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Abstract Bya further study of themechanismof the hyperbolic regularization of themoment
system for the Boltzmann equation proposed in Cai et al. (Commun Math Sci 11(2):547–
571, 2013), we point out that the key point is treating the time and space derivative in the
same way. Based on this understanding, a uniform framework to derive globally hyperbolic
moment systems from kinetic equations using an operator projection method is proposed.
The framework is so concise and clear that it can be treated as an algorithm with four
inputs to derive hyperbolic moment systems by routine calculations. Almost all existing
globally hyperbolic moment systems can be included in the framework, as well as some
new moment systems including globally hyperbolic regularized versions of Grad’s ordered
moment systems and amulti-dimensional extension of the quadrature-basedmoment system.
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1 Introduction

Kinetic equations, such as the Boltzmann equation and the radiative transfer equation, are
widely used in many different fields of applications, including rarefied gases, microflow,
semi-conductor device simulation, radiative transfer, and so on. During the past decades,
various solution methods have been developed to investigate kinetic equations. Among these
methods, the moment method is quite attractive due to its numerous advantages [17,18,22],
and it is regarded as a successful tool to extend classical fluid dynamics, and achieve highly
accurate approximations with great efficiency.

The moment method for gas kinetic theory was first proposed by Grad [8] in 1949, and
the most notable Grad’s 13 moment system is also proposed therein. In the same paper, the
moment system has been carefully studied, including the characteristics, and it is not hard
to observe the loss of hyperbolicity of the moment system. Later, in Ref. [17] the authors
pointed out that the 1D reduction of Grad’s 13 moment system is only hyperbolic around
the Maxwellian and gave the hyperbolic region. In Ref. [6] it was further revealed that
for the 3D case, the moment system is not hyperbolic even in any neighbourhood of the
Maxwellian. Since the hyperbolicity cannot be guaranteed for Grad’s moment method, the
moment system as a quasi-linear partial differential system with Cauchy data is no longer
well-posed even locally. Hence, the application of the moment method was seriously limited
for a long time. However, some research in recent years brought new hope for this problem.
Levermore proposed the maximum entropy method [14] in 1995, and his method yields
globally hyperbolic equations but can unfortunately not be derived in analytical form formost
cases. Based on the maximum entropy principle, McDonald & Torrilhon [16] proposed an
approximative affordable robust version of Levermore’s 14 moment system, which is almost
globally hyperbolic. A different hyperbolic approach that is tailored to special cases uses
a multi-variate Pearson-IV-Distribution and was proposed by Torrilhon in [23]. Moreover,
a viscous regularization has been used to regularize Grad’s moment method, e.g. [5,9,20],
based on the order-of-magnitude approach also used in Ref. [10].

Concerning the global hyperbolicity ofGrad-typemoment systems, somenewmethods are
in process. The method for the 1D Boltzmann equation introduced by Cai et al. in [1] is based
on investigating the properties of the coefficient matrix of the moment system. The method
therein essentially cuts off higher order terms during the derivation such that it is globally
hyperbolic. Then the method is extended to the multi-dimensional case in two different ways
[2,7]. Shortly thereafter, Koellermeier proposed a quadrature-based regularization method
[11]. This method deduces the moment model by computing the integrals using a suitable
quadrature rule instead of exact integration. This results in a globally hyperbolic moment
system very similar to the one given in Ref. [1]. The method had since been further extended
to the multi-dimensional case in Ref. [13], though the resulting system is not rotational
invariant. Both methods in Refs. [1,11] have been extended to more general cases in Refs.
[3,12], respectively, which has led to a better understanding of the hyperbolicity of moment
systems and the corresponding regularizations.

Based on the understanding of these new methods, in this paper we focus on a general
framework to cover all of the different methods. We begin with the investigation of the
globally hyperbolic moment equations (HME) proposed in Ref. [1] and point out that the
key point of the regularization is treating the time and space derivative in the same way.
Based on this understanding, by considering different kinds of kinetic equations, a general
framework to deduce globally hyperbolic moment systems is proposed using an operator
projectionmethod. In this framework, the cut-off procedure inRef. [3] is extended to a general
operator projection and the kinetic equation under consideration can have a very generic form,
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including for example the Boltzmann equation, the transformed Boltzmann equation and the
radiative transfer equation. A so-called internal projection strategy is introduced to make
the method applicable to kinetic equations without standard form. The ansatz is chosen as a
weight function multiplied by a polynomial. Based on the framework, the resulting moment
system is always rotational invariant and is usually globally hyperbolic. We point out that
the conditions to hyperbolicity are almost always fulfilled.

The new framework can be regarded as an algorithm to derive moment systems from
kinetic equations, once the four inputs, i.e. the form of the kinetic equation, the weight
function, the projection and the internal projection strategy, are given. The weight function
in the ansatz space determines most of the properties of the resulting system. The choice of a
suitable polynomial basis, a projection operator and an internal projection strategy provide us
with a lot of freedom to achieve different moment systems. This makes it possible to derive a
moment systemwith routine calculations and allows for easy comparison of different models.
We point out that the new framework can give us most of the traditional moment systems,
such as hyperbolicmoment equations (HME) proposed in Refs. [1,2,7], the quadrature-based
moment equations (QBME) [11] and Levermore’s maximum entropy method [14] for the
Boltzmann equation as well as the PN and MN method in radiative transfer. Moreover, one
can derive totally new moment systems based on the framework. We provide some examples
including a hyperbolic regularization of the ordered moment hierarchy (such as 13, 26, 45
moment systems) and extend the QBME to the multi-dimensional case with the resulting
moment system being rotational invariant.

The remaining part of this paper is organized as follows. Some necessary notation about
projection operators is given in Sect. 2 and then we analyze the hyperbolic regularization by
Cai et al. for Grad’s moment method in Sect. 3. In Sect. 4, we give the new framework with
a detailed discussion. Several examples of existing moment systems derived using our new
framework are given in Sect. 5. Finally, we derive some new hyperbolic regularizations with
the operator projection approach in Sect. 6. The paper ends with a conclusion.

2 Preliminaries

LetRD be the D-dimensional real space. We introduce a function ω onRD , which is referred
to as weight function hereafter, satisfying

0 < ω(x) < ∞, 0 ≤
∫
RD

xαω(x) dx < ∞, ∀α ∈ N
D,

where xα = ∏D
d=1 x

αd
d . Associated with the weight function ω, we define a weighted poly-

nomial space H
ω = span

〈{xαω(x)}α∈ND

〉
, which is an infinite-dimensional linear space

equipped with the norm

( f, g)ω :=
∫
RD

1

ω(x)
f (x)g(x) dx, f, g ∈ H

ω.

For a positive integer n ∈ N, let Hω
n be a closed subspace of Hω and dim(Hω

n ) = n + 1.
We call the finite-dimensional space Hω

n an admissible1 subspace if

• span
〈
ω(x){1, x, |x|2}〉 ⊂ H

ω
n ,

• if g(x) ∈ H
ω
n , then g(Qx + b) ∈ H

ω
n , where Q is a rotation matrix and b is a translation

vector.

1 See discussion on the admissible subspace for any moment method in Ref. [14].

123
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Let {φ0, φ1, . . . , φk, . . .} be a basis of Hω and {ϕ0, ϕ1, . . . , ϕn} be a basis of Hω
n , respec-

tively. SinceHω
n is a subspace ofHω, there exists a matrix Pb ∈ R

(n+1)×∞ with full row rank
such that ϕ = Pbφ, where φ = (φ0, φ1, . . . , φk, . . .)

T and ϕ = (ϕ0, ϕ1, . . . , ϕn)
T .

A linear bounded operator P : Hω → H
ω is called a projection operator on H

ω
n if

• Pg ∈ H
ω
n for all g ∈ H

ω,
• Pg = g for all g ∈ H

ω
n .

For any g ∈ H
ω, there exists gi , i = 0, . . . ,∞ such that g =∑∞

i=0 giφi . Since Pg ∈ H
ω
n ,

there exists ĝi , i = 0, . . . , n such that Pg = ∑n
i=0 ĝiϕi . Since P is a linear operator, there

exists a unique matrix Pp ∈ R
n+1×∞ satisfying ĝ = Pp g, where ĝ = (g0, . . . , gn)T and

g = (g0, . . . , gk, . . .)T , such that

Pg = 〈Pbφ,Pp g
〉
N , (2.1)

where 〈·, ·〉N denotes the inner product of finite size vectors as opposed to 〈·, ·〉∞ for infinite
size vectors that will be used later. Noticing that P is a linear bounded projection operator,
we have

||Pp|| < ∞, where || · || is a matrix norm,

PbPT
p = In, In is an n × n identity matrix. (2.2)

Clearly the projection operator P is uniquely determined by Pp , thus hereafter we may
directly use the matrix Pp to denote the projection on the weighted polynomial space.

Particularly, for the classical orthogonal projection, i.e.

||Pg − g||ω ≤ || f − g||ω, ∀ f ∈ H
ω,

we have
Pp = ((ϕi , ϕ j )ω

)−1
(n+1)×(n+1) · Pb · ((φi , φ j )ω

)
∞×∞ . (2.3)

Furthermore, if ϕi = φi , i = 0, . . . , n and (ϕi , φ j )ω = 0 for all i = 0, . . . , n,
j = n + 1, n + 2, . . ., then the orthogonal projection is actually a cut-off and we have

Pb = Pp = T := (In+1 0
)
,

where In+1 is the (n + 1)th order identity matrix.
For later use, we note

Definition 1 (Hyperbolicity) A system of first order quasi-linear partial differential equa-
tions

∂w

∂t
+

D∑
d=1

Ad(w)
∂w

∂xd
= 0

is called hyperbolic in some region � if and only if any linear combination of Ad(w) is
diagonalizable with real eigenvalues for all w ∈ �.

3 Moment Method for Boltzmann Equation

In this section, we introduce the Boltzmann equation and then briefly review Grad’s moment
system of arbitrary order proposed in Ref. [4] together with the globally hyperbolic regular-
ization for the moment system in Refs. [1,2]. At last, we give an alternative understanding
to derive the regularized moment system.
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3.1 The Boltzmann Equation

In gas kinetic theory, the motion of particles is depicted by the mass density distribution
function f (t, x, ξ) governed by the Boltzmann equation

∂ f

∂t
+

D∑
d=1

ξd
∂ f

∂xd
= S( f ), (3.1)

where t is the time variable and x ∈ R
D and ξ ∈ R

D denote the position and microscopic
velocity, respectively. The right hand side of (3.1) S( f ) is used to model the interaction
among particles and is beyond our concern, thus we do not give its concrete form and simply
assume S( fM (t, x, ξ)) = 0. Here fM (t, x, ξ) is the local Maxwellian

fM (t, x, ξ) = ρ(t, x)√
2πθ(t, x)

D
exp

(
−|ξ − u(t, x)|2

2θ(t, x)

)
.

