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Abstract We present a purely probabilistic proof of propagation of molecular chaos for N -
particle systems in dimension 3 with interaction forces scaling like 1/|q|3λ−1 with λ smaller
but close to one and cut-off at q = N−1/3. The proof yields a Gronwall estimate for the
maximal distance between exact microscopic and approximate mean-field dynamics. This
can be used to show weak convergence of the one-particle marginals to solutions of the
respective mean-field equation without cut-off in a quantitative way. Our results thus lead
to a derivation of the Vlasov equation from the microscopic N -particle dynamics with force
term arbitrarily close to the physically relevant Coulomb- and gravitational forces.

Keywords Vlasov equation · Classical mean-field · Statisitcal mechanics · Propagation of
chaos

1 Introduction

Consider a system consisting of N interacting identical particles subject to Newtonian time
evolution. The dynamics is given by the respective Newtonian flow (�N

t,s)t,s∈R : R
6N →

R
6N , which is assumed to be symmetric under permutation of coordinates. Denoting the

interaction force by f : R
3 → R

3 and the distribution function on phase space R
6 with

position coordinates q and momentum coordinates p by k : R6 → R
+
0 , the Vlasov equation

is given by the non-linear PDE

∂t k + ∇qk · q̇ + ∇pk · f ∗ k̃t = 0, (1)

where˜kt (q) = ∫

kt (q, p)d3 p.
The global existence and uniqueness of solutions of this equation for suitable initial

conditions is well understood, even for singular interactions (see [8–10]).
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2 N. Boers, P. Pickl

Our goal here is to derive the Vlasov equation from themicroscopic Newtonian N -particle
dynamics. For this purpose, we compare the microscopic N -particle time evolution with an
effective one-particle description given by the Vlasov flow (ϕN

t,s)t,s∈R : R6 → R
6 and prove

convergence of �N
t,s to the product of ϕN

t,s in the limit N → ∞ in a suitable sense. From this,
convergence of the one-particle marginals of the N -particle systems against solutions of the
Vlasov equation follows.

This is usually referred to as propagation of molecular chaos. Classical results of this
kind are valid for Lipschitz-bounded forces [1,2]. Even if formulated probabilistically, these
results rely on deterministic initial conditions. Such approaches have difficulties for singular
interactions in combination with clustering of particles. A very good overview is given in the
book by Herbert Spohn [11].

Recently, Hauray and Jabin could include singular interaction forces scaling like 1/|q|α
in three dimensions with α < 1 [5] as well as the physically more interesting case with
α smaller but close to 2, and a lower bound on the cut-off at q = N−1/6 [6]. While their
convergence Theorem is deterministic as well, it is valid for quite generic initial conditions
chosen according to the respective N -particle law. Furthermore, the latter work quantifies
the rate of convergence in Wasserstein distance for large enough N .

Another deterministic result [7], which is valid for repulsive pair-interactions, assumes no
cut-off but some additional technical condition which can be read as a bound on the maximal
forces of the microscopic system along the trajectories.

The strategy which we shall present in the following is designed for stochastic initial
conditions. Using typicality arguments it is possible to derive the Vlasov equation where
deterministic methods fail: For singular interactions there are in fact deterministic initial
conditions for which the dynamics is not described by the Vlasov equation (see Remark
1.2) and in general it might be hard to rule out such initial conditions by bounds on the
energy. However, such “bad” initial conditions of particles may, while not impossible, be
very atypical in the sense that the respective volume in phase space is small. This offers
the chance to generalize our technique and prove Vlasov-like results also for more singular
potentials and/or more complicated dynamics, as for example the Vlasov–Maxwell system
(for a recent result see for example [3,4]) or for systems involving other field degrees of
freedom.

In this article, the heart of the idea shall be presented for the case of forceswith singularities
slightly weaker than for Coulomb- or gravitational forces: f ∼ 1/|q|3λ−1 with 5/6 < λ < 1
and cut-off at q = N−1/3. This particular cut-off width can be physically motivated by the
fact that the typical inter-particle distance in position space R3 is given by N−1/3. Our proof
relies on a Gronwall estimate for a suitable notion of distance between exact and mean-field
dynamics. We remark that the final result on the convergence of the 1-particle marginals
to solutions of the Vlasov equation is quantitative in the sense that it provides the rate of
convergence in N .

We first state our requirements on �N and ϕN :

Definition 1.1 (a) Let for some 5/6 < λ < 1 and any N ∈ N ∪ {∞} the interaction force
f N : R3 → R

3 be given by

f N (q) =
{

q
|q|3λ if |q| ≥ N−1/3

qNλ else.

In this sense, f ∞ denotes the force without cut-off.
We shall in the following use the notation X = (Q, P) = (q1, . . . , qN , p1, . . . , pN )

and (Q) j = q j ∈ R
3. The total force of the system is given by F : R6N → R

3N , where
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On Mean Field Limits for Dynamical Systems 3

(F(X)) j := ∑

i 
= j (N − 1)−1 f N (q j − qi ) is the force exhibited on a single coordinate
j . Note that we omit to make the dependence of F on the particle number N explicit.

