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Abstract We employ thermodynamic formalism for the study of conformal iterated function
systems (IFS) S = {φi }i∈I with arbitrary overlaps, and of measures μ on limit sets �, which
are projections of equilibriummeasures μ̂with respect to a certain lift map� on�+

I ×�. No
type of Open Set Condition is assumed.We introduce a notion of overlap function and overlap
number for such a measure μ̂ with respect to S; and, in particular a notion of (topological)
overlap number o(S). These notions take in consideration the n-chains between points in
the limit set. We prove that o(S, μ̂) is related to a conditional entropy of μ̂ with respect to
the lift �. Various types of projections to � of invariant measures are studied. We obtain
upper estimates for the Hausdorff dimension HD(μ) of μ on �, by using pressure functions
and o(S, μ̂). In particular, this applies to projections of Bernoulli measures on �+

I . Next, we
apply the results to Bernoulli convolutions νλ for λ ∈ ( 12 , 1), which correspond to self-similar
measures determined by composing, with equal probabilities, the contractions of an IFS with
overlaps Sλ. We prove that for all λ ∈ ( 12 , 1), there exists a relation between HD(νλ) and
the overlap number o(Sλ). We also estimate o(Sλ) for certain values of λ.
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1 Introduction and Outline

Iterated function systems (IFS) have been studied by many authors, and a lot about their
theory is known. In many instances, systems which satisfy the Open Set Condition were
studied. When arbitrary overlaps of the images of the contractions are allowed, the theory is
different and the results from the case of Open Set Condition do not work anymore.

Let us consider a finite set I and an iterated function system S = {φi , i ∈ I } consisting
of injective conformal contractions φi defined on the closure of an open set V ⊂ R

q , q ≥ 1.
Denote by �+

I the one-sided space {ω = (ω1, ω2, . . .), ω j ∈ I, j ≥ 1}, with its shift
endomorphism σ : �+

I → �+
I , σ (ω) = (ω2, ω3, . . .). For an arbitrary sequence ω and

for an integer n ≥ 1, let the n-truncation ω|n be the finite sequence (ω1, . . . , ωn). Also by
[i1 . . . in]we denote the n-cylinder {ω ∈ �+

I , ω1 = i1, . . . , ωn = in}, n ≥ 1, i1, . . . , in ∈ I .
Let denote now by � the fractal limit set of the iterated function system S, where:

� := ∪
ω∈�+

I

∩
n≥1

φω|n (V )

Since all the maps φi are contractions, we can define the canonical coding map π : �+
I →

�, π(ω) = lim
n→∞ φω1◦φω2◦· · ·◦φωn (V ), for allω = (ω1, ω2, . . .) ∈ �+

I . The singletonπ(ω)

will also be denoted by φω1 ◦φω2 ◦ · · · , as this infinite composition is in fact a point. We will
denote the composition φi1 ◦· · ·◦φim also by φi1...im , form ≥ 1, i j ∈ I, 1 ≤ j ≤ m. The map
π is called the canonical projection onto the limit set� of the system S. Various properties of
conformal IFS’s with overlaps were studied by several authors, for e.g. in [4,12,15,16,21],
etc. Let us fix now some more terminology and notation.

Definition 1 By overlaps we mean intersections of type φi (�) ∩ φ j (�) �= ∅, i �= j . If
for a point x ∈ � and an integer m ≥ 1, there exists a point ζ ∈ � and a finite sequence
i1, . . . im ∈ I such that φi1 ◦· · ·◦φim (ζ ) = x , then ζ is called anm-root of x , and (i1, . . . , im)

is called an m-chain from ζ to x .

In general, the number of roots/overlaps depends on the point x ∈ �, so it is not constant.
Notice also that the m-chain from a certain root ζ to x is not uniquely defined, i.e. there may
exist two different m-chains (i1, . . . , im) and ( j1, . . . , jm) so that φi1...im (ζ ) = φ j1... jm (ζ ) =
x . Considering the above, how can we define a good notion of average number of overlaps
of the IFS S, and how is such a notion dependent on a probability measure μ on �; also,
how does such a number of overlaps affect the Hausdorff dimension of μ? It is clear that
we have to look at n-roots of points, since the limit set � is invariant under the system S,
i.e. � = ∪

i∈I φi (�), thus for k-iterations of S we have � = ∪
i1,...,ik∈I

φi1...ik (�), for any

k ≥ 2. In [12] we studied the effect, of the bounds for the number of overlaps, on the
Hausdorff dimension of the limit set �. This hints to the fact that the overlap number should
be given by an average rate of growth of the number of n-chains between points in�. Another
question is, what probabilities μ on � should be considered, and what roots in � should we
use. Some n-roots and n-chains which are non-generic with respect to μ and to a lift map
� : �+

I × � → �+
I × � will thus be ignored when defining the overlap number relative to

μ.
Besides the canonical coding projectionπ : �+

I → �, one can consider also the projection
π2 : �+

I ×� → �, π2(ω, x) = x , and the projection π̃ : �+
I ×�+

I → �+
I ×�, π̃(ω, η) =

(ω, πη); so we obtain projections of σ -invariant measures on �+
I , �-invariant measures on

�+
I × � or �̃-invariant measures on �+

I × �+
I (where �̃ is a lift of � to �+

I × �+
I ). In
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Overlap Functions for Measures in Conformal... 45

Theorem 1wewill prove that, for Bernoulli measures, the corresponding projectionmeasures
on � are in fact the same.

We introduce a notion of overlap number o(S, μ̂ψ) associated to a�-invariant Gibbs state
μ̂ψ on �+

I × � (and to its π2-projection μψ on �), and we use thermodynamic formalism
to relate it to the dimension of μψ . In Theorem 2 and Corollary 1 we show that the overlap
number o(S, μ̂ψ) is related to the folding entropy of μ̂ψ with respect to the lift map �.
In particular, this applies to Bernoulli measures on �+

I and their lifts on �+
I × �. When

μ = μ0 is the projection of the measure of maximal entropy μ̂0 from �+
I ×�, one obtains a

topological overlap number o(S) of S, which quantifies the average level of overlapping in
S, and indicates how far is S from satisfying the Open Set Condition. By using Theorem 1,
we compute in Corollary 2 the overlap number o(S) as a limit of integrals over �+

I w.r.t the
uniform Bernoulli measure ν( 1

|I | ,...,
1
|I | )

. And in general for Bernoulli measures νp, Corollary

2 gives a simpler formula for o(S, μ̂p).
Next, in Theorem 3we use the overlap number of μ̂ψ to obtain estimates for the Hausdorff

dimension of a set of full μψ -measure in �, which set is constructed explicitly. This gives
upper bounds for HD(μψ), by using zeros of pressure functions associated to o(S, μ̂ψ),
which are computable in certain cases of interest.

In Sect. 3 we apply the results to the case of Bernoulli convolutions νλ for λ ∈ ( 12 , 1),
where νλ gives the distribution of the random series

∑
n≥0 ±λn with the +,− signs taken

independently and with equal probabilities. In this case, one has an iterated function system
with overlaps Sλ, whose limit set is an interval Iλ, and νλ appears as the projection of the
measure of maximal entropy ν( 12 , 12 ) from �+

2 to Iλ. Bernoulli convolutions have attracted a

lot of attention (see [15]), starting with Erdös [3] who showed that νλ is singular for λ−1

Pisot; then, continuing with the result of Solomyak [21] about the absolute continuity of νλ

for Lebesgue-a.e λ ∈ ( 12 , 1), and the result of Przytycki and Urbański [17] that HD(νλ) < 1
for λ−1 Pisot, and othermore recent results. In Theorem 4we find a relation between HD(νλ)

and the overlap number o(Sλ), for all λ ∈ ( 12 , 1). We show how to approximate o(Sλ) with
integrals on�+

2 with respect to the uniformBernoulli measure ν( 12 , 12 ). By using known results

on HD(νλ), one obtains then upper estimates for o(Sλ); in particular, one can estimate o(Sλ)

more precisely for specific values of λ, like λ = 2− 1
m ,m ≥ 2 (i.e. 1

λ
non-Pisot), or λ =

√
5−1
2

(i.e. 1
λ
Pisot). In Corollary 3 we prove that o(Sλ) is strictly less than 2, for all λ ∈ ( 12 , 1). In

the end, we obtain dimension estimates for biased Bernoulli convolutions νλ,p , for λ ∈ ( 12 , 1)
and p ∈ (0, 1). The results about overlap numbers can be applied also to other conformal
iterated function systems with overlaps.

