge
of the selection procedure, we choose π(M |R) so that

π(M = 1|R)

π(M = 0|R)
= exp(a + bR), (62)

where a and b are scalar parameters that wemight ormight not know a priori. This, combined
with the normalization requirement,

∑
M π(M |R) = 1, gives

π(M = 1|R) = ea+bR

1 + ea+bR
, π(M = 0|R) = 1

1 + ea+bR
. (63)

This noise function π is correct when a = a∗ and b = b∗. The parameter b is dual to the
diffeomorphic mode |θ |, whereas the parameter a is not dual to any diffeomorphic mode.

In the experimental setup used to motivate the Gaussian selection model, the parameter a
is affected bymany aspects of the experiment, including the concentration of the protein used
in the binding assay, the efficiency of DNA extraction from the gel, and the relative amount
of PCR amplification used for the bin 0 and bin 1 sequences. In practice, these aspects of
the experiment are very hard to control, much less predict. From the results in the previous
section, we can expect that if we assume a specific value for a and perform likelihood-based
inference, inaccuracies in this value for a will distort our inferredmodel θ in an unpredictable
(i.e., nondiffeomorphic) way. We will, in fact, see that this is the case. The solution to this
problem, of course, is to infer θ alone bymaximizing themutual information I (θ); in this case
the values for a and b become irrelevant. Alternatively, one can place a prior on a and b, then
maximize noise-averaged likelihood Lna(θ). We now analytically explore the consequences
of these three approaches.
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8.3 Likelihood

Using the noise function in Eq. (63), the likelihood L becomes a function of θ , a, and b.
Computing L in the N → ∞ and ε → 0 limits, we find that

L(θ, a, b) = ε[a + bθTμ + bb∗θT θ∗] − exp

(
a + bθTμ + b2|θ |2

2

)
. (64)

We now consider the consequences of various approaches for using L(θ, a, b) to esti-
mate θ∗. In each case, the inferred optimum will be denoted by a superscript ‘o.’ Standard
likelihood-based inference requires that we assume a specific value for a and for b, then
optimize L(θ, a, b) over θ alone by setting

0 = ∂L

∂θi

∣∣∣∣
θo,a,b

(65)

for each component i . By this criteria we find that the optimal model θo is given by a linear
combination of θ∗ and μ:

θo = cb∗

b
θ∗ + c − 1

b
μ, (66)

where c is a scalar that solves the transcendental equation

c = exp

(
[a∗ − a] + 1 − c2

2
|b∗θ∗ + μ|2

)
. (67)

See Appendix 2 for the derivation of this result. Note that c is determined only by the value
of a and not by the value of b. Moreover, c = 1 if and only if a = a∗.

If our assumed noise function is correct, i.e., a = a∗ and b = b∗, then

θo = θ∗. (68)

Thus, maximizing likelihood will identify the correct model parameters. This exemplifies
the general behavior illustrated in Fig. 7a.

If a = a∗ but b �= b∗, our assumed noise function will differ from the correct noise
function only in a manner dual to the diffeomorphic mode |θ |. In this case we find that c = 1
and

θo = b∗

b
θ∗. (69)

θo is thus proportional but not equal to θ∗. This comports with our claim above that the
diffeomorphic mode of the inferred model, i.e. |θo|, will be biased so as to compensate for
the error in the dual parameter b. This finding follows the behavior described in Fig. 7c.

If a �= a∗, however, c �= 1. As a result, θo is a nontrivial linear combination of θ∗ and
μ, and will thus point in a different direction than θ∗. This is true regardless of the value of
b. This behavior is illustrated in Fig. 7b: errors in non-dual parameters of the noise function
will typically lead to errors in nondiffeomorphic parameters of the activity model.

We now consider the error bars that likelihood places on model parameters. Setting θ =
θo + δθ and expanding L(θ, a, b) about θo, we find that

NL(θ, a∗, b∗) ≈ NL(θo, a∗, b∗) − N1b∗2

2

∑

i, j

Λi jδθiδθ j , (70)
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where Λi j = δi j + (μi + b∗θ∗
i )(μ j + b∗θ∗

j ). Note that all eigenvalues of Λ are greater or
equal to 1. Adopting the posterior distribution

p(θ |data) ∼ eNL(θ,a,b) (71)

therefore gives a covariance matrix on θ of

〈
δθiδθ j

〉 = Λ−1
i j

N1b∗2 . (72)

Thus, δθ ∼ N−1/2
1 in all directions of θ -space. Therefore, when the noise function is incorrect

and N is sufficiently large, the finite bias introduced into θo will cause θ∗ to fall outside the
inferred error bars.

8.4 Mutual Information

In the ε → 0 limit, Eq. (7) simplifies to

I (θ) = ε

∫
dR p(R|M = 1) log

p(R|M = 1)

p(R|M = 0)
+ O(ε2). (73)

The lowest order term on the right hand side can be evaluated exactly using Eqs. (60) and
(61):

I (θ) = εb∗2

2

(θT θ∗)2

|θ |2 . (74)

See Appendix 3 for details. Note that the expression on the right is invariant under a rescaling
of θ . This reflects the fact that |θ | is a diffeomorphic mode of the model defined in Eq. (55).

To find the model θo that maximizes mutual information, we set

0 = ∂ I

∂θi

∣∣∣∣
θo

= εb∗2θoT θ∗

|θo|2
[
θ∗
i − θoi

θoT θ∗

|θo|2
]

(75)

The optimal model θo must therefore be parallel to θ∗, i.e.

