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Abstract We consider a mixture of non-overlapping rods of different lengths �k moving in
R or Z. Our main result are necessary and sufficient convergence criteria for the expansion
of the pressure in terms of the activities zk and the densities ρk . This provides an explicit
example against which to test known cluster expansion criteria, and illustrates that for non-
negative interactions, the virial expansion can converge in a domain much larger than the
activity expansion. In addition, we give explicit formulas that generalize the well-known
relation between non-overlapping rods and labelled rooted trees. We also prove that for
certain choices of the activities, the system can undergo a condensation transition akin to that
of the zero-range process. The key tool is a fixed point equation for the pressure.

Keywords Cluster and virial expansions · Non-overlapping rods · Combinatorics of
labelled colored trees · Close-packing transition

1 Introduction

The present article deals with one-dimensional systems of non-overlapping rods on a con-
tinuous segment [0, L] or a discrete interval {0, 1, . . . , L − 1}. There are countably many
types k of rods, coming each with a length �k ≥ 0 and an activity zk . A rich literature deals
with related models: our model is a multi-species variant of the well-known Tonks gas [33].
We may also view it as a one-dimensional special case of hard spheres mixtures [27]. A
good control of discrete one-dimensional partition functions enters as a building block for
two-dimensional models with orientational long range order [7,23]. The one-dimensional
discrete system of rods also appears in stationary distributions for driven one-dimensional
systems [26], which in turn are closely related to the zero-range process where particles are
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piled up rather than aligned in a rod [9]. Phase transitions for one-dimensional cluster models
have been studied in detail by Fisher and Felderhof [15,16].

Our principal motivation comes from the model’s solvability and the specific, though
model-dependent, answers to questions on cluster expansions it allows. The first question
concerns domains of convergence. There are many sufficient convergence criteria available,
but it is an ongoing effort to improve them, see for example [2,14]. This raises the question
of how much room for improvement there actually is. We answer this question for the multi-
species Tonks gas by determining the exact domain of convergence [(see Eqs. (1) and (2)
below]. The answer for general models can of course be quite different, but we hope that our
results will serve as a helpful control group in future studies.

The second question is how the domain of convergence of the activity expansion compares
to the domain of analyticity. It is common wisdom that for repulsive interactions, the activity
expansion ceases to converge before a phase transition occurs [30]. For single-species model
this means that the radius of convergence is strictly smaller than the activity value at which
a phase transition occurs, if it occurs at all. We prove that for the multi-species Tonks gas
with rod lengths �k = k, the difference between convergence and analyticity domain is even
more drastic: for the convergence of the activity expansion it is necessary that the activities
go to zero exponentially fast zk = O(exp(−ak)) → 0, while the pressure stays analytic all
the way up to exponentially diverging activities zk → ∞ (Corollary 2.7).

The third question concerns the virial expansion, i.e., the expansion of the pressure in terms
of the densities ρk . It has been suggested that the virial expansion can be more advantageous
than the activity expansion [4], and indeed for some models this is known to be true [3,
25]. We prove that the same holds for the multi-species Tonks gas, again in a quite drastic
way: the virial expansion converges in all of the analyticity region (Theorems 2.5 and 2.12,
Corollary 2.7), including densities ρk(z1, z2, . . .) that correspond to exponentially diverging
activities zk → ∞ (when �k = k).

In addition, we provide explicit formulas for the pressure-activity expansion that are
interesting from a combinatorics point of view (Theorems 2.4 and 2.11). In the continuous
case,wefind that the activity expansion is (up to signs) themultivariate exponential generating
function for labelled rooted colored trees. The vertex colors correspond to rod types and the
trees haveweights that depend on the lengths �k . This generalizes thewell-known relationship
between the exponential generating function T (z) = ∑

n≥1 z
nnn−1/n! of rooted labelled

trees and the pressure for non-overlapping rods of length 1 (see [5] and the references therein).
It would be interesting to know whether the answers to corresponding combinatorial puzzles
given in [1,32] extend to the multi-species setting.

Let us describe in more detail our results on the convergence domain of the activity
expansion of the pressure in the infinite volume limit. In the continuous case, the expansion
converges absolutely if and only if (Theorem 2.4)1

∃a > 0 :
∞∑

k=1

|zk |ea�k ≤ a. (1)

In the discrete case we may choose �k = k, and the cluster expansion for the pressure
converges if and only if (Theorem 2.11)

1 The criterion (1) refers to the pressure-activity expansion p(z). The convergence of the density-activity
expansion ρk (z) in general requires a strict inequality

∑
k |zk | exp(a�k ) < a. The same remark applies to the

discrete system.
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∃a > 0 :
∞∑

k=1

|zk |eak ≤ ea − 1. (2)

The principal novelty lies in the only if part: if the criterion fails, then the expansion is
not absolutely convergent. Eqs. (1) and (2) should be compared with the following known
sufficient criteria. In the continuous case, it is enough that for some a > 0 and all k ∈ N [29]

∞∑

j=1

∫ ∞

−∞
|z j |ea� j 1

(
[x, x + � j ] ∩ [0, �k] 	= ∅

)
dx =

∞∑

j=1

(� j + �k)z j e
a� j ≤ a�k . (3)

In the discrete case, it is enough that for some a > 0 [14,20]

∑

x∈Z, k∈N
|zk |1

({x, . . . , x + k − 1} � 0)eak =
∞∑

k=1

keak |zk | ≤ ea − 1. (4)

The activity domains determined by the sufficient criteria (3) and (4) are clearly smaller
than the full convergence domains given by (1) and (2), however we shall take the point
of view that the difference is small: in the discrete case both (2) and (4) are of the form
||z||a ≤ exp(a)−1 with weighted norms ||z||a that impose the same exponential decay of zk
and differ merely by the prefactor k. From this point of view the one-dimensional model of
non-overlapping rods provides an example for which the classical convergence criteria are
already nearly optimal.2

A full list of results is given in the next section. In addition to exact formulas for the
activity and density expansions as well as their domains of convergence, we prove that the
pressure solves a fixed point equation. In the continuous case it reads

p(z) =
∑

k

zk exp
(
−�k p(z)

)
(5)

and is satisfied by the pressure whenever the equation has a solution (Theorem 2.2). In the
discrete case the equation is instead (Theorem 2.10)

1 − exp
(−p(z)

) =
∑

k

zk exp(−kp(z)). (6)

(remember �k = k). Situations where the fixed point equation has no solution are possible
and correspond to a close-packing regime (Theorem 2.3). Section 3 provides two different
explanations of thefixedpoint equation, a statisticalmechanics explanation and aprobabilistic
explanation in terms of renewal equations.

The fixed point equation is not only of interest in itself but also lies at the heart of all of
our results and their proofs; it is no coincidence that Eqs. (5) and (6) resemble so closely the
convergence criteria (1) and (2) as well as functional equations for combinatorial generating
functions. This will become clear in the proofs, given in Sects. 4–7. Section 8 proves a
technical result (Theorem 2.8) on the inversion of the density-activity relation via the inverse
function theorem.

2 This point of view focuses on qualitative features of the domain of convergence for objects of unbounded size
(�k → ∞). A different question is about quantitative estimates on the radius of convergence for hard-sphere
systems of bounded size, see e.g. [13].
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2 Model and Results

2.1 Continuous System

Let (�k)k∈N be a family of rod lengths �k ≥ 0 and z = (zk)k∈N positive activities zk ≥ 0.
The rod lengths do not need to go to infinity; in fact the case �k → 0 might be of interest in
view of the transition towards dust studied in some fragmentation models [21]. Let I ⊂ N

N

0
be the set of multi-indices (Nk)k∈N that have none or finitely many non-vanishing entries,
and I∗ := I\{0} the set of multi-indices with at least one non-zero entry. For n ∈ I we
set n! := ∏

k(nk !) and zn := ∏
k z

nk
k , with the convention 00 = 1 and 0! = 1. The grand-

canonical partition function for the volume [0, L] is

�L(z) := 1 +
∑

N∈I∗

zN

N!
∫

[0,L]
∑

k Nk
dx11 · · · dx1N1dx21 · · · dx2N2 · · ·

× 1
(
∀k, j : [xk j , xk j + �k] ⊂ [0, L]

)

× 1
(
∀(k, j) 	= (m, i) : [xk j , xk j + �k] ∩ [xmi , xmi + �m] = ∅

)
. (7)

In the integral xk j is the left end point of a rod of length �k . The indicators ensure that rods
do not overlap and lie entirely in [0, L]. The pressure is

p(z) := lim
L→∞

1

L
log�L(z) (8)

The existence of the limit in [0,∞) ∪ {∞} follows from general subadditivity arguments, a
more concrete determination is given in Theorem 2.2 below. We shall see that the stability
condition

∃θ ∈ R :
∑

k

zk exp(θ�k) < ∞ (9)

ensures that the limit defining p(z) is finite. Note that we allow for θ < 0; in particular, for
�k = k, the activities are allowed to diverge as exp(ck). Let θ∗

θ∗ := sup

{

θ ∈ R |
∑

k

zk exp(θ�k) < ∞
}

(10)

be the abscissa of convergence of the Dirichlet type series

g(θ) =
∑

k

zk exp(θ�k). (11)

For notational convenience we suppress the z-dependence in θ∗ and g(θ). Depending on the
values of z, the fixed point equation g(θ) = −θ may or may not have a solution. As we
shall see, the cases correspond to different physical behaviors and the following names are
convenient.

