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Abstract We consider a two-component asymmetric simple exclusion process (ASEP) on a
finite lattice with reflecting boundary conditions. For this process, which is equivalent to the
ASEP with second-class particles, we construct the representation matrices of the quantum
algebra Uq [gl(3)] that commute with the generator. As a byproduct we prove reversibility
and obtain in explicit form the reversible measure. A review of the algebraic techniques used
in the proofs is given.
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1 Introduction

The standard asymmetric simple exclusion process (ASEP) [12,13,21] defined on a finite
latticewith reflecting boundary conditions is a reversible processwith explicitly known invari-
ant measures. They are not translation invariant, in contrast to the non-reversible uniform
measures for periodic boundary conditions, and form the finite-size analogs of reversible
blocking measures [12]. It has been shown in [18] that these measures can be constructed
by using a non-Abelian symmetry property of the generator, viz. its commutativity with the
generators of the quantum algebra Uq [gl(2)].
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A related process of great interest is the ASEPwith second class particles [9]. For periodic
boundary conditions the invariant measures, which are non-reversible, can be computed
in principle using the matrix product ansatz [6,7,17], or alternatively using methods from
queuing theory [8]. However, they have a complicated non-uniform structure and no closed-
form expression for the stationary probabilities as a function of the particle configurations is
known.

The invariant measures for the ASEP with second class particles with reflecting boundary
have not been studied yet. However, it has been known for a long time that the generator of
this process has a quantum algebra symmetry, viz. its generator commutes with the generators
of the quantum algebra Uq [gl(3)] [1]. However, the corresponding representation matrices
were never computed and the invariant measures for reflecting boundary conditions, which
are expected to be reversible measures, have remained unknown. In this work we construct
the matrix representations of the generators ofUq [gl(3)] which commute with the generator
of the ASEP with second-class particles. This approach provides a constructive method to
obtain in explicit form reversible measures. We also review the algebraic tools required in
the proofs.

2 Definitions and Notation for the Two-Component ASEP

2.1 State Space and Configurations

We consider the finite integer lattice � := {1, 2, . . . , L} of L sites and local occupation
variables η(k) ∈ S = {0, 1, 2}. We say that a site k ∈ � is occupied by a particle of type
A (B) if η(k) = 0(2) or that it is empty (represented by the symbol 0) if η(k) = 1. These
local occupation variables define the configuration η = {η(1), . . . , η(L)} ∈ S

L of the particle
system. The fact that a site can be occupied by at most one particle of any type is the exclusion
principle.

The following functions of configurations η will play a role. For 1 ≤ k ≤ L we define the
cyclic flip operation

γ k(η) = {η(1), . . . η(k − 1), η(k) + 1(mod 3), η(k + 1), . . . , η(L)}. (1)

We define ηk± := (γ k)±1(η) and observe that (γ k)−1 = (γ k)2. For 1 ≤ k ≤ L − 1 We also
define the local permutation

σ kk+1(η) = {η(1), . . . η(k − 1), η(k + 1), η(k), η(k + 2), . . . , η(L)} =: ηkk+1. (2)

We also define local occupation number variables

ak := δη(k),0, υk := δη(k),1, bk := δη(k),2. (3)

where δk,l is the usual Kronecker symbol with k, l from any set. In particular, we define the
particle numbers

N (η) =
L∑

k=1

ak, M(η) =
L∑

k=1

bk, V (η) =
L∑

k=1

υk . (4)

Notice that N (η) + M(η) + V (η) = L . Occasionally we denote configurations with a fixed
number N particles of type A and M particles of type B by ηN ,M .1

1 The occupation numbers can be formally regarded as families of mappings ak : SL �→ {0, 1}, bk : SL �→
{0, 1} and should thus be understood as functions ak (η), bk (η) of η. Since the functional argument η will
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Another useful way to specify a configuration η uniquely is by indicating the particle
positions on the lattice. We write z(η) = {x, y} with x := {x : η(x) = 0}, y := {y :
η(y) = 2}. We call this notation the position representation. Since the order of A-particles
is conserved we may label them consecutively from left to right by 1 to N , and similarly
we may label the B-particles by 1 to M . By the exclusion principle one has x ∩ y = ∅
and by conservation of ordering x1 < x2 < · · · < xN , 1 ≤ y1 < y2 < · · · < yM ≤ L . In
multiple sums over xi and/or yi such sumswill be understood as respecting all these exclusion
constraints.2 We note the trivial, but frequently used identities

N (η) ≡ N (z) = |x|, M(η) ≡ M(z) = |y| (5)

ak =
N (z)∑

i=1

δxi ,k, bk =
M(z)∑

i=1

δyi ,k . (6)

For a configuration η ≡ z we also define the number Nk(η) of A-particles to the left of a
particle at site k and analogously the number Mk(η) of B-particles and vacancies Vk(η) to
the left of site k

Nk(η) :=
k−1∑

i=1

ai =
N (η)∑

i=1

k−1∑

l=1

δxi ,l , Mk(η) :=
k−1∑

i=1

bi =
M(η)∑

i=1

k−1∑

l=1

δyi ,l . (7)

Similarly we define Vk(η) := ∑k−1
i=1 υi .

2.2 The Two-Component ASEP

Following [3] the two-component ASEP that we are going to study can be informally
described as follows. Each bond (k, k + 1), 1 ≤ k ≤ L − 1 carries a clock which rings
independently of all other clocks after an exponentially distributed random time with para-
meter τk where τk = wq if η(k + 1) > η(k), τk = wq−1 if η(k + 1) < η(k) and τk = ∞
if η(k) = η(k + 1). When the clock rings the particle occupation variables are interchanged
and the clock acquires the parameter corresponding to interchanged variables. Symbolically
this process can be presented by the table of nearest neighbour particle jumps

A0 → 0A
0B → B0
AB → BA

⎫
⎬

⎭ with rate wq,

0A → A0
B0 → 0B
BA → AB

⎫
⎬

⎭ with rate wq−1. (8)

We consider reflecting boundary conditions, which means that no jumps from site 1 to the
left and no jumps from site L to the right are allowed. We shall assume partially asymmetric
hopping, i.e., 0 < q < ∞. By interchanging the role of B-particles and vacancies this process
turns into the ASEP with second-class particles [9].