The macroscopic density ρ(t, x), velocity u(t, x) and temperature θ(t, x) are related to the
distribution function f (t, x, ξ) by

ρ(t, x) =
∫
RD

f (t, x, ξ) dξ ,

ρ(t, x)u(t, x) =
∫
RD

ξ f (t, x, ξ) dξ ,

D

2
ρ(t, x)θ(t, x) + 1

2
ρ(t, x)|u(t, x)|2 =

∫
RD

1

2
|ξ |2 f (t, x, ξ) dξ .

Multiplying the Boltzmann equation (3.1) by (1, ξ , |ξ |2/2)T and integrating both sides over
R
D with respect to ξ , we get the following conservation laws

∂ρ

∂t
+

D∑
d=1

∂ρud
∂xd

= 0,

ρ
∂ui
∂t

+
D∑

d=1

(
ρud

∂ui
∂xd

+ ∂ pid
∂xd

)
= 0, i = 1, . . . , D,

Dρ

2

∂θ

∂t
+

D∑
d=1

(
D

2
ρud

∂θ

∂xd
+ ∂qd

∂xd

)
+

D∑
d=1

D∑
k=1

pkd
∂uk
∂xd

= 0.

Here pi j and qi , i, j = 1, . . . , D are pressure tensor and heat flux, respectively, defined by

pi j =
∫
RD

f (t, x, ξ)(ξi − ui )(ξ j − u j ) dξ , qi =
∫
RD

f (t, x, ξ)|ξ − u|2(ξi − ui ) dξ .

3.2 Moment Method for the Boltzmann Equation

In 1949, Grad [8] assumed that the distribution function is close to a local Maxwellian and
expanded the distribution function f into Hermite series to obtain the Grad 13 and Grad 20
moment systems. Cai and Li [4] extended it to more general cases and obtained arbitrary
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order moment systems. Here we first discuss the D = 1 case and the multi-dimensional case
will be discussed in Sect. 5.1.

3.2.1 Grad’s Moment Method

Let D = 1. Following Grad, we expand the distribution function around the Maxwellian as
follows

f (t, x, ξ) =
∑
α∈N

fα(t, x)H[u(t,x),θ(t,x)]
α (ξ), (3.2)

where the basis function H[u,θ ]
α (ξ) is a weighted Hermite polynomial defined as

H[u,θ ]
α (ξ) = (−1)α

dα

dξα
ω[u,θ ](ξ), α ≥ 0, ω[u,θ ](ξ) = 1√

2πθ
exp

(
−|ξ − u|2

2θ

)
.

(3.3)
Here we list some basic relations of the basis function H[u,θ ]

α (ξ) as following:

• orthogonality relation:
(
H[u,θ ]

α (ξ),H[u,θ ]
β (ξ)

)
ω[u,θ ] = α!

θα
δα,β;

• derivative relation:
∂H[u,θ ]

α (ξ)

∂s
= ∂u

∂s
H[u,θ ]

α+1 (ξ) + 1

2

∂θ

∂s
H[u,θ ]

α+2 (ξ), s = t, x;
• recurrence relation: ξH[u,θ ]

α (ξ) = θH[u,θ ]
α+1 (ξ) + uH[u,θ ]

α (ξ) + αH[u,θ ]
α−1 (ξ).

Using the orthogonality relation, we get the constraints

f1 = f2 = 0. (3.4)

Then substituting the expansion (3.2) into the Boltzmann equation (3.1), we get

∂ f

∂t
=
∑
α∈N

(
∂ fα
∂t

+ fα−1
∂u

∂t
+ 1

2
fα−2

∂θ

∂t

)
H[u,θ ]

α (ξ), (3.5)

ξ
∂ f

∂x
=
∑
α∈N

(
∂ fα
∂x

+ fα−1
∂u

∂x
+ 1

2
fα−2

∂θ

∂x

)(
uH[u,θ ]

α + θH[u,θ ]
α+1 + αH[u,θ ]

α−1

)
. (3.6)

Matching the coefficients of the basis functions in (3.5) and (3.6), we obtain Grad’s moment
system with infinite number of equations

∂ fα
∂t

+ u
∂ fα
∂x

+ θ
∂ fα−1

∂x
+ (α + 1)

∂ fα+1

∂x

+ fα−1
∂u

∂t
+ (u fα−1 + θ fα−2 + (α + 1) fα)

∂u

∂x

+ fα−2

2

∂θ

∂t
+ 1

2
(u fα−2 + θ fα−3 + (α + 1) fα−1)

∂θ

∂x
= Sα, α ≥ 3. (3.7)

Here Sα is obtained by expansion of the collision part S( f ). Noticing (3.4), we let
w = ( f0, u, θ, f3, f4, . . .), then (3.7) can be written as

D
∂w

∂t
+ MD

∂w

∂x
= S, (3.8)

where the matricesD andM are determined from (3.5) and (3.6) and S = (Sα)α∈N is a vector
with entries sorted by ascending order of α.

Choosing an integer M ≥ 2, discarding all the governing equations of fα, |α| ≥ M
and dropping all the terms including the space derivative of fα, |α| ≥ M , in the remaining
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equations, we obtain Grad’s M + 1 moment system in Ref. [4] for the 1D case, which can
be written with modified matrices and variables as

DM
∂wM

∂t
+ (MD)M

∂wM

∂x
= SM . (3.9)

The matrices DM and (MD)M as well as wM can be derived in a different way using the
following procedure.

3.2.2 Decomposition of the Deduction

The procedure deriving Grad’s moment system can be decomposed into the following steps:

1. Weight function andweighted polynomial space:Chooseω[u,θ ](ξ) as theweight function,

and let the weighted polynomial space Hω[u,θ ] = span
〈
{H[u,θ ]

α (ξ)}α∈N
〉
.

2. Projection operator: Choose an integer M ≥ 2 and let Hω[u,θ ]
M = span

〈
{H[u,θ ]

α (ξ)}α≤M

〉
.

It is clear that the H[u,θ ]
α (ξ) form an orthogonal basis of Hω[u,θ ]

and Pb = T. Here Grad
used a direct truncation of the distribution function, which corresponds to orthogonal
projection, so we have Pp = T.

3. Grad’s expansion: Expand the distribution function in the space Hω[u,θ ]

f (t, x, ξ) =
∑
α∈R

fα(t, x)H[u,θ ]
α (ξ) =

〈
H[u,θ ], f

〉
∞ ,

where 〈·, ·〉∞ is the inner product of infinite size vectors and H[u,θ ] = (H[u,θ ]
α (ξ))α∈N

and f = ( fα)α∈N are vectors of elements sorted by ascending order of α.
4. Constraints:

f1 = f2 = 0. (3.10)

So w = ( f0, u, θ, f3, f4, . . .) contains all the macroscopic parameters.
5. Projection 1: Project the distribution function into H

ω[u,θ ]
M :

P f (t, x, ξ) =
〈
PbH[u,θ ],Pp f

〉
N

.

6. Time and space derivative: for s = t, x

∂P f

∂s
=
〈
Pb

∂H[u,θ ]

∂s
,Pp f

〉
N

+
〈
PbH[u,θ ],Pp

∂ f
∂s

〉
N

=
〈
PbCH[u,θ ],Pp f

〉
N

+
〈
PbH[u,θ ],Pp

∂ f
∂s

〉
N

=
〈
H[u,θ ],CTPT

b Pp f + PT
b Pp

∂ f
∂s

〉
∞

=
〈
H[u,θ ],DPT

b
∂Ppw

∂s

〉
∞

. (3.11)

Here C is a matrix with infinite size and can be deduced directly from the derivative
relation of the basis functions. The first M + 1 rows of the matrix D can be derived from

CTPT
b Pp f + PT

b Pp
∂ f
∂s

and D is the same as in (3.8).
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7. Multiplication with velocity:

ξ
∂P f

∂x
=
〈
ξH[u,θ ],DPT

b
∂Ppw

∂x

〉
∞

=
〈
MTH[u,θ ],DPT

b
∂Ppw

∂x

〉
∞

=
〈
H[u,θ ],MDPT

b
∂Ppw

∂x

〉
∞

. (3.12)

The matrixM can be derived directly from the recurrence relation of the basis functions
and is the same as in (3.8).

8. Projection 2: Project (3.11) and (3.12) into the space Hω[θ ]
M and match the coefficients of

the basis functions to obtain the moment system:

PpDPT
b

∂Ppw

∂t
+ PpMDPT

b
∂Ppw

∂x
= PpS. (3.13)

This finally yields Grad’s M + 1 moment system.

Comparing (3.13) and (3.8), we observe that Grad’s truncation and closure are corresponding
to the projection on the distribution function and the moment system. Actually, we can also
first obtain system (3.8) and then let

wM = Ppw, DM = PpDPT
b , (MD)M = PpMDPT

b , SM = PpS,

to get (3.9), which is exactly the same as (3.13).
Note, that we do not explicitly write down the matrices D andM here in order to shorten

notation, but some examples for different cases are given in Sect. 5.

3.3 Globally Hyperbolic Moment Equations

The hyperbolicity of system (3.13) requires DM to be invertible and D−1
M (MD)M to be real

diagonalizable. It is easy to check that DM is invertible, since DM is a lower triangular
matrix and its diagonal entries are all nonzero. However, in Ref. [1] Cai et al. investigated
the hyperbolicity of it and concluded that for M ≥ 3 Grad’s moment system (3.13) is only
hyperbolic around the Maxwellian. A globally hyperbolic regularization for Grad’s moment
system in 1D was proposed afterwards. In [3], Cai et al. investigated the regularization
and gave an explanation from the viewpoint of the discrete velocity method and based on
the regularization, a generalized framework was proposed to obtain a hyperbolic moment
system based on any ansatz for the kinetic equation. In this subsection, we use a diagram of
the regularization proposed inRef. [1] to compare the treatments of time and space derivatives
for Grad’s moment system and the regularization.