Definition 2.1 Let z = (zk)k∈N be non-negative activities that satisfy the stability condi-
tion (9). Then z belongs to the

(a) fluid domain Dfluid if θ∗ = ∞ or θ∗ < ∞ and g(θ∗) > −θ∗;
(b) close-packing domain if θ∗ < ∞ and g(θ∗) < −θ∗.
(c) transition domain if g(θ∗) = −θ∗.
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In the fluid domain the fixed point equation g(θ) = −θ has a unique solution θ < θ∗,
in the close-packing domain it has no solution, and in the transitional domain the unique
solution is θ = θ∗.

Theorem 2.2 Let (zk)k∈N be non-negative activities satisfying the stability condition (9).
Then

(a) In the fluid domain the pressure p(z) is given by the unique solution p > −θ∗ of∑
k zk exp(−p�k) = p .

(b) In the close-packing and transition domains the pressure is p(z) = −θ∗.

The theorem is proven in Sect. 4, an explanation of the fixed point equation is given in
Sect. 3. Theorem 2.2 suggests the possibility of phase transitions, illustrated by the following
example.

Example Take rod lengths �k = k and parameter-dependent activities zk(μ) = exp(kμ −√
k), μ ∈ R. The activities are associated with a parameter-dependent Dirichlet series∑
k exp[(θ + μ)k − √

k]. The abscissa of convergence is θ∗ = −μ and at −θ∗ the Dirichlet
series takes the μ-independent value

∑
k exp(−

√
k). In the fluid regime μ <

∑
k exp(−

√
k)

the pressure p(μ) is the unique solution to p = ∑
k exp(kμ − kp − √

k), and an implicit
function theorem shows that p(μ) is analytic with

dp

dμ
=

∑
k k exp(k[μ − p] − √

k)

1 +∑k k exp(k[μ − p] − √
k)

≤
∑

k k exp(−
√
k)

1 +∑k k exp(−
√
k)

< 1.

In the close-packing regimeμ >
∑

k exp(−
√
k), the pressure is p(μ) = μ, andwe recognize

a first-order phase transition at μ =∑k exp(−
√
k).

Remark The previous example is easily extended. Let (ak)k∈N be non-negative weights such
that h(z) = ∑

k ak z
k has positive radius of convergence R > 0. Set zk(μ) := ak exp(kμ).

Then there is a phase transition in μ if and only if R is finite and
∑

k ak R
k < ∞. The

transition takes place at exp(μ) = R. If
∑

k kak R
k < ∞, it is of first order. The situation is

closely related to condensation in the zero-range process [9], with the important difference,
however, that we can take exp(μ) > R and go beyond the coexistence region, into the
close-packed phase. The phenomenon is also similar to phase transitions studied in Fisher–
Felderhof clusters [15,16].

A very heuristic explanation of the phase transition is the following. Suppose that �k = k
and the abscissa of convergence θ∗ = − lim supk→∞ 1

k log zk is finite. Then exp(−Lθ∗) is
the weight of the configuration where space is filled with one long rod. In order to see how
much we loose by breaking space into smaller rods, it seems natural to rescale the activities
as zk → zk exp(kθ∗). If we neglect excluded volumes, the partition function for a system
of many rods for the rescaled activities becomes exp(L

∑∞
k=1 zk exp(kθ

∗)) = exp(Lg(θ∗)).
When g(θ∗) < −θ∗, it seems more advantageous to fill space with one long rod, and so we
recover the case distinction from Theorem 2.2, though the use of rescaled activities in this
argument is somewhat ad hoc.

The next theorem shows that the fluid and close-packing domains do indeed correspond
to different behaviors of the system. The relevant order parameter is the packing fraction,
the fraction of volume covered by rods. The convergence

∑
k �k Nk/L → σ stands for

convergence in probability in the grand-canonical ensemble, i.e., for all ε > 0, the grand-
canonical probability that |∑k Nk�k/L − σ | ≥ ε goes to 0 as L → ∞.
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Theorem 2.3 Let (zk)k∈N be non-negative activities satisfying the stability assumption (9).
Then as L → ∞ the packing fraction behaves as follows:

(a) In the fluid regime

1

L

∑

k

�k Nk → σ(z) < 1, σ (z) =
∑

k �k zk exp[−�k p(z)]
1 +∑k �k zk exp[−�k p(z)] .

(b) In the close-packing regime, the packing fraction converges to 1.

The theorem is proven in Sect. 4 by a large deviations approach.

Remark In the transition regime g(θ∗) = −θ∗ there are two possible scenarios: if as θ

approaches the abscissa of convergence the derivative g′(θ) =∑k �k exp(θ�k) diverges, the
packing fraction converges to 1. If the derivative stays bounded, let σ ∗ := limθ↗θ∗ g′(θ)/[1+
g′(θ)]. Then σ ∗ ∈ (0, 1) and Lemmas 4.2 and 4.3 below only show that the grand-canonical
probability of seeing a packing fraction smaller than σ ∗ − ε goes to zero, for every ε > 0.
Intuitively, this corresponds to a coexistence region between a densely packed phase (σ = 1)
and a fluid that saturates at σ = σ ∗.

Now we give the domain of convergence of the cluster expansion, as discussed in the
introduction, and an explicit formula for the expansion. The formula generalizes a well-
known relationship between a tree generating function and the pressure for non-overlapping
rods of length 1, see [5] and the references therein.

Theorem 2.4 Let (zk)k∈N be non-negative activities satisfying the stability assumption (9).
The following holds:

(a) If
∑

k zk exp(a�k) ≤ a for some a > 0, then the pressure defined by Eq. (8) is given by

p(z) =
∑

n∈I∗

zn

n!

(

−
∑

k

nk�k

)∑
k nk−1

(12)

and the sum is absolutely convergent.
(b) If

∑
k zk exp(a�k) > a for all a > 0, then

∑

n∈I∗

∣
∣
∣
∣
∣
∣

zn

n!

(

−
∑

k

nk�k

)∑
k nk−1

∣
∣
∣
∣
∣
∣
= ∞.

The formula (12) is proven in Sect. 5, where we also provide a combinatorial interpretation in
terms of tree generating functions. The convergence is addressed in Sect. 6. We should stress
that (a) refers only to the convergence of the expansion of the pressure; for the convergence
of the expansions of the densities ρk(z), the inequality (1) in general has to be strict for some
a > 0.

Remark For negative (or complex) activities with
∑

k |zk | exp(a�k) ≤ a for some a > 0,
the sum (12) is absolutely convergent as well and we adopt Eq. (12) as a definition of the
pressure. In Sect. 6 we will see that F(z) = −p(−z) satisfies the flipped fixed point equation
F = ∑

k zk exp(�k F); in fact the convergence condition (1) is equivalent to the existence
of a solution to the flipped equation. This is interesting because F is the pressure for a
three-dimensional multi-type branched polymer [6].
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Finally we examine the virial expansion, i.e., the expansion in terms of the densities

ρk(z) := zk
∂p

∂zk
(z).

Theorem 2.5 Let z = (zk)k∈N be non-negative activities in the fluid domain. Then the partial
derivatives ∂p

∂zk
(z), k ∈ N, at z exist and we have

p(z) =
∑

k ρk(z)
1 −∑k �kρk(z)

, zk = ρk(z) exp(�k p(z))
1 −∑ j � jρ j (z)

(13)

with
∑

k �kρk(z)) = σ(z) < 1 as in Theorem 2.3(a).