(b) Let �N
t,s be the Newtonian flow on R

6N , defined by

d

dt
�N

t,s(X) = V (�N
t,s(X)) (2)

where V is given by V (X) = (P, F(X)).
(c) We introduce now for any probability density k0 : R6 → R

+
0 the effective one particle

flow (ϕN
t,s)t≥s given by the following coupled equations: First, we define k : R×R

6 →
R

+
0 , which gives for each time t the effective distribution function time-evolved with

respect to ϕN
t,s(x) : k(0, ·) = k0 and

kNt (x) := kN (t, x) = k0(ϕ
N
0,t (x)). (3)

Second, for x = (q, p), the effective flow ϕN
t,s itself is defined by

d

dt
ϕN
t,s(x) = v(ϕN

t,s(x)), (4)

where v is given by v(x) = (p, f
N
t (q)). Here, the mean-field force f

N
t is defined as

f
N
t = f N ∗˜kNt and˜kN : R × R

3 → R
+
0 is given by

˜kNt (q) :=
∫

kNt (q, p)d3 p.

(d) We shall lift this flow to the N -particle phase-space. The respective �N
t,s satisfies

d

dt
�N

t,s(X) = V t (�
N
t,s(X)),

with V t (X) = (P, Ft (Q)) and Ft given by
(

Ft (Q)
)

j := f
N
t (q j ).

Remark 1.1 It is of course possible to generalize to 0 ≤ λ < 1. Also other coupling constants
in the force f , in particular a factor −1, are possible. One can also generalize to dimension
d 
= 3. Depending on λ and d it is possible to choose a narrower cut-off. To keep the notation
as simple as possible we restrict ourselves to the situation above.

Remark 1.2 In the model we are considering there are in fact configurations X for which the
Wasserstein distance between the empirical densities and the effective distribution function
will, despite being initially small, become large during time evolution. Consider a configura-
tion X for which groups of N 3/4 particles cluster in the sense that they are all located at the
same coordinate. There are N 1/4 such clusters in total, and we assume that each of them is
distributed independently according to a probability density k. Choose a typical distribution

δ according to the law
∏N1/4

k. Then the initial Wasserstein distance between the empirical
distribution δ and the effective distribution k is small. However, the potential energy of each
particle-pair in a given cluster scales as N−2/3, and thus the potential energy of each of the
N particles diverges as N → ∞. Eventually, the clusters will break up, resulting in large
deviations of the kinetic energies and consequently the momenta from the mean-field case.

Notation 1 kNt : R
6 → R

+
0 can be understood as a one particle probability density. All

probabilities and expectation values are meant with respect to the product measure given at
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a certain time, i.e. for any random variable H : R6N → R and any element A of the Borel
σ -algebra

Pt (H ∈ A) =
∫

H−1(A)

N
∏

j=1

kNt (x j )dX (5)

Et (H) =
∫

R6N
H(X)

N
∏

j=1

kNt (x j )dX. (6)

Since �N
t,s leaves the measure invariant it follows that

Es(H ◦ �N
t,s) =

∫

R6N
H(�N

t,s(X))

N
∏

j=1

kNs (x j )dX

=
∫

R6N
H(X)

N
∏

j=1

kNs (ϕN
s,t (x j ))dX.

Since kNs (ϕN
s,t (x j )) = kNt (x j ) it follows that

Es(H ◦ �N
t,s) = Et (H). (7)

We first state our result for interaction forces with cut-off:

Theorem 1.1 Let t > 0 be such that there exists a C0 < ∞ with

sup
0≤s≤t

‖˜kNs ‖∞ < C0. (8)

Then, under the assumptions given in Definition 1.1, there exists a constant C1 < ∞ such
that

P0

(

sup
0≤s≤t

∣

∣

∣�
N
s,0(X) − �N

s,0(X)

∣

∣

∣∞ > N−1/3

)

≤ C1N
−2+2λ

3 . (9)

Under further assumptions on the initial conditions k0, as well as on the solution of the
Vlasov equation without cut-off (denoted by k∞

t ), we can show that solutions for forces with
cut-off approximate solutions for forceswithout cut-off. Consequently, under these additional
assumptions, Theorem 1.1 can be generalized to the case of interaction forces without cut-off:

Theorem 1.2 Let ∇k0(x) ≤ C0(1 + |x |)−7 for some C0 < ∞. Let t > 0 be such that there
exists a C1 < ∞ with

sup
0≤s≤t

‖˜k∞
s ‖∞ < C1. (10)

Then, under the assumptions given in Definition 1.1, there exist constants C2,C3 < ∞ such
that

P0

(

sup
0≤s≤t

∣

∣

∣�
N
s,0(X) − �∞

s,0(X)

∣

∣

∣∞ > C2N
−1/3

)

≤ C3N
−2+2λ

3 . (11)

We can further show that Theorem 1.1 (respectively Theorem 1.2) implies weak conver-
gence of the one-particle marginals of the microscopic N -particle system to solutions of the
Vlasov equation with cut-off, i.e. kNt (respectively without cut-off, i.e. k∞

t ):
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On Mean Field Limits for Dynamical Systems 5

Definition 1.2 Let L be the space of functions f : R6 → R given by

f ∈ L ⇔ ‖ f ‖∞ = ‖ f ‖L = 1

where ‖ f ‖L denotes the global Lipschitz constant of f .
For two probability densities k, l : R6 → R

+
0 the bounded Lipschitz distance is defined

by

dL(k, l) := sup
f ∈L

∣

∣

∣

∣

∫

(k(x) − l(x)) f (x)d6x

∣

∣

∣

∣

.

