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Abstract In this paper, we present a novel extension to the classical path coupling method
to statistical mechanical models which we refer to as aggregate path coupling. In conjunc-
tion with large deviations estimates, we use this aggregate path coupling method to prove
rapid mixing of Glauber dynamics for a large class of statistical mechanical models, includ-
ing models that exhibit discontinuous phase transitions which have traditionally been more
difficult to analyze rigorously. The parameter region for rapid mixing for the generalized
Curie–Weiss–Potts model is derived as a new application of the aggregate path coupling
method.
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1 Introduction

In recent years, mixing times of dynamics of statistical mechanical models have been the
focus ofmuchprobability research, drawing interest from researchers inmathematics, physics
and computer science. The topic is both physically relevant and mathematically rich. But up
to now, most of the attention has focused on particular models including rigorous results
for several mean-field models. A few examples are (a) the Curie–Weiss (mean-field Ising)
model [5,6,12], (b) the mean-field Blume–Capel model [8,11], (c) the Curie–Weiss–Potts
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(mean-field Potts) model [1,4,9]. A good survey of the topic of mixing times of statistical
mechanical models can be found in the recent paper by Cuff et. al. [4].

An important question driving the work in the field is the relationship between the mixing
times of the dynamics and the equilibrium phase transition structure of the corresponding
statistical mechanical models. For example, the Curie–Weiss model, which undergoes a
continuous, second-order, phase transition, was one of the first models studied to investigate
this relationship and it was found that the mixing times undergo a transition from rapid to
slow mixing at precisely the same critical value as the equilibrium phase transition [13].
This property was also shown for the mean-field Blume–Capel model [11] in the parameter
regime where the model undergoes a continuous, second-order phase transition.

On the other hand, formodels that exhibit a discontinuous, first-order, phase transition, they
do not appear to share this same property. This was first verified for the mean-field Blume–
Capel model in the discontinuous phase transition parameter regime [11] and recently for
the Curie–Weiss–Potts model [4]. For these models, it was shown that the change in mixing
times occurs, not at the equilibrium phase transition value, but instead at a smaller parameter
value at which metastable states first emerge.

The results for models that exhibit a continuous phase transition were obtained by a direct
application of the standard path coupling method that requires contraction of the mean path
coupling distance between all neighboring configurations. See [2] and [13]. For models that
exhibit a discontinuous phase transition straightforward path coupling methods fail and the
results of [11] were obtained by applying a novel extension called aggregate path coupling
in one dimension and large deviations estimates.

In this paper, we extend theworkwe did in [11] and provide a single general framework for
determining the parameter regime for rapid mixing of the Glauber dynamics for a large class
of statisticalmechanicalmodels, including all those listed above. The aggregate path coupling
method presented here extends the classical path couplingmethod in two directions. First, we
consider macroscopic quantities in higher dimensions and find a monotone contraction path
by considering a related variational problem in the continuous space. We also do not require
the monotone path to be a nearest-neighbor path. In fact, in most situations we consider, a
nearest-neighbor path will not work for proving contraction. Second, the aggregation of the
mean path distance along a monotone path is shown to contract for some but not all pairs of
configurations. Yet, we use measure concentration and large deviation principle to show that
showing contraction for pairs of configurations, where at least one of them is close enough
to the equilibrium, is sufficient for establishing rapid mixing.

Our main result is general enough to be applied to statistical mechanical models that
undergo both types of phase transitions and to models whose macroscopic quantity are in
higher dimensions. Moreover, despite the generality, the application of our results requires
straightforward conditions that we illustrate in Sect. 10. This is a significant simplification
for proving rapid mixing for statistical mechanical models, especially those that undergo
first-order, discontinuous phase transitions. Lastly, our results also provide a link between
measure concentration of the stationary distribution and rapid mixing of the corresponding
dynamics for this class of statisticalmechanicalmodels. This idea has been previously studied
in [15]where themain result showed that rapidmixing impliedmeasure concentration defined
in terms of Lipschitz functions. In our work, we prove a type of converse where measure
concentration, in terms of a large deviation principle, implies rapid mixing.

The paper is organized as follows. In Sect. 2 the general construction of the class of the
mean-field models considered in this paper is provided. Next, in Sect. 3 the large deviation
principle for theGibbsmeasures from [7] thatwill be used in themain result of thismanuscript
is reviewed, and the concept of equilibrium macrostates is discussed. In Sects. 4 and 5
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the Glauber dynamics is introduced, and its transition probabilities are analyzed. Section
6 provides a greedy coupling construction, standard for the Glauber dynamics of a mean-
field statistical mechanical model. Section 7 describes a single time step evolution of the
mean coupling distance for two configurations whose spin proportion vectors are ε-close.
Section 7 is followed by Sect. 8 which describes a single time step evolution of the mean
coupling distance in general by aggregating the mean coupling distances along a monotone
path of points connecting two configurations. Also, in Sect. 8 general conditions for the main
result Theorem 9.2 are stated and discussed. The main result is stated and proved in Sect. 9.
The paper concludes with Sect. 10, where the region of rapid mixing β < βs(q, r) for the
generalized Curie–Weiss–Potts model (including the standard Curie–Weiss–Potts model) is
proven as an immediate and simple application of the main result of the current paper.