Theorem 2.5 is proven in Sect. 7 by applying an implicit function theorem to the fixed
point equation (5). This approach also shows that the pressure is analytic in all of Dfluid.

Corollary 2.6 Fix non-negative activities z0 = (z0k)k∈N ∈ Dfluid. Then for every k ∈ N, the
map zk �→ p(z01, . . . , z

0
k−1, zk, z

0
k , . . .) is analytic in some neighborhood of z0k .

A similar statement holds for suitable parameter-dependent activities. In particular, the para-
metrization zk(t) = t zk allows us to connect vanishing activities to every z ∈ Dfluid in such
a way that the pressure is an analytic function of the parameter t .

Proof For simplicity we consider k = 1, the other cases are similar. Let θ∗ be the abscissa of
convergence of

∑
k z

0
k exp(�kθ) and f (z1, θ) := θ + z1 exp(θ�1)+∑k≥2 z

0
k exp(θ�k). Then

f is a holomorphic function of (z1, θ) in C × {θ | Re θ < θ∗}. We have f (z01,−p(z0)) = 0
and

∂ f

∂θ

(
z01,−p(z0)

) = 1 +
∑

k≥1

�k z
0
ke

−�k p(z0) = 1

1 − σ(z0)
	= 0.

The holomorphic implicit function theorem [17, Chap. 7] (see also [31] for a power series
approach) guarantees the existence of a holomorphic function θ(z1) defined in some open
complex neighborhood of 0 such that θ(z01) = −p(z0) and f (θ(z1), z1) = 0. When z1 is
real and close enough to z01, then z = (z1, z02, z

0
3, . . .) must be in Dfluid. Indeed, changing

only one coefficient z1 does not change the abscissa of convergence θ∗, and the inequality∑
k z

0
k exp(�kθ

∗) > −θ∗ holds by continuity when z01 is replaced by z1 sufficiently close to
θ∗. It follows that p(z) solves the fixed point equation and therefore z1 �→ p(z1, z02, z

0
3 . . .) =

−θ(z1) is analytic. ��
It follows that the domain of convergence of the activity expansion is in general smaller

than the domain of analyticity Dfluid. In contrast, the pressure-density expansion converges
absolutely when

∑
k �kρk(z) < 1, which is the case in all of Dfluid. As mentioned in the

introduction, the difference between the domains is quite drastic: when �k = k, the fluid
domain and the activities for which the virial expansion converges can include diverging
activities zk → ∞, while the convergence of the activity expansion requires exponentially
decreasing activities zk = O(exp(−ak)). Precisely, let

DMay :=
{

z ∈ R
N+ | ∃a > 0 :

∑

k

zk exp(ka) ≤ a

}

Dvir :=
{

z ∈ R
N+ | z ∈ Dfluid, ρk(z) exists for all k, and

∑

k

kρk(z) < 1

}

be the domains of convergence for the activity and the density expansions when �k = k.
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Corollary 2.7 Assume �k = k for all k ∈ N. Then

DMay � Dvir = Dfluid.

Proof Let ρk = c/k3 with c > 0 small enough so that
∑

k kρk < 1. Let p := (
∑

k ρk)/(1−∑
k kρk) and zk := ρk exp(kp)/(1 −∑ j jρ j ). Then p = ∑

k zk exp(−kp) and it follows
that p = p(z) and ρk = ρk(z). Since

∑
k kρk < 1, the virial expansion converges and z is in

Dvir. At the same time zk diverges as k → ∞ exponentially fast, so the activity expansion
cannot converge and z /∈ DMay. Thus DMay � Dvir. The identity Dvir = Dfluid is part of
Theorem 2.5. ��

We conclude with a technical result concerning the use of inverse function theorems
which complements [24, Sect. 2.2]. Often virial expansions are obtained by inverting the
density-activity relation with the help of an inverse function theorem. This works for finitely
many species because ∂ρk/∂z j at z = 0 is the identity matrix and in particular invertible.
For infinitely many species, it is still true that the matrix (∂ρk/∂z j ) of directional (Gâteaux)
derivatives at z = 0 is the identity matrix. However the existence of directional derivatives is
no longer enough to guarantee Fréchet differentiability in suitable Banach spaces. In theory
one could imagine that this is just a technicality requiring additional estimates. The next
theorem shows that to the contrary, for the natural Banach spaces at hand, the usual inversion
procedure cannot work because z �→ ρ(z) is not a bijection between neighborhoods of the
origin.

We restrict to �k = k. For a ≥ 0, let ||x||a := ∑∞
n=1 |xn | exp(an) and Ea := {(xn)n∈N ∈

R
N | ||x ||a < ∞}. These Banach spaces are natural because of the convergence criterion

||z||a ≤ a from Theorem 2.4. They allow for negative and complex activities and densities.

Theorem 2.8 Suppose that �k = k for all k ∈ N, and let Ea, Vb ⊂ C
N be the spaces of

complex activities and densities introduced above. There is no way to choose a > 0, b ≥ 0
and neighborhoods Ua ⊂ Ea and Vb ⊂ Eb of the origin so that ρ(·) is a bijection from Ua

onto Vb.

Theorem2.8 is proven in Sect. 8. It explainswhy the virial expansion ismuchmore delicate
for infinitely many species than for finitely many species. A general result on multi-species
virial expansions was nevertheless proven in [24] using Lagrange–Good inversion [8,18].

2.2 Discrete System

On the lattice we may take without loss of generality �k = k, k ∈ N. We use the multi-index
notation from the previous section. The grand-canonical partition function for rods on a line
{0, 1, . . . , L − 1} with L ∈ N is defined as in Eq. (7), except that the integration over rod
end points is replaced by a summation over end points in {0, . . . , L − 1}, and the indicators
should ensure that rods are contained in {0, 1, . . . , L − 1}. The definition of the pressure, the
Dirichlet type series g(θ), the stability condition (9), and the abscissa of convergence (10)
are unchanged. The fixed point equation changes, however, and we define

f (θ) = − log
(
1 − g(θ)

) = − log
(
1 −

∑

k

zk exp(kθ)
)
.

By expanding the logarithm, we find that f (θ) is a power series in exp(θ) with positive
coefficients and radius of convergence R ≤ exp(θ∗). The equation f (θ) = −θ has a solution
θ ≤ log R if and only if g(θ∗) ≥ 1 − exp(θ∗).
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Definition 2.9 Let (zk)k∈N be non-negative activities satisfying the stability condition (9).
We say that the discrete system of rods is in the

(a) fluid regime if g(θ∗) > 1 − exp(θ∗);
(b) close-packing regime if g(θ∗) < 1 − exp(θ∗);
(c) transition regime if g(θ∗) = 1 − exp(θ∗).

Theorem 2.10 Let (zk)k∈N be non-negative activities satisfying the stability condition (9).
Then

(a) In the fluid regime the pressure p(z) is the unique solution of f (−p) = p, and we have
p(z) > −θ∗.

(b) In the close-packing and transition regimes the pressure is p(z) = −θ∗.

The theorem is proven in Sect. 4.

Theorem 2.11 Let (zk)k∈N be non-negative activities satisfying the stability condition (9).
The following holds:

(a) If
∑

k zk exp(ak) ≤ exp(a) − 1 for some a > 0, then the pressure defined by Eq. (8) is
given by

p(z) =
∑

n∈I∗

zn

n!
(
∑

k knk − 1)!
(
∑

k knk −∑k nk)!
(−1)

∑
k nk (14)

and the sum is absolutely convergent.
(b) If

∑
k zk exp(ak) > exp(a) − 1 for all a > 0, then

∑

n∈I∗

∣
∣
∣
zn

n!
(
∑

k knk − 1)!
(
∑

k knk −∑k nk)!
∣
∣
∣ = ∞.

The explicit formula for the expansion coefficients is proven in Sect. 5, convergence is
addressed in Sect. 6.

Remark There is an interesting activity region intermediate between the domain of con-
vergence and the fluid domain. Write X and Y for discrete intervals {x, . . . , x + k − 1},
{y, . . . , y + j − 1}. Suppose that

sup
X

1

|Y |
∑

Y : Y∩X 	=∅
|Y |z|Y | = sup

k≥1

1

k

∑

j≥1

(k + j − 1) j z j =
∑

j≥1

j2z j < 1.