2 Overlap Numbers of Measures and Dimension Estimates

First, let us define an overlap lift functionwhich allows to associate the dynamics of a map to
our IFS S. With regard to this function, the contractions φi appear as restrictions to cylinders
[i], i ∈ I .

Definition 2 In the above setting, for the finite IFS S = {φi }i∈I , define the overlap lift map
� : �+

I × � → �+
I × �, �(ω, x) = (σω, φω1(x)), (ω, x) ∈ �+

I × �

Let us now consider a Hölder continuous function ψ : �+
I × � → R. Since the lift map

� is distance-expanding in the first coordinate and contracting in the second coordinate, it
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46 E. Mihailescu, M. Urbański

follows that it is expansive and we can apply the theory of equilibrium states (for e.g. [7,22]).
Asψ is Hölder, there exists a unique equilibriummeasure forψ with respect to� on�+

I ×�,
denoted by μ̂ψ .

In particular, if we take a Hölder continuous function g : � → R and the associated
function ψg : �+

I × � → R, ψg(ω, x) = g(x), then we have the equilibrium measure μ̂ψg

on �+
I × � (relative to �) and its projection (π2)∗(μ̂ψg ) on �, where π2 is the projection

on the second coordinate. In general this measure is different from the projection π∗(μ̄g◦π ),
where π : �+

I → �,π(ω) = φω1 ◦ · · · , and where in general μ̄χ denotes the equilibrium
measure of a Hölder continuous χ on �+

I (relative to the shift σ ).
For any n ≥ 1 and any (ω, x) ∈ �+

I × �, we have �n(ω, x) = (σ nω, φωn ◦ φωn−1 ◦ · · · ◦
φω1(x)). Notice that, if η1, · · · , ηn are given and if φωn ◦ · · · ◦ φω1(x) = φηn ◦ · · · ◦ φη1(y),
then from the injectivity of the contractions φi , i ∈ I , there exists exactly one point y with
this property. By Definition 1, this means that, given the n-chain (ηn, . . . , η1) as above, the
corresponding n-root y is uniquely defined such that (ηn, . . . , η1) is an n-chain from y to
φωn ...ω1(x).

Given now ameasure μ̂ψ as above, an arbitrary point (ω, x) ∈ �+
I ×�, and τ > 0, define

the set of n-chains from points in � to φωn ...ω1(x), which are τ -generic relative to μ̂ψ :

�n
(
(ω, x), τ, μ̂ψ

) = {(η1, . . . , ηn) ∈ I n, ∃y ∈ �, φηn ...η1(y) (1)

= φωn ...ω1(x) and | Snψ(η, y)

n
−

∫

�+
I ×�

ψdμ̂ψ | < τ },

where η = (η1, . . . , ηn, ωn+1, ωn+2, . . .) ∈ �+
I , and where Snψ(η, y) = ψ(η, y) +

ψ(�(η, y)) + · · · + ψ(�n(η, y)). We denote the cardinality of the set �n by bn , so

bn((ω, x), τ, μ̂ψ ) := Card �n
(
(ω, x), τ, μ̂ψ

)
, ∀(ω, x) ∈ �+

I × �

Remark that, if (i1, . . . , in) ∈ �n
(
(ω, x), τ, μ̂ψ

)
with corresponding n-root y of φωn ...ω1(x),

then �n

((
(i1, . . . , in, ωn+1, ωn+2, . . .), y

)
, τ, μ̂ψ

)
= �n

(
(ω, x), τ, μ̂ψ

)
.

Definition 3 Given a Hölder continuous potential ψ on �+
I × � and τ > 0, we call

bn(·, τ, μ̂ψ ) : �+
I × � → N the n-overlap function associated to the measure μ̂ψ and

τ .

The function bn(·, τ, μ̂ψ ) is measurable and bounded, but in general discontinuous on
�+

I × �. In the sequel, we will use the folding entropy of a �-invariant measure μ̂ on
�+

I × �; the notion of folding entropy of a measure was introduced by Ruelle [19]. The
folding entropy of a �-invariant probability μ with respect to � : �+

I × � → �+
I × �, is

defined as the conditional entropy F�(μ) := Hμ(ε|�−1ε), where ε is the point partition of
the Lebesgue space �+

I × �. For entropy production see also [13,19,20]. And for measures
invariant under endomorphisms, for e.g. [9–11,14,20]. In [14] Parry introduced a notion
of Jacobian of an invariant measure for an endomorphism, and studied its properties; in
particular, the Jacobian satisfies the Chain Rule. Given a map f : X → X on a Lebesgue
space X and an f -invariant probability μ, such that f is essentially countable-to-one, we
denote the Jacobian of μ by J f (μ). From [14,19] it follows that, in general, the folding
entropy of a measure μ is equal to the integral of the logarithm of the Jacobian of μ. So in
our case, the folding entropy of μ̂ψ with respect to � is given by:

F�(μ̂ψ) =
∫

�+
I ×�

log J�(μ̂ψ) dμ̂ψ
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We investigate now the structure of the �-invariant probabilities on the product space
�+

I × �. Let define also the lift homeomorphism �̃ on �+
I × �+

I , namely:

�̃ : �+
I × �+

I → �+
I × �+

I , �̃(ω, η) = (σω, ω1η)

If π̃(ω, η) := (ω, π(η)), for (ω, η) ∈ �+
I × �+

I , then we obtain the following diagram
of maps on �+

I × �+
I , respectively �+

I × �, where both vertical maps below are equal to
π̃ : �+

I × �+
I → �+

I × �:

�+
I × �+

I
�̃−→ �+

I × �+
I↓ ↓

�+
I × �

�−→ �+
I × �

(2)

This diagram is commutative. Indeed, π̃ ◦ �̃(ω, η) = (σω, π(ω1η) = (σω, φω1 ◦φη1 ◦φη2 ◦
· · · ); on the other hand,�◦ π̃(ω, η) = �(ω, φη1 ◦φη2 ◦ · · · ) = (σω, φω1 ◦φη1 ◦ · · · ). Hence
π̃ ◦ �̃ = � ◦ π̃ .

Also �̃ is a homeomorphism. Then as in [18], by using Hahn–Banach theorem and
Markov–Kakutani theorem and by approximating integrals of functions from C(�+

I ×�+
I ,R)

with integrals of functions g ◦ π̃ ◦ �̃n, n ∈ Z, for g ∈ C(�+
I × �,R), it follows that for

any �-invariant probability ν on �+
I × �, there exists a unique �̃-invariant probability ν̃

on �+
I × �+

I such that π̃∗(ν̃) = ν. In particular, the equilibrium measure μ̂ψ of the Hölder
continuous ψ on �+

I ×�, is the π̃ -projection of the equilibrium measure μ̃ψ̃ of ψ̃ := ψ ◦ π̃

on �+
I × �+

I . Hence, the measure of maximal entropy μ̂0 on �+
I × � is the π̃-projection of

the measure of maximal entropy μ̃0 for �̃ on �+
I × �+

I , i.e.

μ̂0 = π̃∗(μ̃0)

Moreover, the topological entropy of the map � is equal to the topological entropy of the
shift σ : �+

I → �+
I , i.e. log |I |, because in the second coordinate we have contractions, so

the separated sets are determined only by the expansion σ in the first coordinate. With the
canonical distance on �+

I , d(ω, η) = ∑

i≥1

|ωi−ηi |
2i

, the ball of center ω and radius 1
2n is the

cylinder [ω1, . . . , ωn], so B((ω, x), 1
2n ) = [ω1, . . . , ωn] × B(x, 1

2n ). If we consider n-roots
of x and the measure of maximal entropy μ̂0 w.r.t �, then all these n-roots are generic. Since
in this case the overlap function bn does not depend on τ , we denote it simply by bn(ω, x),
for (ω, x) ∈ �+

I × �.
In general, there are several ways to define projections of invariant measures on the

fractal limit set�, dependingwhether we project σ -invariant measures on�+
I , or�-invariant

measures on �+
I × �, or �̃-invariant measures on �+

I × �+
I . In many cases, for example

for Bernoulli measures, these projections will be shown to coincide. Let us first consider a
Hölder continuous potentialψ on�+

I ×�, and as above let μ̂ψ its (unique) equilibrium state
on �+

I × �; if π2 : �+
I × � → � is the projection on the second coordinate π2(ω, x) = x ,

denote the projection measure on � by:

μψ := (π2)∗(μ̂ψ) (3)

Consider next g a Hölder continuous potential on �+
I , and let μ̄g be its unique equilibrium

measure on �+
I . Then we can define two kinds of projection measures on �. The first type

is μψ defined above in (3), where ψ = g ◦ π1; so μψ = (π2)∗(μ̂ψ). The second type is the
self-conformal measure:

π∗(μ̄g), (4)
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48 E. Mihailescu, M. Urbański

where π : �+
I → �, π(ω1ω2 . . .) = φω1 ◦ φω2 ◦ · · · is the canonical coding map for �.

