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Abstract We study asymptotics of the free energy for the directed polymer in random
environment. The polymer is allowed to make unbounded jumps and the environment is
given by Bernoulli variables.We first establish the existence and continuity of the free energy
including the negative infinity value of the coupling constant β. Our proof of existence at
β = −∞ differs from existing ones in that it avoids the direct use of subadditivity. Secondly,
we identify the asymptotics of the free energy at β = −∞ in the limit of the success
probability of the Bernoulli variables tending to one. It is described by using the so-called
time constant of a certain directed first passage percolation. Our proof relies on a certain
continuity property of the time constant, which is of independent interest.
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1 Introduction and Main Results

The directed polymer in random environment is a statistical physics model of a polymer in
disordered solvent. In the discrete set-up, the polymer chain is a random walk ((Xn)n≥0, P)

on Z
d starting at the origin and the random environment is modelled by independent and

identically distributed random variables ((η( j, x))( j,x)∈N×Zd , Q). We introduce the Hamil-
tonian Hη

n = ∑n
j=1 η( j, X j ) and, for a given inverse temperature β ∈ R, define the finite

volume Gibbs measure by

dμη,β
n = 1

Zη,β
n

exp{βHη
n }dP, (1)

where Zη,β
n = P[exp{βHη

n }] is the partition function with P[·] denoting the expectation
with respect to P . When β > 0, the polymer is attracted by large values of η and repelled by
negative values. It is known that this interaction causes a localization transition depending
on the law of the random walk [10].

A quantity of particular importance in this model is the free energy

ϕ(β) = lim
n→∞

1

n
log Zη,β

n

whose existence is usually established by a subadditivity argument. It is for instance believed
that the difference between ϕ(β) and the so-called annealed free energy characterizes the
localized/delocalized phases. See [3,6,8,11] for rigorous results in this direction.

1.1 Zero Temperature Limits and Open Paths Counting

One of the main results in the present article is about the zero temperature limit of the free
energy ϕ(β). Let us give a few words on the motivation. There has recently been a revival
of interest in the problem concerning the number of extremal paths in random media that
dates back to [17,20], see for example [7,18,19,25,26,32] for recent works in the directed
setup. Among others, Garet–Gouéré–Marchand [19] have recently established the existence
of the growth rate of the number of open paths in nearest neighbor oriented percolation. To
be more precise, let Nn be a number of open paths of length n starting from (0, 0) ∈ N×Z

d .
Then assuming that the percolation takes place with a positive probability, it is proved that
limn→∞ n−1 log Nn exists and is non-random on the event of percolation. Themain difficulty
is that the standard subadditivity argument does not work as log Nn is not well-defined (or
should be defined as −∞) with positive probability, making this quantity not integrable.
One of the motivations of the present work is to propose an approach to the same problem
by considering the zero temperature limit of the directed polymer model. Indeed, when the
randomwalk is simple nearest neighbor walk and η is a Bernoulli variable, the above partition
function at β = −∞ coincides with (2d)−nNn . If we are able to prove that the convergence

1

n
log Zη,β

n → 1

n
log Nn − log 2d as β → −∞

is uniform in n on the event of percolation, then it follows that limn→∞ n−1 log Nn exists
and is equal to limβ→−∞ ϕ(β)+ log 2d . In this paper, we carry out this program for random
walks with stretched-exponential transition probabilities as a test case. The unboundedness
of jumps simplifies the problem since no percolation transition occurs anymore. However we
note that our approach automatically yields the stronger continuity result of the free energy
at β = −∞. One of the reasons for our rather special choice of the transition probability
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Limiting Results for the Free Energy of Directed Polymers... 579

is that with this choice, the model has a relation to a directed version of the first passage
percolation studied in [21,22], which is interesting in its own right. See Theorem 1.3 below.

We shall comment more on related works in Sect. 1.3 after describing our setting and
results.

1.2 Setting and Results

Let ({Xn}n∈N, Px ) be the random walk on Z
d starting from x and with the transition proba-

bility
Px (Xn+1 = z|Xn = y) = f (|y − z|1),

where f : N ∪ {0} → (0, 1) is a function of the form

f (k) = c1 exp{−c2k
α}, where α > 0. (2)

We write P instead of P0 for simplicity.

Remark 1.1 Our choice of the jump law is somewhat arbitrary, and it is tempting to replace
our specific choicewith some regular variation assumption on the tail of log f (k). It is a purely
technical exercise to adapt our method in order to cover such cases. To make arguments as
transparent as possible we stick to this simple law.

In view of the motivation explained above, we assume that ({η( j, x)}( j,x)∈N×Zd , Q) is inde-
pendent and identically distributed Bernoulli random variables with

Q(η(0, 0) = 1) = p ∈ (0, 1).

We define the partition functions at β = −∞ by

Zη,−∞
n = P(Hη

n = 0)

in addition to the notation introduced before. Note that Zη,−∞
n is positive for Q-almost every

η, since the random walk has unbounded jumps. It is routine to show that, Q-almost surely
and for all β ∈ R, the free energy exists and is equal to the second line:

ϕ(p, β) = lim
n→∞

1

n
log Zη,β

n

= lim
n→∞

1

n
Q[log Zη,β

n ].
Then, it is plain to see that ϕ is non-decreasing in p for β > 0, non-increasing in p for
β < 0, non-decreasing and convex in β, and that ϕ(p, β) = ϕ(1 − p,−β) + β for β real.
Furthermore, one can show by a simple application of the so-called block argument that

lim
β→−∞ ϕ(p, β) ≥ lim inf

n→∞
1

n
log Zη,−∞

n > −∞ . (3)

See Appendix for a proof. Our first result shows that the free energy exists and is jointly
continuous in (p, β), including β = −∞.

Theorem 1.2 In the above setting with α ∈ (0, d), the limit

ϕ(p,−∞) = lim
n→∞

1

n
log Zη,−∞

n (4)

exists Q-almost surely. Moreover, the function ϕ(p, β) is jointly continuous on (0, 1]
× [−∞,∞) \ {(1,−∞)}.
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580 F. Comets et al.

It is possible to show the first part for general α ∈ (0,∞) by using the subadditive ergodic
theorem, as in the proof of Theorem 2.1 of [15], with the help of the fact that

Q[| log Zη,−∞
n |] < ∞.

However, we prove it as a part of the proof of continuity result, avoiding direct use of the
subadditive ergodic theorem at β = −∞. As explained above, we think this is of tech-
nical importance. Note that the above integrability condition may break down even for a
model where there is no percolation transition. The Brownian directed polymer in Pois-
sonian medium with β = −∞ is such an example, as one can easily check by considering
the event that there is a Poissonian trap very close to the origin.