Then the infinite volume Gibbs measure can be constructed as the unique stationary measure
of a Markov birth and death process, the loss network [12]. The one-dimensional model
confirms that the loss network representation works in a domain that is in general larger than
the domain of convergence of the activity expansions, since the loss network does not require
exponentially decreasing activities zk = O(exp(−ak)).

Theorem 2.12 Let z = (zk)k∈N be non-negative activities in the fluid domain. Then the
partial derivatives ∂p

∂zk
(z), k ∈ N, at z exist and we have

p(z) = log

(

1 +
∑

k ρk(z)
1 −∑k kρk(z)

)

, zk = ρk(z) exp[(k − 1)p(z)]
1 −∑k kρk(z)

with
∑

k kρk(z) < 1.
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The proof is analogous to the continuous case treated in Sect. 7 and therefore omitted. A
heuristic derivation of the pressure-density and density-activity relations is given in Sect. 3.1.

The pressure-density expansion converges again in all of Dfluid. In the special case when
there are only monomers, i.e., zk = 0 for k ≥ 2, we recover the well-known equations
p = log(1 + z1), z1 = ρ1/(1 − ρ1).

3 A Fixed Point Equation

In this section we provide two different explanations of the fixed point equations for the
pressure, a physical explanation in terms of van der Waals mixtures and a probabilistic
explanation in terms of renewal processes.

3.1 Van der Waals Mixtures

We assume the reader is familiar with notions from statistical mechanics such as the constant
pressure ensemble, and employ common approximations such as log N ! ≈ N (log N − 1);
for notational simplicity we follow physics conventions and pretend that the approximations
are identities.

Consider first the continuous setting. The partition function of the constant pressure ensem-
ble at fixed number Nk of rods of size k can be computed as

Q(N1, N2, . . . ; p) =
(

M

N1, N2, . . .

)

e−p
∑

k Nk�k
(∫ ∞

0
e−prdr

)M−1
(15)

where M = ∑
k Nk is the total number of rods. The multinomial coefficient represents the

number of ways to assign rod types to the M rods labelled from left to right. The integral∫∞
0 exp(−pr)dr comes from integrating over the spacing between two consecutive rods.
Eq. (15) yields the Gibbs free energy

G(N1, N2, . . . ; p) =
∑

k

Nk

(
log

pNk
∑

j N j
+ p�k

)
. (16)

Alternatively, we can compute directly the Helmholtz free energy

F(N1, N2, . . . ; V ) =
∑

k

Nk

(
log

Nk

V −∑ j N j� j
− 1
)
. (17)

(see Lemma 4.1). Recall G = F + pV with V = −∂G/∂p, p = −∂F/∂V , which give

p =
∑

k Nk

V −∑k �k Nk
. (18)

This is a multi-species variant of the van derWaals equation, and generalizes the well-known
equation of state of the single-species Tonks gas [33]. Using the relation log zk = ∂G/∂Nk =
∂F/∂Nk , we obtain

zk = pNk
∑

j N j
exp(p�k). (19)

Equations (18) and (19) explain the formulas in Theorem 2.5. The fixed point equation (5)
is obtained from Eq. (19) by multiplying both sides with exp(−p�k) and summing over k.
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For the discrete system, the integral in Eq. (15) has to be replaced by a geometric sum.
The Gibbs energy (16) becomes

G(N1, N2, . . . ; p) =
∑

k

Nk

(

log
(1 − exp(−p))Nk

∑
j N j

+ pk

)

.

The equation of state is

p = log

(

1 +
∑

k Nk

V −∑k kNk

)

,

and the density-activity relation is

zk = (1 − exp(−p))Nk
∑

j N j
exp(pk),

compare Theorem 2.12. We multiply with exp(−pk), sum over k, and obtain the fixed point
equation (6).

3.2 Renewal Theory

As done in [23], one-dimensional polymer partition functions can be treated by renewal
theory [11, Chap. XI]. The key idea is to reinterpret the line as a time axis and the starting
point of a rod as an event (a light bulb breaks and has to be renewed), and the intervals
between two events as waiting or interrarival times. The Gibbs measure is invariant with
respect to a suitable rescaling of the activities [20]. If the activities can be rescaled in such
a way that they define a probability measure on waiting times (the light bulb’s lifetime),
then the canonical partition function is identified with the probability of a certain event and
probabilistic techniques apply. The crucial point now is that this rescaling is possible if and
only if the fixed point equation has a solution.

For details, consider first the discrete case. For X ⊂ Z set 	(X) = zk if X = {x, x +
1, . . . , x+k−1} is a discrete interval of cardinality k ≥ 2,	(X) = 1+z1 if X has cardinality
1, and 	(X) = 0 otherwise. Then

�L(z) =
∑

{X1,...,XD}
	(X1) · · · 	(XD)

where the sum runs over all partitions of {0, 1, . . . , L−1}. An element X j = {x} of cardinality
1 corresponds to either anunoccupied lattice site or a site occupiedby a rod {x}of cardinality 1.
Rescaling the activities as	ξ(X) = ξ#X	(X) for some ξ > 0multiplies the grand-canonical
partition function�L (z) by ξ L and leaves the associated probabilitymeasure unchanged [20].
We wish to choose ξ so that

(1 + z1)ξ +
∑

k≥2

zkξ
k =

∞∑

k=1

	ξ({0, . . . , k − 1}) = 1. (20)

Substituting ξ = exp(p) we obtain the discrete fixed point equation (6). For activities in
the fluid domain, there is therefore a unique solution that stays away from the radius of
convergence, so that the expected bulb lifetime μ = (1 + z1)ξ + ∑

k≥2 kzkξ
k is finite.

Renewal theory then tells us that ξ L�L(z) converges to 1/μ: the probability that a light bulb
has to be renewed at time L given that there was a renewal at time 0 converges to the inverse
of the average bulb lifetime. In particular, 1

L log�L(z) → − log ξ and it follows that the
pressure is indeed p = − log ξ .
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For the continuous systemwemultiply the partition functionwith exp(−λL) and distribute
the additional factor exp(−λL) over the rods and empty spaces between them. This attributes
the weight

∑
k zk1(r ≥ �k) exp(−λr) to an interval going from the starting point of a rod to

the next one (instead of treating emtpy space as monomers, we attach an empty interval to
the preceding rod). These weights define a probability distribution if

∫ ∞

0

∑

k

zk1(r ≥ �k) exp(−λr)dr = 1

λ

∑

k

zk exp(−λ�k) = 1,

and we recognize the fixed point equation (5).

4 Computation of the Pressure and Packing Fraction

Here we prove Theorems 2.2 and 2.3 for the continuous system and Theorem 2.10 for the
discrete system.

Proof of Theorem 2.2 For λ ≥ 0, let F(λ) := ∫∞
0 exp(−λL)�L (z)dL be the Laplace trans-

form of the grand-canonical partition function with respect to the system length L . We note
that F(λ) < ∞ for λ > p(z) and F(λ) = ∞ for λ < p(z). Let θ(z) be the solution to∑

k zk exp(�kθ) = −θ , if the solution exists, and θ(z) = θ∗ otherwise.
Ordering rods from left to right and singling out the right end point x of the left-most rod,

we see that the partition function satisfies the renewal equation [11, Chap. XI]

�L(z) = 1 +
∑

k

zk

∫ L

�k

�L−x (z)dx .

It follows that for all λ ≥ 0,

F(λ) = 1

λ

(
1 + F(λ)

∑

k

zke
−λ�k

)
.

If F(λ) < ∞, then
∑

k zke
−λ�k must be finite as well, thus λ ≥ −θ∗ and
(
λ −

∑

k

zk exp(−�kλ)
)
F(λ) = 1. (21)

Since F(λ) > 0, we deduce
∑

k zk exp(−λ�k) ≤ λ which implies that −λ ≤ θ(z). Con-
versely, if−λ < θ(z), thenλ >

∑
k zk exp(−λ�k) and F(λ) is the unique solution to Eq. (21),

so in particular F(λ) < ∞.
We have shown that F(λ) < ∞ for −λ < θ(z) and F(λ) = ∞ for −λ > θ(z). It follows

that p(z) = −θ(z). ��
Proof of Theorem 2.10 For the discrete system, the grand-canonical partition function satis-
fies the discrete renewal equation [23]

�L(z) = (1 + z1)�L−1(z) +
L−1∑

k=2

zk�L−k(z) + zL . (22)

Equation (21) for the Laplace transform in the continuous setting is replaced by a relation
between generating functions

1 +
∞∑

L=1

�L (z)ξ L =
(

(1 + z1)ξ +
∞∑

k=2

zkξ
k

)(

1 +
∞∑

L=1

�L(z)ξ L

)
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which yields

1 +
∞∑

L=1

�L(z)ξ L = 1

1 − (1 + z1)ξ −∑∞
k=2 zkξ

k
.