We now prove that, for Bernoulli measures on �+
I , the two types of projection measures

defined above, are in fact equal. This will make our results about overlap numbers apply to
π-projections of Bernoulli measures onto �. Consider then a Bernoulli measure νp on �+

I
determined by an arbitrary probabilistic vector p = (p1, . . . , p|I |). Thus the νp-measure of
the cylinder [ω1, . . . , ωn] = {η ∈ �+

I , η1 = ω1, . . . , ηn = ωn}, is equal to pω1 . . . pωn for
any n ≥ 1 and ωi ∈ I, 1 ≤ i ≤ n. Consider the potential φ : �+

I → R, φ(ω1ω2 . . .) =
log pω1 , forω = (ω1, ω2, . . .) ∈ �+

I . Then Snφ(ω) = φ(ω)+φ(σ(ω))+· · ·+φ(σ n−1(ω)) =
log pω1 . . . pωn . By taking Bowen balls for the shift σ (which are cylinders in our case), we
see immediately that

Pσ (φ) = 0

Clearly, φ is Hölder continuous on �+
I and its unique equilibrium measure μ̄φ is equal to

the Bernoulli measure νp; this is due to the expression of μ̄φ on cylinders [ω1 . . . ωn] (see
[2,7]), i.e.

1

C
eSnφ(ω)−nPσ (φ) ≤ μ̄φ(Bn(ω, ε)) ≤ CeSnφ(ω)−nPσ (φ),

so we conclude that

μ̄φ = νp

In case of Bernoulli measures, we can now prove that the various projection measures are
equal on �:

Theorem 1 In the above setting, let p = (p1, . . . , p|I |) an arbitrary probabilistic vector,
andψ : �+

I ×� → R, ψ((ω1 . . .), x) := log pω1 , with μ̂ψ denoting the unique equilibrium
measure of ψ with respect to � : �+

I × � → �+
I × �. Then the following measures are

equal on �:

π∗νp = π2∗μ̂ψ = (π2 ◦ π̃)∗(νp × νp),

where π2 : �+
I × � → �, π2(ω, x) = x, and π : �+

I → � is the canonical coding map,
and where π̃ : �+

I × �+
I → �+

I × �, π̃(ω, η) = (ω, π(η)).

Proof In order to prove the first equality, let us define ψ̃ = ψ ◦ π̃ , where π̃(ω, η) = (ω, πη).
So ψ̃ is aHölder continuous potential on�+

I ×�+
I . Then recalling that �̃(ω, η) = (σω, ω1η)

is an expansive homeomorphism with specification property, it follows [7] that there exists a
unique equilibriummeasure μ̃ψ̃ on�+

I ×�+
I .Alsowehave the projection π̃(ω, η) = (ω, πη)

from �+
I × �+

I to �+
I × �. Moreover, from definitions it can be seen that

π̃�̃(ω, η) = (σω, φω1(πη)) = � ◦ π̃(ω, η),

so π̃ ◦ �̃ = � ◦ π̃ . This implies that π̃∗(μ̃ψ̃ ) = μ̂ψ , i.e. the projection to �+
I × � of the

equilibrium measure of ψ̃ on �+
I × �+

I , is equal to the equilibrium measure of ψ . Hence
from above,

π2∗(μ̂ψ)(A) = μ̂ψ(π−1
2 (A)) = μ̃ψ̃ (�+

I × π−1(A)) (5)

On the other hand, notice that the Bowen ball for �̃ is given by Bn((ω, η), ε) = [ω1 . . . ωn]×
�+

I , and for any 1 ≤ i ≤ n, we have �̃i (Bn((ω, η), ε)) = [ωi+1 . . . ωn] × [ωi . . . ω1]. From
the �̃-invariance of the equilibrium measure μ̃ψ̃ , it follows that for any 1 ≤ i ≤ n,

μ̃ψ̃ (�̃i (Bn((ω, η), ε))) = μ̃ψ̃ ([ω1 . . . ωn] × �+
I ) = μ̃ψ̃ ([ωi+1 . . . ωn] × [ωi . . . ω1]) (6)
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However recall that π1∗μ̂ψ = μ̄φ = νp, and thus (π1 ◦ π̃)∗μ̃ψ̃ = νp. Therefore using also

(6) we obtain that, for any j ≥ 1 and any ω, η ∈ �+
I ,

μ̃ψ̃ ([ω1] × [η1 . . . η j ]) = νp([η j . . . η1ω1]) = pη j · · · · · pη1 pω1 (7)

By adding over ω1 ∈ �+
I we obtain that, for any j ≥ 1 and for any η = (η1η2 . . .) ∈ �+

I ,

μ̃ψ̃ (�+
I × [η1 . . . η j ]) = pη1 . . . pη j = νp([η1 . . . η j ]

But this works for any cylinder in �+
I . Also, for any Borel set A ⊂ �, we have π∗νp(A) =

νp(π−1(A)). Hence from the above, and by using also (5), we can infer that π2∗μ̂ψ is in fact
a self-conformal measure on �, namely,

π2∗μ̂ψ = π∗νp

We now prove the second equality. From before, �̃ : �+
I × �+

I → �+
I × �+

I is a
homeomorphism which preserves μ̃ψ̃ . Also notice that for any ω1, ω2, η1, . . . , ηm ∈ I ,

one has �̃([ω1ω2] × [η1 . . . ηm]) = [ω2] × [ω1η1η2 . . . ηm]. But, from (7), μ̃ψ̃ ([ω2] ×
[ω1η1 . . . ηm]) = pω2 pω1 pη1 . . . pηm , and from the �̃-invariance of μ̃ψ̃ , it follows that

μ̃ψ̃ ([ω1ω2] × [η1 . . . ηm]) = μ̃ψ̃ (�̃([ω1ω2] × [η1 . . . ηm])) = pω1 pω2 pη1 . . . pηm . Hence
by induction it follows similarly that, for any k,m ≥ 1,

μ̃ψ̃ ([ω1 . . . ωk] × [η1 . . . ηm]) = pω1 . . . pωk · pη1 . . . pηm

This means that μ̃ψ̃ = νp × νp, and that π∗νp = (π2 ◦ π̃)∗(νp × νp). ��
The equality of the projection measures for Bernoulli probabilities has useful conse-

quences when computing the associated overlap numbers, see Corollary 2.
For any conformal iterated function system S, we want to prove now that the exponential

rate of growth in n, of the number of generic n-chains/roots from �n , is approaching the
folding entropy of the measure μ̂ψ . In particular it follows that, on average, the number of
n-chains associated to the n-overlaps of � grows exponentially like enF�(μ̂0).

Theorem 2 Let a finite conformal IFS S = {φi , i ∈ I } with limit set �, and a Hölder
continuous potential ψ on the lift space �+

I × �; denote the equilibrium measure of ψ on
�+

I × � by μ̂ψ . Then,

lim
τ→0

lim
n→∞

1

n

∫

�+
I ×�

log bn((ω, x), τ, μ̂ψ ) dμ̂ψ(ω, x) = F�(μ̂ψ)

Proof In our case the map � : �+
I × � → �+

I × � is distance-expanding in the first
coordinate, and distance contracting in the second coordinate. Let Bm(z, ε) denote the (m, ε)-
Bowen ball around z in the canonical product metric on the compact metric space �+

I × �

with respect to the endomorphism �; hence in particular it is expansive. Since μ̂ψ is the
equilibriummeasure of aHölder continuous potential on�+

I ×�, we can apply the properties
of equilibrium measures with respect to expansive maps on compact metric spaces (see
[7]). We will use first the ideas of Theorem 1 from [9], giving the comparison between
the (equilibrium) measure of various parts of the preimage set. So, from [9] there exists a
constant C > 0 such that, for any positive integer m and for any sets A1, A2 satisfying
A1 ⊂ Bm(z1, ε), A2 ⊂ Bm(z2, ε) and �m(A1) = �m(A2), we have:

1

C

μ̂ψ (A2)

eSmψ(z2)
≤ μ̂ψ (A1)

eSmψ(z1)
≤ C

μ̂ψ(A2)

eSmψ(z2)
(8)
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50 E. Mihailescu, M. Urbański