To derive Grad’s moment equation, we need to calculate the time derivative
∂ f

∂t
and the

convection term ξ
∂ f

∂x
. As shown in Fig. 1, for the time derivative, the projection operator

directly acts on
∂P f

∂t
after the time derivative. But for the convection term, the projection

operator acts on
∂P f

∂x
after multiplying with the velocity. That means Grad treated the time

and space derivative in different ways. In the perspective of physics, if only the convection
term is considered in the Boltzmann equation, the system is time reversal invariant, thus there
is no essential difference for time and space. Hence, it is natural to use the same treatment for
time derivative and space derivative. In the perspective of mathematics, the same treatment
for time and space derivatives indicates that the hyperbolicity of the resulting moment system
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Fig. 1 Diagram for Grad’s moment method for the 1D Boltzmann equation
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Fig. 2 Diagram for the regularization proposed in Reference [1] for the 1D Boltzmann equation

only depends on the operator representing the multiplication with velocity and the hyperbol-
icity does not depend on the derivative operator, since similarity transformation preserves the
matrix eigenstructure. In fact, the hyperbolicity of the Boltzmann equation can be expanded
since the multiplication operator ξ · is real-valued, symmetric, and does not depend on the
time and space derivatives. In conclusion, it is a natural choice to use the same treatment for
the time and space derivatives, as is shown in Fig. 2, which results in the regularization pro-
posed by Cai et al. in [1]. Based on the perspective in Fig. 2, the derivation of the regularized
moment system in Ref. [1] can be written as
1.-6. the same as the 1st–6th step in Sect. 3.2.2.

7. Projection 2: Project the space derivative (3.11) into space Hω[θ ]
M

P ∂P f

∂x
=
〈
PbH[u,θ ],PpDPT

b
∂Ppw

∂x

〉
N

.

8. Multiplication with velocity:

ξP ∂P f

∂x
=
〈
H[u,θ ],MPT

b PpDPT
b

∂Ppw

∂x

〉
∞

. (3.14)

9. Projection 3: Project (3.11) and (3.14) into the space Hω[θ ]
M and match the coefficients of

the basis functions to obtain the regularized moment system:

PpDPT
b

∂Ppw

∂t
+ PpMPT

b PpDPT
b

∂Ppw

∂x
= PpS. (3.15)

This finally yields the globally hyperbolic moment equations proposed in Ref. [1].

Similar to Grad’s moment system, we can first obtain system (3.8) and then let

wM = Ppw, DM = PpDPT
b , MM = PpMPT

b , SM = PpS,
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to get

DM
∂wM

∂t
+ MMDM

∂wM

∂x
= SM . (3.16)

The upper system is exactly the same as (3.15). That means we can derive the moment system
with infinite equations first without considering the projection and then apply the projection
to it to obtain the corresponding equations. This observation will help us to understand the
difference between Grad’s 13 moment system and Grad’s 20 moment system, as well as the
regularized versions of them.

4 Generic Kinetic Equations

In the last section, we investigated the regularized moment system proposed in Ref. [1]. In
this section, we deduce and summarize the characteristic of the regularization and extend
it to a framework. Based on the framework, different moment systems can be derived by
some routine calculations once the kinetic equation, the weight function, the projection and
the internal projection strategy are given and new moment systems can be derived without
essential difficulty. The framework will be introduced step by step in this section. First, we
clarify the form of the kinetic equation.

4.1 The Form of the Kinetic Equation

It is natural to determine the kinetic equation before deducing the moment system. We want
to cover different kinetic equations in our framework and thus assume the following form of
the kinetic equation

L
(

∂

∂t
; f, η1, v(ξ)

)
+

D∑
d=1

pd(v(ξ))L
(

∂

∂xd
; f, η1, v(ξ)

)
= S( f ), (4.1)

where f = f (t, x, v), η1 = η1(t, x) is a vector of macroscopic parameters2 and

L
(

∂

∂s
; ·, ·, ·

)
, for s = t, xd is an operator. Furthermore v(ξ) is a function of ξ and pd(·) is a

polynomial, which suffices to cover all major models. Among others, the following important
models are readily included in our framework:

• Conventional Boltzmann equation (3.1): The standard Boltzmann equation is easily
included in the framework by setting

η1 = ∅, v(ξ) = ξ , pd(v) = vd , L
(

∂

∂s
; f, η1, v(ξ)

)
= ∂ f

∂s
, s = t, xd .

• Scaled Boltzmann equation used in Ref. [12]:
A transformed Boltzmann equation is obtained after shifting the microscopic velocity ξ

by its macroscopic velocity u and scaling by the standard deviation
√

θ to get a Galilean
invariant variable transformation:

ξ → ξ − u√
θ

=: v.

2 η1 can be treated as a set, but uniqueness demands that every element of η1 cannot be expressed by the
others. For example, {ρ, θ, p} is not allowed because p = ρθ , while {ρ, u, θ} is allowed.
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With this transformation, the Boltzmann equation (3.1) is transformed to

D f

Dt
+

D∑
d=1

√
θvd

∂ f

∂xd
+

D∑
k=1

∂ f

∂vk

(
− 1√

θ

(
Duk
Dt

+
D∑

d=1

√
θvd

∂uk
∂xd

)

− 1

2θ
vk

(
Dθ

Dt
+

D∑
d=1

√
θvd

∂θ

∂xd

))
= S( f ), (4.2)

where the material derivative
D

Dt
:= ∂

∂t
+∑D

d=1 ud
∂

∂xd
is used. In physical perspective,

(4.2) and (3.1) depict the same physical process. In mathematical perspective, however,
we treat the two equations as different models.
We can include the transformed Boltzmann equation (4.2) in our framework by setting

η1 = (u1, . . . , uD, θ), v(ξ) = ξ − u√
θ

, pd(v) = ud + √
θvd ,

L
(

∂

∂s
; f, η1, v(ξ)

)
= ∂ f

∂s
−

D∑
k=1

∂ f

∂vk

(
1√
θ

∂uk
∂s

+ 1

2θ
vk

∂θ

∂s

)
, s = t, xd .

• Radiative transfer equation:
The radiative transfer equation reads

1

c

∂ f

∂t
+ v(ξ) · ∇ f = S( f ; T ), (4.3)

where c is the speed of light and S( f ; T ) models interactions between photons and
the background medium with material temperature T and v(ξ) = ξ/|ξ |. The radiative
transfer equation (4.3) is included in the framework by setting

η1 = ∅, v(ξ) = ξ/|ξ |, pd(v) = cvd , L
(

∂

∂s
; f, η1, v(ξ)

)
= 1

c

∂ f

∂s
, s = t, xd .

In this paper, we are not confined to the upper three cases, but consider any kinetic equation
of the form as (4.1).

4.2 The Framework of Model Reduction

Based on the form of the kinetic equation (4.1), we give a framework to derive a moment
system from the kinetic equation.

1. Weight function andweighted polynomial space: Denote theweight function byω[η2](v),
where η2 = η2(t, x) is a set of some macroscopic parameters. Then the weighted poly-
nomial space is H

ω[η2] = span
〈{ω[η2](v)vα}α∈ND

〉
, and let φ = (φ0, φ1, . . . , )

T be a
basis.

2. Projection operator: Choose an admissible subspace H
ω[η2]
sub of Hω[η2]

and determine the
projection P , which means determining the two matrices Pb and Pp .

3. Ansatz: Expand the distribution function f (t, x, v) in the space Hω[η2]

f (t, x, v) =
∑

α∈ND

fα(t, x)φα(v) = 〈φ, f 〉∞ . (4.4)

123



468 Y. Fan et al.

4. Constraints: Denote η = η1 ∪ η2 and let n be the cardinality of η. Then there must be n
independent relations between η and f

r j (η, f ) = 0, j = 1, . . . , n. (4.5)

Using (4.5) to eliminate n parameters in η, f , we denote the remaining by w.
5. Projection 1: Project the distribution function into the space Hω[η2]

sub

P f (t, x, v) = 〈Pbφ,Pp f
〉
N . (4.6)

6. Time and space derivative: For s = t, xd , calculate L
(

∂

∂s
, . . .

)
with an internal projec-

tion strategy PS1

L
(

∂

∂s
, . . .

)
→ LPS1

(
∂

∂s
, . . .

)
=
〈
φ,DPS1P

T
b

∂Ppw

∂s

〉
∞

, (4.7)

where DPS1 depends on L
(

∂

∂s
, . . .

)
and the internal projection strategy. In deriving

DPS1 , the projection may be used, and Sect. 5.5 gives an example.

7. Projection 2: Project the resulting time and space derivative into the space Hω[η2]
sub

PLPS1

(
∂

∂s
, . . .

)
=
〈
Pbφ,PpDPS1P

T
b

∂Ppw

∂s

〉
N

. (4.8)

8. Multiplication with velocity: For d = 1, . . . , D, calculate pd(v)PLPS1

(
∂

∂s
, . . .

)
with

an internal projection strategy PS2

pd(v)PLPS1

(
∂

∂s
, . . .

)
→
〈
φ,Md,lPT

b Pp . . .Md,1PT
b · PpDPS1P

T
b

∂Ppw

∂xd

〉
∞

, (4.9)

where l is a positive integer and Md,i , i = 1, . . . , l are matrices depending on pd(v)φ

and the internal projection strategy. See Remark 1 for details of the upper equations
and the internal projection strategy PS2. In the following we use Md,PS2 to denote
Md,lPT

b Pp . . .Md,1.

9. Projection 3: Project (4.9) into the space H
ω[η2]
sub and match the coefficients of basis

functions φ, then obtain the moment system

PpDPS1P
T
b

∂Ppw

∂t
+

D∑
d=1

PpMd,PS2P
T
b PpDPS1P

T
b

∂Ppw

∂xd
= PpS, (4.10)

where S is obtained by expansion of the collision part S( f ), which is not studied in this
paper.

Remark 1 In the procedure ofmultiplying velocity, theremay be several operations involved.
As an example we consider pd(v) = v2d and we denote the matrix Md satisfying vdφ =
MT

d φ, then pdφ = vd(vdφ) = vdMT
d φ = MT

d M
T
d φ. Thus, we have two choices for the

multiplication with velocity:

1. First compute vdφ and apply a projection, then perform the other multiplication with
velocity. This corresponds to l = 2 andMd,1 = Md,2 = Md .