The radius of convergence R on the left-hand side is given by the solution R < exp(θ∗) to
(1 + z1)R +∑∞

k=2 zk R
k = 1 if the solution exists, or equal to exp(θ∗) if it does not. Since

p = − log R, we are done. ��
Now we come to the limit law for the packing fraction of the continuous systems. In

principle, we could deduce it from Theorem 2.3, using μ-dependent activities zk(μ) =
zk exp(�kμ) and general theorems relating limit laws to differentiability and strict convexity
of the pressure as a function of μ. We prefer to follow a more direct approach, which has the
advantage of shedding additional light on the value of the pressure. In particular, Lemma 4.2
below expresses the pressure in terms of a variational problem whose minimizer corresponds
to the limiting packing fraction.

We start by computing the multicanonical partition function. For N = (Nk)k∈N ∈ I∗ and
L > 0, let

ZL(N1, N2, . . .) := 1
∏

k Nk !
∫ L−�1

0
dx11 · · ·

∫ L−�k

0
dxkNk · · · 1(rods do not overlap) (23)

so that �L(z) = 1 +∑N∈I∗ zN ZL(N). The next lemma is a variant of the representation
of the canonical partition function for non-overlapping rods of fixed length [33].

Lemma 4.1 For every N ∈ I∗ and every L > 0 such that
∑

k Nk�k < L, we have

ZL(N1, N2, . . .) = (L −∑k Nk�k)
∑

k Nk

∏
k(Nk !) . (24)

Proof The factorials in Eq. (23) can be dropped if we integrate only over sectors where
rods of a given type are labelled from left to right, i.e., xk1 ≤ · · · ≤ xkNk for all k. Write
M :=∑k Nk . The partition function ZL(N) is a sum of integrals of the form

∫ L

�k(1)+···+�k(M)

dxM

∫ xM−�k(M)

�k(1)+···+�k(M−1)

dxM−1 · · ·
∫ x2−�k(2)

�k(1)

dx1.

Here x j represent the end points of rods, and the sum is over color assignments
k(1), . . . , k(M) compatible with N1, N2, . . .. There are

( M
N1,N2,...

)
such assignments, and

each integral equals M !−1(L −∑k Nk�k)
M . ��

Next, we note that Eq. (24) can be reinterpreted in terms of Poisson random variables.
Given S > 0 and θ ∈ (−∞, θ∗), let Nk(ω), k ∈ N, be independent Poisson random
variables Nk(ω) ∼ Poiss((L − S)zk exp(θ�k)) defined on some common probability space
(
,F, Pθ,S). A straightforward computation shows that if N1, N2, . . . are integers (in N0)
such that

∑
k Nk�k = S, then

zN ZL(N1, N2, . . .)

= exp
(
(L − S)

∑

k

zke
θ�k − θ S

)
Pθ,S

(
∀k ∈ N : Nk(ω) = Nk

)
. (25)

Note that the right-hand side depends on θ , but the left-hand side does not. Equation (25)
suggests that in the grand-canonical ensemble, the packing fraction satisfies a large deviations
principle with convex rate function I (σ ) + p(z) where
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I (σ ) := sup
θ<θ∗

[
θσ − (1 − σ)g(θ)

]
. (26)

Remember g(θ) and θ∗ from Eqs. (10) and (11). Let u∗ := limθ↗θ∗ g′(θ). Set

σ ∗ :=
{

u∗
1+u∗ , if u∗ < ∞,

1, if u∗ = ∞.

Lemma 4.2 We have
min

σ∈[0,1] I (σ ) = −p(z).

Moreover

(a) In the fluid regime I (σ ) has a unique minimizer σ(z) ∈ (0, σ ∗) given by σ(z) =
[∑k �k zk exp(−�k p(z))]/[1 +∑k �k zk exp(−�k p(z))].

(b) In the transition regime theminimizers of I (σ ) consist precisely of the elements of [σ ∗, 1].
(c) In the close-packing regime I (σ ) has the unique minimizer σ = 1.

Proof Let ϕ(u) := supθ∈R[θu − g(θ)] be the Legendre transform of g(θ), where we agree
g(θ) = ∞ for θ > θ∗. In (0, u∗), ϕ(u) is strictly convex and smooth; its derivative θ = ϕ′(u)

solves g′(θ) = u, and as u ↘ 0, we have ϕ(u) → 0 and θ = ϕ′(u) → −∞. On [u∗,∞), ϕ
is affine with slope θ∗. We note

inf
σ∈(0,1)

I (σ ) = inf
σ∈(0,1)

(1 − σ)ϕ
( σ

1 − σ

)
= inf

u>0

ϕ(u)

1 + u
.

For u ∈ (0, u∗), we have

d

du

ϕ(u)

1 + u
= ϕ′(u)(1 + u) − ϕ(u)

(1 + u)2
,

d

du

(
ϕ′(u)(1 + u) − ϕ(u)

) = ϕ′′(u)(1 + u) > 0. (27)

Hence the derivative of ϕ(u)/(1+ u) vanishes at u if and only if ϕ′(u)(1+ u) = ϕ(u). Write
θ = ϕ′(u) and remember g′(u) = θ . Then the equation for a vanishing derivative becomes
θu+ θ = ϕ(u) = θu− g(θ), i.e., θ = −g(θ) and we recognize our old fixed point equation.

In the fluid regime the fixed point equation has the unique solution θ(z) = −p(z) <

θ∗, and u = g′(θ(z)) = ∑
k �k zk exp(−�k p(z)) ∈ (0, u∗) is a strict local minimizer of

ϕ(u)/(1+u) in (0, u∗). Correspondingly σ = u/(1+u) ∈ (0, σ ∗) is a strict local minimizer
of I (·) in (0, σ ∗). But I (·), as the supremum of a family of affine functions, is convex, so σ

is the unique minimizer of I (·) in all of (0, 1), and

inf
σ ′∈[0,1]

I (σ ′) = I (σ ) = ϕ(u)

1 + u
= ϕ′(u) = θ = −p.

This proves part (a) of the lemma.
In the transition regime a variant of the previous argument shows that I (σ ) is decreasing

on (0, σ ∗) and I (σ ∗) = θ∗ = −p(z). If σ ∗ = 1, we are done. If σ ∗ < 1, then u∗ < ∞ and
for u > u∗

ϕ(u)

1 + u
= ϕ(u∗) + θ∗(u − u∗)

1 + u
= θ∗u∗ − g(θ∗) + θ∗(u − u∗)

1 + u
= θ∗ = −p(z).

It follows that I is constant on [σ ∗, 1]. This proves (b).
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In the close-packing regime the fixed point equation has no solution and I (σ ) is decreasing
on (0, σ ∗). On (σ ∗, 1) or (u∗,∞) we have

ϕ(u)

1 + u
= −g(θ∗) + θ∗u

1 + u
= θ∗ + −g(θ∗) − θ∗

1 + u

which is decreasing in u. Thus I (σ ) is decreasing in all of (0, 1) and

I (1) = inf
σ∈(0,1)

I (σ ) = θ∗ = −p(z).

This proves part (c). ��
Lemma 4.3 Let [σ1, σ2] ⊂ [0, 1]. Then

lim sup
L→∞

1

L
log

∑

N=(N1,N2,...)

zN ZL(N)1

(

1
L

∑

k

Nk�k ∈ [σ1, σ2]
)

≤ − min
σ∈[σ1,σ2]

I (σ ).

Proof We first estimate contributions from small intervals [σ, σ + ε] ⊂ [σ1, σ2]. Abbreviate
S =∑k Nk�k and remember the measures Pθ,S defined above Eq. (25). Observe

zN ZL(N) ≤ exp
(
−θ S + (L − Lσ)g(θ)

)
Pθ,Lσ

(
∀k : Nk(ω) = Nk

)
(28)

for all θ . We choose θ as the maximizer θ(σ ) of θσ − (1 − σ)g(θ). If θ ≥ 0, we have
−θ S ≤ −θσ L for all S ∈ [σ L , (σ + ε)L] and

∑

N

zN ZL(N)1
(
S/L ∈ [σ, σ + ε])

≤ exp
(
−L I (σ )

)
Pθ,Lσ

(

1
L

∑

k

Nk(ω)�k ∈ [σ, σ + ε]
)

hence

lim sup
L→∞

1

L
log
∑

N

zN ZL(N)1
(
S/L ∈ [σ, σ + ε]) ≤ −I (σ ).