2 Gibbs Ensembles

We begin by defining the general class of statistical mechanical spin models for which our
results can be applied. As mentioned above, this class includes all of the models listed in the
introduction and we illustrate the application of our main result for the particular model: the
Curie–Weiss–Potts model, in Sect. 10.

Let q be a fixed integer and define � = {e1, e2, . . . , eq}, where ek are the q standard
basis vectors of Rq . A configuration of the model has the form ω = (ω1, ω2, . . . , ωn) ∈ �n .
We will consider a configuration on a graph with n vertices and let Xi (ω) = ωi be the spin
at vertex i . The random variables Xi ’s for i = 1, 2, . . . , n are independent and identically
distributed with common distribution ρ.

In terms of the microscopic quantities, the spins at each vertex, the relevant macroscopic
quantity is the magnetization vector (aka empirical measure or proportion vector)

Ln(ω) = (Ln,1(ω), Ln,2(ω), . . . , Ln,q(ω)), (1)

where the kth component is defined by

Ln,k(ω) = 1

n

n∑

i=1

δ(ωi , e
k)

which yields the proportion of spins in configuration ω that take on the value ek . The mag-
netization vector Ln takes values in the set of probability vectors

Pn =
{
nk
n

: each nk ∈ {0, 1, . . . , n} and
q∑

k=1

nk = n

}
(2)

inside the continuous simplex

P =
{

ν ∈ R
q : ν = (ν1, ν2, . . . , νq), each νk ≥ 0,

q∑

k=1

νk = 1

}
.

Remark 2.1 For q = 2, the empirical measure Ln yields the empirical mean Sn(ω)/n where
Sn(ω) = ∑n

i=1 ωi . Therefore, the class of models considered in this paper includes those
where the relevant macroscopic quantity is the empirical mean, like the Curie–Weiss (mean-
field Ising) model.
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Statistical mechanical models are defined in terms of the Hamiltonian function, which
we denote by Hn(ω). The Hamiltonian function encodes the interactions of the individual
spins and the total energy of a configuration. To take advantage of the large deviation bounds
stated in the next section, we assume that the Hamiltonian can be expressed in terms of the
empirical measures Ln as stated in the following definition.

Definition 2.2 For z ∈ R
q , we define the interaction representation function, denoted by

H(z), to be a differentiable function satisfying

Hn(ω) = nH(Ln(ω))

Throughout the paper we suppose the interaction representation function H(z) is a finite
concave C3(Rq) function that has the form

H(z) = H1(z1) + H2(z2) + . . . + Hq(zq)

For the Curie–Weiss–Potts (CWP) model discussed in Sect. 10,

H(z) = −1

2

〈
z, z
〉 = −1

2
z21 − 1

2
z22 − . . . − 1

2
z2q .

Definition 2.3 The Gibbs measure or Gibbs ensemble in statistical mechanics is defined as

Pn,β(B) = 1

Zn(β)

∫

B
exp {−βHn(ω)} dPn = 1

Zn(β)

∫

B
exp {−βn H (Ln(ω))} dPn (3)

where Pn is the product measure with identical marginals ρ and Zn(β) =∫
�n exp {−βHn(ω)} dPn is the partition function. The positive parameter β represents the
inverse temperature of the external heat bath.

Remark 2.4 To simplify the presentation, we take � = {e1, e2, . . . , eq}, where ek are the q
standard basis vectors of Rq . But our analysis has a straight-forward generalization to the
case where � = {θ1, θ2, . . . , θq}, where θk is any basis of Rq . In this case, the product
measure Pn would have identical one-dimensional marginals equal to

ρ̄ = 1

q

q∑

i=1

δθ i

An important tool we use to prove rapid mixing of the Glauber dynamics that converge
to the Gibbs ensemble above is the large deviation principle of the empirical measure with
respect to the Gibbs ensemble. This measure concentration is precisely what drives the rapid
mixing. The large deviations background is presented next.