Now the Jacobian of the measure μ̂ψ with respect to �n gives the change in the measure
of a set by applying the map �n (see [14]); hence for any integer n ≥ 1, μ̂ψ (�n(A)) =∫
A J�n (μ̂ψ)dμ̂ψ , for any measurable set A ⊂ �+

I × �, on which �n is injective. But in

fact, J�n (μ̂ψ)(ω, x) = lim
r→0

μ̂ψ (�n(B((ω,x),r)
μ̂ψ (B((ω,x),r) , for μ̂ψ -a.e (ω, x) ∈ �+

I × �. However from

the �-invariance of the measure μ̂ψ it follows that μ̂ψ (�n(A)) = μ̂ψ(�−n(�n(A))), for
any Borel setA. Hence we can apply the above comparison between the various parts of the
preimage set �−n(�n(A)) for n arbitrary (i.e. in fact the comparison between various sets
taken by different compositions φ j1 ◦ · · · ◦ φ jn to the same image), in order to obtain that
there exists a constant C > 0 independent of n such that:

∑
(η,y),�n(η,y)=�n(ω,x) exp(Snψ(η, y))

C · exp(Snψ(ω, x))
≤ J�n (μ̂ψ)(ω, x)

≤ C ·
∑

(η,y),�n(η,y)=�n(ω,x) exp(Snψ(η, y))

exp(Snψ(ω, x))
,

(9)

for μ̂ψ -a.e pair (ω, x) ∈ �+
I × �. Now, as the probability μ̂ψ is �-invariant on the product

space �+
I × �, it follows from (9) and from the properties of the folding entropy that

F�(μ̂ψ) = 1

n

∫

�+
I ×�

log J�n (μ̂ψ)(ω, x)dμ̂ψ(ω, x)

= lim
n→∞

1

n

∫

�+
I ×�

log

∑

�n(η,y)=�n(ω,x)
exp(Snψ(η, y))

exp(Snψ(ω, x))
dμ̂ψ(ω, x) (10)

From Birkhoff Ergodic Theorem we know that, μ̂ψ

(
(ω, x) ∈ �+

I × �, | Snψ(ω,x)
n −

∫
�+

I ×�
ψdμ̂ψ | > τ/2

) →
n→∞ 0. Then, for any positive small number ξ , there exists an integer

n = n(ξ) ≥ 1 so that for all integers n ≥ n(ξ), we have

μψ

(

(ω, x) ∈ �+
I × �,

∣
∣
∣
∣
∣

Snψ(ω, x)

n
−

∫

�+
I ×�

ψdμ̂ψ

∣
∣
∣
∣
∣
> τ/2

)

< ξ (11)

Recall that, if (η1, . . . , ηn) ∈ �n((ω, x), τ, μ̂ψ ), then the n-chain (ηn, . . . , η1) uniquely
determines an n-root y of φωn ...ω1(x). Hence with ηn+i = ωn+i , i ≥ 1, we can consider also
the finite set

�′
n((ω, x), τ, μ̂ψ ) =

{

(η, y) ∈ �+
I × �, �n(η, y)

= �n(ω, x),

∣
∣
∣
∣
Snψ(η, y)

n
−

∫

ψ dμ̂ψ

∣
∣
∣
∣ < τ

}

,

and there exists a bijection between �n((ω, x), τ, μ̂ψ ) and �′
n((ω, x), τ, μ̂ψ ), taking

(η1, . . . , ηn) to ((η1, . . . , ηn, ωn+1, ωn+2, . . .), y). Thus bn((ω, x), τ, μ̂ψ ) =
Card�′

n((ω, x), τ, μ̂ψ ). We now define the following set of n-roots,

�n((ω, x), τ, μ̂ψ ) := {(η, y) ∈ �+
I × �,�n(η, y)

= �n(ω, x), (η1, . . . , ηn) /∈ �n((ω, x), τ, μ̂ψ )}
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Denote the sum corresponding to the roots from �n((ω, x), τ, μ̂ψ ) by

ϑn((ω, x), τ, μ̂ψ ) :=
∑

(η,y)∈�n((ω,x),τ,μ̂ψ )

exp(Snψ(η, y))

Let us now see what a typical Bowen ball for the map � : �+
I ×� → �+

I ×� looks like. If
d(·, ·) denotes the productmetric, and if d(�i (ω, x),�i (η, y)) < ε, 0 ≤ i ≤ n−1, then there
exists an integer N (ε) so that ωi = ηi , i = 1, . . . , n+N (ε), and d(x, y) < ε, since the maps
φ j are all contractions. For an arbitrary n ≥ 2, we now consider a measurable partition of
�+

I ×�modulo μ̂ψ , into sets Ln
i , 1 ≤ i ≤ pn , such that for any1 ≤ i ≤ pn there exists a point

ζi ∈ Ln
i so that for any point ζi j ∈ �−n(ζi ), 1 ≤ j ≤ pi,n , we have Ln

i ⊂ �n(Bn(ζi j , ε)).
The integer pi,n ≥ 1 depends on i for 1 ≤ i ≤ pn , and it is given by the number of n-roots of
ζi in �, with respect to S. This is possible to do if we take the sets Ln

i small enough. Then,
let us denote by Ln

i j := �−n(Ln
i ) ∩ Bn(ζi j , ε), for 1 ≤ i ≤ pn, 1 ≤ j ≤ pi,n . Notice that

if �(η, y) = �(η′, y′) = (ω, x) ∈ �+
I × �, then ση = ση′ = ω, i.e. η2 = ω2, . . ., and

φη1(y) = φη′
1
(y′) = x . If η1 �= η′

1, then d((η, y), (η′, y′)) ≥ d(η1, η
′
1) > ε0 > ε, for some

ε0 > 0. If η1 = η′
1, then φη1(y) = φη′

1
(y′); but φη, η ∈ I are injective and thus y = y′.

This implies that the sets Ln
i j are mutually disjoint in i, j . We now decompose the integral

of the logarithm of the Jacobian of μ̂ψ with respect to �n , along this partition with the sets
Ln
i j , 1 ≤ i ≤ pn, 1 ≤ j ≤ pi,n . Therefore, for an arbitrary n ≥ 2, we have:

∫

�+
I ×�

log

∑

�n(η,y)=�n(ω,x)
exp(Snψ(η, y))

exp(Snψ(ω, x))
dμ̂ψ(ω, x) (12)

=
∑

1≤i≤pn
1≤ j≤pi,n

∫

Ln
i j

log

∑

�n(η,y)=�n(ω,x)
exp(Snψ(η, y))

exp(Snψ(ω, x))
dμ̂ψ(ω, x)

Now, in regards to formula (9), we can write in general
∑

(η,y)∈�−n�n(ω,x)

eSnψ(η,y) =
∑

(η1,...,ηn)∈�n((ω,x),τ,μ̂ψ )

eSnψ(η,y) + ϑn((ω, x), τ, μ̂ψ )

Denote also ρn(i, τ, μ̂ψ ) := ∑
j,ζi j /∈�′

n(ζi1,τ,μ̂ψ ) μ̂ψ (Ln
i j ). Thus by using (8), the definition

of �′
n((ω, x), τ, μ̂ψ ) and the fact that bn((ω, x), τ, μ̂ψ ) = Card(�′

n((ω, x), τ, μ̂ψ )), we
obtain that the above sum in (12) is comparable to the sum:

∑

i, j

μ̂ψ(Ln
i j ) log

bn(ζi j , τ, μ̂ψ )μ̂ψ(Ln
i j ) + ρn(i, τ, μ̂ψ )

μ̂ψ(Ln
i j )

,

where we recall that the comparability constant C > 0 does not depend on n, nor on Ln
i j .