Note that at the exceptional point in Theorem 1.2, ϕ should be defined as ϕ(1,−∞) =
−∞. It is then natural to ask how ϕ(p, β) grows as (p, β) → (1,−∞). Our next result
addresses a directional asymptotics. Note that ϕ(β, p) exists Q-a.s. for all α > 0, as we have
just mentioned.

Theorem 1.3 In the above setting with α ∈ (0,∞), there exists a constant μ1 > 0 such that
as p ↑ 1,

ϕ(p,−∞) ∼ −c2μ1(1 − p)−α/d . (5)

The constant c2 comes from (2), and μ1 is defined by (7) with p = 1.

Remark 1.4 If we replace η by 1 − η and denote the corresponding free energy by ϕ̃(p, β),
we can deduce its asymptotics as β → +∞ and p ↓ 0 from Theorem 1.2 and 1.3 as follows:

lim
β→+∞(ϕ̃(p, β) − β) exists and asymptotic to − c2μ1 p

−α/d as p ↓ 0.

This kind of symptotics are extensively studied in the continuous time setting, see Sect. 1.3
below. In the discrete time setting, however, this is the first result in the same direction to the
best of our knowledge — possibly because for the common nearest neighbor walk model,
the high density asymptotics at β = −∞ is trivial. Moreover, we encounter a new directed
first passage percolation model in identifying the constant μ1 which is interesting in its own
right. Let us explain how it comes into play.

The asymptotics (5) has a simple heuristic interpretation. When p is close to 1, the sites
at which η = 0 have low density 1 − p and hence the random walk has to make a jump of
order (1− p)−1/d at each step to achieve Hη

n = 0. The probability of such a path decays like
exp{−(1 − p)−α/dn} and this explains the p-dependent factor. In fact, it turns out that the
main contribution to the free energy comes from the path which carries the highest proba-
bility and hence the constant c2μ1 corresponds to the growth rate of the minimal cost for the
random walk.

Note that this minimal cost could in principle depend on p, but actually it does not, as we
will see in the next theorem. There, we prove the continuity as p ↑ 1 of the time constant
of a certain directed first passage percolation, a result of independent interest. Denote the
(scaled) points where the random walk is allowed to go by

ωp =
∑

(k,x)∈N×Zd

(1 − η(k, x))δ(k,spx),

with the natural scaling factor sp = (log 1
p )1/d ∼ (1 − p)1/d (p ↑ 1). With some abuse

of notation we will frequently identify ωp , and more generally any point measure, with its
support. Given a realization of ωp , we define the passage time from 0 to n by
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Tn(ωp) = min

{
n∑

k=1

|xk−1 − xk |α : x0 = 0 and {(k, xk)}nk=1 ⊂ ωp

}

. (6)

Then, a direct application of the subadditive ergodic theorem shows that the limit

μp = lim
n→∞

1

n
Tn(ωp) (7)

exists Q-almost surely. The limitμp , so-called time constant, is deterministic. In these terms,
the maximal probability of paths satisfying Hη

n = 0 is expressed as

cn1 exp
{
−c2s

−α
p Tn(ωp)

}
= exp

{
−c2μp(1 − p)−α/dn(1 + o(1))

}
.

Now note that ωp converges as p ↑ 1 to the Poisson point process ω1 on N × R
d whose

intensity is the product of the counting measure and Lebesgue measure. Observe also that
definition (6) makes perfect sense when p = 1, yielding a limit μ1 in (7). In the next result
we claim that the time constant of the Bernoulli model converges to that of the Poisson model
as p ↑ 1.

Theorem 1.5 (Continuity of the time constant)We have

lim
p↑1μp = μ1.

Remark 1.6 A similar continuity of the time constant is known for lattice first passage per-
colation in greater generality, see [12,13] and (6.9) in [24].

1.3 Related Works

Themain part of Theorem 1.2 is the continuity of ϕ(p, β) around β = −∞, which is the zero
temperature asymptotic result for the free energy. This type of problems does not seem to
attract much interest in the discrete time setting since in some cases the answers are simple.
For instance, consider the (nearest-neighbor) simple randomwalkmodelwith an i.i.d. random
environment with Q(η(0, 0) > 0) > 0. Then it is easy to see that as β → +∞, the free
energy is asymptotic to β times the time constant of the directed last passage percolation.
However, if η is Bernoulli distributed and we send β → −∞, the situation is not so simple.
As we mentioned at the beginning, the existence of ϕ(−∞) proved in [19] is already highly
nontrivial and the continuity as β → −∞ remains an open question at the moment.

For the continuous time polymer models, the asymptotics of the free energy is far from
being simple. Continuous time random walk models, known under the name of parabolic
Anderson model, have attracted enormous attention. Carmona–Molchanov in the seminal
work [5] initiated this line of research. They mainly studied the case when the environment is
a space–time Gaussian white noise and their results include non-matching upper and lower
bounds for the free energy when the jump rate of the random walk tends to zero. Note that
this limit is similar to that in Theorem 1.3 in spirit since in both cases, the random walk
is forced to make more jumps than it typically does. Shiga [31] proved similar results for
the space–time Poissonian environment at β = −∞. In fact, both [5] and [31] only proved
the existence of the free energy in the sense of a L1 limit. These results were later refined
and extended in [14–16,28] and almost sure existence of the free energy was established
in [15,16]. Finally, the sharp equivalent for the free energy as the jump rate vanishes was
obtained in [4,15] in terms of the time constant of a last passage percolation problem. Note
that for the Gaussian white noise environment, the above asymptotics is readily translated
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582 F. Comets et al.

to the β → ±∞ limit by using a scaling identity (see Chapter IV of [5]). On the other
hand, in the Poissonian environment case, these zero temperature limits are of independent
interest but have not been considered yet. In particular, we expect that the continuity similar
to Theorem 1.2 holds when β → −∞.

Another continuous time polymer model is Brownian directed polymer in Poissonian
environment introduced by Comets–Yoshida [9]. The β → +∞ limit was studied in the
same paper, as well as β → −∞ for d ≥ 3 with a specific choice of the other parameters. It
is possible to show by a block argument that the finite volume free energy stays bounded as
β → −∞ in general but, to the best of our knowledge, the existence of the limit at β = −∞
is not known. Later in [11], the asymptotics as the density of the Poisson point process tends
to ∞ was also studied but only for bounded β, in contrast to Theorem 1.3 here.