More precisely, for functions f : S
L → C we define this Markov process ηt by the

generator

L f (η) :=
∑′

η′∈SLw(η → η′)[ f (η′) − f (η)] (9)

Footnote 1 continued
always be clear from context [as is the case e.g. in (4)], we do not write it explicitly. However, we shall
usually write explicitly the argument for the particle number functions N (η), M(η) to contrast them with their
numerical values N , M .
2 We shall use interchangeably the arguments η, z, {x, y} for functions of the configurations. When the
argument is clear from context it may be omitted.
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824 V. Belitsky, G. M. Schütz

with the transition rates

w(η → η′) =
L−1∑

k=1

wkk+1(η)δη′,ηkk+1 (10)

defined in terms of the local hopping rates

wkk+1(η) = wq (akυk+1 + υkbk+1 + akbk+1) + wq−1 (υkak+1 + bkυk+1 + bkak+1)

(11)

for a transition from a configuration η to a configuration η′ = ηkk+1 defined by (2). The
prime at the summation symbol (9) indicates the absence of the term η′ = η which is omitted
since w(η → η) is not defined.3

We fix more notation and summarize some well-known basic facts from the theory of
Markov processes. For a probability distribution P(η) the expectation of a continuous mea-
surable function f (η) is denoted by 〈 f 〉P := ∑

η f (η)P(η). The transposed generator is

defined by LT f (η) := ∑′
η′∈SL f (η′)L 1η′(η) where 1η′(η) = δη,η′ . With this definition (9)

yields for a probability distribution P(η) the master equation

LT P(η) =
∑′

η′∈SL [w(η′ → η)P(η′) − w(η → η′)P(η)]. (12)

The time-dependent probability distribution P(η, t) := Prob [ ηt = η ] follows from the
semi-group property P(η, t) = eL

T t P0(η) with initial distribution P0(η) := P(η, 0). An
invariant measure is denoted π∗(η) and defined by

LTπ∗(η) = 0,
∑

η

π∗(η) = 1. (13)

A general stationary measure is denoted by π . It satisfies LTπ(η) = 0, but no assumption
on the normalization

∑
η π(η) is made.

The time-reversed process is defined by

Lrev f (η) :=
∑

η′

′
wrev(η → η′)[ f (η′) − f (η)] (14)

with wrev(η → η′) = w(η′ → η)π(η′)/π(η). The process is reversible if the rates satisfy
the detailed balance condition wrev(η → η′) = w(η′ → η). We remark that

π(η)Lrev f (η) = LT (π(η) f (η)) (15)

which is a consequence of (13).
We define the transition matrix H of the process by the matrix elements

Hη′η =
{−w(η → η′) η �= η′

∑′
η′w(η → η′) η = η′. (16)

with w(η → η′) given in (10). In slight abuse of language we shall also call H the generator
of the process.

3 We shall usually omit the set SL in the summation symbol and simply write
∑

η .
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2.3 The Quantum Algebra Uq[gl(n)]

The quantum algebra Uq [gl(n)] is the q-deformed universal enveloping algebra of the Lie
algebra gl(n). This associative algebra over C is generated by L±1

i , i = 1, . . . , n and X±
i ,

i = 1, . . . , n − 1 with the relations [4,10]

[ Li , L j ] = 0 (17)

LiX
±
j = q±(δi, j+1−δi, j )/2X±

j Li (18)

[ X+
i , X−

j ] = δi j
(Li+1L−1

i )2 − (Li+1L−1
i )−2

q − q−1 (19)

and, for 1 ≤ i, j ≤ n − 1, the quadratic and cubic Serre relations

[ X±
i , X±

j ] = 0 if |i − j | �= 1, (20)

(X±
i )2X±

j − (q + q−1)X±
i X±

j X±
i + X±

j (X±
i )2 = 0 if |i − j | = 1. (21)

Notice the replacement q2 → q that we made in the definitions of [4].

3 Results

Before stating the results we introduce for q, q−1 �= 0 and x ∈ C the symmetric q-number

[x]q := qx − q−x

q − q−1 . (22)

This definition extends straightforwardly to finite-dimensional matrices through the Taylor
expansion of the exponential.We point out that [−x]q = −[x]q , [x]q−1 = [x]q and [x]1 = x .
For integers one has the representation

[n]q =
n−1∑

k=0

q2k−n+1 (23)

and the q-factorial

[n]q ! :=
{
1 n = 0∏n

k=1[k]q n ≥ 1
(24)

and the q-multinomial coefficients

CL(N ) = [L]q !
[N ]q ![L − N ]q ! , CL(N , M) = [L]q !

[N ]q ![M]q ![L − N − M]q ! . (25)

The first main result is a symmetry property of the generator.

Theorem 1 Let H be the transition matrix (16) of the two-component ASEP defined by (9)
with asymmetry parameter q and let Y±

i , L j , i = 1, 2, j = 1, 2, 3 be matrices with matrix
elements

(L1)η′η = q−N (η)/2δη′,η, (L2)η′η = q−V (η)/2δη′,η, (L3)η′η = q−M(η)/2δη′,η (26)

(Y±
i )η′η = ∑L

k=1(Y
±
i (k))η′η (27)
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826 V. Belitsky, G. M. Schütz

with

(Y+
1 (k))η′η = q2Vk (η)−Vηυk δη′,ηk− (Y−

1 (k))η′η = q−2Nk (η)+N (η)ak δη′,ηk+ (28)

(Y+
2 (k))η′η = q2Mk (η)−M(η)bk δη′,ηk− (Y−

2 (k))η′η = q−2Vk (η)+Vηυk δη′,ηk+ . (29)

and ηk± = (γ k)±1(η) defined by (1). Then:

(a) The matrices Y±
i , L j , i = 1, 2, j = 1, 2, 3 form a representation of the quantum algebra

Uq [gl(3)] (17)–(21).
(b) The transition matrix H satisfies [ H , Y±

i ] = [ H , L j ] = 0 for i = 1, 2, j = 1, 2, 3.

The second main result concerns reversibility.

Theorem 2 The two-component exclusion process ηt defined by (9) with asymmetry para-
meter q is reversible with the reversible measure

π(η) = q
∑L

k=1(2k−L−1)(ak−bk )+ ∑L−1
k=1

∑k
l=1(albk+1−blak+1). (30)

Remark 1 (i) In terms of position variables (6) we can write

π(η) = q
∑N (η)

i=1 [2xi−L−1−Mxi (η)] −∑M(η)
i=1 [2yi−L−1−Nyi (η)]. (31)

(ii) In terms of conjugate occupation numbers āk = 1 − ak, b̄k = 1 − bk we can use the
identity

∑L−1
k=1

∑k
l=1(xk+1 − xl) = ∑L

k=1 (2k − L − 1) xk to write

π(η) = q
∑L−1

k=1
∑k

l=1(āl b̄k+1−b̄l āk+1). (32)

(iii) For finite q one has

π(η) > 0 ∀ η (33)

so that π−1(η) is finite.

4 Tools

Here we present a review of the tools that are used to prove the theorems. Some of these
tools are not standard in the context of probability theory. The first subsection begins with
simple facts included for the benefit of readers not familiar with the matrix representation
of properties of a Markov chain [14,21]. The second subsection summarizes more advanced
algebraic material from the theory of complete integrability of one-dimensional quantum
systems.

4.1 Generator in Matrix Form

The defining equation (9) is linear and can therefore be written in matrix form using the
transition matrix (16)

L f (η) = −
∑

η′∈SL
f (η′)Hη′η. (34)

Notice that the sum includes the term η′ = η. In order to write the matrix H explicitly one has
to choose an concrete basis, i.e., to each configuration η one assigns a canonical basis vector
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and defines the ordering ι(η) of the basis. The set of all basis vectors, which are denoted by
| η 〉, spans the complex vector space C|SL |. We work with a vector space over C rather than
over R since in computations one may encounter eigenvectors and eigenvalues of H which
may be complex since H is in general not symmetric.