3 Large Deviations

By Sanov’s Theorem, the empirical measure Ln satisfies the large deviation principle (LDP)
with respect to the product measure Pn with identical marginals ρ and the rate function is
given by the relative entropy

R(ν|ρ) =
q∑

k=1

νk log

(
νk

ρk

)

for ν ∈ P . Theorem 2.4 of [7] yields the following result for the Gibbs measures (3).
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Theorem 3.1 The empirical measure Ln satisfies the LDPwith respect to the Gibbs measure
Pn,β with rate function

Iβ(z) = R(z|ρ) + βH(z) − inf
t

{R(t |ρ) + βH(t)}
In other words, for any closed subset F,

lim sup
n→∞

1

n
log Pn,β(Ln ∈ F) ≤ − inf

z∈F Iβ(z) (4)

and for any open subset G,

lim inf
n→∞

1

n
log Pn,β(Ln ∈ G) ≥ − inf

z∈G Iβ(z).

The LDP upper bound (4) stated in the previous theorem yields the following natural
definition of equilibrium macrostates of the model.

Eβ := {ν ∈ P : ν minimizes R(ν|ρ) + βH(ν)} (5)

For our main result, we assume that there exists a positive interval B such that for all β ∈ B,
Eβ consists of a single state zβ . We refer to this interval B as the single phase region.

Again from the LDP upper bound, when β lies in the single phase region, we get

Pn,β(Ln ∈ dx) �⇒ δzβ as n→∞. (6)

The above asymptotic behavior will play a key role in obtaining a rapid mixing time rate for
the Glauber dynamics corresponding to the Gibbs measures (3).

An important function in our work is the free energy functional defined below. It is defined
in terms of the interaction representation function H and the logarithmic moment generating
function of a single spin; specifically, for z ∈ R

q and ρ equal to the uniform distribution, the
logarithmic moment generating function of X1, the spin at vertex 1, is defined by


(z) = log

(
1

q

q∑

k=1

exp{zk}
)

. (7)

Definition 3.2 The free energy functional for the Gibbs ensemble Pn,β is defined as

Gβ(z) = β(−H)∗(−∇H(z)) − 
(−β∇H(z)) (8)

where for a finite, differentiable, convex function F on Rq , F∗ denotes its Legendre-Fenchel
transform defined by

F∗(z) = sup
x∈Rq

{〈x, z〉 − F(x)}

The following lemma yields an alternative formulation of the set of equilibrium
macrostates of the Gibbs ensemble in terms of the free energy functional. The proof is a
straightforward generalization of Theorem A.1 in [3].

Lemma 3.3 Suppose H is finite, differentiable, and concave. Then

inf
z∈P{R(z|ρ) + βH(z)} = inf

z∈Rq
{Gβ(z)}

Moreover, z0 ∈ P is a minimizer of R(z|ρ)+βH(z) if and only if z0 is a minimizer of Gβ(z).
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Therefore, the set of equilibrium macrostates can be expressed in terms of the free energy
functional as

Eβ = {
z ∈ P : z minimizes Gβ(z)

}
(9)

As mentioned above, we consider only the single phase region of the Gibbs ensemble; i.e.
values of β where Gβ(z) has a unique global minimum. For example, for the Curie–Weiss–
Potts model, the single phase region are values of β such that 0 < β < βc := (2(q − 1)/
(q−2)) log(q−1). At this critical value βc, the model undergoes a first-order, discontinuous
phase transition in which the single phase changes to a multiple phase discontinuously. This
is discussed in detail in Sect. 10.

As we will show, the geometry of the free energy functional Gβ not only determines the
equilibrium behavior of the Gibbs ensembles but it also yields the condition for rapid mixing
of the corresponding Glauber dynamics.

4 Glauber Dynamics and Mixing Times

On the configuration space �n , we define the Glauber dynamics for the class of spin models
considered in this paper. These dynamics yield a reversible Markov chain Xt with stationary
distribution being the Gibbs ensemble Pn,β .

(i) Select a vertex i uniformly,
(ii) Update the spin at vertex i according to the distribution Pn,β , conditioned on the event

that the spins at all vertices not equal to i remain unchanged.

For a given configuration σ = (σ1, σ2, . . . , σn), denote by σi,ek the configuration that
agrees with σ at all vertices j = i and the spin at the vertex i is ek ; i.e.