Finally, we mention that some solvable models have been found recently, see, e.g.,
Moriarty–O’Connell [27], Amir–Corwin–Quastel [1] and Seppäläinen [30]. In these models
the free energy canbe explicitly computed, thus allowing to studyvarious asymptotics. Butwe
refrain from explaining the details of these results since such examples have been found only
in (1 + 1)-dimension so far and also the techniques employed are quite different from ours.

1.4 Organization of the Paper

The rest of the paper is organized as follows. Section 2 is devoted to the proof of Theo-
rem 1.2. For β ∈ R, the continuity is relatively easy and the essential part is the proof of
continuity around β = −∞. The basic strategy is to introduce a deformation of the path
with a quantitative control of the resulting error. In Section 3, we prove Theorem 1.5, as
well as a concentration result which is used in the proof of Theorem 1.3. Finally, we prove
Theorem 1.3 in Section 4, by showing that the heuristic computation given below Remark
1.4 is indeed correct. There, we closely follow arguments of Mountford [28].

2 Proof of Theorem 1.2

Proof (Theorem 1.2) Note first that continuity in β ∈ (−∞,∞) follows from convexity of
ϕ(p, ·). Next, we verify the continuity in p, locally uniformly in β, cf. (8) below. For this
purpose, we take arbitrary 0 < p < q ≤ 1, and introduce another family of independent and
identically distributed Bernoulli variables ({ζ( j, x)}( j,x)∈N×Zd , Q′) with Q′(ζ(0, 0) = 1) =
(q − p)/(1 − p) and define η̌ = η ∨ ζ . Then, ({η̌( j, x)}( j,x)∈N×Zd , Q ⊗ Q′) is a collection
of Bernoulli random variables with success probability q and we are going to estimate

Q ⊗ Q′ [log Z η̌,β
n − log Zη,β

n

]
= Q ⊗ Q′ [logμη,β

n

[
exp{βH η̌−η

n }
]]

,

where dμη,β
n = (Zη,β

n )−1 exp{βHη
n }dP is the polymer measure. For positive β, we have by

Jensen’s inequality that

0 ≤ Q ⊗ Q′ [logμη,β
n

[
exp{βH η̌−η

n }
]]

≤ log Q ⊗ Q′ [μη,β
n

[
exp{βH η̌−η

n }
]]

≤ log Q ⊗ Q′ [μη,β
n

[
exp{βH ζ

n }]]

= log Q
[
μη,β
n

[
Q′ [exp{βH ζ

n }]]]

= n log[(eβ − 1)(q − p) + 1].

123
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For negative β, we again use Jensen’s inequality for fixed η and ζ to get

0 ≥ Q ⊗ Q′ [logμη,β
n

[
exp{βH η̌−η

n }
]]

≥ Q ⊗ Q′ [μη,β
n

[
βH η̌−η

n

]]

≥ Q
[
μη,β
n

[
Q′ [βH ζ

n

]]]

= nβ(q − p).

From these estimates, it follows that for any M > 0,

lim
q↓p

sup
|β|≤M

|ϕ(q, β) − ϕ(p, β)|

= lim
q↓p

sup
|β|≤M

lim
n→∞

1

n

∣
∣
∣Q ⊗ Q′ [log Z η̌,β

n − log Zη,β
n

]∣
∣
∣

= 0 (8)

and the same holds for lim p↑q . Combiningwith the continuity in β, we get the joint continuity
on (p, β) ∈ (0, 1] × R.

Now we proceed to the main part of the proof, that is, the continuity at β = −∞. The
following is the key estimate.

Proposition 2.1 Let α ∈ (0, d), p ∈ (0, 1) and ε > 0. Then there exist r > 0 and β0 < 0
such that for all q ∈ [p, p + r ] and β ∈ [−∞, β0], Q-almost surely for all sufficiently large
n,

Zη,β
n ≤ eεn Z η̌,−∞

n . (9)

Let us first see how to derive Theorem 1.2 from this proposition. Since the other direction

Zη,β
n ≥ Z η̌,−∞

n is obvious, we see that

ϕ(p, β) − ε ≤ lim inf
n→∞

1

n
log Z η̌,−∞

n

≤ lim sup
n→∞

1

n
log Z η̌,−∞

n ≤ ϕ(p, β). (10)

This in particular implies (by setting q = p) that the limit (4) exists and equals to
limβ→−∞ ϕ(p, β). Thus, (10) reads:

ϕ(p, β) − ε ≤ ϕ(q,−∞) ≤ ϕ(p, β). (11)

Therefore, it also follows from the monotonicity and (11) that

sup{|ϕ(p1, β1) − ϕ(p2, β2)| : p1, p2 ∈ [p, p + r ], β1, β2 ∈ [β0,−∞]}
≤ ϕ(p, β0) − ϕ(p + r,−∞)

≤ 2ε.

This, together with (8), completes the proof of the joint continuity. ��
Proof (Proposition 2.1)Hereafter, we denote Q⊗Q′ by Q for simplicity. The basic strategy
of the proof is to deform the path appearing in the sum

Zη,β
n =

∑

x1,...,xn

n∏

j=1

f (|x j−1 − x j |1)eβη( j,x j ) (12)
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584 F. Comets et al.

to a path x∗ which does not hit a site with η̌( j, x) = 1 and compare the above with

∑

x∗
1 ,...,x∗

n

n∏

j=1

f (|x∗
j−1 − x∗

j |1) ≤ Zη,−∞
n ,

where the sum runs over all paths which appear as a result of deformation. To establish (9),
we need

(i) the deformation costs
∏n

j=1
f (|x j−1−x j |1)
f (|x∗

j−1−x∗
j |1) are negligible;

(ii) not too many paths are deformed to a single path x∗.