Corollary 1.1 Let t > 0, and let for probability densities k0 : R6 → R
+
0 the N-particle den-

sities K : R×R
6N → R

+ be given by K0(X) = ∏N
j=1 k0(x j ) and Kt (X) := K0(�

N
0,t (X)).

Then, under the conditions of Theorem 1.1 (respectively Theorem 1.2), the reduced one-
particle marginal given by

K (1)
t (x1) :=

∫

Kt (X)d6x2d
6x3 . . . d6xN

converges weakly to kNt in the sense that

dL(K (1)
t , kNt ) ≤ CN

−2+2λ
3

(

respectively dL(K (1)
t , k∞

t ) ≤ CN
−2+2λ

3

)

for someC < ∞.

2 Proof of Theorem 1.1

Notation 2 Constants appearing in estimates will generically be denoted by C . We shall
not distinguish constants appearing in a sequence of estimates, i.e. in X ≤ CY ≤ CZ , the
constants C may differ.

We first introduce a suitable notion of distance on R
3N which enables us to prove that

for finite time �N
t,0 and �N

t,0 will typically be close with respect to that notion of distance.
Since we are dealing with probabilistic initial conditions, we introduce a stochastic process
Jt which is such that

(a) we can show that the expectation value of Jt is small and
(b) a small expectation value of Jt implies that—typically—�N

t,0(X) and�N
t,0(X) are close,

i.e. Theorem 1.1.

Definition 2.1 Let Jt : R6N × R → R be the stochastic process given by

Jt (X) := min

{

1, N 1/3 sup
0≤s≤t

∣

∣

∣�
N
s,0(X) − �N

s,0(X)

∣

∣

∣∞

}

.

Here | · |∞ denotes the supremum norm on R
6N .

We shall prove the following

Lemma 2.1 Let t > 0. Then, under the assumptions of Theorem 1.1, there exists a constant
C < ∞ such that

E0(Jt ) ≤ CN
−2+2λ

3 . (12)
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6 N. Boers, P. Pickl

Since the probability

P0

(

sup
0≤s≤t

∣

∣

∣�
N
s,0(X) − �N

s,0(X)

∣

∣

∣∞ ≥ N−1/3

)

= P0(Jt = 1) ≤ E0(Jt ),

Theorem 1.1 is a direct consequence of the Lemma.
The proof of Lemma 2.1 is based on a Gronwall argument, i.e. we shall give an upper

bound on the difference

E0(Jt+dt − Jt ) = E0(Jt+dt ) − E0(Jt ). (13)

We will do so by a suitable partition of the phase space R6N .

Definition 2.2 For any subset A ⊂ R
6N , any random variable J and any s we define the

restricted expectation value of J with respect to kNs by

Es(J | A) := Es(J
A)

where JA is the random variable given by

JA(X) =
{

J (X) if X ∈ A
0 else.

From this definition it follows directly that

E0(J ) =
∑

j∈I
E0(J | A j ) (14)

for any partition ˙⋃
j∈I A j = R

6N .
Our strategy can now be summarised as follows: First note that those configurations where

Jt is maximal, i.e. |�N
t,0(X)−�N

t,0(X)|∞ ≥ N−1/3, are irrelevant for finding an upper bound
of E0(Jt+dt ) − E0(Jt ). Below we shall call the set of such configurations A and show that
E0(Jt+dt − Jt | A) ≤ 0.

We are thus left with configurations for which |�N
s,0(X) − �N

s,0(X)|∞ < N−1/3. The
growth of E0(Jt+dt ) − E0(Jt ) stems from fluctuations in the forces

∣

∣

∣F(�N
t,0(X)) − F(�N

t,0(X))

∣

∣

∣ ≤
∣

∣

∣F(�N
t,0(X)) − F(�N

t,0(X))

∣

∣

∣

+
∣

∣

∣F(�N
t,0(X)) − F(�N

t,0(X))

∣

∣

∣ .

Note that �N
t,0(X) is product distributed. The set of configurations X for which the first term

|F(�N
t,0(X)) − F(�N

t,0(X))| is large will be denoted by B. Large means in our case “larger

than N−1/3”, since any difference in the force is directly translated into a growth in the
difference |�N

t,0(X) − �N
t,0(X)|∞, which is multiplied by N 1/3 in the definition of Jt . We

shall show below that the probability to be in B is small.
If F was globally Lipschitz continuous, the second term |F(�N

s,0(X)) − F(�N
s,0(X))|∞

would directly translate into the difference |�N
s,0(X) − �N

s,0(X)|∞ and the result would be
proven. However, the forces we consider are mildly singular, and hence there is no uniform
Lipschitz constant (in particular not in N ). There exist in fact configurations X—for example
when all particles have the same position—for which this force becomes singular in the limit
N → ∞. However, we shall show that, for typical distributions, the force does indeed satisfy
a Lipschitz condition.
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On Mean Field Limits for Dynamical Systems 7

To implement this argument, we will introduce a function g which can be used to control
the difference | f N (x)− f N (x + δ)|. Here, δ is smaller than 2N−1/3, since in the coordinates
of any two interacting particles we only need to take into account fluctuations smaller than
N−1/3. We will then control G = (N − 1)−1 ∑

j 
=k g(q j − qk) for typical configurations.
Below we will denote the set of configurations where G is large by C and show that it is very
improbable to be in C. For the configurations which are left we have a Lipschitz condition
on F and will get a good estimate on |F(�N

t,0(X)) − F(�N
t,0(X))|∞.

