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Abstract We study the equilibrating effects of the boundary and intermolecular collision
in the kinetic theory for rarefied gases. We consider the Maxwell-type boundary condition,
which has weaker equilibrating effect than the commonly studied diffuse reflection boundary
condition. The gas region is the spherical domain in R?, d = 1, 2. First, without the equili-
brating effect of the collision, we obtain the algebraic convergence rates to the steady state
of free molecular flow with variable boundary temperature. The convergence behavior has
intricate dependence on the accommodation coefficient of the Maxwell-type boundary con-
dition. Then we couple the boundary effect with the intermolecular collision and study their
interaction. We are able to construct the steady state solutions of the full Boltzmann equation
for large Knudsen numbers and small boundary temperature variation. We also establish the
nonlinear stability with exponential rate of the stationary Boltzmann solutions. Our analysis
is based on the explicit formulations of the boundary condition for symmetric domains.

Keywords Maxwell-type boundary condition - Boltzmann equation - Free molecular
flow - Kinetic theory of gases - Approach to equilibrium

1 Introduction

In kinetic theory, a fundamental and central issue is the equilibrating effects of the boundary

and intermolecular collision. In the present study we consider the Maxwell-type boundary
condition:
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1
Fo.60 =a (#) Jr® Mg @)
+(—a@)FE.¢ ~2¢ W0, yedD, ¢m=0, ()

Jr(y,t) = f —¢,-nF(y, ¢, 1)d¢, : boundary flux of F,
¢, n<0

where F is the velocity distribution function of the gas particles, ¢ is the microscopic velocity,
T (y) is the boundary temperature at the boundary point y, n is the unit normal vector at
the boundary, pointing to the gas region D, a(y) (0 < «a(y) < 1) is the accommodation
coefficient, and M7 is the Maxwell distribution:

¢

e 2RT

Mr () = R : Boltzmann constant.

QrRT)?
The case @ = 0 is called the specular reflection boundary condition, which has no equi-
librating effect. The case o = 1 is called the diffuse refection boundary condition, which
has strong, direct equilibrating effect of the boundary thermal information on the gas flows.
In this paper we assume that the accommodation coefficient @, 0 < « < 1, is constant.
Our purpose is to study the equilibrating effect of the Maxwell-type boundary condition, the
dependence of the process of convergence to steady states on the accommodation coefficient
o, 0 < o < 1. The equilibrating process also depends on the geometry of the boundary. Our
analysis demands the quantitative method for the study of particle propagation. For this, we
will focus on spherical symmetric domains:

D:{xeRd:|X|<l},

in space dimension d = 1, 2. This allows us to use the stochastic formulation of our previous
works [10] and [11], which provides an explicit description of the evolution of the free
molecular flow.

We decompose the microscopic velocity ¢ = (¢1, {2, {3) € R? into

E=(1, .. ) €RY = (Lat1,.... 53) e R, )

and rewrite the Maxwell-type boundary condition (1) as

1
Fv.en =ao ()" Jr0 0Mre)©)

+(1—-—a)F(y,E—2( -n)n,n,1), yedD, & -n>0, 3)
jry.t) = [ —&,-nF(y, ¢, 1)d¢, : boundary flux of F,
£, n<0

To focus on the equilibrating effect of boundary, we first consider the free molecular flow:

d
%+2;i§%=0, g=g(x,¢,1), xeD, £ €R3, >0,
i=
8(x,£,0) =gin(x,£), xeD, { R},
1
2.
8y, ¢, 1) :O‘(Tzﬂy)) Je (. DMry)(8) S

+(1—a)g(y,E—2(& -n)n,n,t), yedD, & -n>0,

Jjey.ty= [ —&,-ng(y, ¢, 1)d¢, : boundary flux of g.
£,n<0
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The equation for the steady state of the free molecular flow is:

d
Y6 =0, S=8(x.¢).xeD, { R,
i=1 !

ﬁ Jp g3 S(X, £)dxdg =1 : unit density,

r \D )
SO, ) = (#75) Js OMr)(©)
+(1—-—a)S(y,&E—2(¢& -mn,y), yeoD, §€-n>0,
Jjs(y) = fs*_n<0 —£&,-nS(y, ¢,)d¢, : boundary flux of S.
Here we take general initial data g;, with finite weighted L° norm:
gin(xa C) € Lféua n = 47
Iginll o = lIginlloc,c = esssup (1+[&D"|gin(X, &I, (6)
4 xeD,¢eR3
where the choice of > 4 implies that
/ _—&'mn d¢ < oo.
gn<o | (14 [EDH

The boundary temperature variation is assumed to be bounded:

0<T,=infT(y) <T"=supT(y) < o0.
oD 9D

The diffuse reflection boundary condition has strong and direct equilibrating effect, and
as a consequence, the convergence to steady state is of the rate of 7=, d the space dimension,
[10, 14]. The Maxwell-types boundary condition yields eventually the same rate, with intricate
dependence on the accommodation coefficient «.

The following Theorem shows the convergence to the steady state of free molecular flow
S.

Theorem 1 (Main Theorem for Free Molecular Flow) For g;, € Lfé’” and u > 4, the
solution of (4) satisfies

M -7
g(x,c,r)—p*su,c):o<1>||gl-n||oo,u[( S ““)1{|§>2}

(1 + at)d 1+ 1¢hHH e
S S
(T+1ghe (<}

1
Px = 7/ gin(x, £)dxdg,
|D| Jpxr3

Sforany smalle, 0 < € < ﬁ.

Theorem 1 immediately implies the following L” convergence of g:

Corollary 1 For any small e, 0 < € < ﬁ, g converges to psS in Lf’é.for 1 <p<oo:

p 1
lgCe, &) = peSe, ) p = O (D) llgin ||w( +(1 —a) /2+).

(at +1)¢ t+ 1195
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Consequently, there exists Cy c > 0 such that

1
lg(x, &, 1) — puSix, C)IIL;;; < Ca.c lI8inlloo, 4 ((ld)
: t+ 1195

In particular, the coefficient Cy = O(1) when o = 1. Hence, we may let € — 0 to obtain
the optimal rate for diffuse reflection boundary condition:

1
lgx, &, 1) — puS(x, C)IIL;;{ =0 llginlloo,p (d)
’ t+1r

After studying the boundary effect of Maxwell-type condition for free molecular flow,
we continue study the additional equilibrating effect of the collision in rarefied gas flow.
We use the Boltzmann equation to model gas with intermolecular collision. Consider the
initial-boundary value problem of the Boltzmann equation:

d
%+;;i3F=%Q(F,F), xeDCRY ceR3 >0,
1=

ax;
7
F(x,£,0)=Fu(x.8), xeDCRY ¢ eR?, ™
Maxwell-type boundary condition (3).
where « is the Knudsen number which measures how rarefied the gas is, and Q(-, -) is the
collision operator, a symmetric bilinear operator.

1
0(g. M) = 5 / (8@HRED +REHEED — @hE) — hE)eE.)
S2xR3
x B, |¢, — £)dQds..

where
¢ =t-(¢-¢09)0 g
gi=t.+ (€ -2 0)0 TN

and B is the collision kernel which is determined by the interaction potential between two
colliding particles. Throughout this paper we assume an inverse power hard potential with

Grad’s angular cut-off or hard sphere. Under this model, B(8, [£,—¢|) ~ [¢ — ¢, o | cos @],
for some u > 4.

)

Maxwell molecule  Hard potential ~ Hard sphere

u=4 4 <u<oo U = 0o

By nondimensionalization, [13], we may assume, without loss of generality, that 0 <
T, < T* = 1 and the total density unity:

1

DI e Finx. O)dxdg = 1. ®)

For convenience, denote the Maxwellian M7« (&) = M1(¢) = (n)’% exp(—|¢|?) simply by
M().

@ Springer



Equilibrating Effect of Maxwell-Type Boundary Condition... 747

Conventionally, to linearize the Boltzmann equation, we expand F around M, F = M +
/M f. The resulting equation for the perturbation f is

d
af af 1 1
=+ G ——Lf =—— (\/M M )
8t+i:1§’8xi LS KWQ g f
where the linearized collision operator L is defined as

Lf=\/%Q(«/Mf,M),

and the linearized Boltzmann equation is
af & oaf 1
- i— — —Lf =0.
at + ; i 0x; K !

For the intermolecular force model we consider, inverse power hard potential with Grad’s
angular cut-off or hard spheres, L can be decomposed as the difference of an integral operator
K and a multiplicative operator v:

L=K—-v, (KNE® = /R3 K(Z. 5,0 f&0dE,, (f)&) =v()f(&).
v(¢) is a positive function with non-zero infimum:
vo = inf v(¢) > 0.
LeR3

However, as M does not satisfy the boundary condition (3), this linearization is not natural
for the present situation, where the boundary effect is significant. Instead, we expand around
the stationary free molecular flow S under the Maxwell-type boundary condition and write
F=S+vM f. Because S does not satisfy the Boltzmann equation (7), some more source
terms are introduced to the equation for f :

d
af af 1 1 S_m
) L f= L (=4
8t+§{laxi K s K (W)
1
KM

+

Q(S—M+mf,S—M+JMf). ©)

On the other hand, we have the important property that S satisfies the Maxwell-type boundary
condition. As the boundary condition is linear and homogeneous, the boundary condition for
/M f remains the same:

2
f(y,c,m/M(;):a( a )

Nl—=

RT(y)

(/g 0_§*.nf(y7C*7t)\/md§*)MT(y)(;)

+ A-a)f(y.§ -2 -mn,9,1)y/M() yedD, &-n>0.
(10)

Therefore, we will consider the initial-boundary value problem of Eq. (9) with boundary
condition (10) and initial data:

Fin(X7 C) - S(X’ f)

ﬁn(x7 ;) = m
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748 H.-W. Kuo

There is a trade-off between more complicated boundary condition and extract interior source
terms. We choose the latter since the effect of Maxwell-type boundary condition has been
well analyzed for the free molecular flow. Moreover, this linearization is physically natural
for large Knudsen number. The extra interior source terms can be handled by the standard
iteration scheme. Therefore, we will first consider (11) as our linearized equation:

9 d 9

ZT}; + 20 Cia‘T}; -1rf=o0,

Maxwell-type boundary condition (10), (11)
fDx]R3 M) fin(x, &)dxd¢ = 0.

From F = S+ +/M f, the zero total mass condition Il VM findxdt = 01is a consequence of
nondimensionalization, (8), rather than an additional constraint. To study the problem (11),
we make two reductions: first we reduce (8; + > £;dy; — %L) to (3 4+ 2. ¢idy, + 7). and
then reduce (9, + >_ &idy; + ) to (3 + 2 &idy,)-

For the linear problem (11), we prove an exponential decay to zero of f, Theorem 2. We
then use this result to: (i) construct the steady state solution of the Boltzmann equation (9),
Theorem 3; (ii) obtain an exponential convergence to the steady state, Theorem 4.

Theorem 2 (Stability for Linear Boltzmann Equation) Suppose that fi, € L;?{y, for some

constanty, 0 < y <1, f fin Mdxd¢ = 0, and that, for each 0 < v{ < vy, there exists a
positive constant Cy such that for all Knudsen number k with

’ 400
‘> C ( L _Clldlato—v)i]) ford =1,

a3 (vg—v))? a(vo—v])|log(1—a)[*0

12)
« I (2[togler(vo—vD1*” _
logk =G a2 (vg—v))3/2 + a(vo—v} )| log(1—a) |40 ford =2,
the solution f of (11) decays to zero exponentially in time:
it
1F Gy Doy < Cllfinlloo—y €2, (13)

for some constant C independent of k, a, T, and v{.

Remark 1 Our main interest is in the highly rarefied gas, i.e. the case of large Knudsen
number k. Thus we first study the free molecular flow for collisionless gas. Then we consider
a perturbation around the steady solution of free molecular flow for the Boltzmann equation.
To obtain the exponential stability for linearized Boltzmann equation, we start with the
estimate of free molecular flow which is a limiting case of k = co. Recall that the pointwise
estimates of free molecular flow depend on the accommodation coefficient o, Theorem 1.
Consequently the magnitude of « is related to that of «, (12).

In this paper, we consider the situation of variable boundary temperature. It is a highly
non-trivial problem to study the existence of steady solution for the Boltzmann equation when
the boundary temperature varies. In the case of diffuse reflection with variable temperature,
the existence of the steady solution in a convex domain with dimension less or equal than
three was proved by Guiraud [4,5] for arbitrary fixed Knudsen number. The same result was
proved for arbitrary domain together with the exponential stability [6]. Moreover, a large data
existence result was proved by Arkeryd and Nouri for prescribed initial data [2]. In our work,
with the exponential convergence of linearized Boltzmann equation, Theorem 2, we are able
to construct the steady solution as a consequence of time asymptotic analysis. To handle the
nonlinear term, we require the small variation of boundary temperature 1 — T, << 1. Then we
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Equilibrating Effect of Maxwell-Type Boundary Condition... 749

prove the existence of the steady solution for the Boltzmann equation (7). However, the aim
of this paper is to establish the equilibrating effect of boundary and collision. The method
we used in this paper can be seen as an alternative approach to the existence problem of
steady solution. The quantitative structure of the steady solution on the temperature variation
is remained for our future research work.