Now in general, if (η, y) ∈ �′
n((ω, x), τ, μ̂ψ ), and if 0 < ε < τ and (η, y) ∈ Bn(ζi j , ε),

then since the potential ψ is Hölder continuous, it follows that
∣
∣
∣
Snψ(η, y)

n
− Snψ(ζi j )

n

∣
∣
∣ ≤ v(τ),

for some small v(τ) > 0 where lim
τ→0

v(τ) = 0. Also, if K := sup�+
I ×� |ψ |, then eSnψ(η,y) ≤

enK .Notice in addition, that the set�−n�n(ω, x)has atmost |I |n elements in�+
I ×�.Denote
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52 E. Mihailescu, M. Urbański

the set of indices j corresponding to nongeneric roots by Q(n, i, τ, μ̂ψ ) := { j, 1 ≤ j ≤
pi,n, ζi j ∈ �n(ζi1, τ, μ̂ψ)}. Then if j ∈ Q(n, i, τ, μ̂ψ ), then 1

n |Snψ(ζi j )−
∫
�+

I ×�
ψdμ̂ψ | >

τ . Hence we can use the measure estimate in (11) to obtain that:

∑

1≤i≤pn , j∈Q(n,i,τ,μ̂ψ )

1

n

∫

Ln
i j

log

∑

(η,y)∈�−n�n(ω,x)
exp(Snψ(η, y))

exp(Snψ(ω, x))
dμ̂ψ(ω, x)

≤ 1

n
ξ log(2K |I |n)

Therefore, from the comparison in (8) and from the above discussion, it follows that there
exists a positive constant C , independent of n, of the partition {Ln

i }1≤i≤pn and of the points
ζi ∈ Ln

i , such that:

1

n

∑

1≤i≤pn
j /∈Q(n,i,τ,μ̂ψ )

μ̂ψ (Ln
i j ) log bn(ζi1, τ, μ̂ψ )

+ 1

n

∑

i, j /∈Q(n,i,τ,μ̂ψ )

μ̂ψ (Ln
i j ) log

(

1 + ρn(i, τ, μ̂ψ )

bn(ζi1, τ, μ̂ψ )μ̂ψ(Ln
i j )

)

− v(τ) − Cξ

≤
∫

�+
I ×�

1

n
log

∑

(η,y)∈�−n�n(ω,x)
exp(Snψ(η, y))

exp(Snψ(ω, x))
dμ̂ψ(ω, x)

≤ 1

n

∑

1≤i≤pn
j /∈Q(n,i,τ,μ̂ψ )

μ̂ψ (Ln
i j ) log bn(ζi1, τ, μ̂ψ )

+ 1

n

∑

i, j /∈Q(n,i,τ,μ̂ψ )

μ̂ψ (Ln
i j ) log

(

1 + ρn(i, τ, μ̂ψ )

bn(ζi1, τ, μ̂ψ )μ̂ψ(Ln
i j )

)

+ v(τ) + Cξ, (13)

wherewe recall that ξ is the boundon themeasure of non-generic points in (11).But in general,

log(1 + x) ≤ x for any x > 0, hence log(1 + ρn(i,τ,μ̂ψ )

bn(ζi1,τ,μ̂ψ )μ̂ψ (Ln
i j )

) ≤ ρn(i,τ,μ̂ψ )

bn(ζi1,τ,μ̂ψ )μ̂ψ (Ln
i j )
.

Therefore from (11), the second sum in the right-hand term of (13) is less than ξ , which
implies that:

∣
∣
∣
∣
∣
∣
∣

1

n

∫

�+
I ×�

1

n
log

∑

(η,y)∈�−n�n(ω,x)
exp(Snψ(η, y))

exp(Snψ(ω, x)
dμ̂ψ(ω, x)

− 1

n

∫

�+
I ×�

log bn((ω, x), τ, μ̂ψ )dμ̂ψ(ω, x)

∣
∣
∣
∣
∣
≤ v(τ) + Cξ

Therefore, using the expression for the folding entropy F�(μ̂ψ) from (10), and the fact that
ξ converges to 0 when τ converge to 0 (and also that v(τ) converges to 0 at the same time),
we obtain the conclusion of the Theorem. ��

We now want to define a notion of overlap number of S associated to an equilibrium
state μ̂ψ . This notion will take into consideration the μ̂ψ -generic n-roots in � and all the
corresponding n-chains starting from them, for n large. In particular, we obtain a (topological)
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overlap number of the system S, which gives the average rate of growth of the number of
n-chains from n-roots to points in �.

Corollary 1 If S = {φi , i ∈ I } is an arbitrary finite conformal iterated function system with
overlaps and � is its limit set, and if ψ is a Hölder continuous potential on �+

I × � with
equilibrium measure μ̂ψ , we call the overlap number of S with respect to μ̂ψ ,

o(S, μ̂ψ ) := exp

(

lim
τ→0

lim
n→∞

1

n

∫

�+
I ×�

log bn((ω, x), τ, μ̂ψ ) dμ̂ψ(ω, x)

)

(14)

If μ̂0 is the measure of maximal entropy for � on �+
I × �, then the (topological) overlap

number of S is given by:

o(S) := o(S, μ̂0) = exp

(

lim
n→∞

1

n

∫

�+
I ×�

log bn(ω, x) dμ̂0(ω, x)

)

= exp
(
F�(μ̂0)

)

= exp

(∫

�+
I ×�

log lim
n→∞

μ̂0([ω2, . . . , ωn] × φω1

(
B

(
x, 1

2n
))

μ̂0
([ω1, . . . , ωn] × B

(
x, 1

2n
)) dμ̂0(ω, x)

)

The �-invariant measure μ̂0 on �+
I × � is the projection of the measure of maxi-

mal entropy μ̃0 of �̃ on �+
I × �+

I , i.e. π̃∗(μ̃0) = μ̂0. But in general, for n ≥ 2,
�̃n(ω, η) = (σ n(ω), ωn . . . ω1η). This means that for the product metric on �+

I × �+
I

the Bowen ball Bn((ω, η), ε) is equal to [ω1 . . . ωn] × �+
I (where [ω1 . . . ωn] is the

cylinder of sequences in �+
I with starting coordinates ω1, . . . , ωn), i.e. the second coor-

dinate does not matter in Bowen balls for �̃. Moreover, we have for any 1 ≤ i ≤ n,
�̃i (Bn((ω, η), ε)) = [ωi+1 . . . ωn] × [ωi . . . ω1], and we know that the measure μ̃0 is �̃-
invariant, hence

μ̃0
([ω1 . . . ωn] × �+

I

) = μ̃0
([ωi+1 . . . ωn] × [ωi . . . ω1]

)

On the other hand, we know that π1 ◦ �̃(ω, η) = σω = σ ◦ π1(ω, η), so π1∗(μ̃0) =
μ̄0, where μ̄0 is the measure of maximal entropy for the shift on �+

I . Therefore we have
μ̃0([ω1 . . . ωn] × �+

I ) = μ̄0([ω1 . . . ωn]). This implies, from above, that we can say exactly
what is μ̃0 on a neighbourhood basis in the product space�+

I ×�+
I ; namely for any i, j ≥ 1,

the measure μ̃0 on the product of any two cylinders [ω1 . . . ωi ], [η1 . . . η j ] in �+
I × �+

I is
given by:

μ̃0([ω1 . . . ωi ] × [η1 . . . η j ]) = μ̄0([ω1 . . . ωi ]) · μ̄0([η1 . . . η j ]) = 1

|I |i+ j
.

In the case of projections of Bernoulli measures, we can use now Theorem 1 to
compute more easily the overlap numbers. Let us take an arbitrary probability vector
p = (p1, . . . , p|I |), which gives a Bernoulli measure νp on �+

I . According to the dis-
cussion before Theorem 1, there exists an equilibrium measure denoted μ̂p of the potential
ψ((ω1, . . .), x) = log pω1 , (ω, x) ∈ �+

I × �, with respect to � on �+
I × �, so that

π∗νp = π2∗μ̂p. The measure μ̂p is called the equilibrium measure (with respect to �) asso-
ciated to p. Denote also by h(p) := ∑

1≤ j≤|I | p j log p j , and notice that h(p) = ∫
ψ dμ̂p.

Let us denote now by

βn(x) := Card{(η1, . . . , ηn) ∈ I n, x ∈ φη1 ◦ · · · ◦ φηn (�)}, ∀x ∈ �
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More generally, we define for τ > 0,

βn(x, τ, p)

:= Card

{

(η1, . . . , ηn) ∈ I n, x ∈ φη1 ◦ · · · ◦ φηn (�),

∣
∣
∣
∣
log(pη1 . . . pηn )

n
− h(p)

∣
∣
∣
∣ < τ

}

(15)

As before if x ∈ φη1 ◦ · · · ◦ φηn (�), then there exists a unique point y ∈ � with x =
φη1 ◦ · · · ◦φηn (y). When the system S satisfies Open Set Condition, then the overlap number
o(S, μ̂p) is equal to 1.

