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Abstract Graphene consists nominally of a regular planar hexagonal carbon lattice mono-
layer. However, its structure experiences perturbations in the presence of external influences,
whether from substrate properties, thermal or electromagnetic fields, or ambient fluid
movement. Here we give an information geometric model to represent the state space of
perturbations as a Riemannian pseudosphere with scalar curvature close to − 1

2 . This would
allow the representation of a trajectory of states under a given ambient or process change,
so opening the possibility for geometrically formulated dynamical models to link structural
perturbations to the physics.
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1 Introduction

A large number of papers have reported micrographic imaging of graphene membranes,
revealing the underlying lattice structure with superimposed local variations in topography
and induced charges. For example, Hamilton [9] showed typical structural features at several
scales in transmission electron micrographs. Costamagna and Dobry [3] studied 2D to 3D
transitions in graphene sheets and obtained a correlation between the standard deviation of the
out of plane distance and the mean lattice dimension. Meyer et al. [16] showed a transmission
electron micrograph of a few-layer graphene membrane and Stolyarova et al. [18] used
scanning tunneling microscopy to reveal vertical variations of 0.8nm over regions of 20nm.
Couto et al. [4] found a linear correlation between reciprocal mobility and the carrier density
in all samples tested: thus devices with smaller density fluctuations had greater mobility and
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this is consistent with the effect of random strain variations in graphene. They were able
to confirm the role of random strain fluctuations as an important source of disorder and so
account for the above mentioned correlation. Whether this relationship can be linked to a
linear correlation between strain standard deviation and mean is an interesting question.

Ishigami et al. [11] described a novel heat cleaning method in argon/hydrogen which
at the 600nm scale reduced the standard deviation of height of graphene on SiO2 from 8
to 3Å. The nominal monolayer thickness is 3.4Å in bulk graphite and on SiO2 the layer
thickness was measured with an AFM as 4.2Å; in air the thickness was 9Å because of the
presence of impurity ambient species at the interface or on the graphene monolayer. From
this it suggests that the standard deviation of local thickness of a graphene stratum is of the
same order as its mean thickness at the 600nm scale. We note also the report by Xu et al. [19]
of thermal effects on height fluctuations of freestanding graphene during scanning tunnelling
microscopy experiments.

We consider first the simplest situation of tiny Gaussian variations applied to the locations
of the carbon atoms in the nominally planar hexagonal graphene structure, which has lattice
constants 2.461 and 6.708Å. Such, sparse, distributed structural fluctuations would result
in behavioural variations, as would departures from planarity caused by substrate carried
impurities or other ambient species trapped in between. We believe that these type of fluctua-
tions may be treated as spatially distributed variations and so modelled by probability density
functions, which we may formulate as a geometrical space on which transitions or evolution
of fluctuation patterns may be represented and linked to observable physical behaviour.

The degeneration of 2D crystal order was simulated by Lucarini [13] through perturba-
tions of the three regular tessellations of the plane: square, hexagonal and triangular, by an
increasing spatial Gaussian noise applied to vertices. Physically, there the perturbing spatial
noise intensity corresponds to a lattice temperature in the structural symmetry degenera-
tion. The statistical parameters of the evolving changes were analyzed through those of the
(convex) cells in the Voronoi tessellations, which are optimal partitions of the space from
the given set of generating vertices of the structure. In all cases the gamma distribution was
an excellent model for the observed probability density functions of all metric properties:
inter-vertex distance, perimeters of polygons, areas of polygons and with the same result for
3D cubic crystal lattices (SC, BCC, FCC) [15], where also the volumes of polyhedra fol-
lowed gamma distributions. With the onset of noise, quite quickly the three 2D tessellations
became indistinguishable. Similar results were found also for perturbations of the three 3D
cubic crystal lattices [5,15]. Lucarini [14] suggested that such an approach could be made to
model the structure of graphene.