Theorem 3 (Existence of Steady Solution for Full Boltzmann Equation) Assume that 1 —
T, < 1 and k > 1 satisfies (12). Then the steady state solution ® of (7) exists and satisfies

[Plloe = O = T5), (14)

/D . P (x, &) M(§)dxd = 0. (15)

We have already obtained the steady state solution Foo, = S + M @ for full Boltzmann

equation (7). Moreover, from (15), j Foodxdt = 1. For general initial boundary value
problem, we expand F around Foo: F = Foo + ~/ M. The equation for ¥ is
Yyl -ty
_ _ 1
vt (J Y Foo = M) + = QU VM, /M),
V(X $.0) = in(x, §) = Tt € L, (16)
Maxwell-type boundary condltlon (10)
Lj\DXR} 1/fin(X’ C)v M(C)dde = O

To reiterate, zero initial total molecular number f Yin VM dxd¢ = 0 is a consequence of
nondimensionalization (8), rather than an additional constraint.

To show the stability of steady solution Fn, it is sufficient to show that ¢ decays to zero.
We establish the exponential decay rate by using Picard iteration with the estimate (13) of
linearized Boltzmann equation. The following theorem shows that the steady solution of the
Boltzmann equation is exponential stable when the Knudsen number « is sufficiently large,
(12).

Theorem 4 (Stability of Steady Solution for Full Boltzmann Equation) Suppose that (12)
and % & 1. Then, for any fixed 0 < vy < vy, the solution ¥ of (16) exists and

sansﬁes

_u
1Yl < CllYinlloge™ =",

for a positive constant independent C of «, k, Ty and v1.

The present study focuses first on the equilibrating effect of the boundary condition by
considering the free molecular flows. This approach has been considered for the diffuse
reflection boundary condition, initiated by [16] for one space dimension and then generalized
to higher space dimensions by [10] for constant boundary temperature, and by [11] for
variable boundary temperature. It also has been studied for half space under gravitational
force [12]. This approach makes it possible to study of the full Boltzmann equation when
the Knudsen number is large. Other studies consider the case when the Knudsen number is
of order one. In other words, they consider the case when the collision plays a role at least
as important as the boundary condition in the equilibration of the gases. Also, other studies
consider the diffuse reflection boundary condition. For this, see [1,8,15] when the boundary
temperature is constant, and [1,2,4-6] for variable boundary temperature. For the specular
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750 H.-W. Kuo

reflection condition, the equilibrating effect has to come from the collision. There have been
substantial progresses in this regard on the level of the Boltzmann equation, see [3,8,15],
and references therein.

2 Free Molecular Flow
2.1 Preliminaries and Main Results

The steady state solution S of free molecular flow under the Maxwell- type boundary condition
(5) has been constructed explicitly, [13]:

1

l - i 2t \2
S(x.¢) = - Z(l—a) l(RT(X())) M7 (©),

1
z i1 21 2
Cs = |D| iz 1(1_ @ /(RT(X(:‘)*)) M) §)dxA8, a7

where the boundary point obtained by tracing back from the given interior point x along the
direction — Ig—lz

Y5 (x, é—l) =x—£ xsup{sZO:x—&s’eD, foralls’e(O,s)},

X(1) =YB (X, %) s
g =& —2(& - n(xq))n(x)),
Ek
X(+1) = Y3 (X(k), ‘ET|> .
EH = EF — 26" - n(Xger1)))n(X s

Since the domain D is symmetric, we have the following lemma:
Lemmal For (x,£) € D x R? and each k > 1,
1641 = 18],
X+ —X@) | = X@k2) — Xk n)| =[x —x 1)l
From the explicit expression (17),
Sx,8) — M) =00 -TIM(Q). (18)

We note that S has constant boundary flux 1/Cs:

/ —§-nS(y, §)d¢
£n<0

1 i—1 T 2
= Cs Jeneo ““Z(l_ “ (RT(Y(z)) M1 (s £

- CLS“ Z;(l —a) ! (47)? /

£n<0

_E.nM (;) dé = cis (19)
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Equilibrating Effect of Maxwell-Type Boundary Condition... 751

Note that the molecular number is conserved under the evolutionary Eq. (4) and the bound-
ary condition (3), and therefore the total molecular number f g(x, ¢, t)dxd¢ is a constant of
time. Thus we may define the average total density as:

1
gin(Xv C)dXdC = T g(X, CH t)dXdC7

Px = T
ID| Jpxr3 ID| JpxRr3

a constant associated with g;,,. Due to the equilibrating effect of the Maxwell-type boundary
condition, one can expect the solution g to approach the steady state p,.S. Namely, we expect
the function g — p.S(x, ¢) to decay to zero. Moreover, g — p, S satisfies the same evolutionary
Eq. (4) and the boundary condition (3). Since the space dimension is d and d < 3, it is natural
to integrate out the extra microscopic velocity degrees of freedom:

g(x7£’t) E/]R3—d (g(X, Cst)_p*S(X» ;))dﬂa (20)

Gin(x. ) = / (gin(x, &) — puS(x, £)) . @)
R3—d

s(x.8) = / S(x. £)dn. 22)
R3—d

Recall that 7 is the last 3 — d components of £, (2). Since S has constant boundary flux, the
corresponding boundary flux becomes j, — p4/Cs:

j(y’[)E / _g'ng(x7§7t)d£
£n<0

= / —&-n /(g(y,f,t)—p*S(y,C))dn d§
3—d

£n<0
. p: . .
= / =& -mg(y, ¢, 1)d¢ — pu/Cs = jg(y. 1) — sz = joly, ) — Jjs,  (23)
£-n<0
and the total molecular number becomes zero:
/ (g(x,¢,1) — peS(x,8))dxd¢ = / g(x,&,1)dxdé = 0. 24)

DxR3 DxRd

Moreover, the new functions g(x, &, t), j (y, t) satisfy equations similar to that for the original
functions:

[~ d _
9 8 _
(TerEi&ﬁ:O, =g(x,£,1), xeDCR? EeRY (>0, @58)
Lg(xvg7o) :gin(x’ E)a
, 3
gy 60 = (7Fg) J60OMry®
+(0—a)g(y.§ —2(§ -mn,7), yedD, &-n>0, (25b)
_ 2
Mp) = [ Mr@dnp=--"g,
Ri—d (2w RT)2

but with the additional zero total molecular number condition:
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752 H.-W. Kuo

/ g(x,&,1)dxdé¢ =0, t > 0. (26)
DxR4
Note that M7(¢), the Maxwellian, and Mt (), the reduced Maxwellian, are generally dif-
ferent as functions. To avoid confusion, we always refer to M as the abbreviation of M (¢),
not M (€).
Forxe Dand ¢ € R?, we define 1, = 75(X, &) the backward exit time:

T, (x, §) = sup {s >0:x—s'§ e D, foralls’ € (0, s)}, 27
and
[x — x(1)|
n=u5px48=———-,
&
Xy — X(k+1)
fetl = Tp (X(k),Ek> =0 ) |€k|( D

From Lemma 1, we have #; = t, for all k > 2.
Suppose that the boundary flux j is given. Then the solutions of the transport equation
(25) has explicit form by the characteristic method:

m—1

o k;)(l —a)k (]g (X(k+1)7 t—1 — ktz) - jS)MT(x(kH))
+ ((1 — )" gin (Xon) — E" (@ — 11 — (m — D), ™, )
—a > (1- a)kjSMT(x(Hl))) for 7, < ¢,

k=m

[ gin(x — &1, 8) — puS(x,8)  fort <7,

g(Xa g’ t) - p*S(Xv C) =

(28)

m—1 ~
o Z (1 — O[)kj (X(k+l)7 t—1 — ktz) MT(X(k+1)) (gk)

g(x,&,t)= k=0 m = m m
+ (= )" gin (Xmy — "t —11 — (m — D), &™) for 7 <1,

gin(x—E&t,&) fort < 15,
(29)

m:L|£|1_|X_X(1)|J+l, (30)

X1y — x|

where

and for simplicity of notation we set

- 2 2
Mry = RT () Mry).

The following are our main theorems for free molecular flow, which will be proven in the
following four sections.

Theorem 5 (Global Existence for Boundary Flux) The solution of (4) and (25), with initial
data g;, € Lf;’” , exists and is unique for . > 4. Moreover, there exists C > 0 such that

alnat

JO.10) =0 ginlloo, e " 31)

where C depends on T* and T.
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Theorem 6 (Decay Rate for Boundary Flux) Suppose that gi, € Lfé” for some constant
W > 4. Then the boundary flux j(y, t), (23), satisfies

1 1
j(yv t) = C ”gin“oo,u (m + (1 - a)tm)

for some constant C depending only on |1, Ty and T*.

From (30), for 0 < ¢ < 1 we have m > ¢€ for |&| > tl—e Therefore, Theorem 6 together
with (28) yield immediately the pointwise convergence of the free molecular flow g, Theorem
1.

Remark 2 When o = 1, the case of diffuse reflection boundary condition, we have the
convergence rate (14 1)~ of the boundary flux [10, 11]. Roughly speaking, the equilibrating
effect is mainly from sufficiently many collisions with the boundary of diffuse reflection
condition when ¢ is large. For Maxwell-type boundary condition, we have two possibilities
after each collision with the boundary: one is diffuse reflection and another is specular
reflection. This yields multiple scales in the convergence to the steady solution, and is one of
the main causes of the analytlcal difficulty of this paper. Eventually, we have the convergence

rate (1 + o)™ + (1 — ) 7 of the boundary flux, Theorem 6. (1 — &) 2 comes from the
coefficient (1 — «) of specular reflection although specular reflection condition itself has
no equilibrating effect. (1 + ar)~¢ is from the diffuse reflection condition where the rate is
essentially the same as before. However, we only have diffuse reflection for a multiple of
o, and so the convergence to steady solution is slower than the case of the complete diffuse
reflection. For instance, it starts to converge only when ¢ > é; before that the solution is
simply bounded.

2.2 The Global Exitence for Boundary Flux

In this subsection, we prove the global existence for the boundary flux function j(y, 7). It
should be noticed that we may associate the boundary flux with the backward flow of parti-
cles. Once particles collide with the boundary, both diffuse reflection and specular reflection
occur for the Maxwell-type boundary condition. Note that diffuse reflection is stochastic and
see [10] for more details. In contrast to diffuse reflection, specular reflection is deterministic
and has no equilibrating effect. In the following discussion we first give a solution formula
of boundary flux for general domains. Here we assume temporarily that the accommoda-
tion coefficient is variable, 0 < «(y) < 1, for explaining what difficulties arise from this
assumption.
Fixy € 9D, t > 0, the boundary flux can be written as

J@. ) = / (=&, - 00) Zin(y — £11. £1)dE,

Iy=y(!
=TT

) Iy =yl
+ / (—51 : n(y)) o (y(l)) MT(Y(l))(El)j (y(l)’ ' yTi(l)) @

ly=y(p!
=g
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754 H.-W. Kuo

_ ly —yo!
+ / (=& -n) (1 —a(yy)) g (Y(l)’ t— ylerl)gi) dg§,

Y=yl

> \El(ll)
=jYa.0+DVy.0+EV .0, (32)
where jl.(,? ) is a direct contribution of initial data, both D and EM are the events that

boundary collisions are more than once. More precisely, the first boundary collision takes
placeaty ), DD and EW represent diffuse reflection and specular reflection of the backward

flow respectively. We can continue to write down the formulas for D! (y, r) and ED (y, 1):

DD (y. 1) = DY (y.1) + DYy (v. 1) + DB, (y. 1);

1
EV(y.1) = EL)(y.0) + Ey (v. 1) + EQL (3. 1),

where

Di(rlz)(y’ 1) = / (—& -n(y) OZ(Y(l))MT(y(I))(§1)

Y=yl _Iyay—ya,pl
O<t =77 3]

ly =yl

™ —), Ez) d§,déEy;

(—&>-n(yq)) &in (Y(l) —&,(t —

D[(ﬁ}(y, DES / (—&; -n(y) Ot()’(]))1‘~4T(y(1>)(§1) (—& -n(yy))

y=yen! ey =¥
B T o

y—ynl Iya —Ya.pl
@ (ya,1) M T(ya) 62)J (Y(l,l)’ r— G &) dé,dE;

Ds(llz)e(y’ 1) = / (—& 'n(y))a(y(l))MT(Y(l))(gl) (& -n(yy))

vl va—vaun!
€11 €21

_ y=ymnl I¥o —Yu.pl
(1—0‘(3’(1,1)))8(Y(1,1)st— |,g.]|() - ()|,g.2|( )75;)61524”51;

EDqy.1 = /‘ (—& -n®) (1 —a (y))

0<t_\yfy(1)\ Iy(1)— Y(z)l
&1 \5 |

_ ly — |
8in (Y(l) - E} (f - ylerl))) dg;
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1
Ey(y. 1) = / (=& -ny) (1 —a (y)
-yl vyl
- ly\syl(\l) > yu?&}vwm
~ . y=ynl Iyay — Yol
A (Yo Mr(y o EDJ | ¥t = = — = ) s
131 €11
E.g[ll)e(y’ 1) = / (=&, -n(y) (1 —a(yq))
=yl vy -yl
€11 \5:\
- Y=yl Iyo) — Yol
(1—“(y<2)))g<y<2>:’— &l (&7 )dE,.
1

Di(’? is the event that the backward flow reaches initial state after diffuse reflection occurs
once. Dfﬁ'} is the event that diffuse reflection occurs again at y(; ;) after the first diffuse

reflection at y(;), and DS([],)E is the event that specular reflection occurs at y(; ;) after the first
diffuse reflection at yy,.