Let us start the proper proof. We define x∗ as follows:

x∗
k =

{
xk, if η̌(k, xk) = 0,
argmin{dist1(x, {x : η̌(k, x) = 0})}, if η̌(k, xk) = 1,

where if there are several candidates in the second case, we choose one by a deterministic
algorithm. To control the costs of deformation, we define

d j (X j , η̌) = dist1(X j , {x : η̌( j, x) = 0}),
where dist1 denotes the l1-distance, and introduce an auxiliary Hamiltonian

Dn(X, η̌) =
n∑

j=1

d j (X j , η̌)α

for α < 1 and

Dn(X, η̌) =
n∑

j=1

d j (X j , η̌)α + |X j−1 − X j |α−1
1 (d j−1(X j−1, η̌) + d j (X j , η̌))

for 1 ≤ α < d with the convention d0(X0, η̌) = 0. When α < 1, we use the fact (x + y)α

≤ xα + yα for positive x, y to bound the deformation cost at each step as

f (|x j−1 − x j |1)
f (|x∗

j−1 − x∗
j |1)

= exp{c2(|x∗
j−1 − x∗

j |α1 − |x j−1 − x j |α1 )}

≤ exp{c2(|x j−1 − x∗
j−1|α1 + |x j − x∗

j |α1 )}.
(13)

In the other case 1 ≤ α < d , we instead use convexity to get

|x∗
j−1 − x∗

j |α1 − |x j−1 − x j |α1
≤ [|x j−1 − x j |1 + d j−1(x j−1, η̌) + d j (x j , η̌)

]α − |x j−1 − x j |α1
≤ α

[|x j−1 − x j |1 + d j−1(x j−1, η̌) + d j (x j , η̌)
]α−1

(d j−1(x j−1, η̌) + d j (x j , η̌))

≤ α2α|x j−1 − x j |α−1
1 (d j−1(x j−1, η̌) + d j (x j , η̌))

+α22α(d j−1(x j−1, η̌)α + d j (x j , η̌)α). (14)

Hence in both cases, the total cost is bounded as

n∏

j=1

f (|x j−1 − x j |1)
f (|x∗

j−1 − x∗
j |1)

≤ ec3Dn

for some c3 > 0.
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Lemma 2.2 Let α ∈ (0, d). For any p ∈ (0, 1) and δ > 0, there exists r ∈ (0, 1) and β0 < 0
such that for all q ∈ [p, p + r ] and β ≤ β0,

lim
n→∞

1

Zη,β
n

P[exp{βHη
n } : Dn ≤ δn] = 1, Q-a.s.

Proof We give a proof only in the case 1 ≤ α < d since the other case is easier. We show
that for any γ > 0, one can find β0 and r such that

Q[P[exp{βHη
n + γ Dn}]] ≤ 1

for all q ∈ [p, p + r ] and β ≤ β0. Then it readily follows that Q-almost surely,

P[exp{βHη
n + γ Dn}] ≤ n2

except for finitely many n ∈ N . If we take γ > limβ→−∞ |ϕ(p, β)|/δ, the right-hand side
of

P[exp{βHη
n } : Dn > δn] ≤ e−γ δn P[exp{βHη

n + γ Dn}]
is o(Zη,β

n ) and we are done.
Let us fix an arbitrary γ > 0 and we write

Q[P[exp{βHη
n + γ Dn}]]

= P

⎡

⎣
n∏

j=1

Q
[
exp
{
βη( j, X j ) + γ d j (X j , η̌)α

+γ
(
|X j−1 − X j |α−1

1 + |X j − X j+1|α−1
1

)
d j (X j , η̌)

}]
⎤

⎦

(15)

with the convention |Xn − Xn+1|1 = 0.We estimate the last Q-expectation by distinguishing
the cases according to the value of η̌( j, X j ). First, if η̌( j, X j ) = 0 then all terms in the
exponential are zero and, by definition,

Q(η̌( j, X j ) = 0) = 1 − q.

Second since η( j, X j ) and d j (X j , η̌) are conditionally independent on {η̌( j, X j ) = 1}, we
get for general ξ > 0,

Q
[
eβη( j,X j )+ξd j (X j ,η̌)1{η̌( j,X j )=1}

]

= Q
[
eβη( j,X j )1{η̌( j,X j )=1}

]
Q
[
eξd j (X j ,η̌)

∣
∣η̌( j, X j ) = 1

]

≤ δ(β, r)Q
[
eξd j (X j ,η̌)

∣
∣η̌( j, X j ) = 1

]
,

where δ(β, r) = eβ + r ≥ eβ + Q(η( j, X j ) = 0, ζ( j, X j ) = 1). The upper tail of the
distribution of d j (X j , η̌) under Q(·|η̌( j, X j ) = 1) is bounded as

Q(d j (X j , η̌) > r |η̌( j, X j ) = 1)

= Q(η̌( j, x) = 1 for 1 ≤ |x − X j |1 ≤ r)

≤ qcr
d
.
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As a consequence, we obtain

Q
[
eβη( j,X j )+ξd j (X j ,η̌)

]
≤ 1 − q + δ(β, r)eΛ(ξ) (16)

for some regularly varying function Λ of index d/(d −1) by a standard Tauberian argument.
(See, for example, [23]. In fact, it is easy to check this fact directly by a Laplace principle
type argument.) Similarly it also follows from the assumption α < d that

Q
[
eβη( j,X j )+ξd j (X j ,η̌)α

]
< 1 − q + δ(β, r)Θ(ξ)

for some Θ(ξ) < ∞.
Now we rewrite the exponential in (15) as

exp

{
β

3
η( j, X j ) + γ d j (X j , η̌)α

}

exp

{
β

3
η( j, X j ) + γ d j (X j , η̌)|X j−1 − X j |α−1

1

}

exp

{
β

3
η( j, X j ) + γ d j (X j , η̌)|X j − X j+1|α−1

1

}

and apply Hölder’s inequality and (16) to obtain

Q
[
exp
{
βη( j, X j ) + γ d j (X j , η̌)α

+ γ d j (X j , η̌)
(
|X j−1 − X j |α−1

1 + |X j − X j+1|α−1
1

) }]

≤ (1 − q + δ(β, r)Θ(3γ ))1/3

(
1 − q + δ(β, r)eΛ(3γ |X j−1−X j |α−1

1 )
)1/3

(
1 − q + δ(β, r)eΛ(3γ |X j−X j+1|α−1

1 )
)1/3

.

We may drop the first factor on the right-hand side since it can be made smaller than one
by letting β be close to −∞ and r close to zero. We then take the product over 1 ≤ j ≤ n
and P-expectation. Due to the independence of {X j−1 − X j }nj=1 under P , the expectation
factorizes and the term containing X j−1 − X j is

P

[(
1 − q + δ(β, r)eΛ(3γ |X j−1−X j |α−1

1 )
)2/3

]

Jensen≤
(
1 − q + δ(β, r)P

[
eΛ(3γ |X j−1−X j |α−1

1 )
])2/3

for 2 ≤ j ≤ n − 1 and for j ∈ {1, n}, the exponent 2/3 is replaced by 1/3. In this way, our
problem is reduced to checking that

P
[
eΛ(3γ |X j−1−X j |α−1

1 )
]

< ∞.