θ0 ∝ θ∗. (76)

Expanding about θ = θo + δθ as above, we find that

N I (θ) = N I (θo) − N1b∗2

2
(δθ⊥)2 (77)

where δθ⊥ is the component of δθ perpendicular to θ∗; see Appendix 3. Therefore, if we use
the posterior distribution p(θ |data) ∼ eN I (θ) to infer θ , we find uncertainties in directions
perpendicular to θ∗ of magnitude N−1/2

1 . These error bars are only slightly larger than
those obtained using likelihood, and have the same dependence on N . However, we find no
constraint whatsoever on the component of δθ parallel to θ∗. These results are illustrated by
Fig. 7d.
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8.5 Noise-Averaged Likelihood

We can also compute the noise-averaged likelihood, Lna(θ), in the case of a uniform prior
on a and b, i.e. p(π) = p(a, b) = C where C is an infinitesimal constant. We find that

exp[NLna(θ)] =
∫

dπ p(π) exp[NL(θ, π)] (78)

= C
∫ ∞

−∞
da
∫ ∞

−∞
db exp

(
N1[a + bθTμ + bb∗θT θ∗]

−N exp

[
a + bθTμ + b2|θ |2

2

])
(79)

= CΓ (N1)

√
2π

N |θ |2 exp

(
N1b∗2

2

(θT θ∗)2

|θ |2
)

. (80)

See the Appendix 3 for details. Thus,

Lna(θ) = I (θ) − 1

N
log |θ | + const, (81)

where the constant (which absorbs C entirely) does not depend on θ . If we perform Bayesian
inference using noise-averaged likelihood, i.e., using p(θ |data) ∼ eNLna(θ), wewill therefore
find in the large N limit that δθ⊥ is constrained in the same way as if we had used mutual
information. The noise function prior we have assumed further results in weak constraints
on |θ | that do not tighten as N increases.10 This is represented in Fig. 7e.

9 Discussion

The systematic study of quantitative sequence–function relationships in biology is just now
becoming possible thanks to the development of a variety of massively parallel experiments.
Concepts and methods from statistical physics are likely to prove valuable for understanding
this basic class of biological phenomena as well as for learning sequence–function relation-
ships from data.

In this paper we have discussed the problem of learning parametric models of sequence–
function relationships from experiments having poorly characterized experimental noise.
We have seen that standard likelihood-based inference, which requires an explicit model of
experimental noise, will generally lead to incorrect model parameters due to errors in the
assumed noise function. By contrast, mutual-information-based inference allows one to learn
parametric models without having to assume any noise function at all. Mutual-information-
based inference is unable to pin down the values of model parameters along diffeomorphic
modes. This behavior reflects a fundamental difference between how diffeomorphic and non-
diffeomorphic modes are constrained by data. Diffeomorphic modes arise from arbitrariness
in the distinction between the activity model and the noise function. These findings were
illustrated using an analytically tractable model for a massively parallel experiment.

The study of quantitative sequence–function relationships still presents many challenges,
both theoretical and computational. One major practical difficulty with the mutual-
information-based approach described here is accurately estimating mutual information

10 In the case at hand, |θo| is pushed all the way to zero. This is an artifact of the simple flat prior p(a, b). If
we instead adopt a weak Gaussian prior on b, we can still carry out the computation of Lna analytically, and
in this case we find that |θo| is finite.
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from data. Although methods are available for doing this [44], it remains unclear whether
any are accurate enough to enable computational sampling of the posterior distribution
p(θ |data) ∼ eN I (θ), as suggested here. Moreover, none of these estimation methods is
regarded as definitive. We believe this lack of clarity regarding how to estimate mutual infor-
mation reflects the fact that the density estimation problem itself has never been fully solved,
even in one or two dimensions. We are hopeful, however, that field-theoretic methods for
estimating probability densities [45–47] might help resolve the problem of mutual informa-
tion.

The problem of model selection poses a major theoretical challenge. Ideally, one would
like to explore a hierarchy of possible model classes when fitting parametric models to data.
However,when considering effectivemodels it is unclear how tomove far beyond independent
site models (e.g., energy matrices) due to the number of parameters growing exponentially
with the length of the sequence. Moreover, when learning mechanistic models such as the
model of the lac promoter featured in Fig. 3, it is unclear how to go about systematically
testing different arrangements of binding sites, different protein–protein interactions, and so
on. We emphasize that this model prioritization problem is fundamentally theoretical, not
computational, and as of now there is little clarity on how to address this matter.

Finally, the geometric structure of sequence–function relationships presents an array of
intriguing questions. For instance, very little is known (in any system) about how convex or
glassy such landscapes in sequence space are, what their density of states looks like, etc..
Most of the biological and evolutionary implications of these aspects of sequence–function
relationships also have yet to be worked out. We believe that the methods and ideas of
statistical physics may lead to important insights into these questions in the near future.
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Appendix 1: Maximum Likelihood Under Various Noise Functions

At the correct noise function π∗, likelihood is given by

L(θ, π∗) = 〈
logπ∗(M |R)

〉
data . (82)

Taylor expanding this quantity about θ∗ gives

L(θ, π∗) = L(θ∗, π∗) +
∑

i

∂L

∂θi

∣∣∣∣
θ∗

(θi − θ∗
i )

+ 1

2

∑

i, j

∂2L

∂θi∂θ j

∣∣∣∣
θ∗

(θi − θ∗
i )(θ j − θ∗

j ) + · · · . (83)

We define the random vector u in terms of the coefficient of the linear term of this expansion:

ui√
N

≡ ∂L

∂θi

∣∣∣∣
θ∗

=
〈
∂ logπ∗(M |R)