The results of Lucarini’s simulations of 2D and 3D crystal disordering were put into an
information geometric framework [5] by means of which the space of perturbations was
represented by a Riemannian manifold of gamma probability density functions provided
with the Fisher information metric [2]. That allowed the representation of the tessellation-
constrained degeneration down to the Poisson Voronoi limit.

Remark Here we are not concerned with such large scale degeneration as in [13] but with
very small variations in the hexagonal structure of graphene, which might resemble the early
stages of the Gaussian perturbations of a hexagonal crystal lattice. The small scale of such
perturbations mitigates the concern that applying the same Gaussian variation to the location
of carbon atoms for graphene and to the ‘mother’ point for Voronoi tessellation could result in
different structures. We believe that at the scale envisaged this difference would be small, but
certainly worth investigating through simulations, and if possible experimentally. A further
concern in the case of graphene was that the dynamical behaviour of the network of carbon
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atoms could possibly bring about different distributional properties from the case of ‘static’
Voronoi tessellations. Again this is worthy of investigation but at small scales the dynamical
variations might be expected to yield oscillations that centred on the mean static case.

The application of the information geometric methodology to real data depends on esti-
mating themean and variance of the distributions of e.g. hexagon perimeters in an ideal planar
model but additionally obtaining also distributions of out of plane distances for vertices if
non-planar fluctuations are present. Such data could then be used to represent the distribu-
tions of fluctuations from a regular planar hexagonal crystal, either using individual lengths
or combinations thereof. In any case we expect that the distributions involved will be gamma
and that variations in the influences causing the fluctuations will move the distribution about
in the space of gamma distributions.We outline how an information geometric approach may
help model the behaviour through the provision of a geometrically formulated natural state
space on which to represent physical influences. It may be that the bivariate gamma distrib-
ution discussed with applications in [2] could be used as the model if correlated horizontal
and vertical fluctuations are observed in graphene.

The gamma distribution, which seems to be encountered in many naturally occurring
processes [2], can be characterised by the following uniqueness theorem:

Theorem 1.1 ([10,12]) For independent positive random variables with a common proba-
bility density function f, having independence of the sample mean and the sample coefficient
of variation is equivalent to f being the gamma distribution.

A proof was given by Hwang and Hu [10] but the result seems to have been known earlier
and in [6] we gave a proof partly based on the 1954 article by Laha [12].

The family of gamma distributions with random variable x in event space � = R
+ has a

collection of probability density functions given by{
f (x;μ, κ) =

(
κ

μ

)κ xκ−1

�(κ)
e−xκ/μ | μ, κ ∈ R

+
}

≡ R
+ × R

+, (1)

and � is the gamma function. The gamma probability density functions (1) depend smoothly
on parameters μ, κ ∈ R

+. The mean is E[x] = μ, the variance is E[x2] − E[x]2 = σ 2 =
μ2/κ and so we see that 1√

κ
is the constant of proportionality between the standard deviation

and the mean, which reflects the result in Theorem 1.1.
Given a set of identically distributed, independent data values X1, X2, . . . , Xn, the

‘maximum likelihood’ or ‘maximum entropy’ parameter values μ̂, κ̂ for fitting the gamma
distribution (1) are computed in terms of the mean and mean logarithm of the Xi by maxi-
mizing the likelihood function

Lik f (μ, κ) =
n∏

i=1

f (Xi ;μ, κ).

Taking the logarithm and setting the gradient to zero we obtain

μ̂ = X̄ = 1

n

n∑
i=1

Xi (2)

log κ̂ − �′(κ̂)

�(κ̂)
= log X̄ − 1

n

n∑
i=1

log Xi

= log X̄ − log X . (3)
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We note that the distribution of a sum of independent gamma random variables is itself
gamma distributed. The special case κ = 1 in (1) corresponds to the situation of the random
or Poisson processwithmeanμ (and so also σ = μ) then the distribution of size of inter-event
spaces is exponential, the unique distribution with unit mean having maximum entropy–that
is least constraints.

In fact, the gamma distribution has an essential generalising property of the exponential
distribution since in particular it represents inter-event distances for generalisations of the
Poisson process to a ‘censored’ Poisson process. Indeed, for integer κ = 1, 2, . . . , (1) models
a process that is Poisson but with intermediate events removed to leave only every κ th .