But the function x �→ Λ(3γ xα−1) is regularly varying of index (α − 1) d
d−1 < α for α < d ,

hence the above expectation is finite. ��
Due to the above lemma, we can restrict the summation (12) to paths with Dn(x, η̌) ≤ δn
and get

123



Limiting Results for the Free Energy of Directed Polymers... 587

Zη,β
n ∼

∑

x1,...,xn :Dn(x,η̌)≤δn

n∏

j=1

f (|x j−1 − x j |1)eβη( j,x j )

=
∑

x1,...,xn :Dn(x,η̌)≤δn

n∏

j=1

f (|x∗
j−1 − x∗

j |1)
[
f (|x j−1 − x j |1)
f (|x∗

j−1 − x∗
j |1)

eβη( j,x j )

]

≤ ec3δn
∑

y1,...,yn :Hn(y,η̌)=0

#{x : x∗ = y, Dn(x, η̌) ≤ δn}
n∏

j=1

f (|y j−1 − y j |1).

We are left with estimating the number of paths which are deformed to a fixed path.

Lemma 2.3 There exists a function χ(δ) → 0 as δ ↓ 0 such that for any fixed path
(y1, . . . , yn) ∈ (Zd)n,

#{x : x∗ = y, Dn(x, η̌) ≤ δn} ≤ exp{χ(δ)n}.
Proof We write z j = x j − y j . Then it suffices to bound

#{(z j )nj=1 : |z1|α1 + · · · + |zn |α1 ≤ δn}
≤ eλδn

∑

z: |z1|α1+···+|zn |α1≤δn

e−λ(|z1|α1+···+|zn |α1 ) (λ > 0)

≤
⎛

⎝
∑

z∈Zd

eλδ−λ|z|α1

⎞

⎠

n

.

By taking λ = δ−1/2, we find that the right-hand side is (1 + o(1))n as δ ↓ 0. ��
Combining the above arguments, we can find r ∈ (0, 1) and β0 < 0 such that for any

q ∈ [p, p + r ] and β < β0,

Zη,β
n ≤ eεn

∑

y1,...,yn :Dn(y,η̌)=0

n∏

k=1

f (|y j−1 − y j |1)

= eεn Z η̌,−∞
n

for all sufficiently large n ∈ N. ��

3 A Directed First Passage Percolation

In this section, we prove Theorem 1.5. We also prove a concentration bound for the passage
times, which is an important ingredient in the proof of Theorem 1.3.

For further use, we start by introducing a special realization of η: recalling that η = ηp

depends in fact on p, we define a coupling of ηp for all values of p ∈ (0, 1) as follows.
Let (Q, ω1) be the Poisson point process on N × R

d whose intensity is the product of the
counting measure and Lebesgue measure, and define, for p ∈ (0, 1),

η(k, x) = ηp(k, x) = 1{ω1({k}×sp(x+[0,1)d ))=0} (17)

with sp = (log 1
p )1/d the scaling factor. Note that sp ∈ (0,∞) and sp → 0 as p ↑ 1. Let us

also introduce
ωp =

∑

(k,x)∈N×Zd

(1 − ηp(k, x))δ(k,spx)
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which vaguely converges to ω1, Q-almost surely as p ↑ 1. Hereafter, we sometimes identify
ωp with its support by abuse of notation. For 0 < p ≤ 1, recall the definition of the passage
time from 0 to n,

Tn(ωp) = min

{
n∑

k=1

|xk−1 − xk |α : x0 = 0 and {(k, xk)}nk=1 ⊂ ωp

}

,

and recall that, by the subadditive ergodic theorem, the following limits exist and are equal:

μp = a.s.- lim
n→∞

1

n
Tn(ωp) = inf

n∈N
1

n
Q[Tn(ωp)] = lim

n→∞
1

n
Q[Tn(ωp)].

Proof (Theorem 1.5) We have the following comparison for the passage times from which
the result readily follows:

Tn(ω1) ≤ (1 + δ1)Tn(ωp) + δ2n,

Tn(ωp) ≤ (1 + δ1)Tn(ω1) + δ2n,
(18)

where δ1, δ2 → 0 as p ↑ 1. We only prove the first one since the argument for the other
is the same. Let (πn(m))nm=0 be a minimizing path for Tn(ωp). Then, by definition, each
πn(m) + [0, sp)d contains a point of ω1. Thus we can find another path {π ′

n(m)}nm=0 such
that

π ′
n(0) = 0, π ′

n(m) ∈ ω1 and |πn(m) − π ′
n(m)|1 ≤ dsp

for 1 ≤ m ≤ n. Then, we have

|π ′
n(m − 1) − π ′

n(m)|1 ≤ |πn(m − 1) − πn(m)|1 + 2dsp

and together with an elementary inequality

(t + s)α ≤
{
tα + sα, α ≤ 1,

(1 + s)α−1(tα + s), α > 1,

where the second one is obtained by applying convexity to ( 1·t+s·1
1+s )α , we get

Tn(ω1) ≤
n∑

m=1

|π ′
n(m − 1) − π ′

n(m)|α1

≤
{∑n

m=1 |πn(m − 1) − πn(m)|α1 + (2dsp)αn, α ≤ 1,

(1 + 2dsp)α−1
(∑n

m=1 |πn(m − 1) − πn(m)|α1 + 2dspn
)
, α > 1.

Since sp tends to zero as p ↑ 1, we are done. ��
Our second main result in this subsection is the lower tail estimate of the passage time

distribution.

Proposition 3.1 There exist positive constants C1, C2 andλ ∈ (0, 1) such that for any n ∈ N,

Q
(
Tn(ω1) − nμ1 < −n1−λ

) ≤ C1 exp
{−C2n

λ
}
. (19)

Proof We fix a small θ > 0 and define

ω̄ = ω +
∑

(k,x)∈N×nθZd

1{ω({k}×(x+[0,nθ )d ))=0}δ(k,x),
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that is, when we find a large vacant box, we add an ω-point artificially at a corner. This
modification provides a uniform bound for the passage time

sup
ω

Tn(ω̄) ≤ dαn1+αθ

since there is a path whose all jumps are bounded by dnθ . We also have the following upper
tail estimate.

Lemma 3.2 There exists C0 > 0 such that for all n ∈ N and m > C0n,

Q(Tn(ω1) > m) ≤ exp{−m1∧ d
α /C0}. (20)

Proof Note that Tn(ω1) is bounded by the passage time of the greedy path {(k, xk)}k∈N which
is inductively constructed by minimizing the distance to points in the next section, that is,
x0 = 0 and

xk = argmin{|xk−1 − x |1 : (k, x) ∈ ω1}.
The passage time of such a path is nothing but the sum of independent random variables with
the same distribution as dist((0, 0), ω1|{0}×Rd )α . One can bound its tail as

Q(dist((0, 0), ω1|{0}×Rd )
α ≥ r) = Q

(
ω1|{0}×Rd (Bl1(0, r

1/α)) = 0)
)

= exp
{
−crd/α

}

for some c > 0. Our assertion follows from this and awell known result for the large deviation
of sums of independent random variables, for which we refer to [29]. ��
Next, we show that Tn(ω1) and Tn(ω̄1) are essentially the same.