∂R

∂R

∂θi

〉

data

∣∣∣∣
θ∗

. (84)
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Because ui/
√
N is defined as a sum of N random terms, and because the mean of these terms

vanishes, the covariance 〈uiu j 〉real will, by the central limit theorem, be given by

〈
uiu j

〉
real =

〈[
∂ logπ∗(M |R)

∂R

]2
∂R

∂θi

∂R

∂θ j

〉

S,M

∣∣∣∣∣
θ∗

(85)

=
∑

M

∫
dR p(M, R)

[
∂ logπ∗(M |R)

∂R

]2 〈
∂R

∂θi

∂R

∂θ j

〉

S|R,M

∣∣∣∣∣
θ∗

. (86)

At θ = θ∗, each measurement M will provide no additional information about S beyond
that provided by the model prediction R = θ(S). Mathematically this means that

p(S|R, M)|θ∗ = p(S|R)|θ∗ (87)

for all S, R, and M . Equivalently, the conditional expectation value of any sequence-
dependent function f (S) will obey

〈 f (S)〉S|R,M

∣∣
θ∗ = 〈 f (S)〉S|R

∣∣
θ∗ (88)

for all M . We use this fact to simplify Eq. (86):

〈
uiu j

〉
real =

∫
dR p(R)

〈
∂R

∂θi

∂R

∂θ j

〉

S|R

∑

M

π(M |R)

[
∂ logπ∗(M |R)

∂R

]2∣∣∣∣∣
θ∗

(89)

=
∫

dR p(R)J (R)

〈
∂R

∂θi

∂R

∂θ j

〉

S|R

∣∣∣∣∣
θ∗

(90)

where J (R) is the Fisher information from Eq. (40).
We compute the Hessian of likelihood as follows:

Hi j ≡ ∂2L(θ, π∗)
∂θi∂θ j

∣∣∣∣
θ∗

=
〈
∂2 logπ∗(M |R)

∂R2

∂R

∂θi

∂R

∂θ j

〉

S,M

∣∣∣∣∣
θ∗

+
〈
∂ logπ∗(M |R)

∂R

∂2R

∂θi∂θ j

〉

S,M

∣∣∣∣∣
θ∗

. (91)

The second term on the right hand side vanishes because of Eq. (88):

〈
∂ logπ∗(M |R)

∂R

∂2R

∂θi∂θ j

〉

S,M

∣∣∣∣∣
θ∗

=
∑

M

∫
dR p(R, M)

∂ logπ∗(M |R)

∂R

〈
∂2R

∂θi∂θ j

〉

S|R,M

∣∣∣∣∣
θ∗

(92)

=
∫

dR p(R)

〈
∂2R

∂θi∂θ j

〉

S|R

[
∑

M

π(M |R)
∂ logπ(M |R)

∂R

]∣∣∣∣∣
θ∗
(93)

=
∫

dR p(R)

〈
∂2R

∂θi∂θ j

〉

S|R

[
∂

∂R

∑

M

π(M |R)

]∣∣∣∣∣
θ∗

(94)

=
∫

dR p(R)

〈
∂2R

∂θi∂θ j

〉

S|R

[
∂

∂R
1

]∣∣∣∣∣
θ∗

(95)

= 0. (96)
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We therefore find that

Hi j =
∑

M

∫
dR p(R, M)

∂2 logπ∗(M |R)

R2

∣∣∣∣∣
θ∗

(97)

= −
∫

dR p(R)J (R)

〈
∂R

∂θi

∂R

∂θi

〉

S|R

∣∣∣∣∣
θ∗

, (98)

which is Eq. (39). Note that, from Eq. (90),
〈
uiu j

〉
real = −Hi j .

The optimum θo of L(θ, π∗) will occur when

0 = ∂L(θ, π∗)
∂θ

∣∣∣∣
θo

= ui√
N

+
∑

j

Hi j (θ
o
i − θ∗

i ) + · · · . (99)

We therefore find that, to lowest order in N−1/2,

θ0i = θ∗
i −

∑

j

H−1
i j

u j√
N

. (100)

The covariance of θo is thus given by

〈
(θoi − θ∗

i )(θoj − θ∗
j )
〉

real
=
∑

k,l

H−1
ik

〈ukul〉real
N

H−1
l j = −H−1

i j

N
, (101)

which is Eq. (38).
Under the incorrect noise function π ′ defined in Eq. (41),

L(θ, π ′) = L(θ, π∗) + ε 〈 f (M, R)〉data (102)

≈ L(θ∗, π∗) + ε 〈 f (M, R)〉S
∣∣
θ∗

+
∑

i

[
ui√
N

+ εwi

]
(θi − θ∗

i ) + 1

2

∑

i j

Hi j (θi − θ∗
i )(θ j − θ∗

j ) + · · · (103)

where

wi =
〈
∂ f

∂R

∂R

∂θi

〉

S

∣∣∣∣
θ∗

. (104)

Let θ ′ denote the maximum of L(θ, π ′). Setting ∂L(θ,π ′)
∂θi

= 0
∣∣∣
θ ′ , we find

θ ′
i = θ∗

i −
∑

j

H−1
i j

[
u j√
N

+ εw j

]
, (105)

from which we get Eq. (42).
In the case of a noise function π ′′ that differs from π∗ only along a dual mode, as in

Eq. (44), the vector wi is given by

wi =
〈
∂ṽdif

∂R

∂R

∂θi

〉

S

∣∣∣∣
θ∗

. (106)
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The maximum likelihood parameters θ ′′ will therefore satisfy