If θ ≤ 0, we have instead −θ S ≤ −θL(σ + ε) and

lim sup
L→∞

1

L
log
∑

N

zN ZL(N)1
(
S/L ∈ [σ, σ + ε]) ≤ −I (σ ) − θε.

If σ1 > 0, then θ(σ ) ≥ θ(σ1) =: θ1 stays bounded away from −∞. We split [σ1, σ2] into m
slices of width ε = (σ2 − σ1)/m and obtain the upper bound

− min
σ∈[σ1,σ2]

I (σ ) + εmax(−θ1, 0).

Letting ε → 0 then yields the desired bound.
If σ1 = 0 we have to proceed more carefully. Fix σ0 such that θ0 = θ(σ0) < min(θ∗, 0).

For S ∈ [σ, σ + ε] ⊂ [0, σ0] we apply the bound (28) to θ = θ(σ + ε) ≤ θ0 < 0 and find

lim sup
L→∞

1

L
log
∑

N

zN ZL(N)1
(
S/L ∈ [σ, σ + ε]) ≤ −I (σ + ε) + εg(θ).

Note that g(θ) ≤ g(θ0) is bounded uniformly in σ ∈ [0, σ0]. Splitting [0, σ0] into slices of
width ε and letting first L → ∞ and then ε → 0, we obtain an upper bound for the sum over
packing fractions in [0, σ0] of the desired form. This works for every sufficiently small σ0.
Combined with the bounds for intervals [σ1, σ2] with σ1 > 0, this proves the lemma. ��
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Now we can prove Theorem 2.3.

Proof of Theorem 2.3 By Lemma 4.2, in both situations (a) and (b) of the theorem, I (σ ) has
a unique minimizer σ0, given by σ(z) or σ = 1. Let ε > 0. Then by Lemma 4.3 the grand-
canonical probability of seeing a packing fraction in [0, σ0 − ε] or [σ0 + ε, 1] is bounded by

exp
(
−L min|σ−σ0|>ε

(
I (σ ) + p(z)

)
+ o(L)

)

which goes to zero exponentially fast as L → ∞. ��

5 Computation of the Pressure-Activity Expansion

In this section we show that the fixed point equation for the pressure determines the coeffi-
cients of the (formal) activity expansion uniquely. The convergence of the expansion is dealt
with in Sect. 6. Because of alternating signs, it is convenient to work with F(z) = −p(−z).

5.1 Continuous System

The functional equation (5) for the pressure translates into

F(z) =
∑

k

zk exp(�k F(z)). (29)

Let F(z) =∑n a(n)zn be a formal power series. The right-hand side of Eq. (29) can be read
as a formal power series whose coefficients are polynomials of a(n); we say that Eq. (29)
holds in the sense of formal power series if the coefficients are equal, i.e.,

∀n ∈ I : [zn]F(z) = [zn]
∑

k

zk exp(�k F(z)).

The notation “[zn]F(z)” stands for “coefficient of the monomial
∏

k z
nk
k in the formal power

series F(z)”.

Proposition 5.1 The formal power series F(z) = ∑
n a(n)zn satisfies Eq. (29) if and only

if a(n) = 1
n! (
∑

k �knk)
∑

k nk−1 for all n ∈ I∗, and a(0) = 0.

We give two independent proofs, a direct proof based on the fixed point equation and
Lagrange–Good inversion [18], and a combinatorial proof based on a connection between
Eq. (29) and recurrence relations betweenweighted trees. The first proof is more robust and is
easily adapted to the discrete model. The second proof is of interest as it provides yet another
example for the deep connections between combinatorics and cluster expansions [10].

Proof of Proposition 5.1 via Lagrange–Good inversion The identity (29) is equivalent to a
system of equations for the expansion coefficients a(n). The system is nonlinear but has a
triangular form, i.e., a(n) is expressed in terms of coefficients a(m) corresponding to total
degree

∑
k mk <

∑
k nk . The existence and uniqueness of a solution is therefore easily proven

by induction over
∑

k nk . Thus we are left with the computation of the coefficients. Clearly
a(0) = F(0) = 0. For non-zero multi-indices, write wk(z) := zk exp(�k F(z)). We have

zk = wk exp

⎛

⎝−�k
∑

j

w j

⎞

⎠ , k ∈ N.

We look for the expansion of F(z) =∑ j w j (z) in powers of the zks. A formal computation
suggests
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[zn](
∑

j

w j (z)) =
∏

k

(
1

2π i

∮
dzk

znk+1
k

)⎛

⎝
∑

j

w j (z)

⎞

⎠

=
∏

k

(
1

2π i

∮
dwk

zk(w)nk+1

)
⎛

⎝
∑

j

w j

⎞

⎠ det
(( ∂zk

∂w j

)

k, j

)

=
∏

k

(
1

2π i

∮
dwk

w
nk+1
k

)⎛

⎝
∑

j

w j

⎞

⎠ e
∑

k (nk+1)�k
∑

j w j det
(( ∂zk

∂w j

)

k, j

)

The Lagrange–Good inversion formula [8,18] says that indeed

[zn]
⎛

⎝
∞∑

j=1

w j (z)

⎞

⎠ = [wn]
⎧
⎨

⎩

⎛

⎝
∞∑

j=1

w j

⎞

⎠ e
∑

k∈supp n(nk+1)�k
∑∞

j=1 w j det
(( ∂zk

∂w j

)

k, j∈supp n

)
⎫
⎬

⎭
.

The partial derivative is ∂zk
∂w�

= (δk� − �kwk
)
exp
(−�k

∑
j w j

)
and the determinant equals

det
(
δk� − �kwk

)

k,�∈supp n = 1 −
∑

k∈supp n
�kwk .

Note for matrices A of rank one, det(id + A) = 1 +∑n
j=1 a j j . It follows that

[zn]
⎛

⎝
∑

j

w j

⎞

⎠ = [wn]
⎛

⎝
∑

j

w j

⎞

⎠

⎛

⎝1 −
∑

j

� jw j

⎞

⎠ e(
∑

k nk�k )(
∑

j w j ).

Now

[wm]
⎛

⎝
∑

j

w j

⎞

⎠ e(
∑

k nk�k )(
∑

j w j ) = [wm] 1
(∑

j m j − 1
)
!

(
∑

k

nk�k

)∑
j m j−1

⎛

⎝
∑

j

w j

⎞

⎠

∑
j m j

=
∑

j m j
∏

j (m j !)

(
∑

k

nk�k

)∑
j m j−1

.

Therefore (|n| =∑k nk)

[zn]
⎛

⎝
∑

j

w j

⎞

⎠ = |n|
n!

(
∑

k

nk�k

)|n|−1

−
∑

j

� j
|n| − 1

n! n j

(
∑

k

nk�k

)|n|−2

= 1

n!

(
∑

k

nk�k

)|n|−1

.

��
For the combinatorial proof of Proposition 5.1 we identify F(z) as an exponential gener-

ating function of colored labelled weighted trees. First we need some definitions. A colored
set is a pair (V, c) consisting of a finite set V and a color map c : V → N. We consider two
colored sets as equivalent if for each color k, they have the same number nk of elements of a
given color; equivalently, if there is a color-preserving bijection between them. Given n ∈ I∗,
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let (V, c) be one representative of the equivalence class with color numbers nk . For exam-
ple, we can choose V = {(1, 1), . . . , (1, n1), (2, 1), . . . , (2, n2), . . .} with the natural color
mapping c(k, n) = k. Let T (n) be the collection of rooted trees on V . We think of such trees
as colored rooted trees labelled within colors. To each such tree we assign a weight given by

w(γ ) :=
∏

e∈E(γ )

�c(father in e).

Put differently, the weight of an edge originating in a father with color k is �k , and the weight
of the tree is the product of the edge weights. The corresponding exponential generating
function is

G(z) =
∑

n∈I∗

zn

n!
∑

γ∈T (n)

w(γ ).