Formally, the gamma distribution is the κ-fold convolution of the exponential distribution,
called also the Pearson Type III distribution. The Chi-square distribution with integer n = 2κ
degrees of freedom models the distribution of a sum of squares of n independent random
variables all having the Gaussian distribution with zero mean and standard deviation σ ; this
is a gamma distribution with mean μ = nσ 2 for integer κ = 1, 2, . . . .

We might expect that the horizontal structural fluctuations in graphene are small-scale
rare events in a random process, such as a perturbation of a Poisson spatial process. A wide
range of near-Poisson processes is discussed in terms of the information geometry of the
gamma family in [2]. In the context of small structural fluctuations in graphene there may be
an interpretation of the anticipated very high values of κ compared with unit mean in terms
of the censored Poisson process corresponding to rare events, for example, small and rare
variations in hexagon perimeter or area. Accordingly, here we investigate the properties of
the gamma distribution for possible modeling of graphene, if observational data becomes
available then other choices may arise, including bivariate models for vertical and horizontal
variability.

Whereas the nominal monolayer thickness of graphene is 3.4Å in bulk graphite, on SiO2

it is 4.2Å and in air the impurities increased the thickness to 9Å. At the 600 nm scale the
standard deviation of height was of similar size to the mean thickness [11], which suggests
that the coefficient of variation is unity and the vertical process is approximately exponential.

2 Information Geometry of the Gamma Distribution

For any smooth family of probability density functions

{pθ |θ ∈ � ⊆ R
n} (4)

defined on some fixed event space � (typically R, R
+ or products thereof) the covariance

matrix
[
gi j

]
is the expectation of the matrix of derivatives of the log-likelihood function

l = log pθ , with respect to parameters (θ i ). This is positive definite and hence defines a Rie-
mannian metric on the smooth n-manifold of probability density functions with coordinates
(θ i ).

The components of the Riemannian metric are given by the expectation of the covariance
matrix of gradients of the log-likelihood function l with respect to the n parameters (θ i ) [1,2]:

[
gi j

] = E

(
∂l

∂θ i

∂l

∂θ j

)
=

[∫
�

pθ

(
∂l

∂θ i

∂l

∂θ j

)]
, (5)

or equivalently, under mild regularity conditions [17],

[
gi j

] = E

(
∂2l

∂θ i∂θ j

)
=

[∫
�

pθ

(
∂2l

∂θ i∂θ j

)]
, (6)
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with arc length function

ds2 =
∑
i, j

gi j dθ i dθ j .

The family (4) is called an exponential family if the pθ admit expression in terms of functions
{C, F1, . . . , Fn} on � and a function ϕ on � as:

pθ (x) = e{C(x)+∑
i θi Fi (x)−ϕ(θ)} , (7)

then these (θi ) are its natural parameters, and ϕ is the potential function. By integrating (7)
over �, then using ∫

p(x; θ) dx = 1, on the left

we take logs and obtain:

ϕ(θ) = log
∫

e{C(x)+∑
i θi Fi (x)} dx . (8)

For the gamma distribution, it can be seen that (ν = κ/μ, κ) are natural parameters and its
potential function is

ϕ(ν, κ) = log�(κ) − κ log ν. (9)

In these coordinates the components of the metric are given by

[
gi j

]
(ν, κ) =

[
κ
ν2

− 1
ν

− 1
ν

d2

dκ2
log(�)

]
(10)

In such cases the n-manifold of probability density functions can be represented by a natural
affine immersion in R

n+1 via

h : (θ) ∈ R
n �→ ((θ), ϕ(θ)) ∈ R

n+1. (11)

So the natural representation of the manifold of gamma distributions M in R
3 is

h : M → R
3 : (ν, κ) �→ (ν, κ, log�(κ) − κ log ν) (12)

This is convenient for visualising and metrising curves that depict trajectories in the space of
gamma distributions [2]; observational data for graphene structures under varying external
conditions could then be visualised and correlated with the physics.