0 =
∑

j

Hi j

〈
θ ′′
j − θ∗

j

〉

real
+ εwi (107)

=
∑

j

〈
∂2 logπ

∂R2

∂R

∂θi

∂R

∂θ j
+ ∂ logπ

∂R

∂2R

∂θi∂θ j

〉

S,M

∣∣∣∣∣
θ=θ∗

〈
θ ′′
j − θ∗

j

〉

real

+ ε

〈
∂R

∂θi

∂

∂R

[
∂ logπ

∂R
h(R)

]〉

S,M

∣∣∣∣∣
θ=θ∗

(108)

=
〈

∂

∂θi

∂ logπ

∂R

⎡

⎣
∑

j

∂R

∂θ j

〈
θ ′′
j − θ∗

j

〉

real
+ εh(R)

⎤

⎦
〉

S,M

∣∣∣∣∣∣
θ=θ∗

(109)

=
〈

∂

∂θi

∂ logπ

∂R

∑

j

∂R

∂θ j

(〈
θ ′′
j − θ∗

j

〉

real
+ εvdifj

)〉

S,M

∣∣∣∣∣∣
θ=θ∗

, (110)

which is solved by Eq. (45). The fact that this uniquely specifies
〈
θ ′′
i − θ∗

i

〉
real follows from

the Hessian H being nonsingular.

Appendix 2: Gradient and Hessian of Mutual Information

Here we calculate the gradient and Hessian of mutual information evaluated at θ = θ∗.
We do this by first computing derivatives of the empirical probability distributions p(R)

and p(R, M) with respect to model parameters. The mathematical trick used to do this is
adapted from [31]. These results are first applied to likelihood in order to demonstrate their
use and correctness.We then use this approach to compute the gradient andHessian ofmutual
information. To clarify these derivations, we use r(θ, S), instead of θ(S), to explicitly denote
the model prediction R as a function of sequence S and model parameters θ . We also define
∂i ≡ ∂

∂θi
and use

∫
dS to represent sums over sequences.

How the Distribution of Model Predictions Changes with Model Parameters

The empirical probability distribution of model predictions R is given by

p(R) =
∫

dS p(S) δ(R − r(θ, S)). (111)

The gradient of this probability distribution with respect to model parameters is computed
as follows:

∂i p(R) =
∫

dS p(S) ∂iδ(R − r(θ, S)) (112)

= −
∫

dS p(S)

[
∂

∂R
δ(R − r(θ, S))

]
∂i r (113)

= − ∂

∂R

[
p(R)

∫
dS p(S|R)δ(R − r(θ, S))∂i r

]
(114)

= − ∂

∂R

[
p(R) 〈∂i r〉S|R

]
. (115)

123



Learning Quantitative Sequence–Function Relationships... 1231

Similarly, the Hessian of p(R) is given by

∂i∂ j p(R) =
∫

dS p(S)

{[
∂2

∂R2 δ(R − r(θ, S))

]
∂i r∂ j r −

[
∂

∂R
δ(R − r(θ, S))

]
∂i∂ j r

}

(116)

= ∂2

∂R2

[
p(R)

〈
∂i r∂ j r

〉
S|R
]

− ∂

∂R

[
p(R)

〈
∂i∂ j r

〉
S|R
]
. (117)

Analogous results follow for the gradient and Hessian of the joint distribution p(R, M):

∂i p(R, M) = − ∂

∂R

[
p(R, M) 〈∂i r〉S|R,M

]
, (118)

∂i∂ j p(R, M) = ∂2

∂R2

[
p(R, M)

〈
∂i r∂ j r

〉
S|R,M

]
− ∂

∂R

[
p(R, M)

〈
∂i∂ j r

〉
S|R,M

]
. (119)

Gradient and Hessian of Likelihood

Likelihood can be expressed in terms of the empirical distribution p(R, M) as

L(θ, π) =
∑

M

∫
dR p(R, M) logπ(M |R). (120)

Keep in mind that R is just a dummy variable in this integral; the empirical distribution p is
the only quantity that depends on θ . The gradient of likelihood is therefore computed as

∂i L =
∑

M

∫
dR [∂i p(R, M)] logπ(M |R) (121)

=
∑

M

∫
dR

{
− ∂

∂R

[
p(R, M) 〈∂i r〉S|R,M

]}
logπ(M |R) (122)

=
∑

M

∫
dR p(R, M)

∂ logπ(M |R)

∂R
〈∂i r〉S|R,M (123)

=
〈
∂ logπ(M |R)

∂R
∂i r

〉

S,M
. (124)

Note that in going from Eqs. (122) to (123) we used integration by parts. The Hessian of
likelihood is computed similarly:

∂i∂ j L =
∑

M

∫
dR [∂i∂ j p(R, M)] logπ(M |R) (125)

=
∑

M

∫
dR logπ(M |R)

{
∂2

∂R2

[
p(R, M)

〈
∂i r∂ j r

〉
S|R,M

]

− ∂

∂R

[
p(R, M)

〈
∂i∂ j r

〉
S|R,M

] }
(126)
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=
∑

M

∫
dR p(R, M)

{
∂2 logπ(M |R)

∂R2

〈
∂i r∂ j r

〉
S|R,M

+ ∂ logπ(M |R)

∂R

〈
∂i∂ j r

〉
S|R,M

}
. (127)

This expression is valid for all choices θ and π .
Restricting our attention now to θ = θ∗ and π = π∗, we see that the second term in

Eq. (127) vanishes as it did in Eq. (92) through Eq. (96). Moreover, the first term gives

∂i∂ j L = −
∫

dR p(R)J (R)
〈
∂i r∂ j r

〉
S|R , (128)

which is the formula obtained for Hi j in Eq. (39).