2. Directly compute v2dφ. This corresponds to l = 1 and Md,1 = M2
d .
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If pd(v) is more complex, there are more choices. We call each choice an internal projection
strategy PS2. Naturally, different choices usually yield different moment systems. Here we
consider the case where pd(v) can be factorized as pd(v) =∏l

i=1 p
(i)
d (v), thenMd,i satisfies

pd(v)φ = MT
d,iφ. Similarly, in the procedure of calculating time and space derivative, there

may be several operations, which result in several choices to calculating time and space
derivative. We call each choice an internal projection strategy PS1, respectively.

Remark 2 In the framework, it is assumed that Pp is commutative with the time and space
derivative, which means Pp is independent of η1. Actually, if P is an orthogonal projection
and the basis function is an orthogonal basis, this assumption is always valid.

Besides, the “derivative” matrix DPS1 usually depends on the variables w, e.g. DPS1 =
DPS1(w). After projection, the matrix PpDPS1P

T
b must depend only on the projected

variables Ppw due to the moment closure. Actually, we implicitly used the condi-
tion: PpDPS1P

T
b = PpDPS1(PbPpw)PT

b . Similarly, PpMd,PS2P
T
b = PpMd,PS2(PbPpw)

PT
b and PpS = PpS(PbPpw).

4.3 Discussion on the Framework

Actually, the framework in Sect. 4.2 almost provides an algorithm to derive moment systems
from kinetic equation. In this subsection, we dissect the procedure in detail and study the
inputs and properties of the resulting moment system.

4.3.1 Inputs

Taking a closer look at the framework in Sect. 4.2, we find that once the weight function is
given, the weighted polynomial space Hω[η2]

is determined and the ansatz and constraints in
the 3rd and 4th step of the framework are also decided. Once the projection operator P is
given, all the projections in the 5th, 7th and 9th step are fixed. For the calculations of the
time and space derivative and the multiplication with velocity, only the internal projection
strategy affects the result. Hence, to derive a moment system based on the framework in
Sect. 4.2, the following information is needed:

• A kinetic equation of the form as in (4.1);
• Weight function;
• Projection operator;
• Internal projection strategies PS1 and PS2.

As discussed in Sect. 4.1, the form of the kinetic equation implicates the treatment of the
kinetic equation.

The weight function represents some knowledge of the distribution function. Grad used
the Maxwellian as the weight function because he assumed the distribution function is not
far away from the Maxwellian. In Ref. [7], in order to deal with the anisotropic distribution
function of the Boltzmann equation, Fan and Li used a more general Gaussian function as
the weight function. Hence, it is possible to include some prior knowledge of the distribu-
tion function in the weight function, to derive specific moment systems for some specific
questions.

The projection operator largely influences the type of the moment system. For the con-
ventional Boltzmann equation and the Maxwellian as the weight function, one projection
operator may yield the regularized version of Grad’s 13 moment system (G13) while another
one may yield the regularized version of Grad’s 20 moment system (G20). Even if all the
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upper three inputs are given, it is possible to obtain different moment system with different
internal projection strategies. So the internal projection strategy offers some freedom.

As we will see in the later examples and applications, the projection operators can for
example correspond to a truncation or a cut-off during the computation of themoment system.
This will be most obvious in case of HME and QBME, which are very similar in this new
framework. The operator projection framework thus also yields a mathematically precise
method to describe the procedures of these different approaches in a unified way.

Summarized, the form of the kinetic equation implicates the treatment of the kinetic
equation. The weight function represents some knowledge of the distribution function and
allows us to include a-priori information of the distribution function in the moment system.
The projection operator and internal projection strategy determine which type of moment
system we need and leave us some freedom for the moment system. Once the four inputs are
given, the moment system can be mechanically derived following the framework.

4.3.2 Pragmatic Viewpoint

As discussed in the last part of Sect. 3.3, the internal projection strategy vanishes if we do
not apply any projection in the framework, which is identical to setting Pb = Pp = I . The
resulting moment system then reads

D
∂w

∂t
+

D∑
d=1

MdD
∂w

∂xd
= S. (4.11)

Actually, to derive (4.10), we can first neglect the projection operators and obtain (4.11),
then afterwards perform the projections, which can be treated as using Ppw and PpS to take
the place of w and S, respectively, and use PpDPT

b and PpMdPT
b to take the place of D and

Md . This allows us to choose the weight function first, and then obtain the moment system
containing infinite equations, and finally to determine the projection.

As emphasized in Sect. 3.3, we note that it is essential to treat time and space derivative
in the same way, which corresponds to the same internal projection strategy PS1 for time
and space derivative. This is essential for the hyperbolicity of the moment system. Using the
same internal projection strategy PS2 forMd,i for different directions xd is also obligatory,
which corresponds to the rotational invariance of the resulting moment system. Precisely, the
resulting moment system is always Galilean invariant, since the subspace is admissible.

4.3.3 Hyperbolicity of the Reduced Models

According to the definition of hyperbolicity, the moment system (4.10) is hyperbolic if

1. PpDPS1P
T
b , is invertible;

2. Any linear combination of PpMd,PS2P
T
b is diagonalizable with real eigenvalues.

To study the matrix PpMd,PS2P
T
b , we denote {ϕ̃0, ϕ̃1, . . . , ϕ̃N−1} orthonormal basis of

the N -dimensional spaceHω
sub, satisfying (ϕ̃i , ϕ̃ j )ω = δi, j , i, j = 0, . . . , N −1, and denote

{φ̃0, . . . , φ̃n, . . .} as orthonormal basis ofHω with φ̃i = ϕ̃i , i = 0, . . . , N−1 and (φ̃i , φ̃ j )ω =
δi, j , i, j ∈ N, where φ̃ is dependent on η2. Then there exists a non-singular matrix Q such
that ϕ = QT ϕ̃. In the new basis, we denote P̃p , P̃b, D̃PS1 , M̃d,PS2 , M̃d,k, k = 1, . . . , l and
w̃ with the same definitions as the symbols without the ˜̇. Then the resulting moment system
can be written as
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QPpDPS1P
T
b

∂Ppw

∂t
+

D∑
d=1

P̃pM̃d,PS2 P̃
T
b QPpDPS1P

T
b

∂Ppw

∂xd
= QPpS. (4.12)

Hence, we have
Q−1P̃pM̃d,PS1 P̃bQ = PpMd,PS2Pb. (4.13)

Since M̃d,k , k = 1, . . . , l is defined by p(k)
d (v)φ̃ = M̃d,k φ̃, and φ̃ is an orthonormal basis,

we have
M̃d,k =

((
p(k)
d (v)φ̃i , φ̃ j

)
ω

)
, k = 1, . . . , l. (4.14)

With (4.13) and (4.14), we immediately get the following criterion on the real diagonaliz-
ability of PpMd,PS2P

T
b .

Theorem 1 If the projection operator P is an orthogonal projection, and p(k)
d (v), k =

1, . . . , l satisfy p(k)
d (v) = p(l+1−k)

d (v), then any linear combination of PpMd,PS2P
T
b is

diagonalizable with real eigenvalues.

Proof As P is an orthogonal projection, we have P̃p = P̃b = T. Since
(
p(k)
d (v)φ̃i , φ̃ j

)
ω

=
(
p(k)
d (v)φ̃ j , φ̃i

)
ω

, k = 1, . . . , l, d = 1, . . . , D,

M̃d,k and PpM̃d,kPT
b are symmetric matrices. Due to p(k)

d (v) = p(l+1−k)
d (v), we have

M̃d,k = M̃d,l+1−k , and further P̃pM̃d,PS2 P̃
T
b = P̃pM̃d,l P̃b . . . P̃pM̃d,1P̃b, d = 1, . . . , D

are symmetric matrices. Hence, any linear combination of P̃pM̃d,PS2 P̃
T
b is diagonalizable

with real eigenvalues. (4.13) indicates the conclusion of the theorem is valid. ��
In practice, to derive moment equations, we most often use an orthogonal projection since

it corresponds to the “cut-off”. Thus the condition on the projection is almost satisfied. For
almost all kinetic equations, pd(v) is a linear polynomial. Even for some complex pd(v),
using some complex internal projection strategy is not usual. Hence, the condition on pd(v)

is easy to fulfill. So the model (4.10) is globally hyperbolic for most situations, only if the
matrix PpDPS1P

T
b is invertible.

Next we consider the matrix PpDPS1P
T
b . In this framework, Ppw can be seen as the

parameters to construct a distribution functionP f (w; ξ) inHω
sub to approximate the solution

of the kinetic equation. Generally, it is not permitted that two different w correspond to one

distribution function or one operator L
(

∂

∂s
; . . .

)
, i.e.

w0 �= w1 �⇒ P f (w0; ξ) �= P f (w1; ξ), η1(w
0) �= η1(w

1),

L
(

∂

∂s
;P f (w0; ξ), η1(w

0), v

)
�= L

(
∂

∂s
;P f (w1; ξ), η1(w

1), v

)
.

Hence, if the operator L
(

∂

∂s
; . . .

)
and the weight function ω are not singular for some w,

PpDPS1P
T
b is general invertible.

Before we end this section, we would like to point out that the framework proposed in
this section provides a general model reduction strategy from kinetic equation to moment
equations. The framework is so concise that we need only routine calculations to obtain
a usually globally hyperbolic moment system. But we also need to point out whether the
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moment system is easy to implement or not usually depends on whether the coefficients
of the system are explicit or tractable, which are significantly up to the ansatz. We will
give several examples, e.g. Sects. 5.1, 5.2, 5.3, 5.5 to show the coefficients of the moment
systemare usually explicit and tractable,while the exampleLevermore’smaximumentropy in
Sect. 5.4 shows an opposite side.

5 Previous Models

An advantage of the framework is its applicability. Almost all the traditional moment systems
can be derived from the framework. In this section, we will give several examples of moment
systems for the Boltzmann equation and the radiative transfer equation derived using the
operator projection framework, before we also show an example with varying projection
operators.

5.1 Hyperbolic Moment Equations

In Sect. 3, Grad’s moment system for the 1D Boltzmann equation is studied in detail, and the
globally hyperbolic regularization, proposed in Ref. [1], is investigated. Now, we study the
multi-dimensional case. Grad’smoment system of arbitrary order is first proposed in Refs. [4]
and [2] the authors investigated the hyperbolicity of it and concluded that the moment system
with order greater than 3 is not globally hyperbolic. A globally hyperbolic regularization for
it is proposed in that paper, and here we call the resulting moment system the hyperbolic
moment equations HME).

For HME, the kinetic equation is the conventional Boltzmann equation (3.1), i.e.