Lemma 3.3 There exists C3 > 0 such that for sufficiently large n ∈ N,

max{Q(Tn(ω1) �= Tn(ω̄1)), Q[|Tn(ω1) − Tn(ω̄1)|]}
≤ exp{−C3n

dθ }.
Proof Thanks to Lemma 3.2, we know that Tn(ω1) ≤ C0n with probability greater than

1 − exp{−n1∧ d
α /C0}. Under this condition, all the minimizing paths for Tn(ω1) stay inside

Cn := [0, n] × [−C1/α
0 n1+1/α,C1/α

0 n1+1/α]d . Indeed, if any minimizing path exits Cn , then

it must make a jump larger than C1/α
0 n1/α and hence its passage time is larger than C0n.

Since Tn(ω̄1) ≤ Tn(ω1), the same applies to minimizing paths for Tn(ω̄1). This space-time
region contains only polynomially many boxes of the form {k} × (x + [0, nθ )d) and each of
them is vacant with probability exp{−cndθ }. Thus it follows that

Q(ω1 = ω̄1 in Cn) ≥ 1 − exp{−cndθ /2}
for large n. Since Tn(ω1) = Tn(ω̄1) on the event

{Tn(ω1) ≤ C0n and ω1 = ω̄1 in Cn},
we get the desired bound on Q(Tn(ω1) �= Tn(ω̄1)).

As for the L1(Q) distance, we use the Schwarz inequality to obtain

Q[|Tn(ω1) − Tn(ω̄1)|]
≤ Q

[
(Tn(ω1) − Tn(ω̄1))

2]1/2 Q(Tn(ω1) �= Tn(ω̄1))
1/2.

The first factor on the right-hand side is of O(n) as n → ∞ due to Lemma 3.2. ��
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We proceed to a lower tail estimate for Tn(ω̄1). Let ω̄
(m)
1 be the point process obtained

by replacing its {m} × R
d -section by ω̄′ which is the modification of another configuration

ω′. We are going to use the so-called entropy method (Theorem 6.7 in [2]) and it requires a
bound on

n∑

m=1

(

sup
ω′

Tn(ω̄
(m)
1 ) − Tn(ω̄1)

)2

. (21)

Let us first assume α ≥ 1 and let {πn(m)}nm=0 be a minimizing path for Tn(ω̄1). As we can
find a point in ω′|{m}×Rd within the distance dnθ to πn(m),

sup
ω′

Tn(ω̄
(m)
1 ) − Tn(ω̄1)

≤ α(|πn(m − 1) − πn(m)|1 + dnθ )α−1dnθ1{m≥1}
+ α(|πn(m) − πn(m + 1)|1 + dnθ )α−1dnθ1{m≤n−1}.

Furthermore, the a priori bound

Tn(ω̄1) =
n∑

m=1

|πn(m − 1) − πn(m)|α1 ≤ dαn1+αθ

yields the following bound on the numbers of large jumps

#{m ≤ n : |πn(m − 1) − πn(m)|1 ≥ nkθ } ≤ dαn1−(k−1)αθ1{k≤ 1
αθ

+2}.

Thus by dividing the sum in (21) according to the indices with jump size falling in
[nkθ , n(k+1)θ ), we can bound it, up to a multiplicative constant, by

∑

k≤ 1
αθ

+2

n1−(k−1)αθn2(k+1)θ(α−1)+2θ= n1+3αθ
∑

k≤ 1
αθ

+2

n(α−2)θk .

It is simple to check that the right-hand side is bounded by nρ withρ < 2when θ is sufficiently
small. Then, Theorem 6.7 in [2] yields

Q
(
Tn(ω̄1) − Q[Tn(ω̄1)] < −n1−λ

) ≤ exp{−C2n
2−ρ−2λ}.

Lemma 3.3 shows that this remains valid with ω̄1 replaced by ω1 and exp{−C3ndθ } added
to the right-hand side. Finally, since μ1 = infn n−1Q[Tn(ω1)], we can further replace
Q[Tn(ω1)] by nμ1 and arrive at

Q(Tn(ω1) − nμ1 < −n1−λ) ≤ exp{−C2n
2−ρ−2λ} + exp{−C3n

dθ }.
Choosing λ > 0 small, we get the desired bound.

The case α < 1 is simpler since we readily get supω′ Tn(ω̄
(m)
1 ) − Tn(ω̄1) ≤ 2dαnαθ

uniformly in m just as in (13). ��

4 Proof of Theorem 1.3

In this section, we continue to assume that η is realized as in (17) in the previous section.
Recall also that we defined sp = (log 1

p )1/d , which is asymptotic to (1 − p)1/d as p ↑ 1.
The positivity of μ1 can proved by essentially the same argument as in the upper bound: see
Remark 4.4 below. Let us first complete the proof of (5) assuming it.
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Proof (Lower bound) Let πn be a minimizing path for Tn(ωp). Then obviously,

Zη,−∞
n = P(Hη

n = 0)

≥ P(Xk = πn(k) for all 1 ≤ k ≤ n)

= cn1 exp
{
−c2s

−α
p Tn(ωp)

}

and hence
ϕ(p,−∞) ≥ −c2s

−α
p μp + log c1.

By letting p ↑ 1 and using Theorem 1.5, we get the desired lower bound. ��
The upper bound is more laborious since we have to show that the number of paths makes
negligible contribution. We closely follow the argument of Mountford in [28].

Proof (Upper bound) Let M = (α + 2)/α and define a face-to-face passage time

ΦR(ωp) = inf

{
R∑

i=1

|xi−1 − xi |α1 : |x0|∞ ≤RM and (i, xi ) ∈ ωp for 1 ≤ i ≤ R

}

for R ∈ N. We fix ε > 0 and say that (k, x) ∈ N × 2Zd is ε-good if the following two
conditions hold:

(i) ΦR(ωp − (k, RMx)) ≥ (μ1 − ε)R;
(ii) maxk+1≤l≤k+R ωp({l} × (RMx + [−2RM , 2RM ]d)) ≤ 4d+1RdM ,

where ωp − (k, RMx) is the translation of ωp regarded as a set. Our basic strategy is to show
that: (1) if the polymer, scaled by a factor of sp R−M , comes close to an ε-good point, then
it costs at least exp{−(μ1 − ε)R} to survive the next R-duration; (2) most of the times in
{ j R}[n/R]

j=1 , the polymer is close to an ε-good point with high probability.