Gradient and Hessian of Mutual Information

The gradient and Hessian computations for mutual information are simplified by expressing
mutual information in terms of its component entropies. We write

I (θ) = HR(θ) + HM − HRM (θ) (129)

where

HRM (θ) = −
∑

M

∫
dR p(R, M) log p(M, R), (130)

HR(θ) = −
∫

dR p(R) log p(R), (131)

HM = −
∑

M

p(M) log p(M). (132)

The gradient of HR is given by

∂i HR = −
∫

dR [∂i p(R)] log p(R) −
∫

dR p(R)∂i log p(R) (133)

= −
∫

dR [∂i p(R)] log p(R) −
∫

dR p(R)
1

p(R)
∂i p(R) (134)

= −
∫

dR [∂i p(R)] log p(R) − ∂i1 (135)

= −
∫

dR [∂i p(R)] log p(R). (136)

Similarly,

∂i HRM = −
∑

M

∫
dR [∂i p(R, M)] log p(R, M). (137)

HM does not depend on θ , so ∂i HM = 0. The resulting gradient of mutual information is

∂i I =
∑

M

∫
dR [∂i p(R, M)] log p(R, M) −

∫
dR [∂i p(R)] log p(R) (138)
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=
∑

M

∫
dR [∂i p(R, M)] log p(R, M)

p(R)
(139)

=
∑

M

∫
dR [∂i p(R, M)] log p(M |R). (140)

Note from Eq. (121) that ∂i I = ∂i L whenever π(M |R) = p(M |R).
Now let’s compute the Hessian of HR :

∂i∂ j HR = −
∫

dR [∂i∂ j p(R)] log p(R) −
∫

dR [∂i p(R)]∂i log p(R) (141)

= −
∫

dR [∂i∂ j p(R)] log p(R) −
∫

dR p(R)[∂i log p(R)][∂ j log p(R)].
(142)

Similarly,

∂i∂ j HRM = −
∑

M

∫
dR [∂i∂ j p(R, M)] log p(R, M)

−
∑

M

∫
dR p(R, M)[∂i log p(R, M)][∂ j log p(R, M)]. (143)

The Hessian of mutual information is therefore given by,

∂i∂ j I = ∂i∂ j HR − ∂i∂ j HRM . (144)

Using the form of ∂i∂ j L in Eq. (125), we see that this reduces to

∂i∂ j I = ∂i∂ j L + ΛRM
i j − ΛR

i j , (145)

where

ΛR
i j =

∫
dR p(R)[∂i log p(R)][∂ j log p(R)] (146)

and

ΛRM
i j =

∑

M

∫
dR p(R, M)[∂i log p(R, M)][∂ j log p(R, M)]. (147)

We now split ΛR
i j and ΛRM

i j into four terms each. For ΛR
i j we get

ΛR
i j =

∫
dR p(R)

{
− 1

p(R)

∂

∂R

[
p(R) 〈∂i r〉S|R

]}{− 1

p(R)

∂

∂R

[
p(R)

〈
∂ j r
〉
S|R
]}

(148)

=
∫

dR p(R)

{
∂ log p(R)

∂R
〈∂i r〉S|R + ∂

∂R
〈∂i r〉S|R

}

×
{

∂ log p(R)

∂R

〈
∂ j r
〉
S|R + ∂

∂R

〈
∂ j r
〉
S|R

}
(149)

= AR
i j + BR

i j + BR
ji + CR

i j , (150)
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where

AR
i j =

∫
dR p(R)

[
∂ log p(R)

∂R

]2
〈∂i r〉S|R

〈
∂ j r
〉
S|R , (151)

BR
i j =

∫
dR p(R)

[
∂ log p(R)

∂R

]
〈∂i r〉S|R

∂

∂R

〈
∂ j r
〉
S|R , (152)

CR
i j =

∫
dR p(R)

[
∂

∂R
〈∂i r〉S|R

] [
∂

∂R

〈
∂ j r
〉
S|R

]
. (153)

Similarly,

ΛRM
i j = ARM

i j + BRM
i j + BRM

ji + CRM
i j (154)

where

ARM
i j =

∑

M

∫
dR p(R, M)

[
∂ log p(R, M)

∂R

]2
〈∂i r〉S|R,M

〈
∂ j r
〉
S|R,M , (155)

BRM
i j =

∑

M

∫
dR p(R, M)

[
∂ log p(R, M)

∂R

]
〈∂i r〉S|R,M

∂

∂R

〈
∂ j r
〉
S|R,M , (156)

CRM
i j =

∑

M

∫
dR p(R, M)

[
∂

∂R
〈∂i r〉S|R,M

] [
∂

∂R

〈
∂ j r
〉
S|R,M

]
. (157)

It is unclear how to simplify the expression for ∂i∂ j I at general choices of θ . At θ = θ∗,
however, the expectation value 〈∂i r〉S|R,M loses all M-dependence and this causes a lot of
cancellations to occur:

CRM
i j =

∑

M

∫
dR p(R, M)

[
∂

∂R
〈∂i r〉S|R

] [
∂

∂R

〈
∂ j r
〉
S|R

]
(158)

=
∫

dR p(R)

[
∂

∂R
〈∂i r〉S|R

] [
∂

∂R

〈
∂ j r
〉
S|R

]
(159)

= CR
i j (160)

and

BRM
i j =

∫
dR p(R)

[
∑

M

p(M |R)
∂ log p(R, M)