Before defining a convenient ordering of the basis we make explicit the relation between
thematrix representation (16) of the generator and the definition (9) of the process and rewrite
in matrix form some of the Markov properties stated above.

4.1.1 Matrix Representation of the Markov Chain

Biorthogonal Basis, Inner Product and Tensor Product In our convention the basis vectors
| η 〉 of dimension d = 3L are represented as column vectors. We define also the row vector
〈 η | = | η 〉T with the biorthogonality property

〈 η | η′ 〉 = δηη′ . (35)

The superscript T on vectors or matrices denotes transposition.
Consider for an arbitrary set of states � of cardinality d and associated vector spaceV of

dimension d two vectors 〈 w | with components wi ∈ C and | v 〉 with components υi ∈ C.
We define the inner product by

〈 w | v 〉 =
d∑

i=1

wiυi (36)

without complex conjugation.
The tensor product | v 〉〈 w | ≡ | v 〉 ⊗ 〈 w | is a d × d-matrix with matrix elements

(| v 〉〈w |)i, j = viw j . This notation follows a convenient convention borrowed from quantum
mechanics. Specifically, we have the representation

1 =
∑

η∈�

| η 〉〈 η | (37)

of the d-dimensional unit matrix. A function φ : � �→ � is represented by a non-diagonal
matrix

φ̂ :=
∑

η

| φ 〉〈 η | (38)

which is an endomorphism V �→ V satisfying φ̂| η 〉 = | φ 〉. We recall that for two tensor
vectors 〈W | = 〈w1 |⊗· · ·⊗〈wL |, | V 〉 = | v1 〉⊗· · ·⊗| vL 〉 the inner product of factorizes:

〈W | V 〉 =
L∏

k=1

〈 wk | vk 〉. (39)

Generator As a consequence of biorthogonality of the basis one has Hη′η = 〈 η′ |H | η 〉
and therefore (9) takes the form

L f (η) = −〈 f |H | η 〉 (40)

where the row vector 〈 f | = ∑
η f (η)〈 η | has components f (η). A probability measure

Prob [ ηt = η ] ≡ P(η, t) is represented by the column vector
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828 V. Belitsky, G. M. Schütz

| P(t) 〉 =
∑

η

P(η, t)| η 〉. (41)

The semigroup property of the Markov chain is reflected in the time-evolution equation

| P(t) 〉 = e−Ht | P0 〉 (42)

of a probability measure P0(η) ≡ P(η0).
Lowest Eigenvalue and Eigenvector We define the summation vector

〈 s | :=
∑

η

〈 η | (43)

which is the row vector where all components are equal to 1. Normalization implies

〈 s | P(t) 〉 = 1 ∀t ≥ 0. (44)

By taking the time-derivative one has as a consequence

〈 s |H = 0 (45)

which means that the summation vector is a left eigenvector of H with eigenvector 0. This
property follows from the fact that a diagonal element of Hηη is by construction the sum of
all transition rates that appear with negative sign in the same column η of H .

A stationary measure, denoted by | π 〉, is a right eigenvector of H with eigenvalue 0, i.e.,

H | π 〉 = 0. (46)

By the Perron-Frobenius theorem 0 is the eigenvalue of H with the lowest real part. The
probability vector corresponding to a normalized stationary measure (44) is denoted by
| π∗ 〉.

For the stationary distribution we define the diagonal matrices

π̂ :=
∑

η

π(η)| η 〉〈 η |, π̂∗ :=
∑

η

π∗(η)| η 〉〈 η |. (47)

For ergodic processes with finite state space one has 0 < π∗(η) ≤ 1 for all η. Then all powers
(π̂∗)α exist. In terms of these diagonal matrices we can write the generator of the reversed
dynamics as

Hrev = π̂HT π̂−1 = π̂∗HT (π̂∗)−1. (48)

This is the matrix form of (15).
Expectation Values The expectation 〈 f 〉P of a function f : V �→ C with respect to a

probability distribution P(η) is the inner product

〈 f 〉P = 〈 f | P 〉 = 〈 s | f̂ | P 〉 (49)

where

f̂ :=
∑

η

f (η)| η 〉〈 η | (50)
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is a diagonal matrix with diagonal elements f (η). Notice that

f (η) = 〈 η | f̂ | η 〉 = 〈 s | f̂ | η 〉. (51)

4.1.2 The Tensor Basis

In order to define a convenient ordering of the basis for H we choose the tensor approach
advocated in [14,21] for interacting particle systems.

Only One Site We begin with the basis for a single site where η ∈ S. For a row vector
of dimension 3 with components wi we write (w| = (w1, w2, w3) and column vectors
of dimension 3 with components υi we write |v) = (v|T . We define the inner product
(w|v) := w1υ1 + w2υ2 + w3υ3. We choose for a single site the order ι1(η) = 1 + η and
denote the corresponding canonical basis vectors of C3

|A) ≡ |1) :=
⎛

⎝
1
0
0

⎞

⎠ , |0) ≡ |2) :=
⎛

⎝
0
1
0

⎞

⎠ , |B) ≡ |3) :=
⎛

⎝
0
0
1

⎞

⎠ . (52)

With the dual basis (η| = |η)T we have the biorthogonality relation (η|η′) = δη,η′ The local
summation vector is given by (s| := (A| + (0| + (B| = (1, 1, 1).

It is useful to introduce the following matrices with the convention |η)(η′| ≡ |η) ⊗ (η′|:
a+ := |A)(0|, b+ := |B)(0|, c+ := |A)(B|, (53)

a− := |0)(A|, b− := |0)(B|, c− := |B)(A|. (54)

Having in mind the action of these operators to the right on a column vector, we call a+
and b+ creation operators, a− and b− are called annihilation operators and c± are particle
exchange operators.

