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Abstract We consider n particles 0 ≤ x1 < x2 < · · · < xn < +∞, distributed according
to a probability measure of the form

1

Zn

∏

1≤i< j≤n

(x j − xi )
∏

1≤i< j≤n

(xθ
j − xθ

i )

n∏

j=1

xα
j e

−x j dx j , α > −1, θ > 0,

where Zn is the normalization constant. This distribution arises in the context of modeling
disordered conductors in the metallic regime, and can also be realized as the distribution
for squared singular values of certain triangular random matrices. We give a double contour
integral formula for the correlation kernel, which allows us to establish universality for the
local statistics of the particles, namely, the bulk universality and the soft edge universality
via the sine kernel and the Airy kernel, respectively. In particular, our analysis also leads to
new double contour integral representations of scaling limits at the origin (hard edge), which
are equivalent to those found in the classical work of Borodin. We conclude this paper by
relating the correlation kernels to those appearing in recent studies of products of M Ginibre
matrices for the special cases θ = M ∈ N.
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Local Universality in Biorthogonal Laguerre Ensembles 689

1 Introduction and Statement of the Main Results

1.1 Biorthogonal Laguerre Ensembles

The biorthogonal Laguerre ensembles refer to n particles x1 < · · · < xn distributed over the
positive real axis, following a probability density function of the form

1

Zn
�(x1, . . . , xn)�(xθ

1 , . . . , xθ
n )

n∏

j=1

xα
j e

−x j , α > −1, θ > 0, (1.1)

where

Zn = Zn(α, θ) =
∫

[0,∞)n
�(x1, . . . , xn)�(xθ

1 , . . . , xθ
n )

n∏

j=1

xα
j e

−x j dx j

is the normalization constant, and

�(λ1, . . . , λn) =
∏

1≤i< j≤n

(λ j − λi )

is the standard Vandermonde determinant.
Densities of the form (1.1) were first introduced by Muttalib [38], where he pointed out

that, due to the appearance of two body interaction term �(x1, . . . , xn)�(xθ
1 , . . . , xθ

n ), these
ensembles providemore effective description of disordered conductors in themetallic regime
than the classical randommatrix theory. Amore concrete physical example that leads to (1.1)
(with θ = 2) can be found in [36], where the authors proposed a random matrix model for
disordered bosons. These ensembles are further studied byBorodin [10] under amore general
framework, namely, biorthogonal ensembles. It is also worthwhile to mention the work of
Cheliotis [12], where the author constructed certain triangular random matrices in terms of a
Wishart matrixwhose squared singular values are distributed according to (1.1); see also [22].
Note that when θ = 1, (1.1) reduces to the well-known Wishart-Laguerre unitary ensemble
and plays a fundamental role in random matrix theory; cf. [6,19].

A nice property of (1.1) is that, as proved in [38], they form the so-called determinantal
point processes [27,45]. This means there exits a correlation kernel K (α,θ)

n (x, y) such that
the joint probability density functions (1.1) can be rewritten as the following determinantal
forms

1

n! det
(
K (α,θ)
n (xi , x j )

)n
i, j=1

.

The kernel K (α,θ)
n (x, y) has a representation in terms of the so-called biorthogonal polyno-

mials (cf. [29] for a definition). Let

p(α,θ)
j (x) = κ j x

j + · · · , q(α,θ)
k (x) = xk + · · · , κ j > 0, (1.2)

be two sequences of polynomials depending on the parameters α and θ , of degree j and k
respectively, and they satisfy the orthogonality conditions

∫ ∞

0
p(α,θ)
j (x)q(α,θ)

k (xθ )xαe−x dx = δ j,k, j, k = 0, 1, 2, . . . . (1.3)
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690 L. Zhang

Note that the polynomial q(α,θ)
k is normalized to be monic. We then have

K (α,θ)
n (x, y) =

n−1∑

j=0

p(α,θ)
j (x)q(α,θ)

j (yθ )xαe−x . (1.4)

The families {p j , j = 0, 1, . . .} and {qk, k = 0, 1, . . .}, which are called Laguerre
biorthogonal polynomials, exist uniquely, since the associated bimoment matrix is nonsin-
gular; see (2.3) and (2.6) below. The studies of these polynomials (with θ = 2) might be
traced back to [46] during the investigations of penetration and diffusion of X-rays through
matter. Later, intensive studies have been conducted on the case θ ∈ N = {1, 2, . . .} in
[11,23,24,30,43,44,47], where the general properties including explicit formulas, recur-
rence relations, generating functions, Rodrigues’s formulas etc. are derived.

As determinantal point processes, a fundamental issue of the study is to establish the
large n limit of the correlation kernel (1.4) in both macroscopic and microscopic regimes. By
expressing K (α,θ)

n (x, y) as a finite series expansion in terms of xkθ yr , k, r = 0, 1, . . . , n−1,
it was shown by Borodin [10, Theorem 4.2] that

lim
n→∞

K (α,θ)
n

(
x

n1/θ
,

y
n1/θ

)

n1/θ
=

∞∑

k,l=0

(−1)k xα+k

k!� (α+1+k
θ

)
(−1)l yθl

l!�(α + 1 + θl)

θ

α + 1 + k + θl

= θxα

∫ 1

0
J α+1

θ
, 1
θ
(ux)Jα+1,θ ((uy)

θ )uα du, (1.5)

where Ja,b is Wright’s generalization of the Bessel function [17] given by

Ja,b(x) =
∞∑

j=0

(−x) j

j !�(a + bj)
; (1.6)

see also [36] for the special case θ = 2, α ∈ N∪{0}. These non-symmetric hard edge scaling
limits generalize the classical Bessel kernels [18,50] (corresponding to θ = 1), and possess
some nice symmetry properties. Moreover, they also appear in the studies of large n limits of
correlation kernels for biorthogonal Jacobi and biorthogonal Hermite ensembles [10]. When
θ = M ∈ N or 1/θ = M , the limiting kernels coincide with the hard edge scaling limits of
specified parameters arising from products of M Ginibre matrices [33], as shown in [32].

The macroscopic behavior of the particles as n → ∞ has recently been investigated
in [13], where the expressions for the associated equilibrium measures are given for quite
general potentials and θ ≥ 1. According to [13], as n → ∞, the (rescaled) particles in (1.1)
are distributed over a finite interval [0, (1 + θ)1+1/θ ], with the density function given by

fθ (x) = θ

2πxi
(I+(x) − I−(x)), x ∈ (0, (1 + θ)1+1/θ ). (1.7)

Here, I±(x) (with Im (I+(x)) > 0) stand for two complex conjugate solutions of the equation

J (z) = θ(z + 1)

(
z + 1

z

)1/θ

= x, x ∈ (0, (1 + θ)1+1/θ ).