η1 = ∅, v(ξ) = ξ , pd(v) = vd , L
(

∂

∂s
; f, η1, v

)
= ∂ f

∂s
, s = t, xd , d = 1, . . . , D.

The weight function is a scaled Maxwellian

ω[u,θ ] = 1√
2πθ

exp

(
−|ξ − u|2

2θ

)
.

Then the orthogonal weighted polynomials are defined by

H[u,θ ]
α (ξ) = (−1)|α| dα

dξα ω[u,θ ], α ∈ N
D, |α| =

D∑
d=1

αd ,

which form a basis function of Hω[u,θ ]
. We have η = {u, θ}, and some calculations yield the

constrain

fei = 0, i = 1, . . . , D,

D∑
d=1

f2ed = 0.

Hence, we use ui to replace fei and θ/2 to replace f2e1 in f , then set the resulting vector as
w. For convenience, we denote the consecutive number of fα in f as N (α).

We choose a positive integer M ≥ 2, the subspace is then defined as H
ω[u,θ ]
sub =

span

〈{
H[u,θ ]

α (ξ)
}

|α|≤M

〉
, which is an admissible subspace. The projection operator is chosen
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as the orthogonal projection, i.e. Pb = Pp = T. Since pd(v) is a linear polynomial and Ls

is only a simple derivative, the projection strategy vanishes.
With these inputs, we start to derive the moment system. Since

L
(

∂

∂s
; f, η1, v

)
=
∑

α∈ND

H[u,θ ]
α

(
∂ fα
∂s

+
D∑

d=1

fα−ed
∂ud
∂s

+ 1

2

∂θ

∂s

D∑
d=1

fα−2ed

)
,

the matrix D = (di j ) satisfies

dN (α),N (α) = 1, dN (α),N (ed ) = fα−ed , dN (α),N (2e1) =
D∑

d=1

fα−2ed ,

|α| �= 1, and α �= 2e1;
dN (ed ),N (ed ) = ρ, dN (2e1),N (2e1) = ρ, dN (2e1),N (2ei ) = −1,

d = 1, . . . , D, i = 2, . . . , D,

and all entries not defined above are zeros. It is easy to observe that D is a block lower
triangular matrix, and only the diagonal block corresponding to rows and columns from
N (2e1) toN (2eD) is a big block, the others are all 1× 1 blocks and the entry of the block is
nonzero. Hence, we just need to study the big block, and denote it by Dθ . For convenience,
we just study the case D = 2, and it is easy to extend it to the general case. Then

Dθ =
⎛
⎝ρ 0 −1
0 1 0
ρ 0 1

⎞
⎠ , det(Dθ ) = 2ρ �= 0,

so the matrix D is invertible.
The property of Hermite polynomials give

ξdH[u,θ ]
α = θH[u,θ ]

α+ed + udH[u,θ ]
α + αdH[u,θ ]

α−ed ,

which indicates the form of the matrixMd . Since the projectionP is an orthogonal projection
and pd(v) is a linear polynomial, Theorem 1 indicates the system

PpDPT
b

∂Ppw

∂t
+

D∑
d=1

PpMdPT
b PpDPT

b
∂Ppw

∂xd
= PpS.

is hyperbolic. We point out that if we do not perform the projection before multiplying with
the velocity, the resulting moment system turns into

PpDPT
b

∂Ppw

∂t
+

D∑
d=1

PpMdDPT
b

∂Ppw

∂xd
= PpS,

which is Grad’s moment system in Ref. NRxx.

5.2 Anisotropic Hyperbolic Moment Equations

HME uses one temperature in the weight function and treats different directions in the

same way. For some anisotropic distribution functions, for example f = ρ

a(π)3/2
exp

(
− ξ21

a2

− ξ22 − ξ23

)
, where a is positive constant, if a is far from 1, HME cannot capture this well or

even fails to work. In [7], Fan and Li use a Gaussian rather than a Maxwellian as the weight
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function and derive an anisotropic hyperbolic moment equations AHME). Next, we give a
concise derivation of it in our newly proposed framework.

The main difference of AHME from HME is its weight function. Here we use a Gaussian

ω[u,�](ξ) = ρ√
det(2π�)

exp

(
−1

2
(ξ − u)T�−1(ξ − u)

)
,

where � = (θi j )D×D , and θi j = pi j/ρ. The definition of pi j indicates the matrix � is
positive definite. With the weight function, we define the generalized Hermite polynomials

H[u,�](ξ) = (−1)|α| dα

dxα
ω[u,�], α ∈ N

D,

which are basis functions ofHω[u,�]
and η = {u,�}. Some calculations yield the constraints

fei = 0, fei+e j = 0, i, j = 1, . . . , D,

so we replace fei by ui and fei+e j by θi j/(1 + δi j ) in f and let w be the resulting vector.

We choose an positive integer M ≥ 2, the subspace is then defined as H
ω[u,�]
sub =

span

〈{
H[u,�]

α (ξ)
}

|α|≤M

〉
, which is an admissible subspace. The projection operator is chosen

as the orthogonal projection, and the quasi-orthogonal property, i.e. (H[u,�]
α ,H[u,�]

β )ω[u,�] =
Constα

∏D
d=1 δαd ,βd , indicates Pb = Pp = T. As for HME, the projection strategy vanishes.

With these inputs, the moment system can be derived as follows. Since

L
(

∂

∂s
; f, η1, v

)
=
∑

α∈ND

H[u,�]
α

⎛
⎝∂ fα

∂s
+

D∑
i=1

fα−ei
∂ui
∂s

+
D∑

i, j=1

fα−ei−e j

2

∂θi j

∂s

⎞
⎠

the matrix D = (di j ) satisfies, for 1 ≤ i ≤ j ≤ D,

dN (α),N (α) = 1, dN (α),N (ei ) = fα−ei , dN (α),N (ei+e j ) = fα−ei−e j , |α| �= 1, 2

dN (ei ),N (ei ) = ρ, dN (ei+e j ),N (ei+e j ) = ρ,

and all entries, not defined above, are zeros. It is easy to observe that D is a low-triangular
matrix and the diagonal entries are all non-zero, hence D is invertible.

The property of generalized Hermite polynomials give

ξdH[u,�]
α =

D∑
j=1

θ jdH[u,�]
α+e j + udH[u,�]

α + αdH[u,�]
α−ed ,

which indicates the form of the matrixMd . Since the projectionP is an orthogonal projection
and pd(v) is a linear polynomial, Theorem 1 indicates the system

PpDPT
b

∂Ppw

∂t
+

D∑
d=1

PpMdPT
b PpDPT

b
∂Ppw

∂xd
= PpS.

is globally hyperbolic.
Particularly, the moment system with M = 2, D = 3 is the 10 moment system with

Gaussian closure [15].
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5.3 G13 Moment System with Hyperbolic Regularization

Among all of Grad’s moment systems, the G13 moment system drew most attention of
researchers. However, the system suffers a serious problem with its hyperbolicity. In Ref.
[6], it is reported that the hyperbolicity of it cannot be ensured even around the Maxwellian.
Recently, in Ref. [3], the authors proposed a hyperbolic regularization for it. Now we put
it in the framework in detail to help readers to understand the framework. Here we need to
point out that this subsection is similar as Section 4.1.1 in Ref. [3] since the procedure of the
derivative of the moment system is same.

The kinetic equation and the weight function are the same as those of HME with D = 3,
and the only difference is the projection. Since in Sect. 5.1 the moment system with infinite
equations has been derived, based on the idea in Sect. 4.3.2,we just need to give the projection.
The symbols w, D and Md have the same definition as that in Sect. 5.1.

For the 13 moment system, only ρ, ui , pi j , qi , i, j = 1, . . . , 3 are taken into

account, hence the subspace is H
ω[u,θ ]
sub = span

〈
ω[u,θ ] {1, ξi , ξiξ j , |ξ |2ξi

}〉
. We choose the

basis of Hω[u,θ ]
sub as

{
H[u,θ ]

α

}
|α|≤2

⋃{∑D
d=1 H[u,θ ]

ei+2ed
, i = 1, . . . , 3

}
, then the matrix Pb =

(pb,i j )13×∞ is

pb,i,i = 1, i = 1, . . . , 10, pb,11,N (3e1) = 1, pb,11,N (e1+2e2) = 1, pb,11,N (e1+2e3) = 1,

pb,12,N (3e2) = 1, pb,12,N (e2+2e1) = 1, pb,12,N (e2+2e3) = 1,

pb,13,N (3e3) = 1, pb,13,N (e3+2e1) = 1, pb,13,N (e3+2e2) = 1,

where N (α) is the same as in the definition for HME, and all entries, not defined above, are
zero.

The orthogonal projection is used for the 13 moment system, so some calculations based
on (2.3) give the matrix Pp = (pp,i j )13×∞ as

pp,i,i = 1, i = 1, . . . , 10, pp,11,N (3e1) = 3

5
, pp,11,N (e1+2e2) = 1

5
, pp,11,N (e1+2e3) = 1

5
,

pp,12,N (3e2) = 3

5
, pp,12,N (e2+2e1) = 1

5
, pp,12,N (e2+2e3) = 1

5
,

pp,13,N (3e3) = 3

5
, pp,13,N (e3+2e1) = 1

5
, pp,13,N (e3+2e2) = 1

5
,

and all entries, not defined above, are zero again. Easy to check, we have Ppw = w13, where
w13 = (ρ, u1, u2, u3, θ/2, fe1+e2 , fe1+e3 , f2e2 , fe2+e3 , f2e3 , q1/5, q2/5, q3/5)

T . Remark 2
indicates that w is replaced by PbPpw = Pbw13, which yields

fei+e j+ek = 1

5

(
δi j qk + δikq j + δ jkqi

)
, fα = 0, |α| ≥ 4.