For an exponential family (7) there is a simpler method to compute the information metric
(5) from the log-likelihood function l(θ, x) = log pθ (x) :

∂i l(θ, x) = Fi (x) − ∂iϕ(θ) (13)

and
∂i∂ j l(θ, x) = −∂i∂ jϕ(θ) , which is independent of x . (14)

Then the information metric g on the n-dimensional space of parameters � ⊂ R
n, equiva-

lently on the set {pθ |θ ∈ � ⊂ R
n}, has components:

[gi j ](θ) = −
∫

�

[∂i∂ j l(θ, x)] pθ (x) dx = ∂i∂ jϕ(θ) = [ϕi j ](θ) . (15)

123



938 C. T. J. Dodson

The gamma distribution has a surprisingly tractable information geometry [1,2], and the
Riemannian metric in the 2-dimensional manifold (M, g) of gamma distributions (1) is
easily computed from the definition (5) in (μ, κ) coordinates:

[
gi j

]
(μ, κ) = =

[
κ
μ2 0

0 d2

dκ2
log(�) − 1

κ

]
. (16)

So the coordinates (μ, κ) yield an orthogonal basis of tangent vectors, which is useful in
calculations because then the arc length function in M is simply

ds2 = κ

μ2 dκ2 +
((

�′(κ)

�(κ)

)′
− 1

κ

)
dκ2 = κ

μ2 dκ2 +
(

ψ ′(κ) − 1

κ

)
dκ2

where ψ ′(κ) =
(

�′(κ)
�(κ)

)′
.

Such a manifold with the Levi-Civita metric connection (cf. eg [7]) is a pseudosphere,
with its negative scalar curvature given by [2]:

R(κ) = ψ ′(κ) + κ ψ ′′(κ)

4 (κ ψ ′(κ) − 1)2
so − 1

2
< R(κ) < −1

4
(17)

from which it follows that R(κ) → − 1
2 as κ → ∞.

In the context of horizontal structural fluctuations of inter-vertex distances or hexagon
perimeter length in graphene with a unit mean, we expect the standard deviation σ = μ√

κ
<<

1 hence it follows that κ >> 1 and the scalar curvature (17) will be close to − 1
2 .

3 A State Space for Graphene Structural Fluctuations

For the standard deviation of, say, hexagon perimeters, σ(P) = μ(P)/κ , to be between 1 and
10% of the mean, for example, we have a range of 100 < κ < 10000 for the relevant gamma
distributions. A propos the characterisation of the gamma distribution in Theorem 1.1, Couto
et al. [4] confirmed the role of random strain fluctuations as an important source of disorder
and so accounted for the observed correlation between reciprocal mobility and the carrier
density in all samples tested. Whether this relationship can be linked to a linear correlation
between strain standard deviation and mean strain is an interesting question from the point
of view of a model using a gamma distribution.

Formulating the family of gamma probability density functions as a Riemannian manifold
in natural coordinates we can use geometric methods to describe the progress of fluctuation
changes on property behaviour and provide a graphical representation through a natural affine
immersion in R

3.

Given a differential equation on the manifold to represent an evolution of fluctuations,
its integral curves would yield trajectories for the structural state. On a space of probability
density functions there is always one natural vector field, arising from the gradient field of
the entropy function. This differential equation and its integral curves in the manifold of
gamma probability density functions represent progress of random disordering (maximising
entropy) as intensity of disturbance increases. So this field may represent well enough the
initial development of structural changes with increasing fluctuation intensity in graphene.
Then the physical manifestation in properties or associated behaviour might be linked to the
effect of fluctuation intensity.
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The Shannon entropy of the gamma family (1) is given in both sets of coordinates by:

S f (ν, κ) = −
∫ ∞

0
f log f dx : R2+ → R

(ν, κ) �→ κ − (κ − 1)ψ(κ) + log(�(κ)) − log(ν) (18)