Moreover, by [13, Remark 1.9], the density blows up with a rate x−1/(1+θ) near the origin
(hard edge), while vanishes as a square root near (1+ θ)1+1/θ (soft edge). This phenomenon
in particular suggests non-trivial hard edge scaling limits (as shown in 1.5), as well as the
expectation that the classical bulk and soft edge universality [31] (via the sine kernel and
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Local Universality in Biorthogonal Laguerre Ensembles 691

Airy kernel, respectively) should hold in the bulk and the right edge as in the case of θ = 1.
More explicit description is revealed later in [21]. After changing variables xi → θx1/θi ,
the (rescaled) particles are then distributed over

[
0, (1 + θ)1+θ /θθ

]
and the limiting mean

distribution is recognized as the Fuss–Catalan distribution [5,7,40]. Its kth moment is given
by the Fuss–Catalan number

1

(1 + θ)k + 1

(
(1 + θ)k + k

k

)
, k = 0, 1, 2, . . . . (1.8)

The density function of Fuss–Catalan distribution can be written down explicitly in several
ways; cf. [42] in terms of Meijer G-functions (see e.g. [8,37,41] and the “Appendix” below
for a brief introduction) or [34] in terms of multivariate integrals. The simplest form of the
representation for general θ might follow from the following parametrization of the argument
[9,21,25,39]:

x = (sin((1 + θ)ϕ))1+θ

sin ϕ(sin(θϕ))θ
, 0 < ϕ <

π

1 + θ
. (1.9)

It is readily seen that this parametrization is a strictly decreasing function of ϕ, thus gives
a one-to-one mapping from (0, π/(1 + θ)) to (0, (1 + θ)1+θ /θθ ). The density function in
terms of ϕ is then given by

ρ(ϕ) = 1

πx

sin((1 + θ)ϕ)

sin(θϕ)
sin ϕ = 1

π

(sin ϕ)2(sin(θϕ))θ−1

(sin((1 + θ)ϕ))θ
, 0 < ϕ <

π

1 + θ
. (1.10)

From (1.9) and (1.10), one can check directly that ρ blows up with a rate x−θ/(1+θ) near
the origin, and vanishes as a square root near (1 + θ)1+θ /θθ , which is compatible with the
changes of variables. We finally note that the other description of macroscopic behavior with
the notion of a DT-element [16] can be found in [12].

Themain aim of this paper to establish local universality for biorthogonal Laguerre ensem-
bles (1.1). Due to lack of a simple Christoffel–Darboux formula for Laguerre biorthogonal
polynomials, we have to adapt an approach that is different from the conventional one. The
main issue here is an explicit integral representation of K (α,θ)

n . Our main results are stated in
the next section.

1.2 Statement of the Main Results

Our first result is stated as follows:

Theorem 1.1 (Double contour integral representation of K (α,θ)
n )With K (α,θ)

n defined in (1.4),
we have

K (α,θ)
n (x, y)= θ

(2π i)2

∫ c+i∞

c−i∞
ds
∮

�

dt
�(s + 1)�(α + 1 + θs)

�(t + 1)�(α + 1 + θ t)

�(t − n + 1)

�(s − n + 1)

x−θs−1yθ t

s − t
,

(1.11)

for x, y > 0, where

c = max{0, 1 − α+1
θ

} − 1

2
< 0, (1.12)

and� is a closed contour going around 0, 1, . . . , n−1 in the positive direction andRe t > c
for t ∈ �.
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692 L. Zhang

We highlight that this contour integral representation bears a resemblance to those appear-
ing recently in the studies of products of randommatrices [20,28,32,33],where the integrands
of double contour integral representations for the correlation kernels again consist of ratios
of gamma functions. When θ ∈ N, K (α,θ)

n is indeed related to certain correlation kernels
arising from products of Ginibre matrices; see Sect. 3 below. We also note that, in the context
of products of random matrices, the correlation kernels can be written as integrals involving
Meijer G-functions, for biorthogonal Laguerre ensembles, however, it does not seem to be
the case for general parameters α and θ .

An immediate consequence of the above theorem is the following new representations of
hard edge scaling limits.

Corollary 1.2 (Hard edge scaling limits of K (α,θ)
n ) With α ≥ −1, θ ≥ 1 being fixed, we

have

lim
n→∞

K (α,θ)
n

(
x

n1/θ
,

y
n1/θ

)

n1/θ
= K (α,θ)(x, y), (1.13)

uniformly for x, y in compact subsets of the positive real axis, where

K (α,θ)(x, y) = θ

(2π i)2

∫ c+i∞

c−i∞
ds
∮

�

dt
�(s + 1)�(α + 1 + θs)

�(t + 1)�(α + 1 + θ t)

sin πs

sin π t

x−θs−1yθ t

s − t
(1.14)

and where c is given in (1.12), � is a contour starting from +∞ in the upper half plane and
returning to +∞ in the lower half plane which encircles the positive real axis and Re t > c
for t ∈ �. Alternatively, by setting

p(α,θ)(x) = 1

2π i

∫ κ+i∞

κ−i∞
�(α + s)

�((1 − s)/θ)
x−s ds, κ > −α, (1.15)

and

q(α,θ)(x) = 1

2π i

∫

γ

�(t/θ)

�(α + 1 − t)
x−t dt, (1.16)

where γ is a loop starting from −∞ in the lower half plane and returning to −∞ in the
upper half plane which encircles the negative real axis, we have

K (α,θ)(x, y) =
∫ 1

0
p(α,θ)(ux)q(α,θ)(uy) du. (1.17)

In Corollary 1.2, we require θ ≥ 1 to make sure the integral is convergent. Note that when
θ = 1, we have (see [41, formula 10.9.23])

p(α,1)(ux) = (ux)α/2 Jα(2
√
ux), q(α,1)(uy) = (uy)−α/2 Jα(2

√
uy),

where Jα denotes the Bessel function of the first kind of order α. It then follows from (1.17)
that

K (α,1)(x, y) =
(
x

y

)α/2 ∫ 1

0
Jα(2

√
ux)Jα(2

√
uy) du

= 4

(
x

y

)α/2

KBes
α (4x, 4y),
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Local Universality in Biorthogonal Laguerre Ensembles 693

where

KBes
α (x, y) = Jα(

√
x)

√
y J ′

α(
√
y) − √

x J ′
α(

√
x)Jα(

√
y)

2(x − y)
, α > −1,

is the Bessel kernel of order α that appears as the scaling limit of the Laguerre unitary
ensembles at the hard edge [18,50], as expected. Furthermore, a comparison of (1.5) and
(1.13)–(1.14) gives us the following identity

θxα

∫ 1

0
J α+1

θ
, 1
θ
(ux)Jα+1,θ ((uy)

θ )uα du

= θ

(2π i)2

∫ c+i∞

c−i∞
ds
∮

�

dt
�(s + 1)�(α + 1 + θs)

�(t + 1)�(α + 1 + θ t)

sin πs

sin π t

x−θs−1yθ t

s − t
, θ ≥ 1.

(1.18)

For a direct proof of the above formula; see Remark 3.2 below.
We believe that the new integral representations (1.14) and (1.17) for K (α,θ) will also

facilitate further investigations of relevant quantities, say, the differential equations for the
associated Fredholm determinants, as done in [48,49,51]. The studies of these aspects will
be the topics of future research.

Byperforming an asymptotic analysis for the double contour integral representation (1.11),
we are able to confirm the bulk and soft edge universality for biorthogonal Laguerre ensem-
bles, which are left open in [13]. The relevant results are stated as follows.