First, the ansatz is

P f =
∑
|α|≤2

fαH[u,θ ]
α (ξ) + 1

5

3∑
i, j=1

qiH[u,θ ]
ei+2e j

(ξ),

with fei = 0, i = 1, 2, 3 and
∑3

i=1 f2ei = 0. Let

σi j =
∫
R3

(ξi − ui )(ξ j − u j ) f dξ = (1 + δi j ) fei+e j .
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Then the time and space derivative can be calculated directly as

∂P f

∂s
= ∂ρ

∂s
H[u,θ]

0 (ξ) +
3∑

d=1

ρ
∂ud
∂s

H[u,θ]
ed (ξ) + 1

2
ρ

∂θ

∂s

3∑
d=1

H[u,θ]
2ed

(ξ) + 1

2

3∑
i, j=1

∂σi j

∂s
H[u,θ]

ei+e j (ξ)

+ 1

5

3∑
i, j=1

∂qi
∂s

H[u,θ]
ei+2e j

(ξ) +
3∑

i, j,d=1

σi j

2

∂ud
∂s

H[u,θ]
ei+e j+ed (ξ) + 1

4

∂θ

∂s

3∑
i, j,d=1

σi jH[u,θ]
ei+e j+2ed

(ξ)

+ 1

5

3∑
i, j,d=1

qi
∂ud
∂s

H[u,θ]
ei+2e j+ed

(ξ) + 1

10

∂θ

∂s

3∑
i, j,d=1

qiH[u,θ]
ei+2e j+2ed

(ξ)

=
〈
H[u,θ],DPT

b
∂Ppw

∂s

〉
∞

, s = t, xk , k = 1, 2, 3.

Projecting
∂P f

∂s
into the subspace H

ω[u,θ ]
sub is in fact discarding all the underlined terms and

revising the double underlined terms as

P
3∑

i, j,d=1

σi j

2

∂ud
∂s

H[u,θ ]
ei+e j+ed (ξ) = 1

5

3∑
i, j,d=1

σi j
∂u j

∂s
H[u,θ ]

ei+2ed
(ξ).

Till now, we have calculated P ∂P f

∂s
=
〈
PbH[u,θ ],PpDPT

b
∂Ppw

∂s

〉
13
. For the convection

term, Grad directly multiplied
∂P f

∂xk
by velocity xk while in our framework we multiplied

P ∂P f

∂xd
by velocity xk . Direct calculations give the expression of (ξk − uk)

∂P f

∂xk
and (ξk −

uk)P
∂P f

∂xk
as

ρ
∂uk
∂xk

H[u,θ ]
0 (ξ) + ∂ρθ

∂xk
H[u,θ ]

ek (ξ) +
3∑

i=1

∂σik

∂xk
H[u,θ ]

ei (ξ) +
3∑

d=1

(
ρθ

∂ud
∂xk

+ 2

5

∂qd
∂xk

)
H[u,θ ]

ek+ed (ξ)

+
3∑
j=1

1

5

∂qk
∂xk

H[u,θ ]
2e j

(ξ) +
3∑

d=1

ρθ

2

∂θ

∂xk
H[u,θ ]

2ed+ek
(ξ) +

3∑
i, j=1

θ

2

∂σi j

∂xk
H[u,θ ]

ei+e j+ek (ξ)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1:

3∑
i, j=1

(
σki

∂u j

∂xk
+ 1

2
σi j

∂uk
∂xk

)
H[u,θ ]

ei+e j (ξ) + 1

2

∂θ

∂xk

3∑
i, j=1

(
σk jH[u,θ ]

e j+2ei
+ σi jH[u,θ ]

ei+e j+ek

)

+ 1

5

3∑
i, j=1

((
qk

∂ui
∂xk

+ qi
∂uk
∂xk

)
H[u,θ ]

ei+2e j
(ξ) + 2qi

∂u j

∂xk
H[u,θ ]

ei+e j+ed (ξ)

)
+ h.o.t.

C2:
3∑

i, j=1

(
1
5σk j

∂u j

∂xk
H[u,θ ]

2ei
(ξ) + 2

5σi j
∂u j

∂xk
H[u,θ ]

ei+ek (ξ)

)
+ h.o.t.

,

where h.o.t. denotes by the terms with H[u,θ ]
α (ξ), |α| > 3, and C1 and C2 correspond

to (ξk − uk)
∂P f

∂xk
and (ξk − uk)P

∂P f

∂xk
, respectively. These calculations give (ξk −

ui )
∂P f

∂xk
=
〈
(ξk − uk)H[u,θ ],DPT

b
∂Ppw

∂xk

〉
∞

=
〈
H[u,θ ], (Mk − uk I)DPT

b
∂Ppw

∂xk

〉
∞

and

(ξk − ui )P
∂P f

∂xk
=
〈
(ξk − uk)H[u,θ ],PT

b PpDPT
b

∂Ppw

∂xk

〉
∞

=
〈
H[u,θ ], (Mk − uk I)PT

b Pp
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DPT
b

∂Ppw

∂xk

〉
∞
. Projecting (ξk − uk)

∂P f

∂xk
and (ξk − uk)P

∂P f

∂xk
into the subspace Hω[u,θ ]

sub is

in fact discarding h.o.t. terms and revising the double underlined terms as

P
3∑

i, j=1

θ

2

∂σi j

∂xk
H[u,θ ]

ei+e j+ek (ξ) =
3∑

i, j=1

θ

5

∂σik

∂xk
H[u,θ ]

ei+2e j
(ξ),

and revising the underlined terms as

P 1

2

∂θ

∂xk

3∑
i, j=1

σi jH[u,θ ]
ei+e j+ek = 1

5

3∑
i, j=1

σki
∂θ

∂xk
H[u,θ ]

ei+2e j
(ξ),

P
3∑

i, j=1

2

5
qi

∂u j

∂xk
H[u,θ ]

ei+e j+ed (ξ) = 2

25

5∑
i, j=3

((
qi

∂ui
∂xk

+ qi
∂uk
∂xk

)
H[u,θ ]

ei+2e j
(ξ)

+ qk
∂ui
∂xk

H[u,θ ]
ek+2e j

(ξ)

)
.

Till now, we finish the convection term and obtain P(ξk − ui )
∂P f

∂xk
=
〈
PbH[u,θ ],

Pp(Mk − uk I)DPT
b

∂Ppw

∂xk

〉
13

and P(ξk − ui )P
∂P f

∂xk
=
〈
PbH[u,θ ],Pp(Mk − uk I)PT

b Pp

DPT
b

∂Ppw

∂xk

〉
13
.

Then matching the coefficients of PbH[u,θ ], we obtain the well-known Grad’s 13 moment
system (G13) and hyperbolic regularized 13 moment system (HR13):

dρ

dt
+

3∑
d,k=1

ρ
∂uk
∂xk

= 0,

ρ
dui
dt

+ ∂ρθ

∂xi
+

3∑
k=1

∂σki

∂xk
= 0,

3ρ

2

dθ

dt
+

3∑
k=1

∂qk
∂xk

+
3∑

k=1

ρθ
∂uk
∂xk

+
3∑

k,d=1

σkd
∂ud
∂xk

= 0,

dσi j
dt

+ 2ρθ
∂u〈i
∂x j〉

+ 4

5

∂q〈i
∂x j〉

+

⎧⎪⎪⎨
⎪⎪⎩
G13:

∑3
k=1

(
2σk〈i

∂u j〉
∂xk

+ σi j
∂uk
∂xk

)

HR13: 4
5σk〈i

∂uk
∂x j〉

= S(σi j ),

dqi
dt

+
3∑
j=1

σi j
∂u j

∂t
+ 5ρθ

2

∂θ

∂xi
+

3∑
k=1

θ
∂σik

∂xk

+
⎧⎨
⎩
G13:

∑3
k=1

(
7
2σki

∂θ

∂xk
+ 7

5qi
∂uk
∂xk

+ 7
5qk

∂ui
∂xk

+ 2
5qk

∂uk
∂xi

)

HR13: 0
= S(qi ), (5.1)
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where
d·
dt

= ∂·
∂t

+∑3
k=1 uk

∂·
∂xk

is the material derivative, and in the governing equation

of σi j , the trace-free tensor symbol is used, which is defined as for a tensor ti j , t〈i j〉 =
1
2 (ti j + t j i ) −∑3

k=1
1
3 tkk .

The upper systems can be easily written in the form as

G13: PpDPT
b
dw13

dt
+

3∑
d=1

Pp(Md − uk I)DPT
b

∂w13

∂xd
= PpS,

HR13: PpDPT
b
dw13

dt
+

3∑
d=1

Pp(Md − uk I)PT
b PpDPT

b
∂w13

∂xd
= PpS,

and HR13 is exactly the regularized 13moment system in Ref. [3] and is globally hyperbolic.

5.4 Maximum Entropy Closure

Levermore investigated the maximum entropy principle and provided a moment closure
hierarchy for the Boltzmann equation in Ref. [14]. The resulting moment system possesses
an entropy and global hyperbolicity, while it is known for the lack of a simple analytical
expression. Nevertheless, we try to put the moment system in our framework. For conve-
nience, only the case D = 1 is studied, but there is no essential difficulty to extend this to
multi-dimensional cases.

For an even and positive integer M , Levermore’s linear subspace M is defined by M =
span

〈
1, ξ, . . . , ξM

〉
. Based on the maximum entropy principle, the distribution function is

assumed to have the following form

M(g) = exp
(
gTψ

)
,

where g ∈ R
M+1 is a vector of some macroscopic parameters and ψ = (1, ξ, . . . , ξM )T .

Choose the weight functions as ω[g] = M(g), then using the Schmidt orthogonalization,
we can obtain an orthogonal basis φi of Hω[g]

satisfying φi/ω
[g] is a monic polynomial with

degree i , i.e. there exist constants cm,i (g), i = 0, . . . ,m − 1 such that

φi = ω[g]
(

ξm +
m−1∑
i=0

cm,iξ
i

)
.

If we let ci,i = 1 and ci, j = 0, j > i , i, j = 1, . . . , M + 1, then ϕ = ω[g]Cψ , where
ϕ = (φ0, . . . , φM )T and C = (ci−1, j−1)M+1×M+1. Since C is a lower triangular matrix and
its diagonal entries are all zero, C is invertible.

Set the subspace as Hω[g]
sub = {ω[g]h|h ∈ M} and φi , i = 0, . . . , M , as the basis. Further-

more, an orthogonal projection is used, thus Pp = Pb = T. Since Levermore assumed the
distribution function had the form M(g), we have P f = M(g). So the constraints are

f0 = 1, fi = 0, i = 1, . . . , M,

and w is set to w(g0, . . . , gM , fM+1, . . .)
T . We write wM+1 = Ppw = g.

Now we begin to derive the moment system. The time and space derivative turns out to be
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Ls(P f, η1, ξ) =
〈
ω[g]ψ,

∂ g
∂s

〉
N

=
〈
ϕ,C−T ∂ g

∂s

〉
N

=
〈
φ, D̃

∂wM+1

∂s

〉
N

,

where D̃ = DPT
b = PT

b C
−T .