(μ, κ) �→ κ − (κ − 1)ψ(κ) + log(�(κ)) − log(μ/κ) (19)

where ψ = �′
�

is the digamma function. The entropy gradient vector field is

∇S f (ν, κ) =
{
−1

ν
, 1 − (κ − 1)ψ(1)(κ)

}
(20)

∇S f (μ, κ) =
{
− κ

μ
, 1 − (κ − 1)ψ(1)(κ)

}
(21)

and an unconstrained degeneration of orderwould follow its integral curves down to κ = 1. In
fact of course we do not have unconstrained disordering for graphene because we must retain
the hexagonal structure, so we would expect a slightly less steep descent with increasing
fluctuation intensity, ie with increasing noise level a in the terms of the hexagonal crystal
lattice simulations. For the hexagonal simulation [15] the distribution of perimeters of the
hexagons followed a gamma distribution; the mean perimeter was P̄ ≈ 0.65 and the standard
deviation of the perimeter was given approximately by

σ(P) ≈ a√
6

for 0 < a < 0.5.

In the 2D crystal cases simulated by Lucarini [13] the hexagonal structure was stable under
small perturbations but the square and triangular structureswere not stable. However, with the
onset of noise, quite quickly all three possible tessellations became indistinguishable above
noise a ≈ 0.5. With intense noise they converged to the 2D Poisson-Voronoi tessellations,
for which exact analytic results are known [8]. The limiting values were κ ≈ 16 for the
perimeter of polygons and κ ≈ 3.7 for areas. Hence in our context, for fluctuations of order
1%of themean, say, σ(P) ≈ 0.01μ(P) ≈ 0.0065,which corresponds to the noise amplitude
a ≈ 0.016 in [13].

4 Discussion

Ideally, we would like experimental data on vertical and horizontal spatial variations in
graphene. Certainly there is little in the published literature on the distribution and scale of
structural fluctuations that have been observed. Until more details become available we take
the view that a representation of spatially distributed fluctuations could provide a stimulus
to generate suitable data; when such data is available the model here is easily adapted, and
could incorporate a bivariate distribution for vertical and horizontal variability. In due course
it may be that a product distribution of vertical and horizontal variations may seem more
appropriate, then, for example the bivariate gamma distribution described with applications
in [2] may be appropriate. Such a bivariate model will be considered elsewhere.

If variations other than Gaussian perturbations better represent the fluctuations in
graphene, then suitable information geometric models could use appropriate other mod-
els. For the present, we have some quantitative clues to the possible parameters of a model
for fluctuations in graphene structure. These come from computer simulations of Gaussian
perturbations of hexagonal crystal lattices [13,15], from limited experimental data on spatial
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variability of vertical deviations [11,16,18], and from observed correlation of vertical stan-
dard deviation with mean lattice dimension [3] which confirmed the role of random strain
variations in graphene.

Whereas the nominal monolayer thickness of graphene is 3.4Å in bulk graphite, on SiO2

it is 4.2Å and in air the impurities increased the thickness to 9Å. At the 600 nm scale the
standard deviation of height was of similar size to the mean thickness, which suggests that
the coefficient of variation is unity and the vertical process is approximately exponential and
hence arises from a Poisson spatial process. The spatial variations in the horizontal structure
are, however, expected to have a standard deviation much smaller than the mean for local
hexagon perimeter.

The information geometry of the gamma manifold turns out to be that of a Riemannian
pseudosphere [2]with scalar curvature R(κ) given in (17), fromwhich it follows that R(κ) →
− 1

2 as κ → ∞. In the context of structural fluctuations of inter-vertex distances or hexagon
perimeters in graphene with a unit mean, we expect the standard deviation σ = μ√

κ
<< 1

hence it follows that κ >> 1 and the scalar curvature (17) will be close to − 1
2 . There is a

natural embedding of this space as a curved surface in R
3 [2], and trajectories of structural

changes can be represented on this surface as curves to which any observed physical features
could be attached.

Acknowledgments The author is grateful to an anonymous reviewer who made the points addressed in the
Remark on the second page.
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