We also define the projectors

â := |A)(A|, υ̂ := |0)(0|, b̂ := |B)(B|. (55)

and the three-dimensional unit matrix

1 =
∑

η

|η)(η| = â + υ̂ + b̂. (56)

They satisfy the following relations:

a+â = b+â = b−â = c+â = 0, a−â = a−, c−â = c− (57)

a−υ̂ = b−υ̂ = c+υ̂ = c−υ̂ = 0, a+υ̂ = a+, b+υ̂ = b+ (58)

a+b̂ = a−b̂ = b+b̂ = c−b̂ = 0, b−b̂ = b−, c+b̂ = c+ (59)

and

âa− = âb+ = âb− = âc− = 0, âa+ = a+, âc+ = c+ (60)

υ̂a+ = âb+ = υ̂c+ = υ̂c− = 0, υ̂a− = a−, υ̂b− = b− (61)

b̂a+ = b̂a− = b̂b− = b̂c+ = 0, b̂b+ = b+, b̂c− = c−. (62)

With the occupation variables (3) for a single site we have the projector properties

â|η) = a|η), b̂|η) = b|η), υ̂|η) = v|η) (63)
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for η ∈ {0, 1, 2} and a ≡ a(η) = δη,0 and so on. Moreover,

(s|a+ = (s|υ̂, (s|b+ = (s|υ̂, (s|c+ = (s|b̂, (64)

(s|a− = (s|â, (s|b− = (s|b̂, (s|c− = (s|â. (65)

L Sites For a configuration η ∈ S
L it is natural and indeed convenient to choose the ternary

ordering ιL(η) = 1 + ∑L
k=1 η(k)3k−1 of the basis vectors. This corresponds to the tensor

basis defined by

| η 〉 := |η1) ⊗ |η2) ⊗ · · · ⊗ |ηL), 〈 η | := (η1| ⊗ (η2| ⊗ · · · ⊗ (ηL | (66)

spanning the vector space (C3)⊗L of dimension 3L . We shall also use the notations | z 〉 and
| x, y 〉 instead of | η 〉. Furthermore, if a configuration η has N particles of type A and M
particles of type B we may denote this fact by writing | ηN ,M 〉 for the corresponding basis
vector.

The summation vector 〈 s | is given by

〈 s | := (s|⊗L . (67)

This is the row vector of dimension 3L where all components are equal to 1. The summation
vector restricted to configurations with a fixed number N of particles of type A and M
particles of type B is denoted by

〈 sN ,M | =
∑

ηN ,M

〈 ηN ,M |. (68)

The basis vector corresponding to the empty lattice is denoted by | ∅ 〉 := | η0,0 〉 = 〈 s0,0 |T .
For matrices M the expression M⊗ j will denote the j-fold tensor product of M withself if

j > 1. For j = 1 we define M⊗1 = M and for j = 0 we define M⊗0 = 1 with the c-number
1. For arbitrary 3 × 3-matrices u we define tensor operators

uk := 1⊗(k−1) ⊗ u ⊗ 1⊗(L−k). (69)

Multilinearity of the tensor product yields ukvk+1 = 1⊗(k−1) ⊗ [(u ⊗ 1)(1 ⊗ v)] ⊗
1⊗(L−k−1) = 1⊗(k−1) ⊗ (u ⊗ v) ⊗ 1⊗(L−k−1) and the commutator property ukvl = vl uk
for k �= l.

For u = â or b̂ we note the projector lemma [3] which will be used repeatedly below.

Lemma 1 The tensor occupation operators âk , b̂k act as projectors

âk | η 〉 = ak | η 〉 =
N (η)∑

i=1

δxi ,k | η 〉, b̂k | η 〉 = bk | η 〉 =
M(η)∑

i=1

δyi ,k | η 〉 (70)

with the occupation variables ak and bk (3) (or particle coordinates xi and yi respectively)
understood as functions of η or z = η.

One obtains the diagonal matrix f̂ (50) of a function f (η) by the following simple recipe:
In f (η) one substitutes ηi by the diagonal matrix η̂i where η̂i = âi if ηi = 0, η̂i = υ̂i if
ηi = 1, and η̂i = b̂i if ηi = 2.

The function γ k(η) defined in (1) is represented by the matrix

γ̂k := a−
k + b+

k + c+
k . (71)

Multilinearity of the tensor product ensures that γ̂k | η 〉 = | ηk+ 〉 as defined in (1).
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For L = 2 we define the permutation operator

Q = â1â2 + b̂1b̂2 + υ̂1υ̂2 + a−
1 a

+
2 + a+

1 a
−
2 + b+

1 b
−
2 + b−

1 b
+
2 + c−

1 c
+
2 + c+

1 c
−
2 . (72)

Embedding two neighbouring sites into a lattice of L sites yields for 1 ≤ k ≤ L − 1 the
nearest-neighbour permutation operator

π̂k,k+1 := 1⊗(k−1) ⊗ Q ⊗ 1⊗(L−k−1). (73)

One readily verifies that π̂k,k+1| η 〉 = | ηk,k+1 〉 as defined in (2).

4.1.3 Construction of the Generator in the Tensor Basis

Consider first L = 2 and denote the transition matrix (16) for two sites by h. From the
definition of the process one computes the off-diagonal part by observing that | 0A 〉 =
| π12({A0}) 〉 = (a−|A)) ⊗ (a+|0)) = (a− ⊗ a+)(|A) ⊗ |0)) = a−

1 a
+
2 | A0 〉 and therefore

h{0A}{A0} = qw〈 0A |a−
1 a

+
2 | A0 〉 for the transition A0 → 0A, and so on. The corresponding

diagonal elements hηη follow from (11) with the substitution of the occupation variables by
the respective projectors according to Lemma (1). With the tensor basis (66) for two sites
one thus obtains the 9 × 9-matrix

h = w

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 q 0 −q−1 0 0 0 0 0
0 0 q 0 0 0 −q−1 0 0
0 −q 0 q−1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 q 0 −q−1 0
0 0 −q 0 0 0 q−1 0 0
0 0 0 0 0 −q 0 q−1 0
0 0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (74)

Nextwe embed this process on two neighbouring sites (k, k+1) in�. By themultilinearity
of the tensor product the generator becomes hk,k+1 = 1⊗(k−1) ⊗ h ⊗ 1⊗(L−k−1) where the
hopping matrices

hk,k+1 := wq
(
âk υ̂k+1 − a−

k a
+
k+1 + υ̂k b̂k+1 − b+

k b
−
k+1 + âk b̂k+1 − c−

k c
+
k+1

)

+wq−1
(
υ̂k âk+1 − a+

k a
−
k+1 + b̂k υ̂k+1 − b−

k b
+
k+1+b̂k âk+1−c+

k c
−
k+1

)
(75)

act non-trivially only on the subspace corresponding to sites k, k + 1 in the tensor space.
The off-diagonal elements of hk,k+1 are the transition rates hηkk+1η in the tensor basis (66).
The diagonal elements of hk,k+1 defined in (16) follow from probability conservation. The
generator for the two-component ASEP on the lattice {1, . . . , L} then follows as

H =
L−1∑

k=1

hk,k+1. (76)

As will be seen below, the generator H is closely related to the Hamiltonian operator of
a quantum spin chain. This is true for other interacting particle systems and motivates the
terms “Quantum spin techniques” [14] or “quantum Hamiltonian formalism” [21] for the
representation of the generator of an interacting particle system in the tensor basis.
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Remark 2 Because of multilinearity (64), (65) are lifted to 〈 s |a+
k = 〈 s |υ̂k , 〈 s |b+

k = 〈 s |υ̂k ,
〈 s |c+

k = 〈 s |b̂k and 〈 s |a−
k = 〈 s |âk , 〈 s |b−

k = 〈 s |b̂k , 〈 s |c−
k = 〈 s |âk . This yields

〈 s |hk,k+1 = 0 which implies probability conservation (45) .