Theorem 1.3 (Bulk and soft edge universality) For x0 ∈ (0, (1 + θ)1+θ /θθ ), which is
parameterized through (1.9) by ϕ = ϕ(x0) ∈ (0, π/(1+ θ)), we have, with α, θ being fixed,

lim
n→∞

e−πη cot ϕ

e−πξ cot ϕ

1

ρ(ϕ)x
1− 1

θ

0

K (α,θ)
n

(
nθ

(
x0 + ξ

nρ(ϕ)

) 1
θ

, nθ

(
x0 + η

nρ(ϕ)

) 1
θ

)

= Ksin(ξ, η), (1.19)

uniformly for ξ and η in any compact subset of R, where ρ(ϕ) is defined in (1.10) and

Ksin(x, y) := sin π(x − y)

π(x − y)
(1.20)

is the normalized sine kernel.
For the soft edge, we have

lim
n→∞

e−2− 1
3 (1+θ)

2
3 ηn

1
3

e−2− 1
3 (1+θ)

2
3 ξn

1
3

(1 + θ)
2
3+ 1

θ

2
1
3

n
1
3 K (α,θ)

n

(
nθ

(
x∗ + c∗ξ

n
2
3

) 1
θ

, nθ

(
x∗ + c∗η

n
2
3

) 1
θ

)

= KAi(ξ, η) (1.21)

uniformly for ξ and η in any compact subset of R, where

x∗ = (1 + θ)1+θ

θθ
, c∗ = (1 + θ)

2
3+θ

2
1
3 θθ−1

, (1.22)

and

KAi(x, y) := Ai(x)Ai′(y) − Ai′(x)Ai(y)
x − y

= 1

(2π i)2

∫

γR

dμ
∫

γL

dλ
e

μ3

3 −xμ

e
λ3
3 −yλ

1

μ − λ

(1.23)
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694 L. Zhang

γRγL

Fig. 1 The contours γL and γR in the definition of Airy kernel

is the Airy kernel. In (1.23), γR and γL are symmetric with respect to the imaginary axis, and
γR is a contour in the right-half plane going from e−π/3i · ∞ to eπ/3i · ∞; see Fig.1 for an
illustration.

In the special case θ = 2, α ∈ N ∪ {0}, the bulk universality is first proved in [36].

Remark 1.1 The result of soft edge universality (1.21) also implies that the limiting dis-
tribution of the largest particle in biorthogonal Laguerre ensembles, after proper scaling,
converges to the well-known Tracy–Widom distribution [6, Theorem 3.1.5].

1.3 Organization of the Rest of the Paper

The rest of this paper is organized as follows. Our main results are proved in Sect. 2. The
proofs of Theorem 1.1 and Corollary 1.2 are given in Sects. 2.2 and 2.3, respectively, which
rely on two propositions concerning the contour integral representations of p(α,θ)

k and q(α,θ)
k

in Sect. 2.1. These formulas might be viewed as extensions of the intensively studied θ ∈ N

case, and we give direct proofs here. The nice structures of these formulas then allow us to
simplify (1.4) into a closed integral form as well as to obtain the hard edge scaling limits,
following the idea in recent work of the author with Kuijlaars [33]. The bulk and soft edge
universality stated in Theorem 1.3 is proved in Sect. 2.4. We will perform a steepest descent
analysis of the double contour integral (1.11), whose integrand constitutes products and ratios
of gamma functions with large arguments. It comes out that the strategy developed by Liu
et al. [35] (see also [1]) works well in the present case. Roughly speaking, the strategy is to
approximate the logarithmics of the gamma functions by elementary functions for n large,
which play the role of phase functions. There will be two complex conjugate saddle points in
the bulk regime, corresponding to the sine kernel, while in the edge regime these two saddle
points coalesce into a single one, which leads to the Airy kernel. A crucial feature of the
analysis is to construct suitable contours of integration with the aid of the parametrization
(1.9). Since the asymptotic analysis is carried out in a manner similar to that performed in
[35], emphasis will be placed on key steps and demonstration of basic ideas in the proof of
Theorem 1.3, but refer to [35] for some technical issues.
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Local Universality in Biorthogonal Laguerre Ensembles 695

We finally focus on the cases when θ = M ∈ N, and relate K (α,M)
n to correlation kernels

of specified parameters arising from products ofM Ginibrematrices. Some remarks aremade
in accordance with this relation to conclude this paper. For convenience of the reader, we
include a short introduction to the Meijer G-function in the “Appendix”.

2 Proofs of the Main Results

2.1 Contour Integral Representations of p(α,θ)
k (x) and q(α,θ)

k (x)

Proposition 2.1 We have for x > 0,

q(α,θ)
k (x) = (−1)k

k∑

j=0

(
k

j

)
(−x) j

�(α + 1 + jθ)
�(α + 1 + kθ)

= �(α + 1 + kθ)k!
2π i

∮

�

�(t − k)xt

�(t + 1)�(α + 1 + θ t)
dt, (2.1)

where � is a closed contour that encircles 0, 1, . . . , k once in the positive direction.

Proof The first identity in (2.1) follows from the determinantal expressions for the polyno-
mials q(α,θ)

k . By setting the bimoments

m j,k =
∫ +∞

0
xα+ j+θke−x dx = �(α + j + kθ + 1), j, k ∈ N ∪ {0}, (2.2)

we define

Dn = det(m j,k) j,k=0,...,n

= det

⎛

⎜⎜⎜⎝

�(α + 1) �(α + 1 + θ) · · · �(α + 1 + nθ)

�(α + 2) �(α + 2 + θ) · · · �(α + 2 + nθ)
...

...
...

...

�(α + 1 + n) �(α + 1 + n + θ) · · · �(α + 1 + n(θ + 1))

⎞

⎟⎟⎟⎠ . (2.3)

From the general theory of biorthogonal polynomials (cf. [15, Proposition 2]), it follows
that

q(α,θ)
k (x) = 1

Dk−1
det

⎛

⎜⎜⎜⎝

m0,0 m0,1 · · · m0,k
...

...
...

...

mk−1,0 mk−1,1 · · · mk−1,k

1 x · · · xk

⎞

⎟⎟⎟⎠

= 1

Dk−1
det

⎛

⎜⎜⎜⎝

�(α + 1) �(α + 1 + θ) · · · �(α + 1 + kθ)
...

...
...

...

�(α + k) �(α + k + θ) · · · �(α + k(1 + θ))

1 x · · · xk

⎞

⎟⎟⎟⎠ , k ≥ 1 (2.4)

with q(α,θ)
0 (x) = 1. With the aid of functional relation

�(z + 1) = z�(z), (2.5)
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696 L. Zhang

an easy Gauss elimination process gives us

Dn =
n∏

k=0

k!θk�(α + 1 + kθ). (2.6)

Similarly, by expanding the matrix in (2.4) along the last row and evaluating the associated
minors, it follows

q(α,θ)
k (x) = (−1)k

k∑

j=0

(
k

j

)
(−x) j

�(α + 1 + jθ)
�(α + 1 + kθ), (2.7)

see also [30] for a proof of (2.7) by checking the orthogonality directly if θ = M .
To show the second identity in (2.1), we note that integrand in the right-hand side of (2.1)

is meromorphic on C with simple poles at 0, 1, . . . , k (the poles of the numerator at the
negative integers are canceled by the poles of the factor �(t +1) in the denominator). Hence,
by the residue theorem and a straightforward calculation, we obtain

�(α + 1 + kθ)k!
2π i

∮

�

�(t − k)xt

�(t + 1)�(α + 1 + θ t)
dt

= �(α + 1 + kθ)k!
k∑

j=0

Rest= j

(
�(t − k)

�(t + 1)�(α + 1 + θ t)

)
x j

= �(α + 1 + kθ)k!
k∑

j=0

(−1)k− j x j

(k − j)! j !�(α + 1 + jθ)

= (−1)k
k∑

j=0

(
k

j

)
(−x) j

�(α + 1 + jθ)
�(α + 1 + kθ). (2.8)

This completes the proof of Proposition 2.1. ��

Proposition 2.2 For p(α,θ)
k , we have the following Mellin–Barnes integral representation

xαe−x p(α,θ)
k (x) = 1

2π i�(α + 1 + kθ)k!
∫ c+i∞

c−i∞
�
( s

θ
+ 1 − 1

θ

)

�
( s

θ
+ 1 − 1

θ
− k

)�(α + s)x−s ds,

(2.9)

where c > max{−α, 1 − θ} and x > 0.