Ei(,l) is the event that the backward flow reaches initial state after specular reflection

occurs once. Eg} is the event that diffuse reflection occurs at y ) after the first specular
reflection at y(;), and E s(}?)e is the event that specular reflection occurs again at y,, after the
first specular reflection at y (. Note that both Dl.(,ll) and E l(,l,) represent the contribution that

the boundary collision takes place exactly once. More precisely, Di(rll) and El(,ll) represent
exactly one diffuse collision and exactly one specular collision, respectively. If we want to
compute the contribution that the boundary collision takes place exactly twice, we need to
take D;ll} Ds(},)e, Et(il_)f and £ s( ,l,)e into account. In other words, we must proceed to write down
their formulas. Then there are four events arisen for exact two boundary collisions: (diffuse,
diffuse), (diffuse, specular), (specular, diffuse) and (specular, specular). One can repeat this
process inductively to compute the event that the boundary collision takes place exactly n
times. In that case, we need to handle 2" possibilities. That would make the solution formula
lengthy and complicated. That is one of the main causes of the analytical difficulty of this
paper. Another tricky problem is the variable accommodation coefficient «(y). In this paper
we assume & (y) = « is a constant, this assumption not only makes the solution formula easier
but also allows us to estimate all combinations of the events. We explain this by considering
binomial expansion formally:

n
(adiffuse + (1 — a)specular)” = Z (adiffuse)* (1 — a)specular)" ™ . (33)
k=0
Then all combinations of events, R.H.S. of (33), can be dominated by
(adiffuse + (1 — a)specular)” = O(1)(a + (1 — a))" = O(1),

for example, if we can show each term of diffuse and specular is bounded. In other words, we
can treat the effects caused by diffuse reflection and specular reflection independently when
« is constant. For the variable accommodation coefficient «(y), the problem is more delicate
and might involve different techniques. This will be our another research work in the future.
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From now on we assume 0 < o < 1 is constant. We define the following notations
inductively:

_ &
Yki,ki—1,i) = ¥YB (Y(kl,...,kl_l,ifl)’ H) >

R .
=8 =2 (5 n0w ) N0k

where y, ., indicates the location of particles via the backward flow process that:

.....

(ky — 1) specular — diffuse — (ko — 1) specular — diffuse —

-+« (kj—y — 1) specular — diffuse — (k; — 1) specular .

According to the above discussion, we can find the solution formula of the boundary flux for
general domains. Since the equation is quite lengthy, we omit it here and see [9] for more
details.

In the present paper we assume spherical symmetric domains and therefore we can make
use of this symmetric property to obtain more precise formulas for the boundary flux by
using change of variables:

r R 2 . _
5i = GIE ifd=1,
Yy ki 0 Yk gD
L kilEil 1fd — 2

cosdi = —&; 0¥y, k1))
We define s
( (2

Ho)=(2) e () ira= 1,

2cos

2 (34
G($,0)= ¢ (2‘3%"’)4{( ) T

1
2

Here we give the formula of j(y, t) for d = 2. The formula for d = 1 is similar to the
case of dimension 2 (replace G by H). We omit it and more details can be found in [9].

n

k k
. —ky—...—k +(k—kj—...—k
jy.t) = E E E /(1 _ O()k ki—... kl-]i(n 1 ,)(y(kl ’’’’’ fysf— 51— e — s1)

k=0 | I=1 kj+kot-Ak=I

I
2RT 3)Si 2RT )
H(l —a)k"_laG(cbi, v (y]gq """ £ )\/ (kal """ kl))dsid@
i=1 t i

+(1—f Py, 1)

n+1 n+l
n z Z /(l _ a)n+17k17...7k1E(nJrlfklf"'*kl)(y(kl """ Ky P —S1— - — 1)
I=1 ky+ky+--+k ="
1
B 2RT (Y, . 1)Si 2RT (Yky,...k1))
H(l —a)fi ldG(¢i7 v ,i,]’ AN kf Lt dsid g
i=1 ! '

+ (1 —a)" T ET Dy, 1),
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where
Lk
iy = / (—& -ny)
K vovaen! e —varn!
0=t EO Ig] = Ik |
< Yo = Yas|
- 1 l
8in (Y(k) —Elf (f—zlgil),glf)dsl, (35)
i=0 1

n

_ I¥i) = Y+l |
E®D(y, 1) = / (—& 'n(Y))g(Y(n+l)vt_z(l)|§i|(l)s$lll+ d&y,
= 1
’>i @) =Y+ i=0
iz &

EO%y.0)=jy.0. (36)
ji(,]:) represents the event that the backward flow reaches initial state after k times specular
reflection. E"*D represents the event that the boundary collisions are more than » times and
the first n + 1 ones are precisely specular reflections. It should be notice that £+ is not
the end. E@™*D jtself involves an infinite series and we will use the coefficient (1 — )" *!
of E"*D to get the decay for refined estimate later.

Now we are ready to prove the global existence of the boundary flux function.

Proof of Theorem 5 To compute the boundary flux j(y, ¢), we need to take all events into
account. In other words, we have to sum up all events for each boundary collision. Hence,
we have the following infinite series due to the above discussion.

jen=340-0fPan+> > d-wihih

k=0 1=1 ky+kp4--+k =l

(k—ky ==k
Jin T gy £ st )

,,,,,

X

O<s14...4s<t

ﬁ(l —ki~laG | ¢, /m(

— ———dsidgy, d =2,
i=1
ol o\ e
/ 2RT\Yky ..., k) )Si 2RT\Yky...k
101 =)ol et - ) i ,d=1
= i i
(37)
The index k here means the exact number of boundary collision and we will show the
convergence of the series. From (35) and noting that |&'| = |&| for each i, we have
o0
(k
S a-akil .0
k=0
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llginlloo,
= Z/ ! v - y<r+1>|<|§‘<z EIOREIE] ‘ B (Y)‘ (I+oH ndt
| — H(Y)l
< ”gll’l”oou/ (1 +C)M C
=0 ginllco, (38)

With (38), we rewrite (37) as

k
J(y,r>—0(1)||gm||w+z > Z )

=0 | I=1 kj+ko+-+k=I

k—k —ki
% / Jt(n g [)(y(kl gy S — =Sy

O<sy+...+s1<t

i

% §i=1

00
=0() ”gin”oo,u + Z (1
=1

7 —
: / Jin T Oy ST =)

ki=1 ki=1k=ki+...4+k;

,,,,,

O<sy+...+s1<t

{ 2RT )si 2RT (Y &
[Ma-ekc (¢i, N (y,ik' """ i) ) V (ka"“”k’))dsid@, d=2,
i=1 !

i

X

By plugging (38) into (39) and direct computations, we have

o0 o0
DI
.
k=1 kl:10<.v1+..4+.v1<t

L 2RT si 2RT )
[Ma-wkc (¢i, v (y,ikl """ ) ) v (sz‘ """ k’))dsid¢i,

i

J @0 =0 Iginlloou {1+ (1
=1

X

e [ o0 1— ki oo 1— ki
= 0 gl {143 (125 Z&WZ%
=1

ki

k1=1 k=1

lL[ (71 IG Il L «/ZRT*) dsi, d =2,
X
] (||H||Lw «/2RT*) ds; , d=1,

0<s14...4s51<t i=1
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; (nanLoth)l

00 |, o k
o (1 — )<t >, d =2,
= ol 143 (722) ( ) n
tnlloo, z 1 —« klzzll k1 (”HHLOO 2RT*I)/ Je
—n - 4=5h

It is easy to check that

and therefore we have

—alna *
) eW”HGHLOO 2RT t’ d=2,
](y, t) = 0(]) “gil’l”oo,u [ e*f:h;o( HHHLOO ORT*t d _ 1

2.3 Preliminary Estimates

The discussion of this subsection applies to all space dimension. To avoid complication in
notations, we treat only the 2d case. And we will use the following Law of Large Numbers
to get a refined estimate. It can be proved by the similar argument as in [10]. Therefore we
omit it.

Theorem 7 (Law of Large Numbers) There exists some constant C > 0 such that, for any
y and m with y/(mn)d%l > C,

md 1 log(y + 1)
yd+1 :

/Hn(cr)da :P{% <IXi4... +X, —nE(X1)|} — o)

%<|07nE(X1)\
where X1, Xa, ..., are i.i.d. with the probability density function
2
2\3 — % .
Ho)=1()e G pa=t,
[G@.0)d¢ ifd =2,

and H, is the probability density function of the sum of i.i.d. random variables, X1 + X, +
.-+ 4+ X,. Notice that Hy is a convolution of H itself, H, = (H *---x H).
——— ———

n times

In order to get a refined estimate, we start with the specular reflection:

m—1

Ja.0 =2 0=k 0
k=0

/2 ¢t

" 2RT () 2RT (y )
raya-o! | /j(Y(k)’t_s)G(¢, il _— )J O dsdg
k=1 -7/2 0
+ (1—a)"E™(y,1) whend =2, (40)
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m—1
JELD =30 —a)b i LD
k=0
m z — —
+a> —ot)k_l/j(:lz(—l)k,t—s)H(S\/ZRTEjZ( D) ))JZRT(]:(t( Do ¢
k=1 0

+ (1 —a)"E™(x1,r) whend = 1.

Define
m—1
Iy = > (1 - . 0.
k=0

and rewrite (40) as:

J@n=J",0+ 1 —a)"E™(y, 1)

/2 ¢t
m - . sV2RT ) \ 2RT (¥ o)
+a > —wh! / /](y(k),t—s)G(¢, V' s ® )\/ - ®) 15ap
k=1 /2 0
(41)
By iterating (41) n times, we have
Jon=Jdg 0+ A=) E™(y, 1)
n—1 m m
1530 NIRRT |
i=1 k=1 ki=1 0<sy+s2+-+s; <t
i 51 2RT Wity ) \ 2RT Girkp)
[16 (¢ k k
j=1 J J
[Ji(,:n)(ym ..... kot =5t = =)+ (=" E™ (yq, . ki)’t_sl_'”_Si)]

dside; - - - ds1de

m m
+ an Z(l _a)klfl,._ Z(l _a)knfl
ki=1 kn=1
T Ky ko) T 81 =82 = =+ = $n)
0<s1+s2+-+s, <t

ﬁG(qb' Si\/zRT(Y(kl,“.,k;))) V2RT (Y. ki)
s

ki ki

dspdey ---dsidgpr. (42)

i=1
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To estimate (42), we define
' . J2RT , 2RT _
jm o (y1) = 1’—[ (s s/\/ Vi) \/ Y yk)
Jiy, oy Y 1) = . h k'
0<sy+Ss2+-+s; <t j=l1 j y
{Jl(l‘l)(y(kl ,,,,, kl-),t—sl—..._Si)_l_(l_a)mE(m)
Vit ks T =51 === = 5i)}dsidg - dsidg
and
J((knf,r.'?,k,,)(y, t) = / j(Y(lq,kz ,,,,, k) ! — ST — 82— — 5n)
O<s1+s27++sn <1
n Si 2RT(y k k: ) 2RT(y n B )
[1ee . b)) ¥ C ki) s udpy - -~ dsid .
i=1 ki ki
Recall
m—1
. (k
UACDED NS
k=0
m—1
=0 (=) Iginllc,p
k=0

= 0Mm|ginlloo,, -

Moreover, we have for ¢t > 1,
Ji 1) = —& Wi ) — £t — k), g

kly=y(! k+Dly=y(p)!
—<lgl< ;

= 0(1) gl / E1dig]

kly=y(n! k+DIy—y|
——<lél< 7

d+1 d+1
(k -+ Dly =y, )™ = (kly — v )"
=0(1) ”gin”oo,u td+1

2k+1

= 0(1) llginl o=t
B Sinfoon | 3243kl for g = 2,

Thus we have

m=1 2EL ford =1
(m) k t ’
Iy, ) =0(01)|g > -
i (Y1) M llginlloo, k=0( o) 3k24;§”<+1 ford =2,
14+ (1 —o)mdt!
= O0W liginllooy — g7 (43)

In order to estimate the remainder terms, we define a priori bound of boundary flux j (y, 7).
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Definition 1 Define the a priori bound J by

(Wilzz) ford =2,
J(@) = sup 7 .
oot | (14 @1+ 1j-@)] ) ford =1,

where ji (1) = j(%1,1).
From (29) and (36), it is easy to show

E™(y,1) = 0() (T(®) + lIginlloo ) -

Fori < n, we divide ]( m) 1) (Vs 1) into the following two parts
-(i,m) _ _kion _ ki
J(kl ,,,,, ki )(y’ t) - (/dl /Efz) { in (Y(kl ..... ki)» t m T 2RT(k1.,A,,ki))
_ (m) _kiop _ . kioi
+(1-)"E"™ (Y(kl ..... iy T T RTy, IRTg, .. k[))]
i
x [1(G@1.ondordgn)
=1
= ey 0+ T ),
where
o = klal ki . — \/T* )
2RT(k, 2RT,,...,
oy = T* k10‘1 kioi
Vr gy R Ty
.(i, m)slow

For j: ) 3. 1), the time needed to trace back to an interior point is at least #/2:

.....

ko ki /T*
,/QRT(/(I ,/ZRT(k] """

[\

ko  kioi T.t t
= I- >t—q/—==>=.
1/2RT(1(1 1/ZRT(k] ’’’’ T* 2

Thus

(l m)slow
Tt ek 1)

5/ sup (‘
2 S<s<t
&
1+ (1 —o)mdt!

=0() (”gin”oo,p, — g Td- )" (Ilginlloo, . + J(t))) . (44)

L;o) (s) x / H G (1, o1)dydoy

+ (1 _ a)m
Ly

Note that the estimate (44) relies merely on the smallness of the speed.
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(z m)rare

For j (y, 1), the time consumed to trace back is at least %t /2. Therefore,

.....