We prove now the following simpler expression for the overlap number in the case of
Bernoulli projections for conformal IFS’s with overlaps S, by employing the function βn(·),
that counts the number of n-chains from n-roots in the limit set �:

Corollary 2 Let a conformal iterated function system with overlaps S = {φi , i ∈ I } with
limit set �, and consider p an arbitrary probabilistic vector, with μ̂p being the equilibrium
measure on �+

I × � associated to p. Then, the overlap number o(S, μ̂p) can be computed
as:

o(S, μ̂p) = exp

(

lim
τ→0

lim
n

1

n

∫

�+
I

logβn(πω, τ, p) dνp(ω)

)

In particular, we obtain the (topological) overlap number of S, by integrating with respect
to the uniform Bernoulli measure ν( 1

|I | ,...,
1
|I | )

,

o(S) = exp

(

lim
n

1

n

∫

�+
I

logβn(πω) dν( 1
|I | ,...,

1
|I | )

(ω)

)

Proof We prove here the second part of the statement, about the topological overlap number;
the first part follows similarly. Let us denote by p = ( 1

|I | , . . . ,
1
|I | ), and consider μp = π∗νp.

As in Theorem 1 there exists a corresponding �-invariant measure μ̂p on �+
I × �. We have

from Theorem 1 that π∗νp = π2∗μ̂p, hence
∫

�

logβn(x) dμp(x) =
∫

�+
I ×�

logβn ◦ π2(ω, x) dμ̂p(ω, x)

=
∫

�+
I ×�

logβn ◦ π2 ◦ �n(ω, x) dμ̂p(ω, x)

But notice that βn ◦ π2 ◦ �n(ω, x) = βn(φωn ◦ · · · ◦ φω1(x)) = Card{(η1, . . . , ηn) ∈
I n, φωn ◦ · · · ◦ φω1(x) ∈ φη1 ◦ · · · ◦ φηn (�)} = bn(ω, x), for any (ω, x). Therefore, from
the last displayed equality, it follows that:
∫

�+
I

logβn(πω) dν( 1
|I | ,...,

1
|I | )

(ω) =
∫

�

logβn(x) dμp(x) =
∫

�+
I ×�

log bn(ω, x) dμ̂p(ω, x)

��
We now show that overlap numbers of conformal IFS and of equilibrium measures on

�+
I × �, can be used to estimate the dimensions of the associated projection measures on

�. Denote the Hausdorff dimension (for sets or measures) by HD. Recall that, in general
for a measure μ on a metric space X , its Hausdorff dimension is defined by:

HD(μ) := inf{HD(Z), Z ⊂ X with μ(X\Z) = 0}
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In the following Theorem, we give an upper estimate for HD(μψ), by estimating
HD(�\Z(ψ)) for some set Z(ψ) ⊂ � of μψ -measure zero with the help of the over-
lap number o(S, μ̂ψ ). Moreover, we will construct explicitly this set of μψ -measure zero
Z(ψ) below.

Theorem 3 Consider a finite conformal iterated function system S = {φi }i∈I with limit
set �, π : �+

I → � be the canonical projection, and let a Hölder continuous potential
ψ : �+

I × � → R, with its (unique) equilibrium measure μ̂ψ ; let μψ := π2∗μ̂ψ be the
projection as in (3). Then,

HD(μψ) ≤ t (S, ψ),

where t (S, ψ) is the unique zero of the pressure function with respect to the shift σ : �+
I →

�+
I ,

t → Pσ (t log |φ′
ω1

(π(σω))| − log o(S, μ̂ψ))

Proof Let denote by Rn(μ̂ψ , δ) the set of points (ω, x) ∈ �+
I × � for which the number of

generic roots satisfies bn((ω, x), τ, μ̂ψ ) < 1
2 · en(F�(μ̂ψ )−δ). We want to show that the μ̂ψ -

measure of these sets converges to 0, when n → ∞. If this does not happen, then there exist
an infinite sequence {kn}n and a number β > 0, such that μ̂ψ(Rkn (μ̂ψ , δ)) > β > 0,∀n ≥ 1.
Then, for all pairs (ω, x) ∈ Rkn (μ̂ψ , δ),

log bkn ((ω, x), τ, μ̂ψ )

kn
<

− log 2

kn
+ F�(μ̂ψ) − δ

Therefore, after integrating with respect to μ̂ψ ,
∫

Rkn (μ̂ψ ,δ)

log bkn ((ω, x), τ, μ̂ψ )

kn
dμ̂ψ(ω, x) < μ̂ψ(Rkn (μ̂ψ , δ)) ·

(

F�(μ̂ψ) − δ − log 2

kn

)

We now use the last displayed inequality, and the properties of J�n (μ̂ψ) from the proof of

Theorem 2 (namely relation (9)); thus by adding the integral of log bkn ((ω,x),τ,μ̂ψ )

kn
over Rkn

and the integral of log bkn ((ω,x),τ,μ̂ψ )

kn
over the complement of Rkn , we obtain that:

∫

�+
I ×�

log bkn ((ω, x), τ, μ̂ψ )

kn
dμ̂ψ(ω, x) < μ̂ψ(Rkn (μ̂ψ , δ)) ·

(

F�(μ̂ψ) − δ − log 2

kn

)

+
∫

�+
I ×�\Rkn (μ̂ψ ,δ)

log J�kn (μ̂ψ)

kn
dμ̂ψ(ω, x)

(16)
On the other hand, from the Chain rule we know that log J�n (μ̂ψ)(ω, x) = log J�(ω, x) +
· · ·+log J�(μ̂ψ)(�n−1(ω, x)), for all n ≥ 1. Therefore from the Birkhoff Ergodic Theorem,

log J�n (μ̂ψ)(ω, x)

n
→

n→∞ F�(μ̂ψ),

for μ̂ψ -almost all (ω, x) ∈ �+
I × �. Moreover, from (9) we have that

J�n (μ̂ψ)(ω, x) ≤ C ·
∑

�n(η,y)=�n(ω,x) e
Snψ(η,y)

eSnψ(ω,x)
≤ C |I |n · en(C1−C2), (17)

for all n ≥ 1, where C2 ≤ ψ ≤ C1 on �+
I × � (as the potential ψ is continuous). This

implies that the sequence { 1n log J�n (μ̂ψ)(ω, x)}n is bounded by logC + log |I | +C1 −C1,
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independently of (ω, x). Since log J�(μ̂ψ) is integrable, we obtain then from the Birkhoff

Ergodic Theorem, that
∫
�+

I ×�

log J�n (μ̂ψ )(ω,x)
n dμ̂ψ(ω, x) →

n→∞ F�(μ̂ψ), and similarly,

γn(μ̂ψ , δ) :=
∫

�+
I ×�\Rn(μ̂ψ ,δ)

(
log J�n (μ̂ψ)

n
− F�(μ̂ψ)

)

dμ̂ψ(ω, x) =

=
∫

�+
I ×�

(
log J�n (μ̂ψ)

n
− F�(μ̂ψ)

)

· χ�+
I ×�\Rn(μ̂ψ ,δ)dμ̂ψ(ω, x) →

n→∞ 0

Hence for any integer n ≥ 1,
∫

�+
I ×�\Rn(μ̂ψ ,δ)

log J�n (μ̂ψ)

n
dμ̂ψ = γn(μ̂ψ , δ) + F�(μ̂ψ) · μ̂ψ (�+

I × �\Rn(μ̂ψ , δ))

Therefore, we obtain from (16) that:
∫

�+
I ×�

log bkn ((ω, x), τ, μ̂ψ )

kn
dμ̂ψ(ω, x)

< μ̂ψ(Rkn (μ̂ψ , δ))

(

F�(μ̂ψ) − δ − log 2

kn

)

+ γkn (μ̂ψ , δ)

+ F�(μ̂ψ) · μ̂ψ (�+
I × �\Rkn (μ̂ψ , δ))

= γkn (μ̂ψ , δ) + F�(μ̂ψ) − μ̂ψ(Rkn (μ̂ψ , δ)

(

δ + log 2

kn

)

However if μ̂ψ(Rkn (μ̂ψ , δ)) > β for n > n(δ) (for some integer n(δ) ≥ 1), then it follows
from the above and from the fact that: γn(μ̂ψ , δ) → 0, that

∫

�+
I ×�

log bkn ((ω, x), τ, μ̂ψ )

kn
dμ̂ψ(ω, x) < F�(μ̂ψ) − β

(

δ + log 2

kn

)

+γkn (μ̂ψ , δ) < F�(μ̂ψ)

But then, this would give contradiction with Theorem 2. Hence, for δ > 0 fixed there exists
a sequence of positive numbers αn →

n→∞ 0, such that the set Rn(μ̂ψ , δ) of points (ω, x) ∈
�+

I × � for which bn((ω, x), τ, μ̂ψ ) < 1
2e

n(F�(μ̂ψ )−δ), has μ̂ψ -measure that satisfies:

μ̂ψ(Rn(μ̂ψ , δ)) < αn, for n > n(δ)