Proof Note that all the poles of the integrand lie on the left of the line Re z = c, it is readily
seen that the integral formula in the right-hand side of (2.9) is well-defined. On account of
the uniqueness of biorthogonal functions, our strategy is to check the integral representation
satisfies

• the orthogonality conditions

1

2π i�(α + 1 + kθ)k!
∫ ∞

0
x jθ

∫ c+i∞

c−i∞
�
( s

θ
+ 1 − 1

θ

)

�
( s

θ
+ 1 − 1

θ
− k

)�(α + s)x−s ds dx = δ j,k,

(2.10)

for j = 0, 1, . . . , k;
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Local Universality in Biorthogonal Laguerre Ensembles 697

• the integral 1
2π i

∫ c+i∞
c−i∞

�
(
s
θ
+1− 1

θ

)

�
(
s
θ
+1− 1

θ
−k

)�(α+s)x−s ds belongs to the linear span of xαe−x ,

xα+1e−x , . . . , xα+ke−x .

To show (2.10), we make use of the inversion formula for the Mellin transform and obtain

1

2π i�(α + 1 + kθ)k!
∫ ∞

0
x jθ

∫ c+i∞

c−i∞
�
( s

θ
+ 1 − 1

θ

)

�
( s

θ
+ 1 − 1

θ
− k

)�(α + s)x−s ds dx

= �
( s

θ
+ 1 − 1

θ

)

�(α + 1 + kθ)k!� ( s
θ

+ 1 − 1
θ

− k
)�(α + s)

∣∣∣∣∣
s= jθ+1

= ( j + 1 − k)k�(1 + α + jθ)

�(α + 1 + kθ)k! = δ j,k . (2.11)

To check the second statement, recall the Pochhammer symbol (a)k = �(a+k)
�(a)

= a(a +
1) · · · (a + k − 1), it is readily seen that

�
( s

θ
+ 1 − 1

θ

)

�
( s

θ
+ 1 − 1

θ
− k

) =
(
s

θ
+ 1 − 1

θ
− k

)

k
=
(
s

θ
+ 1 − 1

θ
− k

)
· · ·

(
s

θ
+ 1 − 1

θ
− 1

)

is a polynomials of degree k in s, the integral is then a linear combination of weightsw
(α)
j (x),

j = 0, . . . , k, where

w
(α)
j (x) = 1

2π i

∫ c+i∞

c−i∞
s j�(α + s)x−s ds. (2.12)

Thus, it suffices to checkw
(α)
j (x)belongs to the linear spanof xαe−x , xα+1e−x , . . . , xα+ j e−x.

We now expand the monomial s j in terms of the basis (α + s)l , l = 0, . . . , j , i.e.,

s j =
j∑

l=0

al(α + s)l =
j∑

l=0

al
�(α + l + s)

�(α + s)

for some constants al with a j = 1. Inserting the above formula into (2.12), it follows that

w
(α)
j (x) = 1

2π i

j∑

l=0

al

∫ c+i∞

c−i∞
�(α + l + s)x−s ds =

j∑

l=0

al x
α+l e−x , (2.13)

as desired, where we have made use of the fact that

1

2π i

∫ c+i∞

c−i∞
�(ν + s)x−s ds = xνe−x , ν > −1;

see (4.4) below.
This completes the proof of Proposition 2.2. ��

2.2 Proof of Theorem 1.1

With a change of variable s → θs + 1 − θ in (2.9) and contour deformation, we rewrite
xαe−x p(α,θ)

k (x) as

θxθ−1

2π i�(α + 1 + kθ)k!
∫ c+i∞

c−i∞
� (s)

� (s − k)
�(θs + 1 − θ + α)x−θs ds, (2.14)
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where c > max{0, 1 − α+1
θ

}. This, together with (1.4) and (2.1), implies that

K (α,θ)
n (x, y) = θxθ−1

(2π i)2

∫ c+i∞

c−i∞
ds
∮

�

dt
�(s)�(θs + 1 − θ + α)

�(t + 1)�(α + 1 + θ t)

n−1∑

k=0

�(t − k)

�(s − k)
x−θs yθ t .

(2.15)

We now follow the idea in [33]. From the functional equation (2.5), one can easily check
that

(s − t − 1)
�(t − k)

�(s − k)
= �(t − k)

�(s − k − 1)
− �(t − k + 1)

�(s − k)
,

which means that there is a telescoping sum

(s − t − 1)
n−1∑

k=0

�(t − k)

�(s − k)
= �(t − n + 1)

�(s − n)
− �(t + 1)

�(s)
. (2.16)

To make sure that s − t − 1 
= 0 when s ∈ c + iR and t ∈ �, we make the following
settings. Note that max{0, 1 − α+1

θ
} < 1 for α ≥ −1 and θ > 0, we take

c = 1 + max{0, 1 − α+1
θ

}
2

< 1

and let � go around 0, 1, . . . , n − 1 but with Re t > c − 1 for t ∈ �. Then we insert (2.16)
into (2.15) and get

K (α,θ)
n (x, y) = θxθ−1

(2π i)2

∫ c+i∞

c−i∞
ds
∮

�

dt
�(s)�(θs + 1 − θ + α)

�(t + 1)�(α + 1 + θ t)

�(t − n + 1)

�(s − n)

x−θs yθ t

s − t − 1

− θxθ−1

(2π i)2

∫ c+i∞

c−i∞
ds
∮

�

dt
�(θs + 1 − θ + α)

�(α + 1 + θ t)

x−θs yθ t

s − t − 1
.

The t-integral in the second double integral vanishes due to Cauchy’s theorem, since there
are no singularities for the integrand inside �. With a change of variable s �→ s + 1 in the
first double integral, we obtain (1.11)

This completes the proof of Theorem 1.1.

2.3 Proof of Corollary 1.2

The proof now is straightforward by taking limit in (1.11), as in [33]. Recall the reflection
formula of the gamma function

�(t)�(1 − t) = π

sin π t
, (2.17)

it is readily seen that

�(t − n + 1)

�(s − n + 1)
= �(n − s)

�(n − t)

sin πs

sin π t
. (2.18)

As n → ∞, we have (cf. [41, formula 5.11.13])

�(n − s)

�(n − t)
= nt−s (1 + O(n−1)

)
, (2.19)

which can be easily verified by using Stirling’s formula for the gamma functions. By mod-
ifying the contour � in (1.11) from a closed contour around 0, 1, . . . , n − 1 to a two sided
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unbounded contour starting from +∞ in the upper half plane and returning to +∞ in the
lower half plane which encircles the positive real axis and Re t > c for t ∈ �, the scaling
limits (1.14) follow. The interchange of limit and integrals can be justified by combining ele-
mentary estimates of the sin and gamma functions with the dominated convergence theorem,
as explained in [33].