Definition 2.3 Let

g(q) :=
{

54
|q|3λ if |q| ≥ 3

√
3N−1/3

Nλ else.

and G be defined by (G(X)) j := ∑

j 
=i (N − 1)−1g(q j − qi ). Furthermore let Gt be given

by
(

Gt (X)
)

j := gt (q j ) with gt (q) = g ∗˜kNt (q).

Lemma 2.2 For any δ ∈ R
3 with |δ|∞ < 2N− 1

3 it follows that
∣

∣

∣ f N (q) − f N (q + δ)

∣

∣

∣∞ < g(q)|δ|∞.

Proof First note that the derivative of f N is bounded by Nλ. Hence the estimate holds for
|q| < 3

√
3N−1/3.

For |q| ≥ 3
√
3N−1/3 we have the largest difference if δ points in the opposite direction

of q . The largest derivative between q and q + δ is then at the point closest to the center. It
follows that

∣

∣

∣ f N (q) − f N (q + δ)

∣

∣

∣∞ ≤
∣

∣

∣

∣

d

dr
(r1−3λ)

∣

∣

r=|q|−|δ|

∣

∣

∣

∣

(15)

= |1 − 3λ|(|q| − |δ|)−3λ. (16)

Since 2
3 |q| ≥ 2

√
3N−1/3 > |δ|∞ ≥ |δ| it follows that |q| − |δ| = |q|

3 + 2
3 |q| − |δ| >

|q|
3

Using this and |1 − 3λ| < 2 we get
∣

∣

∣ f N (q) − f N (q + δ)

∣

∣

∣∞ < 2 ∗ 33λ|q|−3λ < 54|q|−3λ. (17)

��

Definition 2.4 Let for any t ∈ R the (in fact time dependent) sets A,B, C ⊂ R
6N be given

by

X ∈ A ⇔ |Jt (X)| = 1 (18)

X ∈ B ⇔
∣

∣

∣F(�N
t,0(X)) − Ft (�

N
t,0(X))

∣

∣

∣∞ > N
−3+2λ

3 (19)

X ∈ C ⇔
∣

∣

∣G(�N
t,0(X)) − Gt (�

N
t,0(X))

∣

∣

∣∞ > 1. (20)

Since Jt is bounded by one and Jt (X) = 1 for any X ∈ A it follows that Jt+dt (X) −
Jt (X) ≤ 0 for any X ∈ A. Therefore

E0
(

Jt+dt − Jt | A) ≤ 0. (21)
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8 N. Boers, P. Pickl

By Definition 1.1 it follows that

�N
t+dt,0(X) = �N

t,0(X) + V (�N
t,0(X))dt + oN (dt) (22)

�N
t+dt,0(X) = �N

t,0(X) + V t (�
N
t,0(X))dt + oN (dt) (23)

where the index N on oN appears in order to remind the reader that the limit is not uniform
in N .

By triangle inequality we get that
∣

∣

∣�
N
t+dt,0(X) − �N

t+dt,0(X)

∣

∣

∣∞ ≤
∣

∣

∣�
N
t,0(X) − �N

t,0(X)

∣

∣

∣∞
+

∣

∣

∣V (�N
t,0(X)) − V t (�

N
t,0(X))

∣

∣

∣∞ dt + oN (dt),

therefore

Jt+dt (X) − Jt (X) ≤
∣

∣

∣V (�N
t,0(X))dt − V t (�

N
t,0(X))

∣

∣

∣∞ N 1/3dt + oN (dt)

and thus

E0(Jt+dt − Jt | Ac) − E0

(∣

∣

∣V ◦ �N
t,0 − V t ◦ �N

t,0

∣

∣

∣∞

∣

∣

∣Ac
)

N 1/3dt = oN (dt), (24)

where Ac denotes the complement of the set A.
We are left with estimating E0(V ◦ �N

t,0 − V t ◦ �N
t,0 | Ac) and will now further partition

the set Ac using Definition 2.4:

E0 (Jt+dt − Jt ) = E0(Jt+dt − Jt | A) (≤ 0)

+ E0
(

Jt+dt − Jt | Ac) − E0

(∣

∣

∣V (�N
t,0(X)) − V t (�

N
t,0(X))

∣

∣

∣∞ | Ac
)

N 1/3dt (= oN (dt))

+ E0

(∣

∣

∣V (�N
t,0(X)) − V t (�

N
t,0(X))

∣

∣

∣∞ | (B ∪ C)\A
)

N 1/3dt

+ E0

(∣

∣

∣V (�N
t,0(X)) − V t (�

N
t,0(X))

∣

∣

∣∞ | (B ∪ C ∪ A)c
)

N 1/3dt.

≤
(

sup
X∈R6N

{|F(X)|∞} + sup
X∈R6N

{|F(X)|∞
} + N−1/3

)

(P0(B) + P0(C)) N 1/3dt

+ E0

(∣

∣

∣V (�N
t,0(X)) − V t (�

N
t,0(X))

∣

∣

∣∞ | (B ∪ C ∪ A)c
)

N 1/3dt + oN (dt),

where we used that on the set (B∪C)\A, the momentum part of |V (�N
t,0(X))−V t (�

N
t,0(X))|

is bounded by N−1/3.
Since the two-particle force is bounded by N 2/3 it follows that the total force acting on

each particle is also bounded by N 2/3. Furthermore, the mean-field force is bounded, thus

E0(Jt+dt − Jt ) ≤ (2N + 1) (P0(B) + P0(C)) dt (25)

+E0

(∣

∣

∣V (�N
t (X)) − V t (�

N
t (X))

∣

∣

∣∞

∣

∣

∣(B ∪ C ∪ A)c
)

N 1/3dt (26)

+ oN (dt).