Proof of Proposition 5.1 via combinatorics The combinatorial proof is in two steps: 1. show
F(z) = G(z), 2. compute the sum of weights

∑
γ∈T (n) w(γ ).

First we note that G(z) satisfies the same functional equation as F . This can be seen by
summing over the color of the root, and then over the subtrees attached to the root, see [19]
for similar relations for colored trees. The functional equation determines the power series
coefficients [zn]G(z) uniquely, as can be seen for example by an induction over

∑
k nk . As

a consequence, F(z) = G(z).
For the computation of the weights, let di be the degree of a vertex in a given graph γ .

Each vertex is the father of di − 1 children, except the root which has di children. Thus we
can compute the sum of weights by summing first over all possible degree distributions and
then over the choice of the root. We use the formula for the number of labelled (unrooted)
trees with a given degree distribution [28], write m = |n| =∑k nk , and obtain

∑

γ∈T (n)

w(γ ) =
∑

(di )1≤i≤m :∑i di=2m−2

(
m − 2

d1 − 1, . . . , dm − 1

)( m∏

i=1

�
di−1
c(i)

)(
m∑

i=1

�c(i)

)

=
(

m∑

i=1

�c(i)

)m−1

=
(
∑

k

nk�k

)∑
k nk−1

.

Here we have implicitly chosen our trees as trees on V = {1, . . . ,m}; recall that c : V → N

is a fixed map such that #{i ∈ V | c(i) = k} = nk . ��
5.2 Discrete System

For the discrete system, the fixed point equation after sign flip becomes

exp
(
F(z)

) = 1 +
∞∑

k=1

zk exp
(
kF(z)

)
. (30)

Proposition 5.2 The formal power series F(z) = ∑
n a(n)zn satisfies Eq. (30) if and only

if

a(n) = 1
∏

k nk !
×

(∑
k knk − 1

)
!

(∑
k knk −∑k nk

)
!
.

for all n ∈ I∗, and a(0) = 0.
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We provide a proof based on Lagrange-Good inversion and leave open the combinatorial
interpretation. Note that G(z) = exp(F(z)) can be interpreted as an ordinary generating
function for non-labelled, colored planar trees. For example, when all activities except for a
given rod length k vanish, Eq. (30) becomes G = 1+ zkGk which is the generating function
for k-ary trees (every vertex has exactly k children, only non-leaf vertices are counted),
and the expansion coefficients of G are generalized Catalan numbers [22]. When k = 2,
G = 1 + z2G2 is the generating function of the standard Catalan numbers 1

n+1

(2n
n

)
and is

associated with binary trees. The interpretation of F = logG, however, is less clear.

Proof The identity F = log(1 + ∑
k zk exp(kF)) leads to a system of equations for the

expansion coefficients a(n) that is triangular, and the existence and uniqueness of the solution
can be proven by induction just as for Proposition 5.1. Thus we are left with the computation
of the coefficients.

Let wk = zk exp(kF(z)). Then exp(F) = 1 +∑∞
k=1 wk and zk = wk/(1 +∑∞

j=1 w j )
k .

We compute
∂zk
∂w�

= δk�
(
1 +∑∞

j=1 w j

)k − kwk
(
1 +∑∞

j=1 w j

)k+1

and for every finite non-empty set I ⊂ N

det

(
∂zk
∂w�

)

k,�∈I
= 1
(
1 +∑∞

j=1 w j

)∑
k∈I k

(

1 −
∑

k∈I kwk

1 +∑∞
j=1 w j

)

.

The identity a(0) = 0 is obvious. Let n ∈ I∗ be a non-zero multi-index. By Lagrange-Good
inversion, we have

[zn]F(z)

= [wn]

⎧
⎪⎨

⎪⎩
log

⎛

⎝1 +
∞∑

j=1

w j

⎞

⎠

⎛

⎝1 +
∞∑

j=1

w j

⎞

⎠

∑
k∈supp n k(nk+1)

det
(( ∂zk

∂w j

)

k, j∈supp n

)
⎫
⎪⎬

⎪⎭

= [wn]
⎛

⎝1 +
∑

j

w j

⎞

⎠

∑
k knk

log

⎛

⎝1 +
∑

j

w j

⎞

⎠

−
∑

k∈supp n
[wn−ek ]k

⎛

⎝1 +
∑

j

w j

⎞

⎠

∑
k knk−1

log

⎛

⎝1 +
∑

j

w j

⎞

⎠ .

Let H0 = 0 and Hm = 1 + 1
2 + · · · + 1

m be the harmonic numbers. For m ∈ N0 set
fm(u) = 1

m! (1 + u)m(log(1 + u) − Hm). Then f ′
m+1(u) = fm(u) and an induction over m

leads to

(1 + u)m log(1 + u) =
m∑

k=0

(
m

k

)

(Hm − Hm−k)u
k + O(um+1).
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Let N =∑k knk and M =∑k nk . It follows that

[wn]
⎛

⎝1 +
∑

j

w j

⎞

⎠

N

log

⎛

⎝1 +
∑

j

w j

⎞

⎠ =
(

M

n1, n2, . . .

)

× [uM ](1 + u)N log(1 + u)

=
(

M

n1, n2, . . .

)(
N

M

)

(HN − HN−M )

= 1

n!
N !

(N − M)! (HN − HN−M ).

Similarly,

[wn−ek ]
⎛

⎝1 +
∑

j

w j

⎞

⎠

N−1

log

⎛

⎝1 +
∑

j

w j

⎞

⎠

=
(

M − 1

n1, . . . , nk − 1, . . .

)

× [uM−1](1 + u)N−1 log(1 + u)

=
(

M − 1

n1, . . . , nk − 1, . . .

)(
N − 1

M − 1

)

(HN−1 − HN−M )

= nk
n!

(N − 1)!
(N − M)! (HN−1 − HN−M ).

Therefore

[zn]F(z) = 1

n!
N !

(N − M)! (HN − HN−M ) −
∑

k

k
nk
n!

(N − 1)!
(N − M)! (HN−1 − HN−M )

= N !
n!(N − M)! (HN − HN−1) = (N − 1)!

n!(N − M)! .
��

6 Convergence of the Activity Expansion

6.1 Continuous System

Here we prove Theorem 2.4. The fixed point equation for p and Proposition 5.1 show that if
p(z) has a convergent expansion, then that expansion is necessarily given by Eq. (12). Thus
it remains to investigate the convergence of the series. Because of the alternating signs, it is
enough to look at

F(z) =
∑

n∈I∗

zn

n!

(
∑

k

�knk

)∑
k nk−1

for non-negative variables zk ≥ 0.
The proof of the divergence criterion is based solely on the fixed point equation.

Proof of Theorem 2.4(b) Take variables zk ≥ 0. Recall from Sect. 5 that F(z) =∑
k zk exp(�k F(z)) in the sense of formal power series. If F(z) is finite, the identity holds as

an identity between positive numbers. Since F ≥ 0, it follows that infa(
∑

k zk exp(�ka) −
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a) ≤ ∑k zk exp(�k F) − F = 0. Taking the converse, we see that if infa(
∑

k zk exp(�ka) −
a) > 0, then F(z) = ∞. ��

For the proof of the convergence criterion, we use the explicit expression of the coefficients
and Poisson variables (compare the proof of Theorem 2.3 in Sect. 4).

Proof of the convergence in Theorem 2.4(a) Take zk ≥ 0. For V ∈ V := {∑k nk�k | n ∈
I∗}, let

hV :=
∑

n∈I∗

zn

n! V
∑

k nk 1

(
∑

k

nk�k = V

)

.

Note F(z) =∑V∈V hV /V .

Assume first that
∑

k zk exp(a�k) < a for some a > 0. For V > 0, let Rk ∼
Poiss(V zk exp(a�k)), k ∈ N be independent Poisson random variables defined on some
common probability space (
,F, PV ). Note that

hV = e−αV
PV

(
∑

k

�k Rk(ω) = V

)

, α := a −
∑

k

zk exp(a�k) > 0.

More generally if V ∈ V ∩ [n, n + 1) for some n ∈ N, then

hV ≤
∑

n∈I∗

zn

n! (n + 1)
∑

k nk 1

(
∑

k

nk�k = V

)

= Pn+1

(
∑

k

�k Rk(ω) = V

)

e−aV+(n+1)
∑

k exp(a�k )

≤ Pn+1

(
∑

k

�k Rk(ω) = V

)

ea−α(n+1).