4.2 Quantum Algebra Uq[gl(3)] and the Perk–Schultz Quantum Chain

Above we have defined the quantum algebra Uq [gl(3)] (17)–(21). It is convenient to work
also with the subalgebra Uq [sl(3)].

4.2.1 Relation Between Uq [gl(n)] and Uq [sl(n)]

We introduce generators H̃i , 1 ≤ i ≤ n and Hi 1 ≤ i ≤ n − 1 through

q−H̃i /2 = Li , Hi = H̃i − H̃i+1. (77)

Then the quantum algebra Uq [sl(n)] is the subalgebra generated by q±Hi /2, and X±
i , i =

1, . . . , n − 1 with relations (20), (21) and

qHi /2q−Hi /2 = q−Hi /2qHi /2 = I (78)

qHi /2qH j /2 = qH j /2qHi /2 (79)

qHi X±
j q

−Hi = q±Ai j X±
j (80)

[ X+
i , X−

j ] = δi j [Hi ]q . (81)

with the unit I and the Cartan matrix

Ai j :=
⎧
⎨

⎩

2 if i = j
−1 if j = i ± 1
0 else.

(82)

of simple Lie algebras of type An . That Uq [sl(n)] is a subalgebra of Uq [gl(n)] can be seen
by noticing that

∑n
i=1 H̃i belongs to the center of Uq [gl(n)] [10].

We remark that the commutation relations (78), (79) can be substituted by

[ Hi , H j ] = 0 (83)

[ Hi , X±
j ] = ±Ai jX

±
j (84)

and defining q±Hi /2 as a formal series through the Taylor expansion of the exponential.

4.2.2 Finite-Dimensional Representations for n = 3

For n = 3 the quadratic Serre relations (20) are void. By introducing [5]

X±
3 := q1/2X±

1 X±
2 − q−1/2X±

2 X±
1 (85)

the cubic Serre relations reduce to quadratic relations. One has instead of (21)

q−1/2X±
1 X±

3 − q1/2X±
3 X±

1 = 0 (86)

q1/2X±
2 X±

3 − q−1/2X±
3 X±

2 = 0. (87)

and also

[ Hi , X±
3 ] = ±X±

3 . (88)

123



Quantum Algebra Symmetry of the ASEP with Second-Class Particles 833

In order to distinguish the matrices corresponding to the three-dimensional fundamental
representation from the abstract generators we use lower case letters. In terms of (53)–(55)
the three-dimensional fundamental representation of Uq [gl(3)] is given by:

x±
1 = a±, x±

2 = b∓ (89)

h̃1 = â, h̃2 = υ̂, h̃3 = b̂, (90)

corresponding to

h1 = â − υ̂, h2 = υ̂ − b̂. (91)

for the representation of the generators Hi of Uq [sl(3)]. We also mention the representation
x±
3 = ±q±1/2c±.
Next we introduce the coproduct

�(X±
i ) = X±

i ⊗ qHi /2 + q−Hi /2 ⊗ X±
i (92)

�(Hi ) = Hi ⊗ 1 + 1 ⊗ Hi . (93)

By repeatedly applying the coproduct to the fundamental representation, we construct the
tensor representations of Uq [sl(3)], denoted by capital letters,

X±
i =

L∑

k=1

X±
i (k), Hi =

L∑

k=1

Hi (k) (94)

with

X±
i (k) = q−Hi /2 ⊗ · · · ⊗ q−Hi /2 ⊗ X±

i ⊗ qHi /2 · · · ⊗ qHi /2, (95)

Hi (k) = 1 ⊗ · · · ⊗ 1 ⊗ Hi ⊗ 1 · · · ⊗ 1. (96)

For the full quantum algebra Uq [gl(3)] we have

H̃1 =
L∑

k=1

âk =: N̂ , H̃2 =
L∑

k=1

υ̂k =: V̂ , H̃3 =
L∑

k=1

b̂k =: M̂ . (97)

Here N̂ and M̂ are the particle number operators satisfying

N̂ | ηN ,M 〉 = N | ηN ,M 〉, M̂ | ηN ,M 〉 = M | ηN ,M 〉. (98)

The unit I is represented by the 3L -dimensional unit matrix 1 := 1⊗L = N̂ + V̂ + M̂ .
Notice that H1(k) = âk − υ̂k and H2(k) = υ̂k − b̂k . In the L-fold tensor product X±

i (k)
(Hi (k)) the term X±

i (Hi ) is the kth factor. Therefore (89) yields

X±
1 (k) = q− 1

2

∑k−1
j=1(â j−υ̂ j )+ 1

2

∑L
j=k+1(â j−υ̂ j )a±

k (99)

X±
2 (k) = q− 1

2

∑k−1
j=1(υ̂ j−b̂ j )+ 1

2

∑L
j=k+1(υ̂ j−b̂ j )b∓

k . (100)

One has (X±
i (k))2 = 0, X±

i (k)X∓
j (k) = 0 for i �= j and

X±
i (k)X±

i (l) =
⎧
⎨

⎩

q±2X±
i (l)X±

i (k) k < l
0 k = l

q∓2X±
i (l)X±

i (k) k > l
(101)

X±
i (k)X∓

j (l) = X±
i (l)X∓

j (k) for i �= j. (102)
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Thus the spatial order in which particles are created (or annihilated) by applying the operators
X±
i (k) gives rise to combinatorial issues when building many-particle configurations from

the reference state corresponding to the empty lattice.

4.2.3 The Perk–Schultz Quantum Spin Chain

We introduce the integrable Perk–Schultz quantum spin chain [16]

G =
L−1∑

k=1

gk,k+1 (103)

where gk,k+1 is reminiscent of (75), but with all non-zero off-diagonal elements equal to−1,
i.e.,

1

w
gk,k+1 = q

(
âk υ̂k+1 + υ̂k b̂k+1 + âk b̂k+1

)
+ q−1

(
υ̂k âk+1 + b̂k υ̂k+1 + b̂k âk+1

)

− a−
k a

+
k+1 − b+

k b
−
k+1 − c−

k c
+
k+1 − a+

k a
−
k+1 − b−

k b
+
k+1 − c+

k c
−
k+1. (104)

Quantum algebras have an intimate connection with integrable quantum spin systems
defined by a (parameter-dependent) R-matrix satisfying the Yang–Baxter equation [2]. This
comes from the fact that the coproduct (92), (93) of a quantum algebra commutes with the
associated Ř-matrix [10] that is defined in terms of the R-matrix for the local subspaces
corresponding to sites k, k + 1 by Řk,k+1 = Rk,k+1π̂k,k+1 with the permutation operator
(73).4 The Řk,k+1-matrices corresponding to Uq [sl(n)] can be expressed in terms of the
generators Tk of a Hecke algebra defined by

TkTk+1Tk = Tk+1TkTk+1, (Tk − q−1)(Tk + q) = 0, (105)

[ Tk , Tl ] = 0 for |k − l| ≥ 2. (106)

One has Řk,k+1 = xT−1
k − x−1Tk [10] with a parameter x that is immaterial in the present

context. For the present case of the Perk–Schultz chain with n = 3 (103) one has Řk,k+1 =
(x − x−1)gk,k+1 + x−1q − xq−1, corresponding to the representation Tk = gk,k+1 − q ,
T−1
k = gk,k+1 − q−1 of the Hecke algebra. The commutativity of Řk,k+1 with the tensor

representations (94) of Uq [sl(3)] therefore implies
[
gk,k+1 , X±

i

] = [ gk,k+1 , Hi ] = 0. (107)

Thus the Perk–Schultz quantum Hamiltonian is symmetric under the action of the quantum
algebra Uq [sl(3)] and then trivially also under Uq [gl(3)].