T, t
—*—\/ﬁ<(7]+...+m,
*2m

ﬂ@mﬂx)<OUNmMMMM+U—aWUmMmM+JMD

. / [T 6@ onddudo

=1
\/ % ﬁ»\/2RT*<U|+...+0,'

= 0) (m lIginllos,; + T () x Hj(o)do

oo
=&ﬁﬁﬁm¥
[T, t
= 0(1) (mllginllo,, + T (1)) ¥ Pr[Xl +...4+X > T”;zm,/zRT*}.

(45)

Note that 7, m, the index of J; (” m) 1) (¥, 1), are variables at our disposal. Throughout

this paper we assume t/mn > l Recall that our final choice of n and m is mn = [t"],
r e (0,(d+ 1Y, Thus r < 1 and so, for large t, mn < t. Since E(X| + ...+ X;) =
iE(X) ~i<n<,/ % ﬁ«/ZRT*, (45) represents the probability of a rare event. We now
apply the law of large numbers, Theorem 7, to estimate (45): choose the truncation variable
y to be 2RT*%. Under the assumption t/mi > t/mn > 1, we have

T*\/—t . 14 !
F 2RT*% <ot Cly <lo —iEXDI}, - > L.

(mn)d+T  (mn)d+T

.....

Therefore, we can apply Theorem 7 to obtain

m@*1idlog(r + 1)
B 1) = O (1 8inll s+ T () *—— 5 ——. (46)

.....

Note that the estimate (46) relies merely on the law of large numbers.
For J (n, k ) we conduct a similar decomposition:

.....

(” m)y N _ (1 L )k, k1o _ knon

kisok, (y, 1) = / / y(’" L R
( . ) %1 B, /ZRT(kl) /2RT(klwkn>
xHﬂ%@M@y

=1
(n, m) (n, m)rare

,,,,,

where
B =10< kli—i—...—{—% <,/££
V2RT ) 2RT k... k) T*2
T, kioq kioy
By= )« —— 44— 4t
‘ T2  \/2RTy,) 2RT . ...k
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We can apply the same argument of ]((,:'] m)rk“ ¥ to J((k"] m)rk“;e to obtain:
d+1,d log(t 1
e (y, 1) = 0(1)j(t)mﬂ—+%(+), whenever 1 /mn > 1. (47)

‘We omit the details.

Lemma 2

—1 1 )
TS - (e
k1=0 k;=0 o

n—1 m—1 m—1 n—1 )
Dl > Z(l )ttt =" (1 - (1 —)™) = 0()an
i=1 k1=0 i=1

Since

J@n =T, 0+ 0 —a)"E™(y, 1)

—1 m m
DD NIEUUEES SRV G
ki=1

i=1 k=1
m m
+ " Z(l _a)klfl .. Z(l _(x)kn*lJ((kﬂl m)k )(y’ t)

k=1 =1

putting (44), (46), and (47) together we have:
Theorem 8 Fort/mn > 1,

) m(mn)@ ! log(t + 1)
jo.0=0() ( e + (1 =)™ ) I8inlloc,ye
(mn)?*log(r + 1)
+ 0(1)( tdf + A=) )T
m m
+a" > - > A=A .0,
k1=1 kp=1
where
Agzl??)-,k,,)(y’ = / J ()’(kl ,,,,, ks T =81 — .. — sn)
O<sy+...4sp < %L
2RT
(HG (d’l, /2RT(Y(k1 A,))) V (Z(kl ..... ) dids) ) whend = 2.
]
(48a)
Agzlm)k )(:tl, 1) = / Jj (ﬂ:l(kl,...,k,,); t—s1—...— Sn)

O0<si+...4+sn < T*

(HH( «/2RT(3H(I<1 ..... k/))) ZRT(:il(kl ..... k[))dsl) whend = 1,
1

(48b)
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m)

.....

With the aid of the law of large numbers, we have estimated j ( k
(n, m)
A

(n,m)rare
k) and J(kl ’’’’’ k) - . The

remaining term . k) consists of the main event, which requires more effort to estimate.
To show the convergence of boundary flux j, we need to use the crucial conservation of
molecular number (24) and (28), as

1
Jy, 0 =jy. 1) — 2(x, &, 1) dxd§
Cs|D| Jpxgd

1
(70005008 — g 8, 0)dxat

~ 1D Jpxpa
1

D] Jjg< 22!

! ' 3 dxd

1 Jsan s (FO0 05008 = (k. 8.0) )dxas

f<|§| “Tog¥D)
L
|D]

1
(73 05x.8) — o8 0x 8,0 dna

. 1
sy (10 D800 8) = 3 (x.£.1) ) dxdg
|§\>W N

= Jin(y, 1) + jmia(y, 1) + ji(y, ). (49)
It is easy to see that if we choose K = K (x, &, 1) such that

Ix — X(1)]

K-1< -
log(t +1)  Ix1) — x|

then we have

X — x| + (K = DIxay — x| X — x| X —x0)l + K[x1) — X2l
t log(t + 1) t '

(50)

Since the domain is spherically symmetric, it is easy to show that

[x — X(1)| <1
[X(1) — x|

and therefore K ~ bg(#l)' With (50), (29), and (30), we have

1
0 2

1 i1 2
Jin(y, t) = CS|D| IX*?:(l)\ [Ol Z(l —a) Jy. 1) (RT(X(,))) MT(X(i))(E)

i=1

- ém(x—é‘t,s)]dxdé, (51)
Jnia(¥: 1) < oo |D| Z/A { > (1 —a) iy ) — Xyt =t — o — 1)]
! o) 1
2 2 Nk it 2n 2
x ( <7 (x@)) M7 &) + (1 =) (a ,»:zl(l ) jy. 1) (7” (XM))
X MT (x4 (E) — Zin (X(k) —thr—n - =), Sk) )} dxdé§, (52)
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Jp(y, ) = ﬁ o b la é(l —)' i) = Xt =t = e — 1)
(RTz(Z(i))); Mr(x) &) + (1 — a)K(a g(l —a) iy, 0 (RT()ZK(HKM))é
M7 (xgii)(E) — & (X(K) — &5t -1 — ... —1p), ’ék))] dxdg, (53)
where

X — x| + (kK = DIx) — X2l X — x| + kX)) — X
Ak:[ M t =¥l _ g M t() ol]

Each component of j can be estimated in terms of 7 (¢) and the fluctuation of j. Therefore,
it suffices to consider the fluctuation of j. For ¢’ < ¢, mn/t’ <« 1, Theorem 8 yields

. ) m(mn)*t log(t’ + 1)
jy.n—-j. )= 0(1)( prES] + 1 =) ) lIginlloo,p
(mn)d ™ log(1' + 1)
+ 0(1)( pTEs + - )T
m m
ta" Y A=) > (=)
k=1 kn=1
X (AEZIT.)A,k,,)(y’ 0= A" ) ’/))' 54
And note that " 3" _ (1 —e)*171 .. 370 (1 —a)»~! < 1. Therefore, we need only to
estimate the fluctuation of Agzlm) k) and show that they are uniform for each (ki, ..., k;).
Since
AG" @D =A™ ) = (AEZ;T.).,kn)(y’ 0= A" )0, t/))

(n,m) / (n,m) ;o
+ (A(k1 .... k”)(y’ 1) — A(k] qqqq kn)(y i ))’ (55)
we may consider temporal and spacial fluctuation separately. We study the temporal fluctu-
ation in Sect. 2.4 and the spacial fluctuation in Sect. 2.5.

Remark 3 For the Maxwell-type boundary condition, which is a convex combination of the
specular reflection condition and the diffuse reflection condition, the intricate dependence on
the accommodation coefficient « yields serious analytical difficulties beyond those in [10]
and [11]. One needs to consider all the events of particle colliding with the boundary many
times (37). In that case we need to deal with the problem that the diffuse reflections are
coupled with specular reflections. Roughly speaking, for the events that specular reflections
are more than diffuse reflections, we need to obtain the decay rate even if the specular
reflection itself doesn’t have the equilibrating effect. We achieve the aim through (43) and
(44). For the events that diffusion reflections are more than specular reflections, we may
modify the analysis from the previous works [10] and [11] to get the decay rate (47) and the
upcoming fluctuation estimates. However, the appearance of specular reflection will slow
down the decay rate. Finally, we succeed in combining all events via Theorem 8.
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2.4 Temporal Fluctuation Estimate

In this subsection we consider the temporal fluctuation. Recall

AEle.r.l.).,k )(Ys 1) = / j(y(kl.kz ~~~~~ k) L= 81 =82 = = Sn)
0<sp+s2+-+sp < ;—’;t/Z
n Sin/2RT YV ity k) Y V2RT Vi oo k)
[Tc( s VRO Gt ) VRO ) g, ayagy
ol k,’ ki
0<2RT(k >+2R7k'<2,::2k2)+ +2RT(‘kn(T.. </2
) (y ; kioy knon )
,] k) T e T
(k1,k2,....kn) 2RT) 2RT,. ...k
n
H G(¢i, Ui)dand(z)il te d01d¢1 whend = 2,
i=1
AEZIT_),,m(ilJ): / J(EN ko, k) T =81 =82 =2+ = Sn)

O0<s1+s24+s, < %Z/Z

ﬁH Si\/ZRT(il(kl ----- k) \/ZRT(:EI("' '''' ))ds ...ds
! ki ki " 1
i=1
0< 2;;_;’;1) ZR%:Z,kz) e +2RT(];<"{»I-I»1-~ =2
) kioq knon )
J\ Tl ko) T — T T L
( (k1.ka ) 2RT ) 2RT k... ky)

HH(a,-)da,, ...doy whend = 1.

We note that the kernel H (o) and G (¢, o) are smooth in o, and hence we may differentiate
A(" m) with respect to ¢ directly to obtain an explicit expression.

.....

Lemma 3 Let n be any positive integer. AEZ;m)

atives has two parts:

k,,)(y’ 1) is C! with respect to t. Their deriv-

,,,,

200 =B ) 000 VT 000,
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The first term B(" m) is the boundary term:

.....

n,m Ty 1 [2RT,..... \/ZRT]( ki)
B )0 0) = = (1_\/T*) / HG(fﬁz, — k”) .k

..... 2 kl
S1t..Fsp= T*

. T,
Xf(y(h ..... k)o T = Ti )dl ~dsp—1d"¢ whend =2, (56)

--dsy—1 whend = 1. (57)

X
~
N
H_
—_
=
-
|
351
N~
v
i‘;

,,,,

(nm) ! Sl‘/ZRT(k)
Vier oy @1 = — //\/T / G(¢1,k[1 X

S1+...+sp=t—s =

,/ZRT(k] ..... k) 0G (¢ S] ZRT(k] ’’’’’ k]))

ki

—_

V2RTw))  2RTq,....k)
k1 kn
whend = 2, 58

! 2RT,
vgm = //\ﬁ /‘ H(ﬂ¢k<m)x
,,,,, - [

..... k) ﬁ Si 2RT<k1,...,k1>
ki do k;

V2RTw)  2RT....k)
kq ky,
whend = 1. (59)

XdS] "'dSn_l j(y(kl kﬂ),S)dS

.....

X ds1 ---dsn,1 j(:l:l(kl

ka)» $)ds

,,,,,
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The lemma can be proved by a similar argument as in [10, 11] and we omit it. The boundary
term 3, can be easily bounded as following. First, we have

1B @0l =00 sup (17l )

»»»»» P
3 <s<t

ki

/ V2RT,
x / (H G ( 2RT(k] ..... ki ) (ki,....kr) )dSl . ds'171d11¢

S+ .+s,l:%

= o) sw (Ijlig) ®

I3 .
§<.S <t

n
X / HG(@,cr,)dsl ---dsy_1d"¢ whend =2,

=1

k1o knon
Wiy T 2R

[Sh

(60a)
(n,m) . .
1By, iy (EL DI = O(1) sup (|]+(S)| + |J7(S)|)
§<Y<l
X / (HH ( 2RT“I vvvvv kﬂ) v 2RT(’“""’k’))dsl ceedsp_q
ki
51+...+sn:%
= o) swp (1+®]+1ji-6))
f<s<t
. n
X / HH (o7)dsy---dsp—1 whend = 1. (60b)
Y . =1
2115'11'(,(1 ST +2RI(I<,:X:’” ):%
Hence given ¢ < ¢ with t'/mn > 1, by the law of large numbers, Theorem 7,
t
[ B 4 wsvids = 0) swp (1) ©
t 2<A<l
log(t' + 1
x %S(H, when d = 2, (61a)
/ |BEZIT_%,k y(EL s)lds = O(1) sup (|j+(S)| + |j7(S)|)
t 2<€<t
log(t + 1
rloe A g (61b)

t/2 ’
We next turn to the major term V,, First, as above, we have

1 .
Ve @0l = = sup (Ilzge) )
7<S<l

2RT,
(k1 ,,,,, k) d"od"¢ whend = 2,

G
VD) Gy, o) - 155 @100 G(du, on)
o

(62a)
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1
Ve L0l <~ sup (16l + 101

,,,,, .
7 <s<t

2RT oH
/ Z ““ """ (01)-~3—(01)- “H(oy)|d"c  whend=1.
o
(62b)
To estimate (62), we use the following lemma.
Lemma 4 For any integern > 1,
° V2RT,... .k G
/ > Yt Ggron) - (o) - G, on)| dod"
= k; do
-0 ((n log n)%) , (63a)
2 V2RT ...k OH
/ > VAR R) oy S - Ho) | do
= k; do
=0(m?), (63b)
Consequently,
1
. logn?
Ve 0.0l =0 sup (Il) ® x( ) whend =2,
2<A<l
(n.m) \?
Vi @& L0l =0() sup (1j+6)]+1j-()] ) x (—) whend = 1.
Lseeos n
§<S<[
Proof Note that k; > 1 for each [, so
2\ V2RT,....1) G
S Y Gy 00 o) - G on)
=1 k[ do
G
Z 2R Ty, k) G($1,01) -+ == (91, 01) -+ G (g, o)
=1
Then we follow the Lemma 3 in [11] to conclude the proof. ]

The following theorem follows from Lemma 4 together with (61).