At this point we have arrived at the crucial estimates of our proof. Based on the law of
large numbers, we shall now show that the probability to be in the set B or C is smaller than
Cγ N−γ for any γ > 0 and some Cγ . This yields that (25) is small (see Corollary 2.1). The
control of (26) is then provided in Lemma 2.4.
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On Mean Field Limits for Dynamical Systems 9

Since f and g do have some similarities, we shall give the law of large numbers argument
for an appropriate general function h and use this general estimate thereafter to control P0(B)

and P0(C) in Corollary 2.1.

Lemma 2.3 Let h : R3 → R
a for some a ∈ N be a function with

|h(q)| ≤ min
{

N− 2λ
3 |q|1−3λ, N

λ−1
3

}

,

let Hj (X) := ∑

i 
= j h(q j − qi ) and D j ⊂ R
6N be given by

X ∈ D j ⇔
∣

∣

∣Hj (X) − (N − 1)h ∗˜kNt (q j )

∣

∣

∣ > 1

with˜kNt as in Theorem 1.1 and

D =
N

⋃

j=1

D j .

Then there exists a Cγ < ∞ for any γ > 0 such that Pt (D) ≤ Cγ N−γ .

Proof Due to symmetry in exchanging any two coordinates Pt (D) ≤ ∑N
j=1 Pt (D j ) =

NPt (D1). So it is sufficient to show that for any γ > 0 there exists a Cγ < ∞ such
that

Pt (D1) ≤ Cγ N
−γ . (27)

The proof of (27) is based on a law of large numbers argument. Using Markov we get that
for any even natural number M

Pt (D1) ≤ Et

(

(

H1(X) − (N − 1)h ∗˜kNt (q1)
)M

)

.

So let M ∈ 2N be some even natural number.
Let M be a set of multi-indices, more precisely the set of all maps α : {1, 2, . . . , M} →

{2, . . . , N }. Define | · | : M → N as the number of elements in the image of α

|α| = |α({1, . . . , M})|.
For any 1 ≤ j ≤ N let α j := ∑M

i=1 δ(α(i), j) and

Gα :=
N

∏

j=2

(

h(q1 − q j ) − h ∗˜kNt (q1)
)α j

. (28)

It follows that

Et

(

(

H1(X) − (N − 1)h ∗˜kNt (q1)
)M

)

= Et

⎛

⎝

(

N
∑

i=2

(

h(qi − q1) − h ∗˜kNt (q1)
)

)M⎞

⎠

=
∑

α∈M
Et (G

α).

Note that Et (Gα) = 0 whenever there exists a 1 ≤ j ≤ N such that α j = 1. This can be
seen be integrating the j th variable first.
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10 N. Boers, P. Pickl

Whenever |α| > M/2 there has to be at least one index j such that α j = 1. Thus

Et

(

(

H1(X) − (N − 1)h ∗˜kNt (q1)
)M

)

=
∑

|α|≤M/2

Et (G
α). (29)

To proceed we shall need the following two formulae: For any two functions f, g : R3 →
R

‖ f ∗ g‖∞ ≤ ‖ f ‖1∧∞‖g‖1∨∞ (30)

‖ f g‖1 ≤ ‖ f ‖1∧∞‖g‖1∨∞ (31)

where

‖ · ‖1∧∞ := ‖ · ‖1 + ‖ · ‖∞ (32)

and

‖g‖1∨∞ := inf
g1+g∞=g

{‖g1‖1 + ‖g∞‖∞} . (33)

These formulas can be proven in the following way: For any g1 + g∞ = g we have using
triangle inequality, Young and Hölder

‖ f ∗ g‖∞ ≤ ‖ f ∗ g1‖∞ + ‖ f ∗ g∞‖∞ ≤ ‖ f ‖∞‖g1‖1 + ‖ f ‖1‖g∞‖∞
≤ ‖ f ‖1∧∞(‖g1‖1 + ‖g∞‖∞)

as well as

‖ f g‖1 ≤ ‖ f g1‖1 + ‖ f g∞‖1 ≤ ‖ f ‖∞‖g1‖1 + ‖ f ‖1‖g∞‖∞
≤ ‖ f ‖1∧∞(‖g1‖1 + ‖g∞‖∞).