Since φi/ω
[g] is an orthogonal polynomial, there exist three-term recurrence relations,

i.e. there exist ri, j (g), j = i − 1, i, i + 1 such that

ri,i+1φi+1 = (ξ − ri,i )φi − ri,i−1φi−1.

Denote MT = (mi j ) by mi+1, j+1 = ri, j , j = i − 1, i, i + 1, i = 0, 1, . . . and mi+1, j+1 =
0, j �= i − 1, i, i + 1, i = 0, 1, . . ., then

PpD̃
∂wM+1

∂t
+ PpMD̃

∂wM+1

∂x
= PpS

is Levermore’s moment system. Since PpMD̃ = PpMPT
b C

−T = PpMPT
b PpPT

b C
−T , the

moment system

PpD̃
∂wM+1

∂t
+ PpMPT

b PpD̃
∂wM+1

∂x
= PpS,

derived by our framework, is also Levermore’s moment system.

5.5 Quadrature-Based Moment Equations

Different fromHME, a newglobally hyperbolic regularization forGrad’smoment systemwas
proposed by Koellermeier et al. in [11,12], recently. The underlying idea of their quadrature-
basedmoment equations (QBME) is the substitution of the projectionmethod from analytical
integration to quadrature formulas. With the help of a new framework in Ref. [12], it was
shown that the emerging system of equations is in fact hyperbolic and the eigenvalues also
correspond to the Hermite roots. Now we would like to give a concise deduction of the one-
dimensional quadrature-based moment equations in terms of the proposed framework of this
paper.

For QBME, the 1D Boltzmann equation is considered and the kinetic equation reads

η1 = (u, θ), v(ξ) = ξ − u√
θ

, p(v) = u + √
θv,

L
(

∂

∂s
; f, η1, v

)
= ∂ f

∂s
− ∂ f

∂v

(
1√
θ

∂u

∂s
+ 1

2θ
v
∂θ

∂s

)
, s = t, x,

where f = f (t, x, v). The weight function and the orthogonal weighted polynomials are
defined by

ω(v) = 1√
2π

exp

(
−v2

2

)
, Hk(v) = (−1)k

dkω

dvk
, k ∈ N,

where Hk(v)/ω(v) is the classical Hermite polynomials. The orthogonal weighted polyno-
mials satisfy the following properties:

• Differential relation:
dHk(v)

dv
= −Hk+1(v);

• Recurrence relation: Hk+1(v) = vHk(v) − kHk−1(v).

For convenience, we define the matrix Dv = (di j ) with di j = δi, j+1 and Mv = (mi j ) with

mi,i+1 = i , mi+1,i = 1 and all others entries set to zeros. Then we have
dH
ds

= −DT
v H and
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vH = MT
v H, where H = (H0, . . . ,Hn, . . .)

T . Since η = {u, θ}, some calculations yield
the constraints

f1 = f2 = 0.

Wechoosew as ( f0, u, θ, f3, . . . , fk, . . .)T . Choose a positive integerM ≥ 3, the subspace is
then defined as Hω

sub = span
〈{Hk}k≤M

〉
. The projection operator is chosen as the orthogonal

projection, i.e. Pb = Pp = T.
For the time and space derivative, we have

L
(

∂

∂s
; f, η1, v

)
=
〈
H,

∂ f
∂s

〉
∞

−
〈
dH
dv

, f
(

1√
θ

∂u

∂s
+ 1

2θ
v
∂θ

∂s

)〉
∞

=
〈
H,

∂ f
∂s

〉
∞

+
〈
H,Dv f

1√
θ

∂u

∂s

〉
∞

+
〈
H,MvDv f

1

2θ

∂θ

∂s

〉
∞

.

For the derivative term, there are two matrices in the last term of the upper equation. The
internal projection strategy PS1 is

LPS1

(
∂

∂s
; f, η1, v

)
=
〈
H,PT

b
∂Pp f

∂s

〉
∞

+
〈
H,DvPT

b Pp f
1√
θ

∂u

∂s

〉
∞

+
〈
H,MvPT

b PpDvPT
b Pp f

1

2θ

∂θ

∂s

〉
∞

.

Collecting all the coefficients of
∂w

∂s
, we obtain PpDPS1P

T
b = (dps,i, j )M+1,M+1 satisfying

dps,i,i = 1, i = 1, 4, 5, . . . , M + 1, dps,i,2 = fi−2√
θ

, i = 1, . . . , M + 1,

dps,i,3 = 1

2θ
( fi−3 + i fi−1), i = 1, . . . , M, dps,i,M+1 = fi−3

2θ
.

It is easy to verify the invertibility of PpDPS1P
T
b . Since p(v) = u + √

θv, the internal
projection strategy PS2 vanishes and M = u I + √

θMv . Since the projection P is an
orthogonal projection and pd(v) is a linear polynomial, Theorem 1 indicates the resulting
system

PpDPS1P
T
p
∂w

∂t
+ PpMPT

b PpDPS1P
T
b Pp

∂w

∂x
= PpS

is globally hyperbolic.
The derivation shows that even the QBME with substitution of exact integration by a

suitable quadrature rule can be interpreted as a certain projection method, where the internal
projection strategy PS1 is particularly important. In fact, the additional projection in PS1
reflects the additional cut-off of higher order terms that is done by quadrature-based methods
automatically during the calculation, see e.g. the hyperbolicity proof in Ref. [12].

Here we point out that if the internal projection strategy PS1 is chosen as

LPS1

(
∂

∂s
; f, η1, v

)
=
〈
H,PT

b
∂Pp f

∂s

〉
∞

+
〈
H,DvPT

b Pp f
1√
θ

∂u

∂s

〉
∞

+
〈
H,MvDvPT

b Pp f
1

2θ

∂θ

∂s

〉
∞

,

i.e. without the additional projection in the last term, the resulting moment system is the same
as the HME moment system (3.15) in Sect. 3.3.
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5.6 Model Reduction with Alternative Projection Operators

Apart from the choice of the equation, the basis functions and the internal projection strategy,
there is also the possibility to use different projection operators to derive existing and new
moment systems.

In the framework proposed in Sect. 4 there are three projections, i.e. projection of the dis-
tribution function, the time and space derivative and the term after multiplying with velocity
into the subspaceHω

sub. Different projections correspond to different steps during the compu-
tation, thus it can be reasonable to use different projection operators in the framework. Then
the resulting moment system can be written as

P(2)
p DPS1P

T
b

∂P(1)
p w

∂t
+

D∑
d=1

P(3)
p Md,PS2P

T
b P

(2)
p DPS1P

T
b

∂P(1)
p w

∂xd
= PpS, (5.2)

where P(k)
p , k = 1, 2, 3 correspond to three projections and Pp is some projection for the

right side hand, which is not concerned in this paper. In calculating DPS1 and Md,PS2 , the
projections P(2)

p and P(3)
p are used. The procedure of the framework requires P(1)

p to be

commutative with time and space derivative, and the conditions in Theorem 1 restrict P(3)
p

to an orthogonal projection. Based on this idea, it is possible to derive a different type of
moment system for the same inputs of the framework except for the projection. However,
we remark that for the standard projection, we have P2 = P , but for different projections
P1 and P2, P2P1 is usually not equal to P2. The viewpoint in Sect. 4.3.2 may fail to work.
In the procedure of the framework, more attention should be paid on the derivation.

As an example for the derivation of an existing system, we consider the 1D QBME,
described in Sect. 5.5.

If we choose P(1)
p = T, then compute the time and space derivative, we get

LPS1

(
∂

∂s
;P f,∅, ξ

)
=
〈
φ,DdPT

b
∂Ppw

∂s

〉
∞

,

where DdPT
b is DPT

b with fk = 0 for k > M , and L, P , f , w, φ and D have the same

definition as that in 5.1. We choose the second projection P(2)
p as

P(2)
p = T − M + 1

θ
EM+1,M+3,

where Ei, j is a matrix with only the i, j-entry is one and the others are all zero, and the size

of it depends on the context. Choosing the third projection P(3)
p = T, the resulting moment

equations

P(2)
p DdPT

b
∂P(1)

p w

∂t
+ P(3)

p MPT
b P

(2)
p DdPT

b
∂P(1)

p w

∂x
= PpS.

are the quadrature-based moment equations [12], and the same as those in Sect. 5.5.
From the point of view of using different projections in the framework, we can see the

difference between HME and QBME for 1D, which is only the use of a different projection
operator. It shows, that the methods are in fact closely related and belong to the same type of
projectionmethod. The sameprocedure is unfortunately not possible in themulti-dimensional
case, as the basis functions do not match.
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This treatment also offers some flexibility for the hyperbolicity. The eigenvalues of the
coefficient matrix of the system all depend on the matrix P(3)

p Md,PS2P
T
b , and the only con-

straint on the matrix P(2)
p DPS1P

T
b is the invertibility. Hence, it is possible to derive other

hyperbolic systems if wanted.

6 New Models

In the last section, several conventional hyperbolic moment systems were studied in the
framework. As a powerful tool, the framework is not only able to include existing models,
but is also able to derive new models. Based on the framework, we will derive some new
hyperbolic moment systems in this section.

6.1 Regularization of Grad’s Ordered Moment Hierarchy

For the conventional Boltzmann equation (3.1) with a Maxwellian as the weight function,
there are two possible choices of the subspace H

ω[u,θ ]
sub,M , where ω[u,θ ] is the same as that in

HME, and M is a positive integer. One choice is

H
ω[u,θ ]
sub,M = span

〈
ω[u,θ ] {ξα

}
|α|≤M

〉
= span

〈
{H[u,θ ]

α }|α|≤M

〉
, (6.1)

corresponding to 10, 20, 35, 56, 84, . . . moments or moment systems G10, G20, G35, G56,
G84, . . . for D = 3. Themoment systems inRef. [4] andHMEcorrespond to this choice. This
set of moments is sometimes called a full moment theory, see e.g. [21], because it includes
the full set of moments up to order M .

The other choice is

H
ω[u,θ ]
sub,M = span

〈
ω[u,θ ]{ξα}|α|≤M−1

⋃
ω[u,θ ]{|ξ |2ξα}|α|=M−2

〉

= span

〈{
H[u,θ ]

α

}
|α|≤M−1

⋃{
D∑

d=1

H[u,θ ]
α+2ed

}

|α|=M−2

〉
, (6.2)

corresponding to 5, 13, 26, 45, . . .moments or moment systemsG5,G13,G26,G45, . . . for
D = 3. TheG13moment system in Sect. 5.3 belongs to this class. The second set ofmoments
can be seen as a hierarchy of moment sets that is a kind of ordered moment system, because
higher members of the hierarchy always include fluxes of the lower members, see again [21]
where this notation is used first. Note that members of the ordered moment hierarchy also
have a rotationally invariant basis.