To show (1.17), we note that

x−θs−1ytθ

s − t
= −θ

∫ 1

0
(ux)−θs−1(uy)θ t du, (2.20)

and, by (2.17),

sin πs

sin π t
= �(1 + t)�(−t)

�(1 + s)�(−s)
.

Inserting the above two formulas into (1.14), it is readily seen that

K (α,θ)(x, y) = −
∫ 1

0

(
θ

2π i

∫ c+i∞

c−i∞
�(α + 1 + θs)

�(−s)
(ux)−θs−1 ds

)

×
(

θ

2π i

∫

�

�(−t)

�(α + 1 + θ t)
(uy)θ t dt

)
du.

The change of variables s �→ θs + 1 and t �→ −θ t takes the two integrals into the two
functions p(α,θ) and q(α,θ) defined in (1.15) and (1.16), respectively. The identity (1.17) then
follows.

This completes the proof of Theorem 1.2.

2.4 Proof of Theorem 1.3

We start with a scaling of the correlation kernel K (α,θ)
n (x, y) → K (α,θ)

n (θx
1
θ , θy

1
θ ). By

(1.11), it then follows that

K (α,θ)
n (θx

1
θ , θy

1
θ )

= 1

(2π i)2x
1
θ

∫

C
ds
∮

�

dt
�(s + 1)�(α + 1 + θs)

�(t + 1)�(α + 1 + θ t)

�(t − n + 1)

�(s − n + 1)

θ−θs x−sθθ t yt

s − t
, (2.21)

where C and � are two contours to be specified later, depending on the choices of reference
points.

By setting

F(z; a) := log

(
�(z + 1)�(α + 1 + θ z)

�(z − n + 1)
θ−θ za−z

)
, a ≥ 0, (2.22)

where the branch cut for the logarithmic function is taken along the negative axis and we
assume that the value of log z for z ∈ (−∞, 0) is continued from above, we could rewrite
(2.21) as

K (α,θ)
n

(
θx

1
θ , θy

1
θ

)
= 1

(2π i)2x
1
θ

∫

C
ds
∮

�

dt
eF(s;x)

eF(t;y)
1

s − t
. (2.23)

We will then perform an asymptotic analysis of (2.23). The basic idea is the following. It
is clear that the function F in (2.23) plays the role of a phase function. For large z and proper
scalings, F can be approximated by a more elementary function F̂ (see 2.29 below) with
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the help of the Stirling’s formula for gamma function. There will be two complex conjugate
saddle points w± (see 2.32 below) of F̂ in general. In the proof of bulk universality, the two
contours are deformed so that one of themwill meet the pair of saddle points. It comes out that
the main contribution to the integral does not come from the saddle points alone, but from the
vertical line segment connecting the two points. In the proof of soft edge universality, the two
saddle points coalesce into a real one. The phase function then behaves like a cubic polynomial
around the saddle point (see 2.47 below), which justifies the appearance of Airy kernel.

We also note the possibilities to deform the contours in (2.23). Firstly, it is readily seen
that the integral contour for s can be replaced by any infinite contour C oriented from −i∞
to i∞, as long as � is on the right side of C. One can further deform C such that � is on its
left, and the resulting double contour integral remains the same. To see this, let C and C′ be
two infinite contours from −i∞ to i∞ such that � lies between C and C′. An appeal to the
residue theorem to the integral on C ∪ C′ gives

∫

C
ds
∮

�

dt
eF(s;x)

eF(t;y)
1

s − t
−
∫

C′
ds
∮

�

dt
eF(s;x)

eF(t;y)
1

s − t
= 2π i

∫

�

( y
x

)t
dt = 0. (2.24)

Hence, the double contour integral does not change if C is replaced by C′. We will use such
kind of contour deformation in the proof of the soft edge universality. Similarly, one can
show that if � is split into two disjoint closed counterclockwise contours � = �1 ∪ �2,
which jointly enclose poles 0, 1, . . . , n − 1, and C is an infinite contour from −i∞ to i∞
such that �1 is on the left side of C and �2 is on the right side of C, the formula (2.23) is still
valid. We will use such kind of contours in the proof of the bulk universality.

We now derive the asymptotic behavior of F . Recall that the Stirling’s formula for gamma
function [41, formula 5.11.1] reads

log�(z) =
(
z − 1

2

)
log z − z + 1

2
log(2π) + O

(
1

z

)
(2.25)

as z → ∞ in the sector |arg z| ≤ π − ε for some ε > 0. It then follows that if |z| → ∞ and
|z − n| → ∞, while arg z and arg(z − n) are in (−π + ε, π − ε), then uniformly

F(z; a) = F̃(z; a) + 1

2
(log z − log(z − n)) + 1

2
log(2π) + O(min(|z|, |z − n|)−1),

(2.26)

where

F̃(z; a) = (1 + θ)z(log z − 1) − (z − n)(log(z − n) − 1) − z log a. (2.27)

Furthermore, we have

F̃(nz; nθa) = nF̂(z; a) + n log n, (2.28)

where

F̂(z; a) = (1 + θ)z(log z − 1) − (z − 1)(log(z − 1) − 1) − z log a. (2.29)

Note that if θ = M ∈ N, we encounter the same F̃(z; a) and F̂(z; a) as in [35].
Since

F̂z(z; x) = (1 + θ) log z − log(z − 1) − log x, (2.30)

the saddle point of F̂(z; x) satisfies the equation
z1+θ = x(z − 1). (2.31)

123



Local Universality in Biorthogonal Laguerre Ensembles 701

In particular, if x = x0 ∈ (0, (1 + θ)1+θ /θθ ), which is parameterized through (1.9) by
ϕ = ϕ(x0) ∈ (0, π/(1 + θ)), one can find two complex conjugate solutions of (2.31)
explicitly given by

w± = sin((1 + θ)ϕ)

sin(θϕ)
e±iϕ. (2.32)

For later use, we also define a closed contour

�̃ =
{
z = sin((1 + θ)φ)

sin(θφ)
eiφ

∣∣∣∣ − π

1 + θ
≤ φ ≤ π

1 + θ

}
, (2.33)

which passes through w±, intersects the real line only at 0 when φ = ±π/(1 + θ) and at
1 + θ−1 when φ = 0. Since the integrand of (2.23) takes 0 as one of the poles, we further
deform �̃ a little bit near the origin simply by setting

�̃ε := {z ∈ �̃ | |z| ≥ ε} ∪ the arc of {|z| = ε} connecting �̃ ∩ {|z| = ε} and through − ε,

(2.34)

with counterclockwise orientation.
With the above preparations, we are ready to prove the bulk and soft edge universality for

K (α,θ)
n .
Proof of (1.19) In view of (1.19), we scale the arguments x and y in (2.23) such that

x = nθ

(
x0 + ξ

nρ(ϕ)

)
, y = nθ

(
x0 + η

nρ(ϕ)

)
, (2.35)

where ξ and η are in a compact subset of R and ρ(ϕ) is given in (1.10).
The contours C and� are chosen in the followingways. The contour C is simply taken to be

an upward straight line passing through two scaled saddle points nw±. This line then divides
n�̃r into two parts, where r is a small parameter depending on θ . By further separating these
two parts, we define

� = �cur ∪ �ver, (2.36)

where �cur is the part from n�̃r , and �ver are two vertical lines connecting ending points of
�cur. The distance of these two lines is taken to be 2ε, with C lying in the middle of them;
see Fig. 2 for an illustration. The main issue here is that, with these choices of C and �,
Re F̂(z; x0) defined in (2.29) attains its global maximum at z = w± for nz ∈ C and its global

C

Σver

Σcur

Σver

Σcur

Fig. 2 The contours C and � used in the proof of bulk universality

123



702 L. Zhang

minimum at z = w± for z ∈ �̃, which can be proved rigorously with estimates as shown in
[35, Lemma 3.1].