Theorem 9 Lett’ < t, then, for 1 < t'/mn,

A" oD =AG" ey =0 sup (1jl) ©)

..........

2 <€<I

3.2 / 1

log(t 1 I 2

X(mn (;i( + )+(0gn) (t—t/)), when d =2,
n

A" oy LD = AG™ &L = 0) sup (1+6)] 4 1j=()1)

----------

2<S<l

2 / L

log(7 1 1\2

X(mnog<+>+() (,_t/)), hend — 1.
12 n
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From Theorem 9, (54) and (55), we obtain:
Corollary 2 (Temporal Fluctuation Estimate) Let t' < t, then, for 1 < t'/mn,

3log(r’ + 1
J0.0 = 1) = 0(1)(’"(’””) ot )+(1—a>’") (Iginllooe + ()

1 2
+ 0 sup (Ijlig) <s>x(°f") (t =1, ford =2,

I/
5 <s<t

Zlog(t' + 1
JEL D — (L) = 0(1) (m(m”) e )+<1—a)'")(ugmnm,ﬁja))

1

1\? )
+0(1) sup (|j+(s)|+|j,(S)|)x(;) (t =1, ford = 1.

S<s<t
2.5 Spacial Fluctuation Estimate
In this subsection, we investigate the spacial fluctuation.

Theorem 10 (Spacial Fluctuation Estimate) Suppose that t/mn, t/mN, N > 1,0 <q <
1,y,y € 0D. Then

((mn)> +m3N?)log(r + 1)
13 +

Jjo.n—jo.n=0(@) ( - Ot)m) (Iginllog,p + T (@)

+ 0 sup (Il )

S<s<t
1 1
1 2 log N\ 2
X((ogn) mN+(0g )), whend =2,
n N

m3n?log(t + 1)
2

lj(+1,0) = j(=1. 0] = 0) ( + (1 - Ol)m) (7@ + lginlloo,)

on((E) -+ (20)

sup (1j+@I+1j-0)]) whend =1.

%<s <t
We consider the one dimensional case first, which is much simpler than the multidimensional
cases.
ONE DIMENSIONAL CASE, d = 1.

This case differs from the multidimensional cases in a fundamental sense: unlike the
multidimensional cases, the boundary, comprising of two points, is discrete. This makes
the one dimensional case much easier. Instead of processing A+ ,, we directly estimate:
j(+1,1) — j(—1,1). Recall
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m—1
JELD =D 0=k 1,0

k=0
mn ‘ 1)k 1)k
+ aZ(l—a)k—l/j((—l)k,t—s)H(s‘/zRT(( 2 ))‘/2RT(( D7 4
k k
k=1 0
+ (1= )™E™ (+1,1).
From
it k _1)k
/H(s\/ZRT(( 1) )) \/2RT]£( DOy
0
we have
mn it —_ 1)k —_ 1)k
j(_m=az(1_a)k_l/j(_lat)H(stRT« 1)))J2RT« Db
k k
k=1 0
+d =" j(=1,0).
Now consider
JEHL) —j(=1,1) = Z(l o) J,(k)(—i-l 1)
k=0
m t.
+a>. —a)k_l/ Dk =9 - j=1n)
k=1 0
—_1)k —_1)k m
i $Y2RT(=DH ) V2RT(( 1))ds_wz~‘(l_w)k_1
k k ~
z _1)k _1)k
/j(_l’t)H(s\/2RTk(( 1) ))\/2RT]E( Do

t
T (1—a)" (E<m>(+1, 1 — j(~1, z)) .

As before,

m—1
k (k) -
kg()(l —O{) Jin (+1 t) 0(1) ”gm“ooy (t+1)2

(1—a)" (E™(+1,0) — j(=1,0) = O()(1 — )" (T@) + I ginllos 1) »
and we decompose

1

—1k —1)k
/(j((_l)k,,_S)_j(_l,t))H(stRT« D ))JzRT« Db

=0/tq(...)+;//2(...)+t//;(...),
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where 0 < ¢ < 1 is to be determined. And then

m o — —
“Z(l—a)k_l/j(—l,t)H(s\/ZRT(( 1”)””“ DY s
k=1 f

k k
< k—1k2 m?
= 0IMe Y (1 -} 5 = 0T (1)
k=1
m ! m k2 2
— _ m
ad -t [ () = omdma Y -af 1 = oman
k=1 i k=1
m t/2 2 m
aZ(l—a)“/(...) = o) (i) sp (1740 + =) )a (1 = )42
k=1 fa td %<x<t k=1

=0 (%) s (L)1 +1-)1).

4
§<S<I

Finally, we consider

14

—_1)k _ 1)k
/(j((_l)k!t_s)_].(_l,,))H(s\/zRT« D ))JzRT(< Do

k k
0

19
=/(j<(—1)",t—s)—j((—l)k,r)+j<(—1>",r>—j(—l,r))
0

4y (sﬂRT((—l)k)) V2RT (—1)k)

d 9
k k S

and it is easy to see that

14

n Y3 1k
“Z“‘“)k1/(1“—1)’2:—s)—j((—l)k,ﬂ)H(sﬂRT(( 2 ))JZRT“ DD 4
k=1

k k
0
< suwp [j(ELD — (&L,
t—t9<t'<t

14
S 2RT ((—1)k 2RT ((—1)k
aZ(l—a)k—l/(j((—l)’ﬁr)—j(—l,z))H(” - )))V DD 4
k=1 0

m

14
_ 1)k EREY
=a Z (1—a)k_l/(j(+1,t)_j(_l’t))H(s\/ZRT(( 1) ))\/ZRT(( Do
0

k k

k=1,k even

o
(L) —j=10).

<
T 22—«
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Hence

1 2
T LD —j=11)=0() (7 + (- Ot)m) (T@) + l1ginlloo..)

+  sup  [j(EL D) — j(EL 1)

t—t9<t'<t

+ o (2) s (11@1+1-01).

t
y<s<t

and it follows

3.2
LD = j(=1.0] = 0(1) (w

+ =+ 1-w" ) (T@) + llginlloo,)

+ o (2) s (Iivo1+17-01)

L o
§<A<I

1\?
+ 0 sup (1j+@)1+1j-O)] ) x (;) .

13 9
§<.S<t

Subsequently, we can apply the temporal fluctuation estimate, Corollary 2, to the term
1

SUp, g 1< |7 (£1,1)—j(£1,1")|. Hence Theorem 10 ford = 1 follows. Note thatr—19 > 5
solongast > 1.

MULTIDIMENSIONAL CASES, d = 2.

As noted before, to estimate spacial fluctuation we invoke another variable N. From now
on N will be the index of A(N r_'.'_)kN).

The boundary d D is unit c1fclé so we parametrize it by the polar coordinates. Given two
boundary points y and y’, let y’ be point of degree zero, and denote the polar angle of y by
6. Denote the relative polar angle of y, 1) Withrespect to y, 4y by 6;. Then for
1 <i < ki, the relative polar angle of y, ;) With respect t0 Y, . ,_,.i—1) 1S also 6
because of the specular reflection, i.e. @ + k161 + ... + k;0; stands for the absolute polar

angle of y, - Since 9D is the unit circle, 6 = w — 2¢y,
To simplify the notation, put Tk, x) = T + k161 + ... + k;6;), and T(’k1 k)
T (k161 + ...+ k;6;). Under this coordinate system, we have
(N,m) _ ANm)
Al o) 3 D = Ay 050
N
= / [16@. o
=1
kyo kyo Tx t
«/2;;(,(1) +e \/21(71(\;11\, <J;2
(0 + k6 + ..+ hyoy, - Ao _Kvon
x ] ( +k101 + ... +knOn, ARTo, R0y

dVod" ¢

_ /’ fiG(¢y+igﬁ,W)
=1

kjog o+ kN"N

\/ZRT(,(I) \/2Rr(k| _____ W) =

el

r
2

@ Springer



Equilibrating Effect of Maxwell-Type Boundary Condition... 775

x jlkior+.. +knoy, 1 — R _kvon ) gNggNg,
2RT(k]) 2RT(1(1 kn)

where f(kl oy =TO+ki0+---+knby — %).

yaens

Remark 4 In[10]and[11] we can deal with the case of spherical domain in R ford = 1,2, 3,
but in this paper we only consider the the spherical domain in R? for d = 1, 2. As in our
previous works [10] and [11] we need the symmetric property of domain to calculate exactly
the spacial fluctuation. The symmetry of the boundary allows us to tract the exact location
of the particle after multiple reflections. This is an essential ingredient of our analysis on
treating spacial fluctuation. For two dimensional case, thanks to polar coordinate we are able
to tract the exact location of the particle on a circle after mixed specular reflections and
diffuse reflections. This allows us to conduct a change of variables (64), and to estimate the
spacial fluctuation (65). However, in three dimensional case there is no universal coordinate
to tract the exact location of the particle on a sphere after mixed specular reflections and
diffuse reflections. The three dimensional case might require mathematical analysis different
from ours. We hope to return to this problem in the future.

From (64), we have

(N,m) (N,m) ’ _ A(Nm)
Al by W D = A iy V5 D) = A

..........

= / ﬁG(¢l+ﬁ,Uz)

. , =1
L4 .+ IENJN <,/T—§%
2R T () J2RT T

,,,,,

----- kn)
x jlkior+ ... +kyoy,t — 22— __kvon ) yNggNg
ZRT(kI) ZRT(kl _____ kn)
N
= / [16@. 0
=1
ko knon Ty t
) R <VT*2
\/2RT(k) \/ZRT(kl ____ ) r
x jl ki + ... +kyoy, 0 — o _kvow  VgNogNgy (65
j(l 1+ ...+ knOn ART, T~ od” ¢ (65)

The two terms in (65) differ from each other in three places: the domain of integration, the
angular variable of the transition PDF G, and the time variable of j.
We now break the spatial fluctuation into three parts:

(N,m) (N,m) / _ A (N,m) (N,m) _
A(kl,m,kzv)(y’ [)_A(kl ..... kN)(y’[)_A(kl ,,,,, kN)(Q’O)_A(kl kN)(O’ 1) =U; + U + Us,

.....
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where
U = / — / X
kiog knon Ty ¢ k10| knon Ty 1
ot — </t +..+ </ Lt
= T* 2 T* 2
\/ZRT(kl) \/2RT<k1 ..... kn) \/ZRT(/k]) \/2RT(’k1 _____ k)
N
G 6 il k0 knO kioi knyon
¢I+W,Ul JV k101 + ... +kNON, t — /7= — ... — ———
=1 V2RTw) 2RT(ky ... k)
dNod" ¢,
N
— 6
Uy = / HG(dn—i—W,(ﬂ)
=1
Moy o 4 KNow < %% !
/ZRT(’kl) \/2RT(’kl ..... k)

x | il ko + .. +knOy, 0 — AL~ won

[]( 161 VOV ki, 2R Ty iy

—jl ko +. . kyoy - A - oy )NV
1(11-}- + knOnN, m 2RT(’,<1 ..... kN)):| 9d=9,

N N
Us = / (HG (¢>z + ﬁ, Gz) - HG(¢1, 01))
=1

=1

ko knon Ty t
2RT/, ot 2RT/, <Vr¥2
\/ (k1) \/ (kqseek )
. k k
X j m91+n..+kN9N,z—43§?ff—u..—gjiayﬂL—f dNodV¢.
4\ (ky) (kyseikpy)

Uy, U, Us register the difference in domain of integration, the time variable of j, and angular
variable of the transition PDF G, respectively.

We now proceed to estimate Uj, U,, and Uz. Consider first U;. As noted before, U
registers the difference in domain of integration. Denote by A & B the symmetric difference
(A\ B)U (B \ A). Since k; < m for eachi and T > T, on the boundary, one can observe
that both of the events

kio kyo T, t
& = %+...+*<,/T—i§
,/2RT(/<1)
kio kno Ty t
P L L S )
J2RT}, 2RT), T2
1) 1
contain

[Ty t
o1+ ...+ony < /2RT; =t
T* 2m
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So we have

T, t
é"leé"zc[ol—l—...—l—azvz\/ZRT* T’;Zm] (66)

This implies that &1 © &>, and thereby U}, is a rare event, and can be estimated by the law
of large numbers, Theorem 7.

Lemma 5 Assumet/(Nm) > 1,

3 21 1
Uy = 0(1)% % J(0). 67)
Proof From (66),

Uil <J@) x2 / G(p1.01) - G(gn.on)d"od"$.
o1+ oy >V2RT, B 5
Applying law of large numbers Theorem 7 with y = +/2RT, 3 , we conclude (67). O

U, records the difference in time variable of j, which is exactly the temporal fluctuation
of j. Therefore, we can apply our previous estimate in temporal fluctuation to this part.