Taking the infimum over all possible g1 and g∞ the formulae follow.
Since ‖˜kNt ‖1 = 1 and ‖˜kNt ‖∞ is bounded (cf. Eq. (8)) it holds that

‖h ∗˜kNt (q1)‖∞ ≤ C‖h‖1∨∞

Now

‖h‖1∨∞ ≤
∫

|q|<1
|h(q)|d3q + sup

|q|≥1
|h(q)|

≤
∫

|q|<1
N− 2λ

3 |q|1−3λd3q + N− 2λ
3

≤ CN− 2λ
3 . (34)

It follows that ∥

∥

∥h ∗˜kNt (q1)
∥

∥

∥∞ ≤ CN− 2λ
3 ≤ CN

λ−1
3 (35)

and thus
∣

∣h(q1 − q j ) − h ∗˜kNt (q1)
∣

∣ ≤ CN
λ−1
3 and

∣

∣

∣h(|q1 − q j | − h ∗˜kNt (q1)
∣

∣

∣

n =
∣

∣

∣h(|q1 − q j | − h ∗˜kNt (q1)
∣

∣

∣

n−2 ∣

∣

∣h(|q1 − q j | − h ∗˜kNt (q1)
∣

∣

∣

2

≤ CN
(n−2)(λ−1)

3

∣

∣

∣h(|q1 − q j | − h ∗˜kNt (q1)
∣

∣

∣

2
.
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It follows with (35) that
∣

∣

∣

∣

∫

˜kNt (q j )
(

h(|q1 − q j |) − h ∗˜kNt (q1)
)n

d3q j

∣

∣

∣

∣

≤ CN
(n−2)(λ−1)

3

∣

∣

∣

∣

∫

˜kNt (q j )
(

h(|q1 − q j | − h ∗˜kNt (q1)
)2

d3q j

∣

∣

∣

∣

≤ CN
(n−2)(λ−1)

3

(

N−4λ/3 + N−2λ/3
∫

˜kNt (q j )
∣

∣h(q1 − q j )
∣

∣ d3q j

+
∫

˜kNt (q j )
∣

∣h(q1 − q j )
∣

∣

2
d3q j

)

. (36)

Integrating the momentum variables and using (31) and then (34) it follows that the expec-
tation value of

∣

∣h(q1 − q j )
∣

∣ can be estimated by
∫

˜kNt (q j )
∣

∣h(q1 − q j )
∣

∣ d3q j =‖˜kNt h(q1 − ·)‖1 ≤ ‖˜kNt ‖1∧∞‖h‖1∨∞ ≤ CN− 2λ
3 .

The expectation value of
∣

∣h(q1 − q j )
∣

∣

2 can be estimated by
∫

˜kNt (q j )
∣

∣h(q1 − q j )
∣

∣

2
d3q j ≤

∫

|q1−q j |<N−1/3

˜kNt (q j )
∣

∣h(q1 − q j )
∣

∣

2
d3q j

+
∫

|q1−q j |≥N−1/3

˜kNt (q j )
∣

∣h(q1 − q j )
∣

∣

2
d3q j

≤ C
∫

|q|<N−1/3
N

2λ−2
3 d3q + CN− 4λ

3

∫

|q|≥N−1/3
|q|2−6λd3q j

≤ CN
2λ−5
3 + CN− 4λ

3 − 5−6λ
3 ≤ CN

2λ−5
3 .

Since λ > 5/6 (36) gives
∣

∣

∣

∣

∫

˜kNt (q j )
(

h(|q1 − q j | − h ∗˜kNt (q1)
)n

d3q j

∣

∣

∣

∣

≤ CN
(n−2)(λ−1)

3

(

N− 4λ
3 + N

2λ−5
3

)

≤ CN
n(λ−1)

3 N−1.

Using (28) we get that

Et (G
α) =

∫

⎛

⎝

N
∏

j=2

∫

(

h(|q1 − q j | − h ∗˜kNt (q1)
)α j

kNt (x j )d
6x j

⎞

⎠ kNt (x1)d
6x1

≤
∫

⎛

⎝

∏

α j 
=0

CN
α j (λ−1)

3 N−1

⎞

⎠ k(x1)d
6x1.

Recall that the number of α j which are not equal to zero is |α| and that
∑N

j=1 α j = M . It
follows that

Et (G
α) ≤

∫

(

C |α|N M(λ−1)
3 N−|α|) k(x1)d

6x1

= CkN
M(λ−1)

3 N−|α|.
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12 N. Boers, P. Pickl

The number of multi-indices α with |α| = k can be calculated by simple combinatorics.
Any such α can be uniquely identified by giving first the set α({1, 2, . . . , M}) and then any
surjective map into this set.

The number of surjective maps is of course smaller than the number of all maps into this
set. Thus the number of indices α with |α| = k can be estimated by

∑

|α|=k

1 ≤
(

N

k

)

Mk ≤ NkMM .

It follows that

Et

(

(

H1(X) − (N − 1)h ∗˜kNt (q1)
)M

)

≤
∑

k≤M/2

NkMMCkMN−k+M λ−1
3

≤ CM M

2
MM+1NM λ−1

3 . (37)

Since λ < 1 we can find for any γ > 0 a M and a constant Cγ such that the right hand side
is smaller than Cγ N−γ . It follows that Pt (D1) ≤ Et (HM

1 ) ≤ Cγ N−γ and we get (27) which
proves the Lemma. ��
Corollary 2.1 For any γ > 0 there exists a Cγ < ∞ such that

(a) P0(B) ≤ Cγ N−γ

(b) P0(C) ≤ Cγ N−γ

Proof First note that P0(B) = Pt (�
N
t,0(B)) and P0(C) = Pt (�

N
t,0(C)). The functions (N −

1)−1N
3−2λ
3 f N and (N − 1)−1g satisfy the bound assumed for h in Lemma 2.3.

Note that X ∈ �N
t,0(B) implies that

|F(X) − Ft (X)|∞ > N
−3+2λ

3

respectively N
3−2λ
3 |F(X) − Ft (X)|∞ > 1.

Correspondingly, X ∈ �N
t,0(C) implies that

|G(X) − Gt (X)|∞ > 1.