Therefore ∞∑

n=1

∑

V∈V∩[n,n+1)

hV
V

≤
∞∑

n=1

1

n
ea−α(n+1) < ∞.

Note that if �k → 0, the set V ∈ V ∩ [n, n + 1) can be countably infinite. In addition,

∑

V∈V: V≤1

hV
V

≤
∑

n∈I∗

zn

n! = exp

(
∑

k

zk

)

− 1 < ea − 1 < ∞.

It follows that F(z) < ∞. Next we show, still under the assumption
∑

k zk exp(a�k) < a,
that

F(z) < a. (31)

To this aim consider the curve y = ∑
k zk exp(�kθ), θ ≥ 0. It is the graph of a convex

increasing function that starts at g(0) > 0, i.e., above the line y = θ and is below the line at
θ = a, g(a) < a. It must cross the line at some θ1 < a and possibly crosses it again at some
θ2 > a. Moreover g′(θ1) < 1 < g′(θ2). We already know that F(z) solves g(F) = F . If the
fixed point equation has a unique solution, then F = θ1 and we are done. If the equation has
two solutions, we invoke a continuity argument: for t ∈ [0, 1], write t z = (t zk)k∈N. Then
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F(t z) solves
∑

k t zk exp(�kθ) = θ . For t close to 1, the latter equation has two solutions
θ1(t), θ2(t) with θ1,2(1) = θ1,2 and

∑

k

�k t zke
θ1(t)�k < 1 <

∑

k

�k t zke
θ2(t)�k . (32)

It follows that as t ↘ 0, either θ2(t) ceases to exist or θ2(t) → ∞. On the other hand
the power series expansion for F converges for all t ≤ 1 and has no zero-order term, thus
t �→ F(t z) is continuous on [0, 1] and converges to 0 as t ↘ 0. It follows that F(t z) = θ1(t)
for all t ∈ [0, 1]. Therefore F(z) = θ1 < a. This proves Eq. (31).

Now consider the case
∑

k zk exp(a�k) = a for some a > 0. Let t ∈ [0, 1). Then∑
k(t zk) exp(a�k) = ta < a, hence

F(t z) =
∑

n

zn

n!

(
∑

k

nk�k

)∑
k nk−1

t
∑

k nk < a.

We let t ↗ 1, use Abel’s theorem and conclude that F(z) ≤ a < ∞. ��
6.2 Discrete System

Here we prove Theorem 2.11. Because of the alternating signs and Proposition 5.2, it is
enough to look at

F(z) =
∑

n∈I∗

zn

n!
(
∑

k knk − 1)!
(
∑

k knk −∑k nk)!
for non-negative zk .

The proof of the divergence criterion is based on the fixed point equation and is completely
analogous to the continuous setting.

Proof of Theorem 2.11(b) If F(z) < ∞, then it satisfies the fixed point equation exp(F(z) =
1 +∑k zk exp(kF(z)). Setting a = F we find

∑
k zk exp(ak) ≤ exp(a) − 1. It follows that

if
∑

k zk exp(ak) > exp(a) − 1 for all a, then F(z) = ∞. ��
For the sufficiency of the convergence criterion, we have to replace the Poisson distribution

employed in the continuous setting by something else.

Proof of the convergence in Theorem 2.11(a) Assume first that

1 +∑k≥1 zk exp(ka)

exp(a)
=: exp(−α) < 1

for some a > 0. Let

p0 := 1

1 +∑ j≥1 z j exp(aj)
, pk := zk exp(ak)

1 +∑ j≥1 exp(aj)
(k ∈ N).

Fix S ∈ N. Consider S independent random variables with values in N0 and probability
distribution (pk). We may think of S boxes that are either blank or have the color k, and each
box chooses its color independently according to the probability weights pk . Let (nk)k∈N
be a sequence of non-negative integers with M = ∑

k nk ≤ S. The probability that S − M
of the boxes are blank and the remaining M boxes have exactly nk boxes of color k, for all
k ∈ N, is given by
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(
S

S − M, n1, n2, . . .

)

pS−M
0

∏

k≥1

pnkk

=
(

S

S − M, n1, n2, . . .

)
1

(1 +∑ j z j exp(aj))
S

∏

k≥1

(zke
ak)nk

= S!
(S − M)!

zn

n!
( exp(a)

1 +∑ j z j exp(aj)

)S
.

It follows that

∑

n∈I∗

zn

n!
(
∑

k knk − 1)!
(
∑

k knk −∑k nk)!
1

(
∑

k

kNk = S

)

≤ exp(−αS)

S

and

F(z) ≤
∑

S≥1

exp(−αS)

S
< ∞.

In order to cover the case that
∑

k≥1 zk exp(ka) = exp(a) − 1 for some a > 0 but “<” fails,
one exploits Abel’s theorem and the fixed point equation. The procedure is in two steps: 1.
Backtrack to the case that

∑
k zk exp(ka) < exp(a) − 1. Then F(z) is finite and satisfies the

fixed point equation F = log(1+∑k≥1 zk exp(kF)) =: h(F). If h(θ) = θ has two solutions,
use analyticity to deduce that F(z) is equal to the smallest solution and that F(z) < a. 2.
When

∑
k zk exp(ka) = exp(a) − 1, go to (t zk)k∈N and exploit Abel’s theorem for t ↗ 1.

The details are analogous to the continuous setting and we leave them to the reader. ��

7 Virial Expansion

Here we prove Theorem 2.5 for the continuous system. The proof of Theorem 2.12 for
the discrete system is similar and therefore omitted. A heuristic derivation of the relevant
expressions for both the continuous and the discrete systems is given in Sect. 3.1.

Proof of Theorem 2.5 Fix j ∈ N and zk , k 	= j . The inequality
∑

k zk exp(−�kθ
∗) > −θ∗

extends by continuity to some open neighborhood of z j , and in this neighborhood the pressure
solves the equation F(z j , p) = 0 with F(z j , p) = p −∑k zk exp(−p�k). Since

∂F

∂p
(z j , p) = 1 +

∑

k

zk�ke
−p�k ≥ 1 > 0, (33)

the implicit function theorem shows that the partial derivative ∂p
∂z j

exists and satisfies

ρ j (z) = z j
∂p

∂z j
(z) = z j exp(−p(z)� j )

1 +∑k zk�k exp(−p(z)�k)
. (34)

We multiply with � j , sum over j , and get

σ(z) =
∑

j

� jρ j (z) =
∑

j z j� j exp(−p(z)� j )

1 +∑ j z j� j exp(−p(z)� j )
< 1. (35)
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If we sum Eq. (34) right away and use the fixed point equation for p(z), we get

∑

j

ρ j (z) = p(z)
1 +∑k zk�k exp(−p(z)�k)

= p(z)

(

1 −
∑

k

�kρk(z)

)

,

which yields the expression of the pressure in terms of the densities. Eq. (34) also shows

z j = ρ j (z)ep(z)� j

(

1 +
∑

k

zk�ke
−p(z)�k

)

= ρ j (z)

1 −∑k �kρk(z)
e� j p(z).

��

8 The Inverse Function Theorem Does Not Apply

Proof of Theorem 2.8 Suppose by contradiction that ρ(·) is a bijection from Ua onto Vb
with Ua and Vb neighborhoods of the origin in suitable spaces Ea , Eb. Let ε > 0, ρ̃k :=
εk−3 exp(−bk). We choose ε > 0 sufficiently small so that C := ∑

k kρk < 1 and ρ̃ =
(ρ̃k)k∈N ∈ Vb. Since ρ(·) is assumed to be a bijection from Ua onto Vb, there is a unique
z ∈ Ua such that ρ̃ = ρ(z). Theorem 2.5 shows that this activity vector is given by zk =
(1 − C)−1ρk exp(kp(z)) > 0, and we have p(z) > 0. Therefore

1

1 − C

∑

k

zke
ak = ε

1 − C

∑

k

1

k3
e(p(z)+a−b)k < ∞

and b ≥ p+a > a. Next set zk = −εk−3 exp(−ak), with ε > 0 small enough so that z ∈ Ua .
Then p(z) < 0 and ρk(z) is proportional to zk exp(−kp(z)) = εk−3 exp(−(a + p(z))k).
Since ρ(z) ∈ Vb we must have b ≤ a + p(z) < a. Thus a < b and b < a, contradiction. ��
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