Lemma 4.1 There exists p0(ε) ∈ (0, 1) such that

lim
R→∞ Q((k, x) is ε-good) = 1

uniformly in p ∈ [p0(ε), 1] and (k, x) ∈ N × 2Zd .

Proof By translation invariance, we may assume (k, x) = (0, 0) without loss of generality.
Note also that the probability of

ER =
{

ω1 : max
y∈[−RM ,RM ]d∩Zd

TR(ω1 − (0, y)) ≤ C0R

}

tends to one as R → ∞ by Lemma 3.2. On this event, we know from (18) that

TR(ωp − (0, y)) < TR(ω1 − (0, y)) + εR ≤ (C0 + ε)R (22)

for all p close to one. As a consequence, all the minimizing paths for TR(ωp − (0, y)), that
is, the passage time from (0, y) to {R} ×R

d , make jumps of size at most a constant multiple
of R1/α . Then by using the mean value theorem, one can check that

ΦR(ωp) − min
y∈[−RM ,RM ]d∩Zd

TR(ωp − (0, y)) ≥ dα ∨ (cR(α−1)/α) (23)

for some c > 0, since the difference comes only from the starting points.
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Thus we can bound

Q({ΦR(ωp) ≤ (μ1 − 2ε)R} ∩ ER)

≤ Q

(

min
y∈[−RM ,RM ]d∩Zd

TR(ω1 − (0, y)) + dα ∨ (cR(α−1)/α) ≤ (μ1 − 2ε)R

)

≤
∑

y∈[−RM ,RM ]d∩Zd

Q
(
TR(ω1 − (0, y)) ≤ (μ1 − ε)R

)

≤ (2RM + 1)dC1 exp
{−C2R

λ
}

for sufficiently large R, where we have used (23) in the first inequality.
On the other hand, a simple large deviation estimate shows that there is c > 0 such that

for any l ∈ N,

Q
(
ωp({l} × [−2RM , 2RM ]d) > 4d+1RdM

)
≤ exp

{
−cRdM

}

and summing over l ∈ {1, 2, . . . , R}, we get

Q

(

max
1≤l≤R

ωp({l} × [−2RM , 2RM ]d) > 4d+1RdM
)

→ 0

as R → ∞. ��
Let us write Cp(x) = s−1

p (RMx + [−RM , RM ]d) for shorthand.
Lemma 4.2 For sufficiently large R ∈ N, there exists p1(R, ε) > 0 such that if p ∈
[p1(R, ε), 1) and (k, x) is ε-good, then

sup
y∈Cp(x)

P(η(l, Xl) = 0 for all l ∈ {k + 1, . . . , k + R}|Xk = y)

≤ exp
{
−c2s

−α
p (μ1 − 2ε)R

}
.

Proof We again assume that (k, x) = (0, 0) without loss of generality. We first prove

sup
y∈Cp(0)

Py

(

max
1≤l≤R

|Xl |∞ ≥ 2s−1
p RM

)

≤ exp
{
−C5s

−α
p R2

}
(24)

so that we may assume the contrary. When α ≤ 1, one can readily check that

sup
y∈Cp(0)

Py

(

max
1≤l≤R

|Xl |∞ ≥ 2s−1
p RM

)

≤ P

(

max
1≤l≤R

|Xl |∞ ≥ s−1
p RM

)

≤ P

⎛

⎝
R∑

j=1

|X j−1 − X j |α1 ≥ s−α
p Rα+2

⎞

⎠ .

Since our assumption on the transition probability implies

C6 := P
[
exp
{c2
2

|X1|α1
}]

∈ (1,∞), (25)

Chebyshev’s inequality yields

LHS of (24) ≤ exp
{
−c2

2
s−α
p Rα+2 + R logC6

}
.
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For α > 1, we use Jensen’s inequality to get

sup
y∈Cp(0)

Py

(

max
1≤l≤R

|Xl |∞ ≥ 2s−1
p RM

)

≤ P

⎛

⎝Rα−1
R∑

j=1

|X j−1 − X j |α1 ≥ s−α
p Rα+2

⎞

⎠ .

With the help of (25), the rest of the proof is similar to the above.
Thanks to the condition (i), every path satisfying Hη

R(X) = 0 has probability at most

cR1 exp
{
−c2s

−α
p (μ1 − ε)R

}

under P(·|X0 = y). On the other hand, condition (ii) ensures that there are at most
(4d+1RdM )R such pathswhich, in addition, stay inside [0, R]×s−1

p [−2RM , 2RM ]. Therefore
we have

Py

(

Hη
R = 0, max

1≤l≤R
|Xl | < 2s−1

p RM
)

≤
(
c14

d+1RdM
)R

exp
{
−c2s

−α
p (μ1 − ε)R

}

and since sp tends to zero as p ↑ 1, the assertion follows. ��

Let ψε(k, x) = c2(μ1 − 2ε)1{(kR,x) is ε-good} and

Γ =
{
γ = ( j, γ j ) j∈Z+ : γ0 = 0, γ j ∈ 2Zd

}
.

For γ ∈ Γ and an integer v ≥ 1, we define

Jv(γ ) =
v−1∑

j=0

max
{
ψε( j, γ j ),C5R(|γ j − γ j+1|∞ − 1)α+

}
.

Lemma 4.3 Let R and p be as in Lemma 4.1 and 4.2. Then for any v ≥ 1 and γ ∈ Γ ,

P
(
Hη

vR = 0 and X j R ∈ Cp(γ j ) for j = 1, . . . , v
)

≤ exp
{
−s−α

p Jv(γ )R
}

.

Proof We useMarkov property at times R, 2R, . . . , (v − 1)R to bound the left-hand side by

v−1∏

j=0

sup
y∈Cp(γ j )

Py
(
H

θ j Rη

R = 0 and XR ∈ Cp(γ j+1)
)
,

where θk (k ∈ N) is the time-shift operator acting on the space of environments. By
Lemma 4.2, it immediately follows that

sup
y∈Cp(γ j )

Py
(
H

θ j Rη

R = 0
)

≤ exp{−s−α
p ψε( j, γ j )R}

for sufficiently large R. On the other hand, one can show

sup
y∈Cp(γ j )

Py
(
XR ∈ Cp(γ j+1)

) ≤ exp
{
−C5s

−α
p R2(|γ j − γ j+1|∞ − 1)α+

}

for large R in the same way as that for (24). ��
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This lemma gives a control only for a fixed γ but we can indeed reduce the problem to a
single γ as follows: We have for any ε ∈ (0, 1) that

Jv(γ ) ≥ (1 − ε)Jv(γ ) + εC5R
v−1∑

j=0

(|γ j − γ j+1|∞ − 1)α+.