By taking the limit ε → 0, it follows

K (α,θ)
n (θx

1
θ , θy

1
θ ) = I1 + I2, (2.37)

where (p. v. means the Cauchy principal value)

I1 := lim
ε→0

1

(2π i)2x
1
θ

∫

C
ds
∫

�cur

dt
eF(s;x)

eF(t;y)
1

s − t

= 1

(2π i)2x
1
θ

p. v.
∫

n�̃r

(∫

C
ds

eF(s;x)

eF(t;y)
1

s − t

)
dt, (2.38)

and, by interchange of integrals and the Cauchy’s theorem,

I2 := lim
ε→0

1

(2π i)2x
1
θ

∫

C
ds
∫

�ver

dt
eF(s;x)

eF(t;y)
1

s − t
= 1

2π i x
1
θ

∫ nw+

nw−

eF(s;x)

eF(s;y) ds

= 1

2π i x
1
θ

∫ nw+

nw−

( y
x

)s
ds = 1

2π i x
1
θ log( yx )

(( y
x

)nw+ −
( y
x

)nw−)
. (2.39)

Here we note that by taking ε → 0, the vertical line (nw−, nw+) is enclosed by �ver, hence
the Cauchy’s theorem is applicable in the first step.

With the values of x, y given in (2.35) andw± given in (2.32), a straightforward calculation
gives us

I2 = ρ(ϕ)x
1− 1

θ

0

2π i(η − ξ)
(
1 + O (

n−1
))
(
e

(η−ξ)w+
ρ(ϕ)x0

(
1 + O (

n−1))− e
(η−ξ)w−
ρ(ϕ)x0

(
1 + O (

n−1))
)

= ρ(ϕ)x
1− 1

θ

0
eπ cot ϕη

eπ cot ϕξ

sin π(ξ − η)

π(ξ − η)
+ O (

n−1) (2.40)

On the other hand, one can show that, in a manner similar to the estimates in [35, Lemma
2.1], F(z; nθ x0) attains its global maximum at z = nw± for z ∈ C and its global minimum
at z = nw± for z ∈ �̃, which leads to the fact that I1(z) = O(n−1/2). This, together with
(2.37) and (2.40), implies (1.19).

Proof of (1.21) On account of the scalings of x, y in (1.21), we set

x = nθ

(
x∗ + c∗ξ

n2/3

)
, y = nθ

(
x∗ + c∗η

n2/3

)
, (2.41)

where ξ, η ∈ R, x∗ and c∗ are given in (1.22).
In this case, the two saddle points w± coalesce into a single one, i.e.,

w+ = w− = z0 = 1 + 1

θ
. (2.42)

We now select the contours � and C as illustrated in Fig. 3.
The contour � is still a deformation of n�̃r , while near the scaled saddle point nz0, the

local part �loc is defined by

�loc =
{
nz0 + c1n

2
3 re2π i/3

∣∣∣ r ∈
[
1, n

1
30

]}
∪
{
nz0 + c1n

2
3 re−2π i/3

∣∣∣ r ∈
[
1, n

1
30

]}

∪
{
nz0 − c1n

2
3

2
+ic1n

2
3 r

∣∣∣∣∣ r ∈
[
−

√
3

2
,

√
3

2

]}
, (2.43)
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C

Σ

Σloc Clocnz0

Fig. 3 The contours C and � used in the proof of soft edge universality

where

c1 := x∗/c∗ = 2
1
3 (1 + θ)

1
3 /θ. (2.44)

The contour C is obtained by deforming a straight line. Around nz0, the local part is defined
by

Cloc =
{
nz0 + c1n

2
3 reπ i/3

∣∣∣ r ∈
[
1, n

1
30

]}
∪
{
nz0 + c1n

2
3 re−π i/3

∣∣∣ r ∈
[
1, n

1
30

]}

∪
{
nz0 + c1n

2
3

2
+ ic1n

2
3 r

∣∣∣∣∣ r ∈
[
−

√
3

2
,

√
3

2

]}
. (2.45)

As in [35, Eq. 2.69], one can show that themain contribution to the integral (2.23), as n → ∞,
comes from the part Cloc × �loc, and the remaining part of the integral is negligible. When
(s, t) ∈ Cloc × �loc, we can approximate F(s; nθ x∗) and F(t; nθ x∗) by F̃ given in (2.26),
and further by F̂ that is defined in (2.29).

With z0 given in (2.42), it is readily seen that

F̂z(z0; x∗) = 0, F̂zz(z0; x∗) = 0, F̂zzz(z0; x∗) = θ3

1 + θ
. (2.46)

Hence,

F̂(z0 + n− 1
3 c1u; x∗)

= F̂(z0; x∗) + F̂z(z0; x∗)c1un− 1
3 + 1

2
F̂zz(z0; x∗)c21u2n− 2

3 + 1

6
F̂zzz(z0; x∗)c31u3n−1

+ O
(
n− 6

5

)

= F̂(z0; x∗) + u3

3n
+ O

(
n− 6

5

)
. (2.47)

By changes of variables

s = nz0 + n
2
3 c1u, t = nz0 + n

2
3 c1v, (2.48)
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it follows from (2.23), (2.26), (2.41), (2.44) and (2.47) that

1

(2π i)2x
1
θ

∫

Cloc
ds
∮

�loc

dt
eF(s;x)

eF(t;y)
1

s − t

= 1

(2π i)2x
1
θ

∫

Cloc
ds
∮

�loc

dt
eF(s;nM x∗)

(
1 + n− 2

3 c−1
1 ξ

)−s

eF(t;nM x∗)
(
1 + n− 2

3 c−1
1 η

)−t

1

s − t

= e2
− 1
3 (1+θ)

2
3 (η−ξ)n

1
3 c1

n
1
3 x

1
θ∗

(
1

(2π i)2

∫

C0
du
∫

�0

dv
e
1
3 u

3−uξ

e
1
3 v3−vη

1

u − v
+ O

(
n− 1

5

))

= 2
1
3 e2

− 1
3 (1+θ)

2
3 (η−ξ)n

1
3

n
1
3 (1 + θ)

1
θ
+ 2

3

(
KAi(ξ, η) + O

(
n− 1

5

))
, (2.49)

where�0 and C0 are the images of Cloc and�loc (see 2.45, 2.43) under the change of variables
(2.48), and the last equality follows from the integral representation of Airy kernel shown in
(1.23).

This completes the proof of Theorem 1.3.

3 The Cases when θ = M ∈ N

In this section, we will show a remarkable connection between K (α,θ)
n and those arising

from products of Ginibre random matrices if θ ∈ N. In the limiting case, this relation has
been established in [32]. Our result gives new insights for the relations between these two
different determinantal point processes. In particular, it provides the other perspective to
explain the appearance of Fuss–Catalan distribution in biorthogonal Laguerre ensembles;
see Remark 3.1 below. We start with an introduction to the correlation kernels appearing in
recent investigations of products of Ginibre matrices.