Lemma 6 Suppose thatt/mn,t/mN, N > 1. Then

31 1
U, =01 (% - a)’") (Iginlloa + 7))

1
N I 2
+ 0 sup (1jl) ) % ( LR (%) mN)- (68)
%<s<t
Proof
N
Uy = / HG(¢1+ﬁ,m)

k k
L+ o+ NN
\/ZRT(k ) \/ZRT(kl ..... k)

. kno,
X |J k191+...+kN9N,t—k17U_l—...—%
|: ( V2RT k) 2RT ...k N)

- j(k191 R T JNOY g iLi N ’W)]dNaqub
kn)

/ +/ (--+) = Uz + Un,
|o1+...4+0on =N E[X1][>N |o1+...4+0ny =N E[X1]|<N
Koy 4o kNON Ty 1

<)Lt
, T* 2
\/ZRT(kl) \/2RT<k ‘‘‘‘‘ k)
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For Uy, since

kio kyo Ty t
L NI LA TN e
2RT, 2RT) T2

(k1. kn)

T, t k k
[k101+...+kNGN<\/2RT*\/EZ] - L%—...—I—L‘N<

t
- ~ 2
2RT k) 2RT k... kn)

we have

Unl = swp (Ijlg) ©

t
3 <s<t

x 2 / G(¢1.01) - G(¢w.on)d" od" .
|o14...408 =N E[X{]|>N
Applying Theorem 7 with y = N, we obtain
log N

Vs =0(1) swp (Ijlige) () % (69)

t
2 <s<t

Note that the prerequisite N/N 3 > 1 of Theorem 7 is satisfied since N > 1. Next, for Upa,
by Corollary 2,

1+EBE(X
[Un| < sup[\j(y,S) —jy.s))|:s.5" € (t—mNM,t), ye aD]
V2RT,

31 1
— o) (% +(1- a)f”) (I8inloo 0 +T(®)

1
. logn\?
+ 0 sup (Ijl) () % ( = ) mN. (70)
Les<t n
2
From (69) and (70) we conclude (68). ]

Finally, we investigate Us. U3 involves only the angular difference of those PDF G. No
difference in boundary temperature are included. Therefore, the estimate of U3 is reduced to
the constant boundary temperature case, as in [10]. Since all the 6 dependences appear only
inthe N copy of G, Uz is a C' function of 6. Moreover, Us|s—o = 0. By direct computations,

dUs .
70 = ;i[it (“J“Lgc) (s)
x - [1 iG(qs o) 28 g o) Glgw, o) dVgaVo.  (71)
~ A 1,01) 77— \QP,0[)" - Ns ON .
NJ2|& k; 3¢

The RHS of (71) can be derived by the similar argument as in [10]. Thanks to k; > 1 for
each /, the following lemma allows to obtain a decay of Uz in N. For a proof, see [10].

Lemma 7

/
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Therefore,

1
dU log N\ 2
“2ao =0 swp (1jliz) o) x ("fv ) : (72)

2<s<t

|U3] E/
0

Under the assumption t/mn,t/mN, N > 1, patching (67), (68), and (72) together we
have

(N.m) AN
Ay gy ¥ D) = D kN)(y 1)

3 1
=0(D) (% + (- a)m) (lginlloo,. + T @)

. log N 3 logn 3
+0<1)£s<1tp<t(||j||L;o) (s)x(( > ) +( : ) mN).

Plugging this to (54), we conclude Theorem 10.

2.6 Convergence of Boundary Flux

In this subsection, we prove our main theorem, Theorem 6, for free molecular flow.

To apply a priori estimate, we need to establish the boundedness of j first: || j|| Ly =
O() lIginlloo, > cf. Lemma 8. We apply a priori estimate fwice: in the first time we obtain a
rougher estimate, the boundedness of j, and in the second time we use the boundedness of
J to obtain the convergence rate (af + D94+ (1 —a)® a0 of j.
Now we recall j(y, 1) = jin(y, 1) + jmia (¥, 1) + jr1(y, 1), (49), (51), (52) and (53).

Proposition 1 Fort > 1,

o
Jin:0= 22 (il + T @) (738)
& 1;d-1 kpd—1) 1 1</2
Jmid @, )=0(1) Z (—a)'~ +Z<1 kI 4 - ) T
(73b)
kd 1 Kd
- 0<1>Z<1—a> i Iginlloc.u + O1) sup[(njnL;o) ()=
k=1 2<s<
Jr@.n = 0(1) sup im0 — o )+ oma -k
t'e(t—KP log(t+1),1)
y,y'€dD
(T @+ lginlloo,p) - (73¢)
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. . [x—x(p)| diam(D
Proof For ji, since |§] < =4 < %() =

| in (¥, DI

1

00 ' 2 3
\x X(1)| |: z(l—a)lilj(y, t) (RT(Z - )) MT(x<[))(§)_§in(X - stv E):| dXdE

= o( M inlloo —day)|d
. |s<[‘7(’) ® 7+l “(/ L+ 12" ”)} ¢

O
l( ) (T @) + l1ginlloo,.) -

By (52),

Jmia (¥, 1) = C |D| 2/ ["‘Z(l —a)” I[J(Ya 1) — j&Xg),t—t — —tl)]

1

1
2r\? Nk il 2 ?
(RT(X(i))) MT(X(i))(E) + (1 —a) (Ol Z(l a)' Ty, D) (RT(X(k.H)))

i=1

Mr s &) — &in (x(k) CE G-t — 1), g") ) ] dxdg =1+ 11.
Direct computations yield

1

11—2 / (1—a>"[a2(1 @)y, 1 >( RT(X(M)) M (x i) (§)
~in (Xa) — 80 =11 — .. — 1), §") | axag

= O(l)Z(l—a)k/ (T @) + lIginlloo,,) dxdE

k=1 A

K
> —aft ifd=1,
=0() (j(t) + llgin ”oo,;l.) !

K
Z 1—a)’<’< ifd =2.

It is easy to show that

1
t—tl—...—tiZEI <= k>2i onAg,
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and therefore, we rewrite / as

k

K

1= [ a>a-a (i - it -0 - - 1)

k=174 =
1

2w 2
- (RT(X(,))) M (x)) (§)dxd§

K K
= 1 —a)i! /
oz;( o) kZ::‘ Ak( )
LK /2] ) 2i—1 K K ) K
—u Z(l—a)’_l(z+2)+ S oa-o Yy ()
i=1 k=i

k=i  k=2i i=K/2]+1
Direct computations yield
K ] K
a Z (l—a)l_IZ(...)
i=|K/2]+1 k=i
K K 21 2
_ il
=0MIw > d-w “Z/A (RT*) M(&)dEdx
i=|K/2]+1 k=i ¥k
Kd
=0MIW0 -2,
LK /2] K 1
. 2T 2
1-a) la / (v, 1) — j(XG), t — 11 — .. — 1) (7)
gl: ]Z:zz A, (] y JX(@i) 1 ) RT(X(,'))
My (x;)) (§)dEdx
LK /2] K r \
_ : i1
=ow s (1) ©) 3 4= agi/Ak(RT*) M (&)dgdsx
Kd
=0 s, (171252) 9

LK/2] - 2i—1 oot %
l—a)™ iy, 1) — j(XGy, t—11 — .. — 1)) [ ———
;< o) “;/Ak(J(y ) = j Xy, t =1y ))(RT(X(i)))

MT(X(,’)) (S)dgdx
LK /2] 2i—1

1
. 2 2
=o0I® D> (1-a) 'a Z/ (RJ; )2 M(§)dEdx
i=1 k=i ¥ Ak *

LK /2] - % ifd =1,
=0MJ@) E (I-a) " aq.
P Doifd=2.
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For Jfis

1

< i—1 . 2 2
/‘§|>|"<1>_"(2>‘ [0{ Z (=) "y, 1) (RT(X(I))) MT(X(,‘))(S)

log(t+1) i=K+1

— (1 —Xgx — K — 11 — .. — 15), gK)} dxdg
=0 —a)® (T®) + Iginlloo,pt) -

K 1
a (1 a)i_l(j(y 1) — j(Xay. t —1 t))( 2 )2
- , 1) — iy I =11 — ... — 1 —_—
o s i=1 v " \RT (xq))
61> gy
MT(X(i)) (E)dde
LK?] K
- [ e X X))
o) %o | i=1 i=|Kr]
&> lg;;(rJr(lZ))
= o(1) sup .0 — i O]+ oM — )X (T0) + llginlloo.)
t'e(t—KPlog(t+1),1)
y.y'€dD
where 0 < p < 1 is any fixed number. O

With the estimates (73a), (73b), and (73c), the main task is to study the RHS of (73c), the
fluctuation of j. We have treated this in Sects. 2.2, 2.4, and 2.5. The fluctuation estimate, the
following theorem, follows directly from Corollary 2 on the temporal fluctuation estimate,
and Theorem 10 on the spacial fluctuation estimate.

Theorem 11 (Fluctuation Estimate) Let ' < t. y,y' € 9D, then for sufficiently large
t'/mn, t'/mN and N,

.](yvt) _j(.y/vt,)

1 1
logN\?  (logn\?
=om | sw (Iillg) ® X((Oif ) +(o§n) mN)(t—;/)

t/
7 <s<t

4.3 3N2 1 / 1
n 0(1)((m n’ +m t/3) og(t' + )+(1—a)m) (Iginllo,p + T (@) .

whend = 2, (74a)

3 21 I 1
.0 =i, Ol =00) (%ﬁ“ + (1 —a)'") (j(t) + ||gm||oo7u)

—t q 2
+ 01 ((w) +(%) ) sup (1)1 +1j-)1 )
2

n L<s<t

whend = 1. (74b)

Here we will complete the proof Theorem 6 using Theorem 11.
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Recall K ~ 10g(++1) ast > 1. And hence foreach0 < p < 1, KPlog(t + 1) = o(t) as

t > 1. Plugging Theorem 11 into (73c), we obtain the following estimate of j;:

4.3 3a72 t P
Jpy, 0 = 0(1)((”' ntm g Ylog(t + 1) +(1—a)’"+(1—a)(1ong>) )

X (”gin”oo,p, + j(t))

1 1
. log N\ 2 logn\2
' 0(”(,/;3&, (1125 “))((N) (%) '"N)

t P
(710g(t T 1)) log(r + 1),
whend = 2, (75a)

13

P
+d-a)"+(1- a)(1°g<'+”) ) (T@ + lIginlloo,e)

32] 1
nﬂxn=cnn(m"§“+)

+ 0

((log(;_H))plolg(t—F 1)+;q) X (m)2

) s (L)1 + 1)1

n2 t/2<s<t

whend = 1. (75b)

We first establish the uniform boundedness of j:
Lemma 8 The boundary flux j is uniformly bounded:

J®) =0 lIginlleo,u» + = 0. (76)
Proof From (73a), (73b), and (75), we have fort > 1,

o(l
ﬁM%0=4$lW&NMM+J®%

Jmia(y, 1) = O(1) Iginlloo,e + T (@),

1
(log(1 4-1))? (

md+2nd+l log(t + 1 R
nﬂxn=OOK TG
m3 N2 log(t+1)
—5 . d=12,
+ | l(; Cd—1 ]) (Ilginlloo, + T @)

1 1
SN2 log(t+1) log N\ 2 1 2 P
m N log +(( oz ) —|—(0§n) mN) (7log(£+l)) log(t + 1), d=2,

gt ) log(t+1+19
(1oo(r+1))n]/02g t+1)+t 4 (%)2 ’ d=1

+ J@).
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Therefore,

JO 0 = jin(¥: 1) + jmia(y, 1) + jr1(y, 1)

1 (;)" mét2nd*  og(r + 1)
= 0(1 1— log(r+1) 1 —a)™
¢ )|:(10g(t+ py T T Iz
m3 N2 log(i+1)
WV oettD g =2,
+ < 8 a1 H llginlloo,
1 (;)" m4t2nd*  og(r + 1)
o(1 - - 1 — Tog(1+1) 1— m
+ o) (10g(1+t))d+( a) + 0 -a)" + i

1 1
382 1 1 2 logN\ 2 p
e ,d‘lf’l(’“Jr((—",‘f”) mN + (15) )(log(f+1)) log(t + 1), d =2,

n2

So far we only have to assume ¢/mn, t/Nm, N > 1. Now we set n = n(t) = [t"],
m=m(t) = |t"?]and N = N(t) = [t"3] , where O < rq, rp, r3 < 1 are to be determined.
In order to get

(retem)”
lim + (1 —a)\ee@D ) (1 —a)™ +

100 ((log(l +1)
1 1
3N? log(r+1 1 2 1 2 P
TR (( 1) N+ (15 2) (gt ) loa(1 + 1), d=2,

lim ) log(r4 1) 414 =0
=00 ((log(t+1>) fgt ' )—}-(;’;)2 ,d=1

md+2,d+1 log(t + 1)
A+l =0,

n2

we need

1
rn+rn+p< 571,

< =13,
p 2”3

ri+nr<l,
rn4+r<l,
rn <gq,

1
p,q<§r1.

This can be done by choosing any 0 < r; < 6/7 and setting ¢ = r1/3,r2 = r1/6,r3 =
r1/12, p = r1/36. Therefore, there exists z, > 0 such that, for all > 1,

(1) @0 a=2
Ol +1j-01). d =1
( )

Moreover, from (31), now that #, is fixed, j is bounded by a constant multiple of [|gix [l "

for all 0 < ¢ < t,. Hence, (77) actually holds for all 7, and this implies that %j (1) =
O(1) lIginllso,,, and the lemma is proved. ]

1
=o() IIginIIOO,,L—FEJ(t). (77)
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With the boundedness of j, (76), we can perform the second a priori estimate to obtain
1

the (ar + D™ + (1 — a)'™® decay of j, Theorem 6. First, since J = O(1)|ginllco,,. and
the following Lemma 9, we can rewrite our previous estimates (73a), (73b), and (75) as the
following in Proposition 2. We will need the following identities, whose simple proof is
omitted.