When p is so close to 1 that s−α
p εC5R2 ≥ 1, for some c > 0 depending only on d and α,

∑

γ∈Γ

exp

⎧
⎨

⎩
−s−α

p εC5R
2

v−1∑

j=0

(|γ j − γ j+1|∞ −1)α+

⎫
⎬

⎭
≤
∑

γ∈Γ

exp

⎧
⎨

⎩
−

v−1∑

j=0

(|γ j −γ j+1|∞− 1)α+

⎫
⎬

⎭

≤ exp{cv}.
Thus it follows that

∑

γ∈Γ

exp
{
−s−α

p Jv(γ )R
}

≤ exp

{

−(1 − ε)s−α
p inf

γ∈Γ
Jv(γ )R + cv

}

.

To conclude the proof of the upper bound, it remains to show

lim inf
v→∞

1

v
inf
γ∈Γ

Jv(γ ) ≥ c2(μ1 − 2ε)(1 − ε)

almost surely. Without the infimum over γ , the above is a consequence of the law of large
numbers together with Lemma 4.1. We indeed have the tail bound

Q
(
Jv(γ ) < c2(μ1 − 2ε)(1 − ε)v

)

≤ Q

⎛

⎝
v−1∑

j=0

1{( j,γ j ) is ε-good} < (1 − ε)v

⎞

⎠

≤
(
Q ((0, 0) is not ε-good)

ε

)εv ( 1

1 − ε

)(1−ε)v−1

(26)

by Bernstein’s inequality. The right-hand side is o(exp{−cv}) for any c > 0 when R is
sufficiently large, due to Lemma 4.1. We show that the infimum has no effect by counting
the number of relevant γ ’s. Obviously we can restrict our consideration to those γ with

v−1∑

j=0

(|γ j − γ j+1|∞ − 1)α+ ≤ 2(μ1 − 2ε)(1 − ε)v/(C5R).

Since we can find c ≥ 1 such that xα ≤ c(x − 1)α+ + c for x ≥ 0, the above implies

v−1∑

j=0

d−α|γ j − γ j+1|α1 ≤ 2cv

for all sufficiently large R > 0. We bound the number of such sequences by

#

⎧
⎨

⎩
(γ0 = 0, γ1, . . . , γv) :

v−1∑

j=0

d−α|γ j − γ j+1|α1 ≤ 2cv

⎫
⎬

⎭

≤ #

⎧
⎨

⎩
(γ0 = 0, γ1, . . . , γv) :

v−1∑

j=0

d∑

i=1

|γ (i)
j − γ

(i)
j+1|α ≤ c′v

⎫
⎬

⎭
,

(27)
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where γ
(i)
j stands for i-th coordinate of γ j . Indeed, when α ≤ 1 this holds with c′ = 2cd

as a consequence of the concavity of x �→ xα and, when α > 1 with c′ = 2cdα by∑
1≤i≤d |xi |α ≤ (

∑
1≤i≤d |xi |)α . The right-hand side of (27) is nothing but the volume of

⋃

x∈Zdv :|x |αα≤c′v
x + [0, 1]dv,

where |x |α = (
∑dv

i=1 |xi |α)1/α . As any point y in x + [0, 1]dv satisfies

|y|αα ≤
dv∑

j=1

2α(|x j |α + 1) ≤ 2α+2c′v,

the right-hand side of (27) is bounded by the volume of lα-ball in R
dv with radius

(2α+2c′v)1/α , which is known to be

(2(2α+2c′v)1/αΓ (1 + 1/α))dv

Γ (1 + dv/α)
.

One can check by using Stirling’s formula that this is only exponentially large in v. Therefore,
with the help of (26), we find that

Q

(

inf
γ∈Γ

Jv(γ ) < c2(μ1 − 2ε)(1 − ε)v

)

decays exponentially in v when R is sufficiently large. ��
Remark 4.4 We explain how to modify the above block argument to prove μp > 0 for
p ∈ (0, 1]. We first replace the condition (i) of the ε-good box (ε ∈ (0, 1)) by

ΦR(ωp − (k, RMx)) ≥ ε

and drop (ii). With this modified definition of ε-good box, it is simple to check that the
following variant of Lemma 4.1 holds for general p ∈ (0, 1]:

lim
ε↓0 lim sup

R→∞
Q((k, x) is ε-good) = 1.

Next we replace Jv(γ ) for γ ∈ Γ by

J ′
v(γ ) =

v−1∑

j=0

max
{
ε1{(k,x) is ε-good},C ′

5R(|γ j − γ j+1|∞ − 1)α+
}
.

If C ′
5 is sufficiently small, we can easily verify that any minimizing path πn for Tn(ωp) with

πn( j R) ∈ Cp(γ j ) (0 ≤ j ≤ n/R) has passage time larger than J ′
v(γ ). Therefore we get

Tn(ωp) ≥ inf
γ∈Γ

J ′[n/R]−1(γ )

and, when R ∈ N is chosen sufficiently large and ε small, we have

lim inf
v→∞

1

v
inf
γ∈Γ

J ′
v(γ ) > 0

in exactly the same way as above.
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Appendix

We provide a proof of (3) for completeness. We consider d = 1 case first since the other case
will reduce to it. Set

L = {(m, x) ∈ N × Z : m + x ∈ 2Z}.
For R > 0 and (m, x) ∈ L , we say (m, x) is open if there exists a ym ∈ Rx + (−R, R) ∩ Z

such that η(m, ym) = 0. It is easy to see that

Q((m, x) is open) → 1

as R → ∞. Thus when R is large, the directed site percolation on L is supercritical and
we can find a percolation point (1, x) ∈ L . This implies that there exists a path {(k, yk)}k≥1

satisfying
η(k, yk) = 0 and |yk+1 − yk+2| ≤ 3R

for all k ≥ 1. Then it follows that

lim inf
n→∞

1

n
log Zη,−∞

n ≥ lim inf
n→∞

1

n
log P(Xk = yk for all k ≤ n)

≥ −c23
αRα.

For the case d ≥ 2, we have

Zη,−∞
n ≥ P(Hη

n = 0 and Xk ∈ Z × {0}d−1 for all 1 ≤ k ≤ n)

and the right-hand side can be bounded from below in the same way as for d = 1.
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