We remark that from the defining relations (105) one finds the matrix relations
gk,k+1gk+1,k+2gk,k+1 − gk,k+1 = gk+1,k+2gk,k+1gk+1,k+2 − gk+1,k+2 and (gk,k+1)

2 =
(q + q−1)gk,k+1 for the Perk–Schultz chain (103). In addition the matrices gk,k+1 satisfy
further relations, the specific form of which are not relevant here, which define the (3, 0)-
quotient of the Hecke algebra [15].

4 The connection to integrable models, in particular the parameter dependence of R, the construction of the
associated statistical mechanics transfer matrix, and its quantum Hamiltonian limit, is not important for the
purposes of this work.We refer the interested reader to [10,11,19] formore details and to [2] for an introduction
to the field.
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5 Proofs

It was pointed out in [1] that the hoppingmatrices hk,k+1 (75) for the ASEPwith second-class
particles satisfy the defining relations of the same (3, 0)-quotient of the Hecke algebra as the
gk,k+1 of the Perk–Schultz quantum chain. This fact implies the existence of representation
matrices of the generators of Uq [gl(3)] with which the hopping matrices hk,k+1 and hence
the generator (76) commutes. However, in order to make this symmetry property useful for
probabilistic and physical applications one must solve the main problem that was left open
in [1], which is to actually construct this representation. This is the content of Theorem (1),
proved below. It turns out that both Theorems (1) and (2) are consequences of a proposition
that we first motivate and then prove.

5.1 Perk–Schultz Chain and ASEP with Second-Class Particles

The point in case is that G and H differ only by multiplicative factors q and q−1 in their
off-diagonal elements. Therefore the following proposition is a natural working hypothesis.

Proposition 1 Let H and G be the matrices defined in (76) and (103). There exists a simi-
larity transformation R such that

G = R−1HR (108)

with an invertible diagonal matrix R of dimension 3L .

Proof In order to prove this proposition we use the quantum algebra symmetry of the Perk–
Schultz chain to first construct a good candidate for such a transformation and then prove
that it satisfies (108).

(1) Construction of a Candidate R: Fix the numbers N of particles of type A and M of
particles of type B. For N = M = 0 one readily verifies that 〈 s0,0 |H = 〈 s0,0 |G = 0.
Moreover, for configurations with N of particles of type A and M of particles of type B the
symmetry (107) yields

〈 s0,0 |(X−
1 )N (X+

2 )MG = 0. (109)

Let us now suppose that (108) is true for some matrix R. Then from (109) one obtains
〈 s0,0 |(X−

1 )N (X+
2 )M R−1H = 0. On the other hand, by ergodicity the summation vector

〈 sN ,M | (68) is the unique left eigenvector with eigenvalue 0 of H restricted to configurations
with N particles of type A and M particles of type B, i.e., 〈 s0,0 |H = 0. Thus 〈 sN ,M | must
be proportional to 〈 s0,0 |(X−

1 )N (X+
2 )M R−1. More precisely, we can conclude that if R exists

it has the property

〈 sN ,M | = YL(N , M)〈 0, 0 |(X−
1 )N (X+

2 )M R−1 (110)

with some normalization factor YL(N , M). Notice that 〈 s | = ∑L
N=0

∑L−N
M=0 〈 sN ,M |. There-

fore

〈 s |R =
L∑

N=0

L−N∑

M=0

〈 sN ,M |R (111)

=
L∑

N=0

L−N∑

M=0

YL(N , M)〈 s0,0 |(X−
1 )N (X+

2 )M . (112)
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Nowwemake the diagonal ansatz R = ∑
η R(η)| η 〉〈 η |. Thus we obtain from (112) that

R(ηN ,M ) = YL(N , M)〈 s0,0 |(X−
1 )N (X+

2 )M | ηN ,M 〉. (113)

The normalization factors YL(N , M) are arbitrary, since they can be absorbed by redefining
R = R̃E where E is a diagonal matrix with matrix elements YL(N , M) in the block N , M .
Since both G and H conserve particle number for both species one has EHE−1 = H
and EGE−1 = G. Therefore G = R̃−1H R̃ which implies that G = R̃−1H R̃. Hence the
YL(N , M) can indeed be chosen arbitrarily. It turns out to be convenient to choose

YL(N , M) = ([N ]q ![M]q !
)−1

. (114)

This reduces the computation of the diagonal elements of R to the computation of the matrix
elements 〈 0, 0 |(X−

1 )N (X+
2 )M | ηN ,M 〉 from the explicit representation (94).

In order to compute R we first set M = 0 and use

〈 s0,0 | (X
−
1 )N

[N ]q ! =
∑

x

q
∑N

k=1 xk−N L+1
2 〈 x,∅ | (115)

which is a simple adaptation of an analogous result for the standard single-species ASEP
taken from [20]. The sum over x stands for the sum over all particle positions xi ordered such
that xi < x j for i < j , which is the sum over all distinct sets of particle positions. Therefore∑

x,∅ 〈 x,∅ | = 〈 sN ,0 | which allows us to write

R(x,∅) = q
∑|x|

k=1 xk−|x| L+1
2 (116)

and, using (70),

〈 s0,0 | (X
−
1 )N

[N ]q ! = 〈 sN ,0 |q
∑L

k=1

(
k− L+1

2

)
âk

. (117)

Next we apply (X+
2 )M (100) to this vector and observe that for the factors q±H2(k)/2 that

appear in X+
2 (instead of the q±H1(k)/2 that appear in X−

1 ) any A-particle is like a non-existent
site, since H2 is build from projectors on B-particles and vacancies. Hence, with regard to the
action of (X+

2 )M , the existence of A-particles in a configuration ηN ,M ≡ zN ,M with N parti-
cles of type A behaves like a reduction of system size L → L̃ = L−N and a coordinate shift

yi → ỹi = yi − Nyi (z) (118)

for B-particles with Nk(z) defined in (7). Therefore the action of (X+
2 )M/[M]q ! on

〈 s0,0 | (X−
1 )N

[N ]q ! yields a q-factor similar to the one in (116), but with N replaced by M , L

replaced by L̃ , xk replaced by ỹk and q replaced by q−1. We conclude

〈 s0,0 | (X
−
1 )N

[N ]q !
(X+

2 )M

[M]q ! =
∑

zN ,M

R(zN ,M )〈 zN ,M | (119)

where the sum is over all distinct coordinate sets and

R(zN ,M ) = q
1
2 [(M−N )(L+1)−MN ]+∑N

i=1 xi−
∑M

i=1 ỹi . (120)
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Next observe that for any configuration η