This is satisfied only if there exists a j such that

∣

∣

∣G j (X) − g ∗˜kNt (g j )

∣

∣

∣ =
∣

∣

∣

∣

∣

∣

∑

i 
= j

(N − 1)−1g(q j − qi ) − g ∗˜kNt (q j )

∣

∣

∣

∣

∣

∣

> 1.

Choosing h = (N − 1)−1g this reads
∣

∣

∣

∣

∣

∣

∑

i 
= j

h(q j − qi ) − (N − 1)h ∗˜kNt (x)

∣

∣

∣

∣

∣

∣

> 1.

It follows that the sets �N
t,0(B) and �N

t,0(C) are subsets of the set D defined in Lemma 2.3. It
follows that one can find for any γ > 0 a Cγ < ∞ such that

P0(B) = Pt (�
N
t,0(B)) ≤ Cγ N

−γ ,

P0(C) = Pt (�
N
t,0(C)) ≤ Cγ N

−γ .

��
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Lemma 2.4
∣

∣V (�N
t (X)) − V t (�

N
t (X))

∣

∣∞ ≤ C Jt (X)N−1/3 + N
−3+2λ

3 for all X ∈ (A ∪
B ∪ C)c.

Proof Let X ∈ (A ∪ B ∪ C)c, Y := �N
t,0(X) and Z := �N

t,0(X).

The difference
∣

∣V (Y ) − V t (Z)
∣

∣∞ comes from a difference in the respective forces and a
difference in the respective momenta. The latter is bounded by |Y − Z |∞ and we get

∣

∣V (Y ) − V t (Z)
∣

∣∞ ≤ ∣

∣F(Y ) − Ft (Z)
∣

∣∞ + |Y − Z |∞
By triangle inequality

∣

∣F(Y ) − Ft (Z)
∣

∣∞ ≤ |F(Y ) − F(Z)|∞ (38)

+ ∣

∣F(Z) − Ft (Z)
∣

∣∞ . (39)

Since X /∈ B it follows that
∣

∣F(Z) − Ft (Z)
∣

∣∞ ≤ N
−3+2λ

3 which controls (39).
With triangle inequality we get that for any 1 ≤ j ≤ N

|(F(Y ) − F(Z)) j |∞ =
∣

∣

∣

∣

∣

∣

∑

k 
= j

f N (y j − yk) − f N (z j − zk)

∣

∣

∣

∣

∣

∣∞
(40)

≤
∑

k 
= j

∣

∣

∣ f N (y j − yk) − f N (z j − zk)
∣

∣

∣∞ . (41)

Since X /∈ A it follows that |Y − Z |∞ < N− 1
3 . In particular |y j − z j |∞ < N− 1

3 and

|yk − zk |∞ < N− 1
3 .

Thus Lemma 2.2 implies
∣

∣

∣ f N (y j − yk) − f N (z j − zk)
∣

∣

∣∞ ≤ g(z j − zk)|y j − yk − z j + zk |∞,

and consequently

|(F(Y ) − F(Z)) j |∞ ≤
∑

k 
= j

g(z j − zk)|y j − yk − z j + zk |∞ (42)

≤ (G(Z)) j 2|Y − Z |∞. (43)

Since X /∈ C it follows that
∣

∣(G(Z)) j
∣

∣ ≤ ‖g ∗ kNt ‖∞ + 1 ≤ C and thus

|(F(Y ) − F(Z)) j |∞ ≤ C |Y − Z |∞. (44)

Since this holds true for any 1 ≤ j ≤ N and furthermore X /∈ A, we obtain

|F(Y ) − F(Z)|∞ + |Y − Z |∞ ≤ C Jt (X)N−1/3 (45)

and the Lemma follows. ��
With Corollary 2.1 and Lemma 2.4 we can control (25) and (26). It follows that there

exists a C > 0 such that

E0(Jt+dt − Jt ) ≤ 2CN−1dt + E0(C(Jt (X)N−1/3 + N
−3+2λ

3 ))N 1/3dt + oN (dt)

≤ 2CN−1dt + CE0(Jt (X))dt + N
−2+2λ

3 dt + oN (dt). (46)

Using Gronwall’s Lemma and that −2+2λ
3 is negative we get Lemma 2.1.
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14 N. Boers, P. Pickl

3 Proof of Theorem 1.2

Let for any N ∈ N ∪ {∞}
xNt (q0, p0) := (qN

t (q0, p0), p
N
t (q0, p0)) := ϕN

0,t (q0, p0)

βN
t := sup

q0,p0∈R3
|xNt (q0, p0) − x∞

t (q0, p0)|

Note that by (10) the Vlasov-force is bounded for all times. It follows that there exists a
C < ∞ uniform in p0 and q0 such that

p∞
t − p0 < C (47)

q∞
t − p0t < C. (48)

We shall now estimate βN
t via Gronwall’s Lemma:

∂tβt ≤ sup
q0,p0∈R3

∣

∣

∣

(

pNt (q0, p0) − p∞
t (q0, p0),˜k

N
t ∗ f N (qN

t (q0, p0))

−˜k∞
t ∗ f ∞(q∞

t (q0, p0))
)∣

∣

∣

≤ βt + sup
q0,p0∈R3

∣

∣

∣

˜kNt ∗ f N (qN
t (q0, p0)) −˜kNt ∗ f N (q∞

t (q0, p0))
∣

∣

∣

+ sup
q0,p0∈R3

∣

∣

∣

˜kNt ∗ f N (q∞
t (q0, p0)) −˜kNt ∗ f ∞(q∞

t (q0, p0))
∣

∣

∣

+ sup
q0,p0∈R3

∣

∣

∣

˜kNt ∗ f ∞(q∞
t (q0, p0)) −˜k∞

t ∗ f ∞(q∞
t (q0, p0))

∣

∣

∣ .