3.1 Correlation Kernels Arising from Products of M Ginibre Matrices

Let X j , j = 1, . . . , M be independent complex matrices of size (n + ν j ) × (n + ν j−1)

with ν0 = 0 and ν j ≥ 0. Each matrix has independent and identically distributed standard
complex Gaussian entries. These matrices are also known as Ginibre random matrices. We
then form the product

YM = XM XM−1 · · · X1. (3.1)

When M = 1, Y1 = X1 defines the Wishart–Laguerre unitary ensemble and it is well-
known that the squared singular values of Y1 form a determinantal point process with the
correlation kernel expressed in terms of Laguerre polynomials. Recent studies show that the
determinantal structures still hold for general M [2,4]. According to [2], the joint probability
density function of the squared singular values is given by (see [2, formula 18])

P(x1, . . . , xn) = 1

Zn
�(x1, . . . , xn) det

[
wk−1(x j )

]
j,k=1,...,n , x j > 0, (3.2)

where the function wk is a Meijer G-function

wk(x) = GM,0
0,M

( −
νM ,νM−1,...,ν2,ν1+k

∣∣ x
)

, (3.3)
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and the normalization constant (see [2, formula 21]) is

Zn = n!
n∏

i=1

M∏

j=0

�(i + ν j ).

Note that the Meijer G-function wk(x) can be written as a Mellin–Barnes integral

wk(x) = 1

2π i

∫ c+i∞

c−i∞
�(s + ν1 + k)

M∏

j=2

�(s + ν j )x
−s ds, k = 0, 1, . . . , (3.4)

with c > 0. As a consequence of (4.4), it is readily seen that if M = 1, (3.2) is equivalent to
(1.1) with θ = 1.

The determinantal point process (3.2) again is a biorthogonal ensemble. Hence, one can
write the correlation kernel as

K ν
n (x, y) =

n−1∑

k=0

Pν
k (x)Qν

k (y), (3.5)

where ν stands for the collection of parameters ν1, . . . , νM and the biorthogonal functions
Pν
k and Qν

k are defined as follows. For each k = 0, 1, . . . , n − 1, Pν
k is a monic polynomial

of degree k and Qν
k can be a linear combination of w0, . . . , wk , uniquely defined by the

orthogonality
∫ ∞

0
Pν
j (x)Q

ν
k (x) dx = δ j,k . (3.6)

In particular, we have the following explicit formulas of Pν
k and Qν

k in terms of Meijer
G-functions [2]:

Qν
k (x) = 1

∏M
j=0 �(k + ν j + 1)

GM+1,0
1,M+1

( −k
ν0,ν1,...,νM

∣∣ x
)

= 1

2π i
∏M

j=0 �(k + ν j + 1)

∫ c+i∞

c−i∞

∏M
j=0 �(s + ν j )

�(s − k)
x−s ds (3.7)

and

Pν
n (x) = −

M∏

j=0

�(n + ν j + 1)G0,1
1,M+1

( n+1−ν0,−ν1,...,−νM−1,−νM

∣∣ x
)

= (−1)n
M∏

j=1

�(n + ν j + 1)

�(ν j + 1)
1FM

( −n
1+ν1,...,1+νM

∣∣ x
)
, (3.8)

where

pFq
(
a1,...,ap
b1,...,bq

∣∣∣ z
)

=
∞∑

k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k! (3.9)

is the generalized hypergeometric function with

(a)k = �(a + k)

�(a)
= a(a + 1) · · · (a + k − 1) (3.10)
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being the Pochhammer symbol; see (4.2) for the second equality in (3.8). The polynomials
Pν
k can also be interpreted as multiple orthogonal polynomials [26] with respect to the first

M weight functions w j , j = 0, . . . , M − 1, as shown in [33]. More properties of these
polynomials (or in special cases) can be found in [14,33,39,52,53,55].

With the aid of (3.7) and (3.8), it is shown in [33, Proposition 5.1] that the correlation
kernel admits the following double contour integral representation

K ν
n (x, y) = 1

(2π i)2

∫ −1/2+i∞

−1/2−i∞
ds
∮

�

dt
M∏

j=0

�(s + ν j + 1)

�(t + ν j + 1)

�(t − n + 1)

�(s − n + 1)

xt y−s−1

s − t
,

(3.11)

where � is a closed contour going around 0, 1, . . . , n − 1 in the positive direction and
Re t > −1/2 for t ∈ �. For recent progresses in the studies of products of random matrices;
see [3].

We point out that the kernel (3.11) (as well as the biorthogonal functions Pν
k and Qν

k ) is
well-defined as along as νi > −1, i = 1, . . . , M , and has a random matrix interpretation if
νi are non-negative integers, i.e., then the particles correspond to the squared singular values
of the matrix YM .

3.2 Connections Between K (α,M)
n and K ν

n

Our final result of this paper is stated as follows.

Theorem 3.1 (Relating K (α,M)
n to K ν

n ) Let p
(α,θ)
k , q(α,θ)

k , Pν
k and Qν

k be the functions defined
through biorthogonalities (1.3) and (3.6), respectively. If θ = M ∈ N, we have

q(α,M)
k (x) = MkM P ν̃

k

( x

MM

)
,

xαe−x p(α,M)
k (x) = Q ν̃

k

(
xM

MM

)
xM−1

M (k+1)M−1
,

(3.12)

where the parameter ν̃ is given by an arithmetic sequence

ν̃ j = α

M
+ j

M
− 1, j = 1, . . . , M. (3.13)

As a consequence, we have

K (α,M)
n (x, y) = xM−1

MM−1 K
ν̃
n

(
yM

MM
,
xM

MM

)
(3.14)

where K (α,θ)
n and K ν

n are two correlation kernels defined in (1.4) and (3.5), respectively.

Proof Suppose now the parameters in Pν
k are given by ν̃ (3.13), we see from (3.8) that

P ν̃
k (x) = (−1)k

M∏

j=1

�(k + ν̃ j + 1)

�(ν̃ j + 1)

∞∑

i=0

(−k)i
(1 + ν̃1)i · · · (1 + ν̃M )i

x i

i !

= (−1)k
M∏

j=1

�

(
k + α + j

M

) k∑

i=0

(
k

i

)
(−x)i

�
(
i + α+1

M

) · · · � (i + α+M
M

) , (3.15)
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where the second equality follows from the definition of Pochhammer symbol (3.10). In view
of the Gauss’s multiplication formula [41, formula 5.5.6]

�(nz) = (2π)(1−n)/2nnz−(1/2)
n−1∏

k=0

�

(
z + k

n

)
(3.16)

with z = i + α+1
M and n = M , we could further simplify (3.15) to get

P ν̃
k = (−1)k

k∑

i=0

(
k

i

)
�(α + 1 + kM)(−xMM )i

�(α + 1 + iM)MkM
. (3.17)

Combining (3.17) with (2.7), it is readily seen that

q(α,M)
k (x) = MkM P ν̃

k

( x

MM

)
, (3.18)

which is the first identity in (3.12). Note that both q(α,M)
k and P ν̃

k are monic polynomials of
degree k.