Full moment theories have been extensively studied and globally hyperbolic versions for
it have also been proposed. But for Grad’s ordered moment theories, there is only very few
work, e.g. [19], and globally hyperbolic regularizations are only proposed for G13. Here we
give a concise derivation of the ordered moment hierarchy and propose a globally hyperbolic
version. Similar as the definition of the regularized G13 moment system in Sect. 5.3, we only
need to choose the projection. Hence, the symbols ω[u,θ ],H[u,θ ],w,Md andD have the same
definitions as those in Sect. 5.1.

First, we define the moments

�α = 1

2

∫
RD

1

ω[u,θ ] f
D∑

d=1

H[u,θ ]
α+2ed

dξ , |α| = M − 2.
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Let {H[u,θ ]
α }α∈ND be the basis of Hω[u,θ ]

, and {H[u,θ ]
α }|α|≤M−1

⋃{∑D
d=1 H[u,θ ]

α+2ed
}|α|=M−2 be

the basis of Hω[u,θ ]
sub . Then Pb = (pb,i, j ) is, for d = 1, · · · , D,

pb,i,i = 1, i = 1, . . . ,N ((M − 1)eD), pb,N (α+2e1),N (α+2ed ) = 1, |α| = M − 2.

Here N ((M − 1)eD) is the cardinality of {α}|α|≤M−1, and N (α + 2e1) is the consecutive

number of
∑D

d=1 H[u,θ ]
α+2ed

in the basis of Hω[u,θ ]
sub . The orthogonal projection is used, thus Pp

can be calculated based on (2.3) as

pp,i,i = 1, i = 1, . . . ,N ((M − 1)eD),

pp,N (α+2e1),N (α+2ed ) = (α+2ed )!∑D
d=1(α+2ed )! , |α| = M − 2, and d = 1, . . . , D,

where α! stands for∏D
d=1 αd !. Easy to check, we havePpw = wN , where N is the dimension

of Hω[u,θ ]
sub , and wN is

(wN )i = (w)i , i = 1, . . . ,N ((M − 1)eD), (wN )N (α+2e1) = �α∑D
d=1(α + 2ed)!

.

Then

PpDPT
b

∂wN

∂t
+

3∑
d=1

PpMdDPT
b

∂wN

∂xd
= PpS,

is Grad’s ordered moment system of order M and

PpDPT
b

∂wN

∂t
+

3∑
d=1

PpMdPT
b PpDPT

b
∂wN

∂xd
= PpS,

is the regularized version thereof. Theorem 1 indicates that the moment system is globally
hyperbolic.

As stated in Remark 2, the matrixes D and Md and the vector S in the upper equation is
defined as D = D(PbPpw), M = M(PbPpw), S = S(PbPpw), respectively.

Particularly, if D = 3 and M = 2, the moment system reduces to the classical Euler
equations, and if D = 3 and M = 3, the moment system is that in Sect. 5.3.

6.2 Quadrature-Based Moment Equations for Multi-Dimensional Case

QBME have been extended to the multi-dimensional case in Ref. [13], based on the
quadrature-based idea. However, the tensor product approach for the quadrature points causes
that the resulting system in Ref. [13] is not rotationally invariant. Note that it is impossible
to achieve the rotational invariance in that framework as there is no corresponding rotational
invariant Gaussian quadrature rule in multiple dimensions.

In this subsection,we extendQBME to themulti-dimensional case based on the framework
in Sect. 4 to obtain a hierarchy of globally hyperbolic and rotationally invariant moment
systems.

For the D-dimensional Boltzmann equation, the kinetic equation is

η1 = (u1, . . . , uD, θ), v(ξ) = ξ−u√
θ

, pd(v) = ud + √
θvd ,

L
(

∂

∂s
; f, η1, v(ξ)

)
= ∂ f

∂s
−∑D

k=1
∂ f

∂vk

(
1√
θ

∂uk
∂s

+ 1
2θ vk

∂θ

∂s

)
, s = t, xd ,
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where f = f (t, x, v). The weight function and the orthogonal weighted polynomials are
defined by

ω(v) = 1√
2π

D
exp

(
−|v|2

2

)
, Hα(v) = (−1)|α| dαω

dvα
, α ∈ N

D,

and satisfy the following properties:

• Differential relation:
dHα(v)

dvd
= −Hα+ed (v), d = 1, . . . , D,

• Recurrence relation: Hα+ed (v) = vdHα − αdHα−ed (v), d = 1, . . . , D.

Similar as in Sect. 5.5, we define Dv,d such that
dH
dvd

= −DT
v,dH and Mv,d such that

vdH = MT
v,dH, d = 1, . . . , D, whereH = (Hα) is a vector of elements sorted by ascending

order of α. We set η = (u1, . . . , uD, θ) and some calculations yield the constraints

fed = 0, d = 1, . . . , D,

D∑
d=1

f2ed = 0.

Hence, we use ui to replace fei and θ/2 to replace f2e1 in f , and name the resulting vector
w, where f = ( fα) is a vector of elements sorted by ascending order of α. We choose
a positive integer M ≥ 3, and the subspace is then defined as H

ω
sub = span

〈{Hα}|α|≤M
〉
.

Note that this yields a rotationally invariant basis, in contrast to the approach of the existing
multi-dimensional QBME method.

The projection operator is chosen as the orthogonal projection, i.e. Pb = Pp = T.
For the time and space derivative, we have, for s = t, xd , d = 1, . . . , D,

L
(

∂

∂s
; f, η1, v

)
=
〈
H,

∂ f
∂s

〉
∞

−
D∑

k=1

〈
dH
dvk

, f
(

1√
θ

∂uk
∂s

+ 1

2θ
vk

∂θ

∂s

)〉
∞

=
〈
H,

∂ f
∂s

〉
∞

+
D∑

k=1

〈
H,Dv,k f

1√
θ

∂uk
∂s

〉
∞

+
D∑

k=1

〈
H,Mv,kDv,k f

1

2θ

∂θ

∂s

〉
∞

.

Similar as for the 1D case, the internal projection strategy PS1 is

LPS1

(
∂

∂s
; f, η1, v

)
=
〈
H,PT

b Pp
∂ f
∂s

〉
∞

+
D∑

k=1

〈
H,Dv,kPT

b Pp f
1√
θ

∂uk
∂s

〉
∞

+
D∑

k=1

〈
H,Mv,kPT

b PpDv,kPT
b Pp f

1

2θ

∂θ

∂s

〉
∞

.

Collecting all the coefficients of
∂w

∂s
, we obtain PpDPS1P

T
b = (dps,i, j )N×N , N = N (MeD),

satisfying

dps,N (α),N (α) = 1, |α| �= 1 and α �= 2e1,

dps,N (α),N (ek ) = fα−ek√
θ

, |α| ≤ M, k = 1, . . . , D,
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dps,N (α),N (2e1) = 1

2θ

D∑
k=1

(
fα−2ek + (αk + 1) fα

)
, |α| ≤ M − 1,

dps,N (α),N (2e1) = 1

2θ

D∑
k=1

fα−2ek , |α| = M, dps,N (2e1),N (2ek ) = −1, k = 1, . . . , D,

where all entries not defined above are zero. Based on the analysis in Sects. 5.1 and 5.5, it is
easy to verify that PpDPS1P

T
b is invertible.

Since pd(v) = ud + √
θvd , the internal projection strategy PS2 vanishes and Md =

ud I + √
θMv,d . Since the projection P is an orthogonal projection and pd(v) is a linear

polynomial, Theorem 1 indicates the resulting system

PpDPS1P
T
p
∂w

∂t
+

D∑
d=1

PpMdPT
b PpDPS1P

T
b Pp

∂w

∂xd
= PpS

is globally hyperbolic and a rotationally invariant, multi-dimensional extension of QBME.
We emphasize that this extension is only possible with the help of the operator projection

approach. In multiple dimensions, there is no Gaussian quadrature rule that could result in a
rotationally invariantmoment system.However, the use of the projection operatorPb = Pp =
T mimics the effect of a Gaussian quadrature rule, as it essentially cuts off the highest order
term during every different step of the derivation. We can therefore say that the derivation
of the new system follows the quadrature-based technique but uses an operator projection to
achieve the rotational invariance.

7 Conclusion

For first-order convection equations, hyperbolicity is necessary for the existence of a solution.
Historically, the lack of global hyperbolicity has been a critical defect of Grad’s moment
method, and largely limited the development ofmomentmethods. In this paper,we investigate
Grad’s moment system and its globally hyperbolic regularized version for the 1D Boltzmann
equation, then point out that the most essential point of the regularization is to treat the time
derivative and the space derivative in the same manner.

Based on this observation, a general framework for the construction of hyperbolic moment
systems from kinetic equations using the operator projectionmethod is proposed. This frame-
work is so concise and clear that it can be treated as an algorithm, and once the four inputs,
i.e. the kinetic equation, the weight function, the projection operator and the internal projec-
tion strategy, are given, the moment system can be derived with some routine calculations.
Among the four inputs, the weight function is the most essential one, because it determines
the approximation space. The projection operator determines the type of the moment system.
In this framework, it is possible to contain some information of the problems to be solved in
the moment system by the choice of an appropriate weight function, and it is also possible to
derive moment systems without the projection first and then to perform the projection at last,
which helps to understand the difference of moment systems with the same weight function
(such as G20 and G13) or even the same basis (such as 1D HME and QBME).

Different existing hyperbolicmodels, such as hyperbolic regularizations ofGrad’smoment
method for 1D (Sect. 3.3) and nD (Sect. 5.1), anisotropic hyperbolic moment equations (Sect.
5.2), the hyperbolic version of the G13 moment system (Sect. 5.3), Levermore’s maximum
entropy principle (Sect. 5.4) and quadrature-based moment equations (QBME) (Sect. 5.5),
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are included in the framework. Actually, some othermodels, such as the PN andMN model in
radiative transfer are also included in this framework. Furthermore, based on the framework,
we propose a hyperbolic regularization of the ordered moment hierarchy (such as 13, 26,
45 moment systems), and extend QBME to the multi-dimensional case with the resulting
moment system being rotational invariant.

The aforementioned examples and applications thus show the benefit of the new operator
projection approach and open many new possibilities for research on moment methods.
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