Lemma9 For0 <x <1,

[e.¢]
kak - 3
= (1—x)

ikzxk _ x(x+1)
k=1 (1—x)y

Proposition 2 Fort > 1,

. o)
Jin®: 1) = —7= lginlloc,pu - (78a)

+(1 _a)(log('Tn)

(at)?

. _ 1 '
Jmid @, 1) = O(1) ( (log(1 + l‘))d) “gln”oo,u

sup (IIjIILyoo) (), (78b)

<s<t

1
+ 0(1)(log(l+t))d :

and

Jry, 1) = 0()

(m*n® + m3N?)log(r + 1)
3 v

. 1
‘ log N\ 2 logn )2
o () 2 )

t p
— ) log(l +1),
(log(1+t>) ost 0
whend = 2, (78¢c)

: 14
(I—a)"+1 - a)(1°g<f+”> ) lginlloo, u

m3n?log(t + 1)
t2

jn@. 1) =0() ( +(1—a)"+(1 - a)(“’g(ﬁ“’) ) I8inlloo,

((m)plog(l +1)+ tq) N (m)z

+ 0(1) - sup
n% 14 t/2<s<t
(17+ @1 +1i-)1)
whend = 1. (78¢)

Now we are ready to prove Theorem 6.
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Definition 2 The a priori norm of j is a function of ¢ defined as

1\l
((ozs)*2 +(1 - a)““o) (lljllL;c) (s) ford =2,
N() = sup

e (79)
= ((as>*1+(1—a>sm) (1@ +1j-@1) ford =1,

where ji(s) = j(£1,s).

Proof of of Theorem 6 From (78) and for ¢t > 1,

: ! () !
Jmia(y, 1) = O(1) [ —— + (1 — ) \loet*D m llginlloo,

(ar)?
1 1
+0(1l)——— atid‘f‘l_atm)./\/'t’
D Gogd + ) (( )T+ - ()
and
. md+2nd+l o (t+ ]) i
in@.0 =00 |: td+1g +d—a)" 4+ 1 —-a)f
m3 N2 log(1+1) _
S Al [P
0 ,d=1 .
1
+0W) ((m)—" +(1 - oe)’w)) N (2)
1 1
log N\ 2 1 2 )4
(( o;gi, ) + ( Ofn) mN) (m) log(1+1),, d=2
14
g ) log(4+0)+17 2
((1g<1+>)n% )—i—(tq) d=1
Therefore,

j(y, 1) = O0() {W +a _a)(w’Tn) (IOg(]l_|_ — md+znd:+1<l>g(t +D (1— oy
+ —a)(m)p + [ %’ jzf]} ginlloo,
+ o) ((at)_d + (1 fa)ﬂ%m)/\/(t)
1 (552" + (52) ) (s ot 400 =2
Qo1+ )7 ((k,g('H,))”1Iog<1+/>+ﬂ)Jr (n)? ae
3
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Now we choose 0 < ri,rm,r3 K landsetn = n(t) = ("1, m = m@) = [t"?],
N = N(t) = |t"3] so that

o 1 mét2nd*og(t + 1) (;)ﬂ
1— (IOg(H—l)) 1— m 1 — Tog(t+1)
[( @) (10g(1+t))d+ prEs] +0-)"+ (-0
m3 N2 log(t+1) d=2 3
3 > O — —d N2
+( i ,d:l” o(@n™+a-a),
1 1
log N\ 2 logn )2 t p _
1. 1 (( EN)® o+ (2n) mN) (rairs) log +1), d=2 0
4 = .
75 (log(1+ )7 ((.ogxw) ) L ()2 d=1
1 19 ’ -
n2

This can be done if 0 < ry, r2, r3, p, and g satisfy

1
rn+r+p< Erl,

r2 <gq,
1

,q < =r].
p.q SN

In fact, we may choose p = Wlo’“ = %,rg = %,q = %,rl = % so that the above

inequalities hold. Consequently, we can find some sufficiently large 7, > O such that for all
t >t

(i) L a=2

a0 1
< (@)™ +a-a™ (0(1>||gm||oo +7N(r>).
(13+®1+1j-01), d =1 ( ) 13

(80)

Therefore,

(@ 2+ a- o?”‘l’“)_] (i) @ . d=2

1
. < O [inlloou + ZN (0.
(@t +a=ar™) (1ol +1j-01). d=1 b2

81)
Moreover, by Lemma 8, for all t < ,
L\ —1
(@2+a-a™) (ljlg)® . d=2
o\ —1
(@ +a =) (1ol +1-01), d=1

Hence, (81) actually holds for all ¢, and this implies A (1) = O(1) ginlloc, .- From this
estimate, the definition of A/ (), (79), and the boundedness of j (y, 1), (76), it is easy to see

=0 lginlloo - (82)
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that

1
jy.0 =0 ||g,-n||oo,ﬂ( +( —a)fm),

(14 and

and the theorem is proved. O

3 Damped Free Molecular Flow

In this section we consider the damped free molecular flow in preparation for proving our main
theorem, Theorems 3 and 4. As noted in Sect. 1, we treat nondimensionalized Boltzmann
equation (7), so from now on we set 7* = 1.

We first review some basic properties of the collision operator Q and the linearized col-
lision operator L. Since both operators act on ¢ but not on x, we will frequently neglect the
spacial dependence in the following discussion.

3.1 Preliminaries

Recall the collision operator Q(-, -):

1
0(g. M) = 5 / (8@H1ED +REHEED) = @hE) — hE)eE.)
S2xR3
x B, 18, — LA,

As intermolecular collision conserves total molecular number, total momentum, and total
energy, we have the following identity, cf. [13],

1 0
[ & teenea=1ot. )
FLigr 0

1, ¢, ¢ |2 are called the collision invariances.
In this paper we assume an inverse power hard potential with Grad’s angular cut-off or

hard spheres. Under this model, B(9, |¢, — &|) ~ |¢ — C*I? | cos 8], for some u > 4. For
the linearized collision operator Lf = «/LM O(fvM, M). As a direct consequence of (83),

1
JRE;
R3

0
Z]W(C)(Lf)@)d;= 0¢. (84)
[Z] 0

Recall that L can be decomposed as the difference of an integral operator K and a multi-
plicative operator v: L = K — v. Moreover, we have the following estimates, cf. [7]:

V(@) ~ (1 +1ED'7 85)
K@.£) =0t — ¢, e

_le=g,?
8 .

¢yl
5 +001)

e (86)

1€ — &l
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And it is well-known that

0 (¢v/M. y/M)
o = 0() bl x 1l
Ly
0 (pvM,yvM
( T ) =0(1)(||u¢||Lgox||w||L;o+||¢||L;oxnm/fnL;o). (87a)
Ly
Let

£l o = ess sup(l + 1ED1£ (@)1

¢eR3
Also, for any y > 0,
JF@IKE, §)de,
(L+1¢hY
(88) with y = O states that K : L‘zo — L?o is a bounded operator. Actually, more is true:

K : Lzo’ﬂ — Lzo’ﬁH is a bounded operator for each § > 0, [7]. However, (88) suffices for
our purpose. From (88),

1K Sl ooy = ‘ = 0(1)2” Aoy - (83)

oo

ILfliLe = O IvfliLg - (89)
Let f:(¢) = Ljjg|<ey(1 + &)Y for e < 1. By (86) we have

HK(fe) ‘Looﬁy — [ Ok ,d=1

O(e?|logel), d =2
The details can be found in [11].

In the present paper we take (11) as our linearized problem. To show an exponential
decay property of (11), we conduct two reductions: first we reduce (3; + > £;dy; — %L) to
(0 + 2. ¢idy; + ), and then reduce (9, + > &idy; + 7) to (3 4+ D_ ¢ dy,). To facilitate the
following discussion, we invoke the notion of solution operator.

] , fore « 1. (90)

Definition 3 S?“B, SPFr, SF' are linear operators defined as the following:

(SH* (fi) ) &) = Fx. 8.0,

d
L+ gl —Lf =0, f(x8,0) = fin(x,0)
i=1

oD
Maxwell-type boundary condition (10)
(SP™™ (fim Jox. ) = Fex g,
d
of A L, — f
at +l§1 {l 3Xl. +va_07 f(xv Cao)_fln(xa C) (92)

Maxwell-type boundary condition (92)

. d
4 Z] Gys =0, g(x,¢,0) = gin(x, )
1=

Maxwell-type boundary condition (3)

(SF" (i) ) (x.©) = gx, 8.1,
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790 H.-W. Kuo

We call S&B, SPFr "and ST the solution operators for the Linearized Boltzmann equation,
free molecular flow with damping, and free molecular flow, respectively.

From (6), any ;« > 4 is an admissible choice for free molecular flow. Since there is no need
to vary u, for definiteness, from now on we fix u = 5. The pointwise results for the free
molecular flow, Theorem 1, is written in the following form for € = ﬁ:

Theorem 12 (Main Theorem of Free Molecular Flow: Solution Operator Form) For fi, €
Ly " 0<y <1,

S (ufinv/M) (v, 0)
VM1 + gy
S (fin/M) (&, ¢)
VM1 + gy
If, in addition, [ fixx/Mdxd¢ =0,
S (fin/) (@, 0)
VM1 + 1))

o : ( )1 !

= [ 11 ond - ’

D finlloo— 1\ GTrana T~ {|§|>3299}+ {|§\<%}
1 400 ¢ 400

So far we have only obtained the existence, uniqueness, and pointwise estimate of free
molecular flow, Theorem 12. Now we will settle down this issue for the damped free molecular
flow, (92), and obtain a pointwise estimate of the solution.

= 0(1) ”fln “oo,—y U(C),

= 0(1) ”fin ”oo,—y .

3.2 Global Existence and Boundedness

In this subsection we establish the global existence and boundedness of boundary flux of the
damped free molecular flow:

3)6,'

8'(x,8,0) =g (x,0)
Maxwell-type boundary condition (3).

a v d 3 v l
Tt 2 s e =0,
i=1 93)

This can be done easily by the comparison with the free molecular flow.
By the characteristic method, solutions of (93) can be represented as

m—1 1
) ith) + . 2
@ 3 (1= o) e E O (o — 0 = i) (778 )T Mroga)

; ] =0 ;
$ELD=0 (1 —ayme gl (xon—&"( — 11 — (m — D). &™) forn <1,
e’ytg;’n(x—i;‘t,c) fort <1y,
(94)
where
r—|X—X
o (B ==Xl
X1y — Xl
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Consequently,

N e,
'y = / (—&-n(y)e "« "gl (y—&1.£1)dEy

Iy=y!

<

1

_v@p) ‘y;”l)‘ 277 2 )
+ & -ny)ae * Bl f — ) M €Jj
/ (—&1-n(®y) RT(y (1)) Ty §1)J

Iy—Y(1)|>
Yyt ——5-—)d¢
(“) Bl :

v vyl |y_y1 |
+ / (=& -ny)A—ae * Bl g" (y(l)’f—Tr)»'E}»m)dCl-

One can follow the discussion in Sect. 2.2 to derive the formula for j"(y, t). However, the
equation is quite lengthy and therefore we omit it here. The exact formulation and details
can be found in [9].

Since the kernel of free molecular flow always dominates that of damped free molecular
flow, one can prove global existence of the solution and uniform boundedness of j” by
comparison method, for the case g;, > 0. We omit the proof and the details can be found in
[9]. For general initial configuration, let g** be the solution of damped free molecular flow,
(93), with initial configuration (gl?’n)i, the positive/negative part of g}, . Let jV* be the flux
of g"*. Note that (93) is linear, j” = j*+ — j¥~. (However, (j*)* # j” in general.)

Yy 0l < U 0+ .0
=0 (1) s + 16 T as) = OO [l s

To sum up, we have

Theorem 13 Forall g}, € L;?C’S, the solution of (93) exists globally, with
(17" 5) © = 0 |8 ] 5-
Therefore, for fin € L;?[y,

[P (fin)

=0 |l finlloo,—y -

o0, —Y

3.3 A Pointwise Estimate

For simplicity of notation, from now on we will frequently abbreviate functions f(x, ¢, t),

v(x,¢,1),etc., as f(t), (1), etc..
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Lemma 10 Suppose that fi, € Lfé_y,for some constant y, 0 < y < 1. Then, under the
zero total initial molecular number assumption f finv Mdxd& = 0,

SPFr(fin) 1 @

S Ui oy il M ——— 4+ (1 = 1

A ey = O Wiy W\ igna +0 7907 {ls»—fw}
1 400

+1 +iv(§)
O

2
1§1< 399
t

Proof By Duhamel principle, (92) is equivalent to

Fr Fr
£ =P, = SV ird ) _ L / SECIOVI
0

N7 M

From Theorem 12

M— OW) | finl U i),
NI S ANCET {Ie»%ﬁ}
1400
+1
[m<%]
+ 400
From Theorems 12 and 13,
S, (vf (5)v/'M)
—————— =00 — = O finlloa— |
Ttz = OO Olleo—yv@) = O finlloo.—yv(8)
Hence
1 [1 P (uf (5)V'M) ,
— | = 0= finlloo,- .
"/0 VM + ()Y (DM finlloo. -y v (&)

m}

Our next step is to remove the undesirable factor of v(¢) in Lemma 10. To do this, we conduct
a posteriori estimate through the characteristic method.