To show the second identity in (3.12), we obtain from (3.7) and (3.13) that

Q ν̃
k

(
xM

MM

)

= 1

2π ik!∏M
j=1 �

(
k + α+ j

M

)
∫ c+i∞

c−i∞
�(s)

�(s − k)

M∏

j=1

�

(
s + α

M
− 1 + j

M

)( x

M

)−Ms
ds

= M (k+1)M

2π ik!�(α + 1 + kM)

∫ c+i∞

c−i∞
�(s)

�(s − k)
�(Ms + 1 − M + α)x−Ms ds,

wherewe havemade use of (3.16) again in the second step. This, together with (2.14), implies
that

Q ν̃
k

(
xM

MM

)
xM−1

M (k+1)M−1
= xαe−x p(α,M)

k (x),

as desired.
Finally, the relation (3.14) follows immediately from a combination of (1.4), (3.5) and

(3.12). Alternatively, this relation can also be checked directly from the double contour
integral representations (1.11) and (3.11) with the help of multiplication formula (3.16).

This completes the proof of Theorem 3.1. ��

Remark 3.1 By setting x = y in (3.14), we simply have that K (α,M)
n is related to K ν̃

n via an
M th root transformation. Let n → ∞, this in turn provides the other perspective to explain
the appearance of Fuss–Catalan distribution in biorthogonal Laguerre ensembles, since it is
well-known that the Fuss–Catalan distribution characterizes the limiting mean distribution
for squared singular values of products of random matrices [5,7,40]. As a concrete example,
we may focus on the case θ = M = 2. According to [33,54], the empirical measure for
scaled squared singular values for the products of two Ginibre matrices converges weakly
and in moments to a probability measure over the real axis with density given by

√
3

2
4
3 πx

2
3

⎛

⎝
(
1 +

√
1 − 4x

27

)1/3

−
(
1 −

√
1 − 4x

27

)1/3
⎞

⎠ , x ∈
(
0,

27

4

)
. (3.19)
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On the other hand, by [36] (see also [13]), the limiting mean distribution for scaled particles
from biorthogonal Laguerre ensembles (1.1) with θ = 2 takes the density function given by

√
3

2πx
1
3

⎛

⎜⎝

⎛

⎝1 +
√

1 − x2

27

⎞

⎠
1/3

−
⎛

⎝1 −
√

1 − x2

27

⎞

⎠
1/3
⎞

⎟⎠ , x ∈
(
0, 3

3
2

)
. (3.20)

Clearly, the density (3.20) can be reduced to (3.19) via a change of variable x → 2
√
x , as

expected.

Remark 3.2 From [33, Theorem 5.3], it follows that, with K ν
n defined in (3.5) and ν1, . . . , νM

being fixed,

lim
n→∞

1

n
K ν
n

( x
n

,
y

n

)
= K ν(x, y), (3.21)

uniformly for x, y in compact subsets of the positive real axis, where

K ν(x, y)

= 1

(2π i)2

∫ −1/2+i∞

−1/2−i∞
ds
∫

�

dt
M∏

j=0

�(s + ν j + 1)

�(t + ν j + 1)

sin πs

sin π t

x t y−s−1

s − t

=
∫ 1

0
G1,0

0,M+1

( −
−ν0,−ν1, . . . ,−νM

∣∣∣∣ ux
)
GM,0

0,M+1

( −
ν1, . . . , νM , ν0

∣∣∣∣ uy
)

du,

(3.22)

and where � is a contour starting from +∞ in the upper half plane and returning to +∞
in the lower half plane which encircles the positive real axis and Re t > −1/2 for t ∈ �.
This fact, together with our relation (3.14) and the hard edge scaling limits of Borodin (1.5),
implies that

Mxα

∫ 1

0
J α+1

M , 1
M

(ux)Jα+1,M ((uy)M )uα du = xM−1

MM−1 K
ν̃

(
yM

MM
,
xM

MM

)
. (3.23)

The identity (3.23) was first proved in [32], where the authors gave a direct proof by noting
that Wright generalized Bessel functions Ja,b defined in (1.6) can be expressed in Meijer
G-functions if b is a rational number. Since it is easily seen from (3.22) and the multiplication
formula (3.16) that

xM−1

MM−1 K
ν̃

(
yM

MM
,
xM

MM

)
= K (α,M)(x, y), (3.24)

where K (α,M)(x, y) is given in (1.14), the proof presented in [32] also gives a direct proof
of identity (1.18) if θ = M ∈ N. To show (1.18) for general θ ≥ 1, we first observe from
(1.16), the residue theorem and (1.6) that

q(α,θ)(x) =
∞∑

k=0

(−1)k

k!
θxkθ

�(α + 1 + kθ)
= θ Jα+1,θ (x

θ ). (3.25)

Similarly, by deforming the vertical line in (1.15) to be a loop starting from −∞ in the lower
half plane and returning to−∞ in the upper half plane which encircles the negative real axis,
we again obtain from the residue theorem that
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p(α,θ)(x) =
∞∑

k=0

(−1)k

k!
xα+k

�
(

α+1+k
θ

) = xα J α+1
θ

, 1
θ
(x). (3.26)

A combination of the above two formulas, (1.14) and (1.17) gives us (1.18).
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Appendix: The Meijer G-Function

For convenience of the readers, we give a brief introduction to the Meijer G-function in this
appendix, which includes its definition and some properties used in this paper.

By definition, the Meijer G-function is given by the following contour integral in the
complex plane:

Gm,n
p,q

(
a1,...,ap
b1,...,bq

∣∣∣ z
)

= 1

2π i

∫

γ

∏m
j=1 �(b j + u)

∏n
j=1 �(1 − a j − u)

∏q
j=m+1 �(1 − b j − u)

∏p
j=n+1 �(a j + u)

z−u du, (4.1)

where � denotes the usual gamma function and the branch cut of z−u is taken along the
negative real axis. It is also assumed that

• 0 ≤ m ≤ q and 0 ≤ n ≤ p, where m, n, p and q are integer numbers;
• The real or complex parameters a1, . . . , ap and b1, . . . , bq satisfy the conditions

ak − b j 
= 1, 2, 3, . . . , for k = 1, 2, . . . , n and j = 1, 2, . . . ,m,

i.e., none of the poles of �(b j + u), j = 1, 2, . . . ,m coincides with any poles of �(1 −
ak − u), k = 1, 2, . . . , n.

The contour γ is chosen in such a way that all the poles of �(b j + u), j = 1, . . . ,m are on
the left of the path, while all the poles of �(1− ak − u), k = 1, . . . , n are on the right, which
is usually taken to go from −i∞ to i∞. For more details, we refer to the references [37,41].

Most of the known special functions can be viewed as special cases of the Meijer G-
functions. For instance, with the generalized hypergeometric function pFq given in (3.9),
one has [41, formula 16.18.1]

pFq
(
a1,...,ap
b1,...,bq

∣∣∣ z
)

=

q∏
k=1

�(bk)

p∏
k=1

�(ak)

G1,p
p,q+1

(
1−a1,...,1−ap
0,1−b1,...,1−bq

∣∣∣− z
)

. (4.2)

This, together with the fact that

zαGm,n
p,q

(
a1,...,ap
b1,...,bq

∣∣∣ z
)

= Gm,n
p,q

(
a1+α,...,ap+α

b1+α,...,bq+α

∣∣∣ z
)

, (4.3)
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gives us

xαe−x = G1,0
0,1

(−
α

∣∣ x
) = 1

2π i

∫

γ

�(α + s)x−s ds. (4.4)
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