M(η)∑

i=1

Nyi (η) =
L∑

k=1

k−1∑

l=1

albk = N (η)M(η) −
L∑

k=1

k−1∑

l=1

blak

= N (η)M(η) −
N (η)∑

i=1

Mxi (η). (121)

For η = zN ,M this yields

R(zN ,M ) = q
1
2

[∑N
i=1(2xi−L−1−Mxi (η))−∑M

i=1(2yi−L−1−Nyi (η))
]

. (122)

and with Lemma (1)

〈 s0,0 | (X
−
1 )N

[N ]q !
(X+

2 )M

[M]q ! = 〈 sN ,M |q 1
2 Û (123)

with

Û =
L∑

k=1

(2k − L − 1)
(
âk − b̂k

)
+

L−1∑

k=1

k∑

l=1

(
âl b̂k+1 − b̂l âk+1

)
. (124)

Notice that the matrix Û does not depend on N and M . Taking the sum over N and M then
yields from (112) the diagonal candidate matrix

R = q
1
2 Û . (125)

(2) Proof of the Transformation Property (108): We stress that the properties of R that we
have used in its construction are only necessary conditions for the transformation property
(108) to be valid. In order to prove this property we need two more technical ingredients.
The first is a transformation lemma, proved in [3] (Lemma 5.1),

Lemma 2 For any finite p �= 0 we have

pâl a±
x p−âl = p±δl,x a±

x , pb̂l a±
x p−b̂l = a±

x , (126)

pb̂l b±
x p−b̂l = p±δl,x b±

x , pâl b±
x p−âl = b±

x (127)

pâl b̂m a±
x p−âl b̂m = p±δl,x b̂m a±

x , (128)

pâl b̂m b±
x p−âl b̂m = p±δm,x âl b±

x . (129)

Applying these transformations yields the following auxiliary result.

Lemma 3 The local creation and annihilation operators transform as follows:

Ra±
x R−1 = q∓ 1

2

∑x−1
k=1 (b̂k−1)± 1

2

∑L
k=x+1(b̂k−1)a±

x , (130)

Rb±
x R−1 = q± 1

2

∑x−1
k=1 (âk−1)∓ 1

2

∑L
k=x+1(âk−1)b±

x (131)

Rc±
x R−1 = q± 1

2

∑x−1
k=1 (υ̂k+1)∓ 1

2

∑L
k=x+1(υ̂k+1)c±

x (132)
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Proof To prove these identities we use Lemma (2) and commutativity of the projection
operators. This yields

p
∑L−1

k=1
∑k

l=1(âl b̂k+1−b̂l âk+1)a±
x p−∑L−1

k=1
∑k

l=1(âl b̂k+1−b̂l âk+1)

= p
∑L−1

k=1
∑k

l=1(±δl,x b̂k+1∓δk+1,x b̂l )a±
x = p∓ ∑x−1

k=1 b̂k±
∑L

k=x+1 b̂k )a±
x (133)

and

p
∑L

k=1(2k−L−1)(âk−b̂k )a±
x p− ∑L

k=1(2k−L−1)(âk−b̂k ) = p±(2x−L−1)a±
x (134)

Joining both yields (130) and a similar computation yields (131). Finally, (132) follows from
c+
k = a+

k b
−
k , c

−
k = b+

k a
−
k . ��

Now we can prove (108). We split gk,k+1 = gdk,k+1 − gok,k+1 into its diagonal part g
d
k,k+1

and its off-diagonal part gok,k+1 and similarly for hk,k+1. Trivially one has Rgdk,k+1R
−1 =

gdk,k+1 = hdk,k+1.

For the offdiagonal parts, we consider first a±
k a

∓
k+1. Equation (130) in Lemma (3) yields

Ra±
k a

∓
k+1R

−1 = a±
k q

± 1
2 (b̂k+1−1)q± 1

2 (b̂k−1)a∓
k+1. (135)

The general projector property pb̂m = 1+ (p − 1)b̂m together with (58) and (61) applied to
the subspaces k and k + 1 lead to

Ra±
k a

∓
k+1R

−1 = q∓1a±
k a

∓
k+1. (136)

In the same fashion one proves

Rb±
k b

∓
k+1R

−1 = q±1b±
k b

∓
k+1. (137)

Finally, by similar arguments

Rc±
k c

∓
k+1R

−1 = c±
k q

∓ 1
2 (υ̂k+1+1)q∓ 1

2 (υ̂k+1)c∓
k+1

= q∓1c±
k c

∓
k+1. (138)

Comparing with (75) shows that Rgok,k+1R
−1 = hok,k+1 and thus RGR−1 = H . ��

5.2 Proof of Theorem (1)

Proof From (130), the commutativity of the projectors at different sites, and (91) lifted to
the tensor space, one finds that the local generators X±

i (r) transform as follows:

Y+
1 (r) := RX+

1 (r)R−1 = q
∑r−1

k=1 υ̂k−∑L
k=r+1 υ̂k a+

r , (139)

Y−
1 (r) := RX−

1 (r)R−1 = q−∑r−1
k=1 âk+

∑L
k=r+1 âk a−

r , (140)

Y+
2 (r) := RX+

2 (r)R−1 = q
∑r−1

k=1 b̂k−
∑L

k=r+1 b̂k b−
r (141)

Y−
2 (r) := RX−(r)R−1 = q−∑r−1

k=1 υ̂k+∑L
k=r+1 υ̂k b+

r (142)

Moreover, since R and H̃i are all diagonal one has RH̃i R−1 = H̃i . Commutativity of the
hoppingmatrices hk,k+1 in H with Y±

i and L j follows fromProposition (1) and the symmetry
(107) of the Perk–Schultz quantum chain.

To prove the explicit expressions (26), (27) for the representations we focus on Y+
1 (r).

Using the fundamental representation and the factorization property (39) of the inner product
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of tensor vectors one finds 〈 η′ |a+
r | η 〉 = δη′,ηr− . The terms in the exponential follow trivially

from Lemma (1) and the definitions (5), (7). Following similar arguments for the other
generators yields the matrix elements of Y±

i and L j (26), (27) as stated in (1). ��
5.3 Proof of Theorem (2)

Proof Since G is symmetric and R is diagonal, Proposition (1) implies

HT = (RRT )−1HRRT = R−2HR2. (143)

With (48) we thus have reversibility with a reversible measure π̂ = R2 in the matrix form
(47). By the projector Lemma (1) π̂ yields the reversible measure (30) of Theorem (2). ��
Acknowledgments This work was supported by DFG and by CNPq through the Grant 307347/2013-3.
GMS thanks the University of São Paulo, where part of this work was done, for kind hospitality.