∂R

]
〈∂i r〉S|R

∂

∂R

〈
∂ j r
〉
S|R (161)

=
∫

dR p(R)

[
∑

M

p(M |R)

p(R, M)

∂p(R, M)

∂R

]
〈∂i r〉S|R

∂

∂R

〈
∂ j r
〉
S|R (162)

=
∫

dR p(R)

[
1

p(R)

∂

∂R

∑

M

p(R, M)

]
〈∂i r〉S|R

∂

∂R

〈
∂ j r
〉
S|R (163)

=
∫

dR p(R)

[
1

p(R)

∂p(R)

∂R

]
〈∂i r〉S|R

∂

∂R

〈
∂ j r
〉
S|R (164)

=
∫

dR p(R)

[
∂ log p(R)

∂R

]
〈∂i r〉S|R

∂

∂R

〈
∂ j r
〉
S|R (165)

= BR
i j . (166)
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We therefore find that,

ΛRM
i j − ΛR

i j = ARM − AR (167)

=
∫

dR p(R) 〈∂i r〉S|R
〈
∂ j r
〉
S|R

×
{
∑

M

p(M |R)

[
∂ log p(R, M)

∂R

]2
−
[

∂ log p(R)

∂R

]2}
. (168)

The expression in braces can be simplified as follows:

∑

M

p(M |R)

[
∂ log p(R, M)

∂R

]2
−
[

∂ log p(R)

∂R

]2

=
∑

M

p(M |R)

{[
∂ log p(M |R)

∂R
+ ∂ log p(R)

∂R

]2
−
[

∂ log p(R)

∂R

]2}
(169)

=
∑

M

p(M |R)

{[
∂ log p(M |R)

∂R

]2
+ ∂ log p(R)

∂R

∂ log p(M |R)

∂R

}
(170)

= J (R) + 1

p(R)

∂p(R)

∂R

∂

∂R

∑

M

p(M |R) (171)

= J (R). (172)

The Hessian of mutual information at θ = θ∗ therefore has a rather simple form:

Ki j = Hi j + ΛRM
i j − ΛR

i j = −
∫

dR p(R) J (R)
[〈

∂i r∂ j r
〉
S|R − 〈∂i r〉S|R

〈
∂ j r
〉
S|R
]
,

(173)

which is Eq. (47).

Appendix 3: Gaussian Selection Model

Derivation of Eqs. (57) and (58)

Applying Bayes’s theorem twice,

p(S|M = 1) = p(M = 1|S)

p(M = 1)
p(S) = p(M = 1|S)

p(M = 1)

p(M = 0)

p(M = 0|S)
p(S|M = 0). (174)

Using Eqs. (56), (52), and (54) then gives

p(S|M = 1) = ε−1ea
∗+b∗ST θ∗

(2π)−D/2 exp

(
−|S − μ|2

2

)
. (175)
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Next we complete the square in the exponent:

− |S − μ|2
2

+ b∗ST θ∗ = − |S|2 + |μ|2 − 2μT S − 2b∗ST θ∗

2
(176)

= − |S|2 + |μ|2 + |b∗θ∗|2 − 2μT S − 2b∗ST θ∗ + 2b∗μT θ∗

2

+ |b∗θ∗|2
2

+ b∗μT θ∗ (177)

= − |S − μ − b∗θ |2
2

+ |b∗θ∗|2
2

+ b∗μT θ∗. (178)

From the first term in Eq. (178) we recover Eq. (57). To get ε, we substitute Eq. (178) into
Eq. (175). Comparing this to Eq. (57) then gives

1 = ε−1ea
∗
exp

( |b∗θ∗|2
2

+ b∗μT θ∗
)

. (179)

Solving for ε recovers Eq. (58).

Derivation of Eqs. (60) and (61)

Here we describe how to compute p(R|M) where R = θT S. We first consider the case of
M = 0.

p(R|M = 0) =
∫

dS p(S|M = 0)δ(R − ST θ) (180)

=
∫

dS p(S|M = 0)δ([R − μT θ ] − [S − μ]T θ) (181)

=
∫

dS p(S|M = 0)δ(R′ − S′T θ) (182)

where R′ = R − μT θ and S′ = S − μ. We have chosen to work with R′ and S′ instead of
R and S because p(S′|M = 0) is centered about 0. Now, split S′ up into the components
parallel and perpendicular to θ :

S′ = S′⊥ + S′‖θ̂ , (183)

where S′⊥ is a vector orthogonal to θ , S′‖ is a scalar, and θ̂ = θ/|θ |. This definition gives

S′T θ = S′‖|θ |. Continuing with the integration,

p(R|M = 0) =
∫

dS′⊥
∫ ∞

−∞
dS′‖ δ(R′ − S′‖|θ |)(2π)−D/2 exp

(
− S′2⊥

2
− S′2‖

2

)
(184)

=
∫ ∞

−∞
dS′‖ δ(R′ − S′‖|θ |)(2π)−1/2 exp

(
− S′2‖

2

)
(185)

=
∫ ∞

−∞
dS′‖ δ

(
R′

|θ | − S′‖
)

|θ |−1(2π)−1/2 exp

(
− S′2‖

2

)
(186)

= |θ |−1(2π)−1/2 exp

(
− R′2

2|θ |2
)

. (187)
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Finally, substituting R back for R′ gives

p(R|M = 0) = 1√
2π |θ | exp

(
− (R − μT θ)2

2|θ |2
)

. (188)

To compute p(R|M = 1), we just replace μ → μ + b∗θ∗, giving

p(R|M = 1) = 1√
2π |θ | exp

(
− (R − [μ + b∗θ∗]T θ)2

2|θ |2
)