Theorem 14 Suppose that f;, € L:}c’_y, 0 < y < 1. Then under the zero total initial
molecular number assumption [ fin~/Mdxd& =0,

d+1
SPFE(fin) ( 1 (w0 1 )
L = O | finlloo.— —— + (- +H ———
axieyr = OO Winlloe—y I\ Trgpa A -0 2 (1 4 1)30

x 1 +1 —}—£
{\s|>ﬁ] [\s|<%] ke

1 401 + 400
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Proof By the characteristic method,

S (fin) %, ©) = £, €, 1)

m—1 1

(9] ith) . 2
a Zo(l —a)le x (’1+”2)j (X(H_]), t—1 — 1t2) (WZH))) MT(X(i+1))
1=
= v(&)
+ (I —a)"e™ " finXmy — EM(t — 11 — (m — Dip), &™) forn <1,
_v@®)

e« fin(x—E&1,8) fort <1y.

From Lemma 10,

. 1 @ 1 d+1 s
J¥.8) =0l finlloo,—y m'f‘(l —a) T+ m +K
S ) 400

Hence Theorem 14 follows. O

4 Steady State Solution of The Boltzmann Equation and Its Time
Asymptotic Stability

4.1 Linearized Boltzmann Equation

We investigate the linearized Boltzmann equation (11) in this subsection. We first establish

the local existence in time and a local estimate. By local in time we mean that the time is much

less than mean free time, f « 1, nott < 1. From now on we always consider perturbations

of the form f~/M (fin € L3} 7).

Theorem 15 (Local Existence and Estimate) Let fi, € L;CC’_V, 0 <y <1, then there exists
a constant ¢y > 0, such that whenever % < Cy, the solution of (11) exists and satisfies

d+1
SR (fin) 1 o 1
S o) | finlleo . i —
Aty = OO Winleomy M g #0 =) 1+00

t
x 1 +1 + —
{|5|>ﬁ} [|§\<%} K

t + 400
The theorem can be proved by Picard’s iteration and we omit the proof. The details can be
found in [9].

With the local estimate of Theorem 15, we are ready to prove the global exponential decay
of (11), Theorem 2. Recall that vy = inf v(¢).

Proof of Theorem 2 For convenience, we write S}JB( fin)(X, &) as f(¢) in this proof. Define

Fy = sup e 1) loo_y -

0<s<t
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794

Let ¢ < ¢,/2 be a small constant to be determined later. Recall that ¢, is a constant given in
Theorem 15. Since 2¢ < ¢4, we may apply Theorem 15 to obtain

L8 Dle"E
F(2ck) = sup M:XGD, Iy eR3, 0<t <2k
(I+1gDh
<€ sup [f Oy <€ sup [ fOlloo—y = O || finlloo.y -

0<t<2ck 0<t<cyk

By the definition of F, it is clear that F increases with . We now show that under some

appropriate choice of ¢ and «

F(t) < F(t — ck), whenever t > 2ck. (95)

This yields 7(z) = O(1) || finlloo,—y » Which proves this theorem.
Tracing back from time ¢ to the earlier time r — ck by the characteristic method, we can

represent f(¢) as:

Fx 8,0 =e " f(x —ck, & 1 — ck)
! /CK e’QSK(f(s))(X —s&,C,t —s)ds, whent) > ck,
0

+ —
K
nl L v 2n :
fx,¢.0) = (1 —a)em & M gj(xg iy, t — 1 — i) (7)
§ b RT (xi+1))
MT(X(,'+1))(C)
1 H+.. 4t ) . .
e —a)l;/ K (5)) (xay — s& 8,1 — $)ds
...+t

+ (1 —a)"e™V 8 f(X(uy—E™(t — 11— (m — D), £™, 1 — ck), when 1< cx,
(96)

where

= [x —x(p|
1&]
f— [X(1) — X2l
&]
_ e — Ix =Xl Tl
X1y — Xl

)

’

Consider first j(X41), t —t1 —ity) withty +itp < ck,fori =0,...,m — 1. We trace
back an extra 2cx — t; — itp amount of time to arrive at t — 2ck. Since t; + itp < ck for

i =0,...,m— 1, by Theorem 15 we have

@ Springer



Equilibrating Effect of Maxwell-Type Boundary Condition... 795

JXi+1), 1 — 11 — if2)
- 0(1>/E b n =200 (1D

1 d+1
1 n (1 )(Zc'xfrlgitz)m i 1
- -«
ad2ck —t] —itp)4 Qck — 1] — itz)%
x 1 +1 +ct vMdE,
[\5*|>+399] [|§*|<+399]

(2cx—ty —ity) 400 (2ck—ty —ity) 400

1 d+1
1 ) 300 1
= O I/ =200y | sz + (0 =) E +(()) +el. o
cK) %00

Therefore,
1
2

m—1 1
(S . 2w

2 (I —a)e & WHRDgjxi,t —1 — i) (7) Mrx; ) (&)

i oy RT (xg1y)) X

| o 1 d+1
=0 IIf = 2c6) o0,y (@chd +(d—a) 7 + ‘( ¥ +c
k) 400

2 EM
() o

For Theorem 15 to apply, we need f f(t —2ck)vMdxd¢ = 0. This is true because of (84).

Consider next ﬁi'j_:;l’“ e_;?}SK(f(t — s5))ds. We also trace back to the time t — 2ck.

From Theorem 15, (88), and (90),

m—1 1 prteticn g o
>a- a),,/ e UK (f()(xG) — sE' &'t = 5)ds
i=0

K Jt+..+t

=0t =2ci)lloo,—, 1+ 12D

mif 1 /l|+,..+ti+1 ’ 1 (1 )(2C,(_3)ﬁ 1 atl
X — —_— 4 — o 2 +| —=
ad2ck — 5)4 (2ck — s)%

i=0 K Jn+..+4
1
3% ,whend =1
(2ck — 5) %0
+ 1 2 +ctds
((2)399) log(2ck — s), whend = 2
CcK — §) %0

1
=0 1f = 2c0)loo,—, 1+ 12D (;P(CK) + 62) . (98)
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where

1 zﬁ 1
—+z(1 —a) 7 4 z%0 ford =1,

P =1¢% 1
1 0 logz
T+Z(1_a) T4 (5 ford =2.
acZ 7200
Plugging (97) and (98) back to (96), we have
e |f (1)l
(I+1gDY
e_("o_”i)c]:(l —cK) + C/ezc”if(t — 2ck) (%P(CK) + 02) for t; > ck,
, <mﬁ d+1
C'e* " F(t — ZCK)’i(m.lk)d +(l—a) 7 + (7@) +c
— (ck) 400
+ (%P(CK) + cz) } + (1 — ot)me_("o_”i)c}"(t — CK) for 11 < ck,
< F(t — ck)
e~0—vpe 72 (%P(ctc) + cz) for t; > ck,
e
l—a+ C,ezcvi 1 +(—a) (ck)2 00 + | d+1 e
X (ack)? (c,()fm
+ (%P(CK) +¢?) ] for t; < ck,

for some positive constant C’.
For (95) to hold, we need

, 1
e—(vu—vl)c + C/e2cvl (7P(CK) +C2
K

1 <1.

GO ) PR TRNE S d+l+ +(]P( )+ 2) -
— e — o —l c - CK C
(ack)d (CK)%S K
99)

To that end, large « and small ¢ are desirable. We will fix ¢ according to u; and «, and find
the admissible choice of « after ¢ has been specified. We now fix some small ¢, so small that

c<a,

’ 1
e~ (o—ve 1 _ E(VO -},
L 1
Cle*Vie < 2 min {vo — v}, a}. (100)

It is not difficult to see that we can choose some ¢ ~ a(vy— vi) to meet all these requirements.
From (100),

e e 1 W 1
e (OTVE 4 e (*P(CK) + c2) < 1= 700 —vpe+C'e—Pex),
K K
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1
(ck) 400

d+1

. 1 2cv) ; _ ; l 2

1 —a+ Ce™ M d+(1 o)z + 59 +c+ P(ck) +c¢
(ack) (ck) 30 K

st

1 d+1
o / 1 (k) 30 1 1
<1——+Cle* 1-— 2 — —P
- 2 el (Ole)d + ) +((CK)133 ) + K (crc)

For this specific ¢ ~ a(vg — vi), we need k to satisfy

vp — V]

! 1
C'e*M ;P(CK) <c ~ a(vg — 1)),

(101)

DR

1 * YT
’ 201}{ 1— (”()2 0 s -p <
Ce (Ole)d + ( Ol) + (CK)% + P (CK) =

It is not difficult to see that there exists a positive constant C1, independent of c, such that
(12) implies (101). Consequently, under the assumption (12), (95) holds. m}

4.2 Exponential Convergence for Full Boltzmann Equation
Using the exponential decay of Linearized Boltzmann equation, Theorem 2, we are able to

establish the existence of steady state solution and the exponential decay for full Boltzmann
equation, (7) or equivalently (9). In terms of StLB, (9) is equivalent to

f@) =SB (fin) + %/0; SLB (L (S—Tﬂj)) ds

1! S—M+VMf,S—M+ VM
+ */ Si2 o + VM) VMDY g (102)
k Jo ‘ VM
In view of (102), the equation for the steady state solution ® = ®(x, &) is
1 [ B S—M
o= [ S ()
I [ S—M+VMP,S—M+ VM
+ 7/ SLB Qo * * ) ) as. (103)
K Jo v M

We first prove the existence of the steady state solution @, Theorem 3.

Proof of the Theorem 3 We solve (103) by Picard iteration:
1 [ _ 1 [ O —M,S—M)
) _ - LB S—M - LB
P (x,;)_K/O St (L(—m))ds—kx/o St ( N ds,

o0 (x, ) = % /OOO SLB (L (57)) as

1 /°° SLB(Q(S — M+ /MO S~ M+ m¢<i—1)))d
K s s.
0

+

i

K
(104)
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From (83) and (84), [ ®dxd¢ = 0 for all i. Hence (15) follows, provided > [®@|
converges.

CLAM: Under the assumptions 1 =7, < landk >> 1, (@D —dE=D)|l = [0(1)(1—
T.)1iH, for i > 0. Here we set 1 = 0.

Note that the claim directly concludes this theorem.
We prove the claim by induction. First, we follow the proof of Theorem 13 in [11] to
conclude

()
va = 0(H(1 = TH[O()(1 — T (105)

o0

The next step is to remove the undesirable factor v sitting under F (r) on the LHS of
(105). To do this, we conduct a posterior estimate on F ), We note that F can be defined
equivalently by the the differential equation

(3—, + X G+ 5) F = Lgpm
1 O(VMOW MO 42(5— M), /MO —/H o0~
K M ’
Maxwell-type boundary condition (10),

F™(x,¢,0) =0.

Hence F™ can be represented by the characteristic method as:

1/ . .
F () = Ly =1 X 7/ e KSKF®™ (x(i) — &5, r— s) ds
K Jo

0 (Wd>("> + /MO 1 2(5 — M), SO — \/Mcb("*l))
VM

X
(X(,-) — &l — s) ds

m—1 1
if —v i . . 2 2
+ Lgy<n ¥ Z(l —a) (6 D) g (X 41y, t — 1 — i) (7)

i=0 RT (X(i+1))
M7 (xi41))
1 . F i . ) )
f/ e KSKFM (x(i)—E’s,g’,t—s) ds
K Jt4..+t

1 4.4ty M
+ 7/ e x’
K Jt+..+t

0 (JM@(") + VM=) 4 2(S — M), /MO — mw—n)
Jil

(xi) —&'s.¢" 1 =) ds). (106)

X
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From (105),
m—1 1
S v 2 2
i ,——(t+i . .
;(1 —a)e < (1 12)05] (X(iJrl), t—1t —ib) (RT(XW) MT(X(,'+]))
m—1
—a Z(l — @) [O()(1 = T2 = [0()(1 — T, (107)
=0

and, from (105) and (88),

m—1 ti+eHig ; . )
Z(l—a) f/ e SKF™ (x(i)—éls,C',t—s)ds
1+t
m-1 f+. +t,+1 .
=[oma - Tm”*zz / “ds
H+...+t

1 ro,
~[o(( - TM”“—/ e ¥ods
Kk Jo
=[0I — TH]""? (108)
From (87a), (18), and the induction hypothesis,
m—1 1 .+ v
Z(l — Ol)lf/ e«
i=0 K Jn+..+1

0 (JM@(”) + VM=) 4 2(S — M), /MO — Wq><”—‘>)
VM

X

Ty
/ —e ¥%ds
0o K
0 (mqm F VMO 1 2(S — M), VMO® — «/Mqﬂ"*l))
WM

= o) (|e” + V| + o - 1) [0 - o0-D]

=[0()(1 - THIOM)(1 — THI". (109)
Plugging (107), (108), and (109) back to (106), we obtain
F® @) =[0()(1 - T,)"*.

ds

=

o0

Consequently, [|®"+D — @ | = [0(1)(1 — T.)]**2. This concludes the claim and
therefore this theorem. O

Now we have already obtained the steady state solution Fo, = S + ~/M & for full Boltz-
mann equation (7). To establish the nonlinear stability for the initial-boundary value problem
(16), Theorem 4, one can follow the proof of Theorem 14 in [11]. The idea is basically the
same and we omit the details here.
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