Appendix

We display some explicit results for unnormalized stationary distributions for small lattices
L = 2, 3, 4 and also L arbitrary with small particle numbers N + M = 1, 2, 3, 4.

N = 0 M = 0 | 00 〉 L = 2

N = 1 M = 0 q−1| A0 〉 + q| 0A 〉
N = 0 M = 1 q| B0 〉 + q−1| 0B 〉

N = 2 M = 0 | AA 〉
N = 1 M = 1 q−1| AB 〉 + q| BA 〉
N = 0 M = 2 | BB 〉

N = 0 M = 0 | 000 〉 L = 3

N = 1 M = 0 q−2| A00 〉 + | 0A0 〉 + q2| 00A 〉
N = 0 M = 1 q−2| 00B 〉 + | 0B0 〉 + q2| B00 〉

N = 2 M = 0 q−2| AA0 〉 + | A0A 〉 + q2| 0AA 〉
N = 1 M = 1 q−3| A0B 〉 + q−1(| AB0 〉 + | 0AB 〉) + q(| BA0 〉 + | 0BA 〉) + q3| B0A 〉
N = 0 M = 2 q−2| 0BB 〉 + | B0B 〉 + q2| BB0 〉

N = 3 M = 0 | AAA 〉
N = 2 M = 1 q−2| AAB 〉 + | ABA 〉 + q2| BAA 〉
N = 1 M = 2 q−2| ABB 〉 + | BAB 〉 + q2| BBA 〉
N = 0 M = 3 | BBB 〉
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N = 0 M = 0 | 0000 〉 L = 4

N = 1 M = 0 q−3| A000 〉 + q−1| 0A00 〉 + q| 00A0 〉 + q3| 000A 〉
N = 0 M = 1 q−3| 000B 〉 + q−1| 00B0 〉 + q| 0B00 〉 + q3| B000 〉

N = 2 M = 0 q−4| AA00 〉 + q−2| A0A0 〉 + | A00A 〉 + | 0AA0 〉 + q2| 0A0A 〉 + q4| 00AA 〉
N = 1 M = 1 q−5| A00B 〉 + q−3(| A0B0 〉 + | 0A0B 〉) + q−1(| AB00 〉 + | 0AB0 〉 + | 00AB 〉)

+ q(| BA00 〉 + | 0BA0 〉 + | 00BA 〉) + q3(| B0A0 〉 + | 0B0A 〉) + q5| B00A 〉
N = 0 M = 2 q−4| 00BB 〉 + q−2| 0B0B 〉 + | B00B 〉 + | 0BB0 〉 + q2| B0B0 〉 + q4| BB00 〉

N = 3 M = 0 q−3| AAA0 〉 + q−1| AA0A 〉 + q| A0AA 〉 + q3| 0AAA 〉
N = 2 M = 1 q−5| AA0B 〉 + q−3(| AAB0 〉 + | A0AB 〉) + q−1(| 0AAB 〉 + | ABA0 〉 + | A0BA 〉)

+ q(| AB0A 〉 + | 0ABA 〉 + | BAA0 〉) + q3(| BA0A 〉 + | 0BAA 〉) + q5| B0AA 〉
N = 1 M = 2 q−5| A0BB 〉 + q−3(| AB0B 〉 + | 0ABB 〉) + q−1(| BA0B 〉 + | 0BAB 〉 + | ABB0 〉)

+ q(| 0BBA 〉 + | BAB0 〉 + | B0AB 〉) + q3(| BBA0 〉 + | B0BA 〉) + q5| BB0A 〉
N = 0 M = 3 q−3| 0BBB 〉 + q−1| B0BB 〉 + q| BB0B 〉 + q3| BBB0 〉

N = 4 M = 0 | AAAA 〉
N = 3 M = 1 q−3| AAAB 〉 + q−1| AABA 〉 + q| ABAA 〉 + q3| BAAA 〉
N = 2 M = 2 q−4| AABB 〉 + q−2| ABAB 〉 + | ABBA 〉 + | BAAB 〉 + q2| BABA 〉 + q4| BBAA 〉
N = 1 M = 3 q−3| ABBB 〉 + q−1| BABB 〉 + q| BBAB 〉 + q3| BBBA 〉
N = 0 M = 4 | BBBB 〉

N + M = 1 :

π∗({x},∅) ∝ q2x−1

π∗(∅, {y}) ∝ q−2y+1

N + M = 2 :

π∗({x1, x2},∅) ∝ q2x1+2x2−2

π∗({x1}, {y1}) ∝
{
q2x1−2y1−1 y1 < x1
q2x1−2y1+1 y1 > x1

π∗(∅, {y1, y2}) ∝ q−2y1−2y2+2

N + M = 3 :

π∗({x1, x2, x3},∅) ∝ q2x1+2x2+2x3−3

π∗({x1, x2}, {y1}) ∝
⎧
⎨

⎩

q2x1+2x2−2y1−3 y1 < x1, x2
q2x1+2x2−2y1−1 x1 < y1 < x2
q2x1+2x2−2y1+1 x1, x2 < y1

π∗({x1}, {y1, y2}) ∝
⎧
⎨

⎩

q2x1−2y1−2y2−1 y1, y2 < x1
q2x1−2y1−2y2+1 y1 < x1 < y2
q2x1−2y1−2y2+3 x1 < y1, y2

π∗(∅, {y1, y2, y3}) ∝ q−2y1−2y2−2y3+3
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N + M = 4 :
π∗({x1, x2, x3, x4},∅) ∝ q2x1+2x2+2x3+2x4−4

π∗({x1, x2, x3}, {y1}) ∝

⎧
⎪⎪⎨

⎪⎪⎩

q2x1+2x2+2x3−2y1−5 y1 < x1, x2, x3
q2x1+2x2+2x3−2y1−3 x1 < y1 < x2, x3
q2x1+2x2+2x3−2y1−1 x1, x2 < y1 < x3
q2x1+2x2+2x3−2y1+1 x1, x2, x3 < y1

π∗({x1, x2}, {y1, y2}) ∝

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q2x1+2x2−2y1−2y2−4 y1, y2 < x1, x2
q2x1+2x2−2y1−2y2−2 y1 < x1 < y2 < x2
q2x1+2x2−2y1−2y2 y1 < x1, x2 < y2
q2x1+2x2−2y1−2y2 x1 < y1, y2 < x2
q2x1+2x2−2y1−2y2+2 x1 < y1 < x2 < y2
q2x1+2x2−2y1−2y2+4 x1, x2 < y1, y2

π∗({x1}, {y1, y2, y3}) ∝

⎧
⎪⎪⎨

⎪⎪⎩

q2x1−2y1−2y2−2y3−1 y1, y2, y3 < x1
q2x1−2y1−2y2−2y3+1 y1, y2 < x1 < x3
q2x1−2y1−2y2−2y3+3 y1 < x1 < y2, y3
q2x1−2y1−2y2−2y3+5 x1 < y1, y2, y3

π∗(∅, {y1, y2, y3, y4}) ∝ q−2y1−2y2−2y3−2y4+4
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