. (189)

Derivation of Eq. (64)

We compute likelihood in the N → ∞ limit as follows:

L(θ, a, b) =
∑

M

p(M)

∫
dR p(R|M) logπ(M |R) (190)

= N0

N

∫
dR p(R|M = 0) log

1

1 + ea+bR

+ N1

N

∫
dR p(R|M = 1) log

ea+bR

1 + ea+bR
(191)

≈ − N0

N

∫
dR p(R|M = 0)ea+bR

+ N1

N

∫
dR p(R|M = 1)[a + bR] (192)

≈ −
〈
ea+bR

〉

S|M=0
+ ε 〈a + bR〉S|M=1 . (193)

In deriving Eq. (193) we assumed that ea+bR � 1 for all values of R over which both
p(R|M = 0) and p(R|M = 1) have significant support. This assumption necessarily holds
in the ε → 0 limit. We have also kept only the lowest order terms in ε. Note in particular
that 〈ea+bR〉S|M=0 will be of order ε.

The second term in Eq. (193) can be directly read off from Eq. (61):

〈a + bR〉S|M=1 = a + b 〈R〉S|M=1 = a + bμT θ + bb∗θT θ∗. (194)

From Eq. (60) we see that the first term in Eq. (193) can be computed by completing the
square:

− (R − μT θ)2

2|θ |2 +bR = − R2 + (μT θ)2 − 2(μT θ)R − 2b|θ |2R
2|θ |2 (195)

= − R2 + (μT θ)2 + b2|θ |4 − 2(μT θ)R − 2b|θ |2R + 2(μT θ)b|θ |2
2|θ |2

+ b(μT θ) + b2|θ |2
2

(196)

= − (R − μT θ − b|θ |2)2
2|θ |2 + b(μT θ) + b2|θ |2

2
, (197)

123



1238 G. S. Atwal, J. B. Kinney

from which we get

〈
ea+bR

〉

S|M=1
= exp

[
a + b(μT θ) + b2|θ |2

2

]
. (198)

Plugging Eqs. (194) and (198) into Eq. (193) gives the formula for L(θ, a, b) in Eq. (64).

Derivation of Eqs. (66) and (67)

Here we show how to derive the optimal θ for L(θ, a, b), with a and b fixed. Setting the
gradient of L with respect to θ to zero,

0 = ∂L

∂θi

∣∣∣∣
θo

= εb(μi + b∗θ∗
i ) − b(μi + bθoi ) exp

(
a + bμT θo + b2|θo|2

2

)
. (199)

This gives

μi + bθoi = ε(μi + b∗θ∗
i ) exp

(
−a − bμT θo − b2|θo|2

2

)
(200)

= c(μi + b∗θ∗
i ) (201)

where c is a constant satisfying

c = ε exp

(
−a − bμT θo − b2|θo|2

2

)
(202)

= exp

(
[a∗ − a] + μT [b∗θ∗ − bθo] + b∗2|θ∗|2 − b2|θo|2

2

)
. (203)

We thus find Eq. (66). Note that the right hand side of the above equation depends implicitly
on c through the value of θo. To eliminate θo from the equation for c, we let Λ denote the
θ∗-dependent part of Eq. (203), then substitute in Eq. (66):

Λ ≡ μT [b∗θ∗ − bθo] + b∗2|θ∗|2 − b2|θo|2
2

(204)

= μT [b∗θ∗(1 − c) − (c − 1)μ] + b∗2|θ∗|2
2

− |cb∗θ∗ + (c − 1)μ|2
2

(205)

= (1 − c)b∗μT θ∗ + (1 − c)|μ|2 + (1 − c2)b∗2|θ∗|2
2

− (1 − c)2|μ|2
2

− c(c − 1)b∗μT θ∗. (206)

Using

(c − 1) − c(c − 1) = 1 − c2, and (1 − c) − (1 − c)2

2
= 1 − c2

2
, (207)

we get

Λ = (1 − c2)b∗μT θ∗ + (1 − c2)|μ2|
2

+ (1 − c2)b∗2|θ∗|2
2

(208)

= 1 − c2

2
|b∗θ∗ + μ|2. (209)
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We thus find the transcendental equation for c,

c = exp

(
[a∗ − a] + 1 − c2

2
|b∗θ∗ + μ|2

)
, (210)

which is Eq. (67).

Derivation of Eq. (70)

From the expression for likelihood in Eq. (64), we find that the Hessian of likelihood is

Hi j = ∂2L(θ, a∗, b∗)
∂θi∂θ j

∣∣∣∣
θ∗

(211)

= [−b∗2δi j − (b∗μi + b∗2θ∗
i )(b∗μ j + b∗2θ∗

j )] exp
(
a + b∗θTμ + b∗2|θ |2

2

)
(212)

= −b∗2εΛi j (213)

where

Λi j ≡ δi j + (μi + b∗θ∗
i )(μ j + b∗θ∗

j ). (214)

We note that in deriving Eq. (213) we used the expression for ε in Eq. (58). The expression
in Eq. (70) further makes use of the approximation N1 ≈ εN , which will hold in the ε → 0
limit, and

∂2L(θ, a∗, b∗)
∂θi∂θ j

∣∣∣∣
θo

≈ ∂2L(θ, a∗, b∗)
∂θi∂θ j

∣∣∣∣
θ∗

, (215)

which will hold in the large N limit.

Derivation of Eqs. (73) and (74)

We derive Eq. (73) as follows. To ease notation a bit, we define pM (R) = p(R|M).