Let denote now the complement of the set Rn(μ̂ψ , δ) in �+
I × � by:

Qn(μ̂ψ , δ) := �+
I × �\Rn(μ̂ψ , δ)

From the �-invariance of μ̂ψ on �+
I × �, and from the definition of Qn(μ̂ψ , δ), we obtain

that

μ̂ψ(�n(Qn(μ̂ψ , δ)) > 1 − αn, n ≥ n(δ)

And from the definition of the set �n(Qn(μ̂ψ , δ)), it follows that for any for point (η′, y′) ∈
�n(Qn(μ̂ψ , δ)), there exist at least 1

2e
n(F�(μ̂ψ )−δ) indices i = (i1, . . . , in) ∈ I n , such that

y′ ∈ φi (�) = φi1 ◦ · · · ◦ φin (�). From above, the sequence μ̂ψ(Rn(μ̂ψ , δ)) converges to 0,
so there exists an increasing sequence of integers mn → ∞ such that: μ̂ψ(Rm1(μ̂ψ , δ)) <
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1
2 , μ̂ψ (Rm2(μ̂ψ)) < 1

22
, . . . , μ̂ψ (Rmn (μ̂ψ , δ)) < 1

2n , . . . . Employing the sequence {mn}n ,
define now the following measurable subsets of �,

�n(μ̂ψ , δ) := π2

(

∩
s≥n

�ms (Qms (μ̂ψ , δ))

)

,

where π2 : �+
I × � → � is the canonical projection to the second coordinate. Moreover,

denote the union of the Borel subsets in � introduced above by,

�(μ̂ψ, δ) := ∪
n≥1

�n(μ̂ψ , δ) = π2

(

∪
n≥1

∩
s≥n

�ms (Qms (μ̂ψ , δ))

)

Firstly, notice that from the definition of the sequence of integers {mn}n≥1, we have

μ̂ψ

(

∩
s≥n

�ms (Qms (μ̂ψ , δ))

)

≥ 1 −
∑

s≥n

μ̂ψ

(
�+

I × �\�ms (Qms (μ̂ψ , δ))
)

≥ 1 −
∑

s≥n

1

2s
= 1 − 1

2n−1

Therefore by taking the union of these sets over all n ≥ 1, recalling that μψ = π2∗(μ̂ψ), and
observing that μψ(�(μ̂ψ , δ)) = μ̂ψ

(
π−1
2 (�(μ̂ψ , δ))

) ≥ μ̂ψ

( ∪
n≥1

∩
s≥n

�ms (Qms (μ̂ψ , δ))
)
,

we obtain that

μ̂ψ

(

∪
n≥1

∩
s≥n

�ms (Qms (μ̂ψ , δ))

)

= 1, hence μψ(�(μ̂ψ , δ)) = 1 (18)

We now investigate the influence of the number of roots on the Hausdorff dimension of
the set �(μ̂ψ, δ). Recall from above that, for any (η′, y′) ∈ �n(Qn(μ̂ψ , δ)), there exist at
least 1

2e
n(F�(μ̂ψ )−δ) indices i = (i1, . . . , in) ∈ I n , such that y′ ∈ φi (�) = φi1 ◦ · · · ◦φin (�).

Hence the points in the projection π2(�
n(Qn(μ̂ψ , δ))) are covered at least 1

2e
n(F�(μ̂ψ )−δ)

times by images of �, through compositions of n maps of type φi . Now, S satisfies the
condition that there exists κ ∈ (0, 1) such that |φ′

i | < κ on �. It follows that, for any indices
i1, . . . , in ∈ I , diam(φi1 ◦ · · · ◦φin (�)) ≤ κn . Thus, every point in π2(�

n(Qn(μ̂ψ , δ))) can
be covered at least 1

2e
n(F�(μ̂ψ )−δ) times with sets of diameter less than κn . For α ≥ 0, let

us denote now by t (α) the unique zero of the following pressure function with respect to the
shift map σ : �+

I → �+
I ,

t → Pσ (t |φ′
ω1

(σω)| − α) (19)

Take an arbitrary number t ′ > t (F�(μ̂ψ) − δ); we assume without loss of generality that
F�(μ̂ψ) > 0 and that δ is small enough, so that δ < F�(μ̂ψ). Let define the pressure
function

pδ(s) := P(s|φ′
ω1

(σω)| − F�(μ̂ψ) + δ), s ∈ R

From assumption above, pδ(t ′) < 0. So from the conformality of the contractions φi , and by
denoting in general φη := φη1 ◦ · · · ◦ φηm for η = (η1, . . . , ηm) ∈ Im,m ≥ 1, it follows that
for n large:

∑

|ω|=n

|φ′
ω|t ′e−n(F�(μ̂ψ )−δ) ≤ e

n·pδ (t ′)
4 (20)

Now for any s ≥ n, from the above definition of Qms (μ̂ψ , δ), it follows that any point in
�n(μ̂ψ , δ) can be covered with at least Ms := 1

2e
ms (F�(μ̂ψ )−δ) sets φη(V ) for |η| = ms , and
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every one of these sets φη(V ) has diameter less than κms . Denote the collection of the above
sets φη(V ) by Us , so Us is a cover of �n(μ̂ψ , δ). We want now to perform extractions from
this cover Us of �n(μ̂ψ , δ) (by using its large multiplicity), in such a way that in the end we
obtain a subcover which is minimal, from the point of view of the sum of diameters raised to
power t . This will be the subcover which we shall use to estimate the Hausdorff dimension
of the set �n(μ̂ψ , δ). We have that the maps φη are conformal, so we can apply the 5r -
Covering Theorem (see [8]), where we consider 5U to denote the ball with the same center
as U and 5 times the radius of U . One can then extract a subfamily Us(1) ⊂ Us , such that
the sets 5U,U ∈ Us(1), cover �n(μ̂ψ , δ), and so that the sets in Us(1) are mutually disjoint.
From conformality we have that there exists x, r and a fixed constant C independent of U ,
such that B(x, r) ⊂ U ⊂ B(x,Cr). We then eliminate this subfamily Us(1). Since it was
disjointed, the multiplicity of the cover Us of �n(μ̂ψ , δ) is still at least Ms − 1. Therefore
we can repeat this procedure and will extract a second subfamily Us(2) in Us\Us(1), which
is disjointed and such that 5U,U ∈ Us(2) cover the set �n(μ̂ψ , δ). After eliminating both
Us(1) and Us(2) from Us , the multiplicity of the cover is at least Ms − 2. By induction, we
obtain thus Ms subfamilies Us( j), which are disjointed and such that 5U,U ∈ Us( j), cover
�n(μ̂ψ , δ). We then take, out of these subfamilies constructed above, the subfamily Us( j0)
for which the expression

∑

U∈Us ( j0)
(diamU )t

′
is minimal. Then from (20), we obtain:

∑

U∈Us ( j0)

(diamU )t
′ ≤ 1

Ms

∑

U∈Us

(diamU )t
′ ≤ Cems pδ(t ′)/4 < 1, (21)

for some constant C > 0, independent of s, n large. Since for any s ≥ n, we can obtain such
minimal covers Us( j0) for the set �n(μ̂ψ , δ) , and since t ′ was chosen arbitrarily larger than
t (F�(μ̂ψ) − δ), it follows from (21) that:

HD(�n(μ̂ψ , δ)) ≤ t (F�(μ̂ψ) − δ)

Now recall the definition of �(μ̂ψ, δ) = ∪
n≥1

�n(μ̂ψ , δ). From the last estimate, we infer

that

HD(�(μ̂ψ , δ)) ≤ t (F�(μ̂ψ) − δ)

Also from (18), μψ(�(μ̂ψ , δ)) = 1. Define now the set �(ψ) := ∩
δ>0

�(μ̂ψ, δ) =
∩
n≥1

�(μ̂ψ, 1
n ). We have then that μψ(�(ψ)) = 1. Let us now remark that from defin-

ition (19) of the zero t (α), and from the continuity of the pressure function, we obtain
that t (F�(μ̂ψ) − δ) → t (F�(μ̂ψ)) when δ → 0. But from Theorem 2, we know that
log o(S, ψ) = F�(μ̂ψ). Hence, by taking the set Z(ψ) := �\�(ψ), we have μψ(Z(ψ)) =
0; thus from the definition of HD(μψ), HD(μψ) ≤ HD(�\Z(ψ)) ≤ t (S, ψ). ��

3 Applications to Bernoulli Convolutions

Consider the random series
∑

n≥0
±λn for λ ∈ (0, 1) where the +,− signs are taken inde-

pendently and with equal probability, and let us denote its distribution by νλ. This is called
a Bernoulli convolution, since it is in fact the infinite convolution of the atomic measures
1
2 (δ−λn + δλn ), for n ≥ 0 (for e.g. [3,21]). The probability measure νλ can be written also
as the self-similar measure associated to the probability vector ( 12 ,

1
2 ) and to the iterated
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function system

Sλ = {S1, S2},

where S1(x) = λx − 1, S2(x) = λx + 1, x ∈ R. Hence, νλ satisfies the self-similarity
relation:

νλ = 1

2
νλ ◦ S−1

1 + 1

2
νλ ◦ S−1

2

The case λ ∈ (0, 1
2 ) corresponds to Sλ having no overlaps, while the case when λ ∈ [ 12 , 1)

corresponds to the more difficult situation of the iterated function system Sλ having overlaps.
We assume in the sequel that λ ∈ ( 12 , 1), thus we are in the case when Sλ has overlaps. The
limit set �λ is in this case the whole interval Iλ = [− 1

1−λ
, 1
1−λ

]. The measure νλ can be

viewed as the projection πλ∗ν( 12 , 12 ), where ν( 12 , 12 ) is the Bernoulli measure on �+
2 generated

by the vector ( 12 ,
1
2 ), and πλ : �+

2 → Iλ is the canonical coding map. It is well-known that
νλ can be either singular or absolutely continuous. Several results on Bernoulli convolutions
are in the paper by Peres, Schlag and Solomyak [15]. The case λ > 1

2 attracted a lot of
interest, starting with Erdös who proved in [3] that, when 1

λ
is a Pisot number, then νλ is

singular. Later Solomyak showed in [21] that the measure νλ is absolutely continuous for
Lebesgue-a.e λ ∈ [ 12 , 1). If νλ is absolutely continuous, then HD(νλ) = 1. From the point
of view of actual values of λ, Garsia proved in [5] that νλ is absolutely continuous when
λ−1 is an algebraic integer in (1, 2), whose monic polynomial has other roots outside the

unit circle and constant coefficient ±2; for example if λ−1 = 2
1
m , m ≥ 2, νλ is absolutely

continuous. Przytycki and Urbański proved in [17] that, if λ is the inverse of a Pisot number

in (1, 2), then HD(νλ) < 1. In the special case when λ =
√
5−1
2 (the reciprocal of the Pisot

number
√
5+1
2 ), Alexander and Zagier [1] found precise estimates for HD(νλ), showing that

0.99557 < HD(νλ) < 0.99574. Hochman showed recently in [6] that HD(νλ) = 1 for λ

outside a set of dimension zero.
For arbitrary λ ∈ ( 12 , 1), Theorem 4 below gives an upper estimate for HD(νλ), by using

an expression involving o(Sλ); this allows to obtain bounds also for the overlap numbers
o(Sλ). In particular, if HD(νλ) = 1 for some value λ ∈ ( 12 , 1), then o(Sλ) ≤ 2λ. In general,
1 ≤ o(Sλ) ≤ 2, for any λ ∈ ( 12 , 1); we show that in fact, the overlap number o(Sλ) is never
equal to 2 (even if, for λ → 1 the overlaps become larger). For specific values of λ (for e.g.

λ = 2− 1
m ,m ≥ 2, or λ =

√
5−1
2 ), we obtain then more precise bounds for o(Sλ). First,

for arbitrary λ ∈ ( 12 , 1), the measure νλ is supported on the limit set of Sλ, which is the
interval Iλ = [− 1

1−λ
, 1
1−λ

]; the coding map is πλ : �+
2 → Iλ. Recall that for x ∈ Iλ and

n ≥ 2, βn(x) denotes the number of n-chains (ζ1, . . . , ζn) ∈ {1, 2}n from points in Iλ to
x , i.e. x ∈ φζ1...ζn

([− 1
1−λ

, 1
1−λ

]). From Corollary 2, in the formula for o(Sλ) we integrate
logβn with respect to the uniform Bernoulli measure ν( 12 , 12 ).

Theorem 4 For allλ ∈ ( 12 , 1), the following relation is satisfied for theBernoulli convolution
νλ:

HD(νλ) ≤ log 2
o(Sλ)

| log λ| ,
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where o(Sλ) denotes the overlap number of Sλ, which can be computed as:

o(Sλ) = exp

(

lim
n→∞

1

n

∫

�+
2

logβn(πλω) dν( 12 , 12 )(ω)

)

And from the above, o(Sλ) ≤ 2λHD(νλ).

Proof From Theorem 1, in our case the measure νλ can be written as πλ∗ν( 12 , 12 ) and it is equal

to the π2-projection of an equilibrium state μ̂ψ on �+
2 × Iλ. Therefore, from Corollary 2,

o(Sλ) = exp

(

lim
n→∞

1

n

∫

�+
2

logβn(πλω) dν( 12 , 12 )(ω)

)

Sλ is a system of similarities, thus from Theorem 3, HD(νλ) is bounded above by the unique
zero of the pressure function with respect to σ : �+

2 → �+
2 :

t → Pσ (t log λ − o(Sλ)) = t log λ + log 2 − log o(Sλ)

Hence it follows that HD(νλ) ≤ log 2
o(Sλ)

| log λ| , and the corresponding bound for o(Sλ). ��

For any λ ∈ ( 12 , 1), the number of overlaps between images Si1...in (Iλ) is less than 2n , so
1 ≤ o(Sλ) ≤ 2. In fact, it turns out that the overlap number of Sλ is always strictly less than
2:

Corollary 3 In the above setting, it follows that for all parameters λ ∈ ( 12 , 1),

o(Sλ) < 2

Proof If o(Sλ) = 2, then from Theorem 4, it would follow that λ = 1. Hence contradiction.

For a large set of values of λ, by using Theorem 4 and the above mentioned results of
[1,5,21], we can obtain more precise estimates for the overlap number:

Corollary 4 (a) For Lebesgue-almost all parameters λ in ( 12 , 1), we have

o(Sλ) ≤ 2λ

This happens for example when λ−1 is an algebraic number whose monic polynomial has

other roots outside the unit circle and constant coefficient ±2. In particular, if λ = 2− 1
m

for m ≥ 2, then

o(Sλ) ≤ 2
m−1
m

(b) In case λ =
√
5−1
2 , then o(Sλ) ≤ 2λ0.99557 < 1.25.

Let now p arbitrary in (0, 1) and denote by ν(p,1−p) the Bernoulli measure on �+
2

determined by the vector (p, 1 − p). For λ ∈ ( 12 , 1), one defines the biased Bernoulli
convolution νλ,p (see for e.g. [16]), where νλ,p is the πλ-projection of ν(p,1−p) onto the limit
set Iλ = [− 1

1−λ
, 1
1−λ

]. We have as above the associated lift map �λ : �+
2 × Iλ → �+

2 × Iλ.
From the discussion before Theorem 1, there exists a �λ-invariant equilibrium measure ν̂λ,p

on �+
2 × Iλ, such that π2∗ν̂λ,p = νλ,p . For integers 0 < k < n, denote by W (x, n, k) the set
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of n-chains (i1, . . . , in) ∈ {1, 2}n from points in Iλ to x , having exactly k indices i j equal to
1. From (15), for any x ∈ Iλ, τ > 0 and n ≥ 2, we have

βn

(

x, τ

∣
∣
∣
∣log

p

1 − p

∣
∣
∣
∣ , (p, 1 − p)

)

=
∑

k, | kn −p|<τ

Card W (x, n, k)

Thus, for any parameter λ ∈ ( 12 , 1), it follows from Theorem 3 and Corollary 2 that:

Corollary 5 For all λ ∈ ( 12 , 1) and p ∈ (0, 1), the biased Bernoulli convolution νλ,p

satisfies:

HD(νλ,p) ≤
log 2

o(Sλ,ν̂λ,p)

| log λ| ,

where o(Sλ, ν̂λ,p) denotes the overlap number of Sλ with respect to ν̂λ,p, which can be
computed by:

o(Sλ, ν̂λ,p) = exp

⎛

⎜
⎝ lim

τ→0
lim
n→∞

1

n

∫

�+
2

log
∑

| kn −p|<τ

Card W (πλω, n, k) dν(p,1−p)(ω)

⎞

⎟
⎠ .
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12. Mihailescu, E., Urbański, M.: Hausdorff dimension of the limit set of conformal iterated function systems
with overlaps. Proc. Am. Math Soc. 139(8), 2767–2775 (2011)
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