≤ βt + ‖˜kNt ∗ f N‖L‖qN
t − q∞

t ‖∞
+‖˜kNt ∗ f N −˜kNt ∗ f ∞‖∞ + ‖˜kNt ∗ f ∞ −˜k∞

t ∗ f ∞‖∞
≤ βt + ‖˜kNt ‖∞‖∇ f N‖1βt + ‖˜kNt ‖∞‖ f N − f ∞‖1 + ‖˜kNt −˜k∞

t ‖∞‖ f ∞‖1.
Let us assume that t is such that βt ≤ 1. Then

∣

∣

∣

˜kNt (q) −˜k∞
t (q)

∣

∣

∣ ≤
∫

∣

∣

∣k0(q
N
t , pNt ) − k0(q

∞
t , p∞

t )

∣

∣

∣ d3 p0

≤
∫

(

sup
h∈R3;|h|=1

∇k0(q
∞
t , p∞

t + h)

)

|xNt − x∞
t |d3 p0.

By (47), (48), and the assumptions of the Theorem (i.e. k0(x) ≤ C0(1 + |x |)−7) we get
that

∫ (

suph∈R3;|h|=1 ∇k0(q∞
t , p∞

t + h)
) |xNt − x∞

t |d3 p0 is bounded, and hence

‖kNt − k∞
t ‖∞ ≤ Cβt .

Thus for times t with βt ≤ 1

∂tβt ≤ Cβt + C‖ f N − f ∞‖1.
Since ‖ f N − f ∞‖1 ≤ N−1/3 we get with Gronwall’s Lemma that for any t ≥ 0 there

exists a C such that for any 0 ≤ s ≤ t

sup
q0,p0∈R3

|xNs (q0, p0) − x∞
s (q0, p0)| ≤ CN−1/3,
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which implies
∥

∥

∥�N
s,0 − �∞

s,0

∥

∥

∥∞ < CN−1/3. (49)

Together with Theorem 1.1, this completes the proof. ��

4 Proof of Corollary 1.1

Proof We present the proof of the Corollary only under the conditions of Theorem 1.1. The
proof under the conditions of Theorem 1.2 is equivalent.

Let M ⊂ R
6N be given by

X ∈ M ⇔
∣

∣

∣�
N
s,0(X) − �N

s,0(X)

∣

∣

∣∞ > N−1/3

From Theorem 1.1 we get that

lim
N→∞P0(M) = 0. (50)

Note that

dL(K (1)
t , kNt ) = sup

g∈L

∣

∣

∣

∣

∣

∣

∫

⎛

⎝Kt (X) −
N

∏

j=1

kNt (x j )

⎞

⎠ g(x1)d
6N X

∣

∣

∣

∣

∣

∣

= sup
g∈L

∣

∣

∣

∣

∣

∣

∫

⎛

⎝K0(�
N
0,t (X)) −

N
∏

j=1

k0(ϕ
N
0,t (x j ))

⎞

⎠ g(x1)d
6N X

∣

∣

∣

∣

∣

∣

≤ sup
g∈L

∣

∣

∣

∣

∣

∣

∫

⎛

⎝K0(�
N
0,t (X)) −

N
∏

j=1

k0(ϕ
N
0,t (x j ))

⎞

⎠ g(x1)d
6N X

∣

∣

∣

∣

∣

∣

+ sup
g∈L

∣

∣

∣

∣

∫

(

K0(�
N
0,t (X)) − K0(�

N
0,t (X))

)

g(x1)d
6N X

∣

∣

∣

∣

.

The first term is zero. The second summand equals

sup
g∈L

∣

∣

∣

∣

∫

(

K0

(

�N
0,t (X)

)

− K0

(

�N
0,t (X)

))

g(x1)d
6N X

∣

∣

∣

∣

(51)

= sup
g∈L

∣

∣

∣

∣

∫

K0(X)
(

g
((

�N
t,0(X)

)

1

)

− g
((

�N
t,0(X)

)

1

))

d6N X

∣

∣

∣

∣

(52)

= sup
g∈L

∣

∣

∣

∣

∫

M
K0(X)

(

g
((

�N
t,0(X)

)

1

)

− g
((

�N
t,0(X)

)

1

))

d6N X

∣

∣

∣

∣

(53)

+ sup
g∈L

∣

∣

∣

∣

∫

Mc
K0(X)

(

g
((

�N
t,0(X)

)

1

)

− g
((

�N
t,0(X)

)

1

))

d6N X

∣

∣

∣

∣

. (54)

From (50) and since ‖g‖∞ = 1 it follows that (53) tends to zero as N → ∞.
Using that ‖g‖L = 1 we obtain

sup
X∈Mc

{

g
((

�N
t,0(X)

)

1

)

− g
((

�N
t,0(X)

)

1

)}

≤ N−1/3.

Hence (54) ≤N−1/3 and dL(K (1)
t , kNt ) converges to zero as N → ∞. ��
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