I [R; M] =
∑

M=0,1

∫
dR p(M, R) log

pM (R)

p(R)
(216)

= p(M = 1)
∫

dR p1(R) log
p1(R)

p(R)
+ p(M = 0)

∫
dR p0(R) log

p0(R)

p(R)

(217)

= p(M = 1)
∫

dR p1(R) log
p1(R)

p0(R)
+ p(M = 1)

∫
dR p1(R) log

p0(R)

p(R)

+ p(M = 0)
∫

dR p0(R) log
p0(R)

p(R)
(218)

= p(M = 1)
∫

dR p1(R) log
p1(R)

p0(R)
+
∫

dR p(R) log
p0(R)

p(R)
. (219)

Because p(M = 1) = ε + O(ε2), the first term in Eq. (219) is the right hand side of Eq. (73)
to lowest order in ε. We now show that the second term is of order ε2 and can therefore be
ignored. Up to terms of order ε2,

p(R) = (1 − ε)p0(R) + εp1(R). (220)
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Rearranging this gives

p0(R) = p(R) − εp1(R)

1 − ε
. (221)

Plugging this into the second term of Eq. (219) gives

∫
dR p(R) log

p0(R)

p(R)
=
∫

dR p(R) log

[
1

1 − ε

(
1 − ε

p1(R)

p(R)

)]
(222)

=
∫

dR p(R) log

[
1 + ε

(
1 − p1(R)

p(R)

)
+ O(ε2)

]
(223)

= ε

∫
dR p(R)

(
1 − p1(R)

p(R)

)
+ O(ε2) (224)

= O(ε2). (225)

Equation (74) is derived as follows:

I (θ) = ε

〈
log

p(R|M = 1)

p(R|M = 0)

〉

M=1
(226)

= ε

〈
(R − μT θ)2

2|θ |2 − ([R − μT θ ] − b∗θT θ∗)2

2|θ |2
〉

M=1
(227)

= ε

2|θ |2
〈
2[R − μT θ ]b∗θT θ∗ − (b∗θT θ∗)2

〉

M=1
(228)

= ε

2|θ |2
(
2[〈R〉M=1 − μT θ ]b∗θT θ∗ − (b∗θT θ∗)2

)
(229)

= ε

2|θ |2
(
2[b∗θT θ∗]b∗θT θ∗ − (b∗θT θ∗)2

)
(230)

= εb∗2

2

(θT θ∗)2

|θ |2 . (231)

Derivation of Eq. (77)

To derive Eq. (77), we set

θ = θ∗ + δθ‖ + δθ⊥ (232)

where δθ‖ is the deviation of θ from θ∗ in the direction of θ∗, and δθ⊥ is the deviation
perpendicular to θ∗. This gives

(θT θ∗)2

|θ |2 = (|θ∗|2 + δθT‖ θ∗)2

|θ∗|2 + 2δθT‖ θ∗ + |δθ‖|2 + |δθ⊥|2 (233)

= |θ∗|2 |θ∗|2 + 2δθT‖ θ∗ + |δθ‖|2
|θ∗|2 + 2δθT‖ θ∗ + |δθ‖|2 + |δθ⊥|2 (234)

= |θ∗|2
(
1 − |δθ⊥|2

|θ∗|2 + · · ·
)

(235)

= |θ∗|2 − |δθ⊥|2 + · · · . (236)
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The result in Eq. (77) readily follows by substituting this into the formula for mutual informa-
tion in Eq. (74), then approximating the Hessian of mutual information at θo by the Hessian
at θ∗.

Derivation of Eq. 80

Here we show how to evaluate the equation, Eq. (79), for the noise-averaged likelihood
eNLna(θ). First, interchange the order of integration and define a′ = a + bθTμ. This gives,

eNLna(θ) = C
∫ ∞

−∞
db
∫ ∞

−∞
da′ exp

[
N1

[
a′ + bb∗θT θ∗]− N exp

(
a′ + b2|θ |2

2

)]
.

(237)

Next, define M = N exp
(
b2|θ |2

2

)
, u = Mea

′
, and so ea

′ = u/M , ea
′
da′ = du/M . This

gives

eNLna(θ) = C
∫ ∞

−∞
db eN1bb∗θT θ∗

∫ ∞

−∞

(
ea

′
da′) (ea′)N1−1

exp
[
−Mea

′]
(238)

= C
∫ ∞

−∞
db eN1bb∗θT θ∗

M−N1

∫ ∞

0
du uN1−1 exp[−u] (239)

= CΓ (N1)

∫ ∞

−∞
db eN1bb∗θT θ∗

M−N1 (240)

= CΓ (N1)

∫ ∞

−∞
db exp

[
N1bb

∗θT θ∗ − N1
b2|θ |2
2

]
(241)

= CΓ (N1)

∫ ∞

−∞
db exp

[
N1|θ |2

2

(
2bb∗ θT θ∗

|θ |2 − b2
)]

(242)

= CΓ (N1)

∫ ∞

−∞
db exp

[
N1|θ |2

2

(
b∗2(θT θ∗)2

|θ |4 −
[
b − b∗θT θ∗

|θ |2
]2)]

(243)

= CΓ (N1) exp

(
N1b∗2

2

(θT θ∗)2

|θ |2
)∫ ∞

−∞
db exp

(
N1|θ |2

2

[
b − b∗θT θ∗

|θ |2
]2)

(244)

= CΓ (N1)

√
2π

N1|θ |2 exp

(
N1b∗2

2

(θT θ∗)2

|θ |2
)

, (245)

which is Eq. (80).
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