σi,ek = (σ1, σ2, . . . , σi−1, e
k, σi+1, . . . , σn)

Then if the current configuration is σ and vertex i is selected, the probability the spin at i
is updated to ek , denoted by P(σ→σi,ek ), is equal to

P(σ→σi,ek ) = exp
{− βnH(Ln(σi,ek ))

}
∑q

�=1 exp
{− βnH(Ln(σi,e� ))

} . (10)

The mixing time is a measure of the convergence rate of a Markov chain to its stationary
distribution and is defined in terms of the total variation distance between two distributions
μ and ν on the configuration space  is defined by

‖μ − ν‖TV = sup
A⊂

|μ(A) − ν(A)| = 1

2

∑

x∈

|μ(x) − ν(x)|

Given the convergence of the Markov chain, we define the maximal distance to stationary to
be

d(t) = max
x∈

‖Pt (x, ·) − π‖TV
where Pt (x, ·) is the transition probability of the Markov chain starting in configuration x
and π is its stationary distribution. Then, given ε > 0, the mixing time of the Markov chain
is defined by

tmix (ε) = min{t : d(t) ≤ ε}
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See [13] for a detailed survey on the theory of mixing times.
Rates of mixing times are generally categorized into two groups: rapid mixing which

implies that the mixing time exhibits polynomial growth with respect to the system size n,
and slow mixing which implies that the mixing time grows exponentially with the system
size. Determining the parameter regime where a model undergoes rapid mixing is of major
importance, as it is in this region that the application of the dynamics is physically feasible.

5 Glauber Dynamics Transition Probabilities

In this section, we show that the update probabilities of the Glauber dynamics introduced in
the previous section can be expressed in terms of the derivative of the logarithmic moment
generating function of the individual spins 
 defined in (7). The partial derivative of 
 in the
direction of e� has the form

[∂�
] (z) = exp{z�}∑q
k=1 exp{zk}

We introduce the following function that plays the key role in our analysis.

gH,β
� (z) = [∂�
] (−β∇H(z)) = exp (−β [∂�H ](z))

∑q
k=1 exp (−β [∂k H ](z)) . (11)

Denote

gH,β(z) :=
(
gH,β
1 (z), . . . , gH,β

q (z)
)
. (12)

Note that gH,β(z) maps the simplex

P =
{

ν ∈ R
q : ν = (ν1, ν2, . . . , νq), each νk ≥ 0,

q∑

k=1

νk = 1

}

into itself and it can be expressed in terms of the free energy functional Gβ defined in (8) by

∇Gβ(z) = β[∇(−H)∗(−∇H(z)) − gH,β(z)]

Lemma 5.1 Let P(σ→σi,ek ) be the Glauber dynamics update probabilities given in (10).
Then, for any k ∈ {1, 2, . . . , q},

P(σ→σi,ek ) = [∂k
]
(

− β∇H(Ln(σ )) − β

2n
QH(Ln(σ )) + β

n

〈
σi ,QH(Ln(σ ))

〉
σi

)

+ O

(
1

n2

)
,

where Q is the following linear operator:

QF(z) :=
(
∂21 F(z), ∂22 F(z), . . . , ∂2q F(z)

)
,

for any F : Rq → R in C2.
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Proof Suppose σi = em . By Taylor’s theorem, for any k = m, we have

H(Ln(σi,ek )) = H(Ln(σ )) + Hm
(
Ln,m(σ ) − 1/n

)− Hm
(
Ln,m(σ )

)

+ Hk
(
Ln,k(σ ) + 1/n

)− Hk
(
Ln,k(σ )

)

= H(Ln(σ )) + 1

n
[∂k H(Ln(σ )) − ∂mH(Ln(σ ))]

+ 1

2n2
[
∂2k H(Ln(σ )) + ∂2mH(Ln(σ ))

]+ O

(
1

n3

)
.

Now, if k = m,

H(Ln(σi,ek )) = H(Ln(σ ))

= H(Ln(σ )) + 1

n
[∂k H(Ln(σ )) − ∂mH(Ln(σ ))]

+ 1

2n2
[−∂2k H(Ln(σ )) + ∂2mH(Ln(σ ))

]
.

This implies that the transition probability (10) has the form

P(σ→σi,ek ) = [∂k
]
(

− β∇H(Ln(σ )) − β

2n
QH(Ln(σ )) + β

n
∂2mH(Ln(σ ))em

)

+ O

(
1

n2

)

as exp
{
O
(

1
n2

)} = 1 + O
(

1
n2

)
. ��

The above Lemma 5.1 can be restated as follows using Taylor expansion.

Corollary 5.2 Let P(σ→σi,ek ) be the Glauber dynamics update probabilities given in (10).
Then, for any k ∈ {1, 2, . . . , q},

P(σ→σi,ek ) = gH,β
k (Ln(σ )) + β

n
ϕ
H,β
k,σi

(Ln(σ )) + O

(
1

n2

)
,

where

ϕ
H,β
k,er (z) := −1

2

〈
QH(z), [∇∂k
] (−β∇H(z))

〉
+
〈
er ,QH(z)

〉〈
er , [∇∂k
] (−β∇H(z))

〉
.

As indicated in the title of the paper, we employ a coupling method for proving rapid
mixing of Glauber dynamics of Gibbs ensembles. In the next section, we define the specific
coupling used.

6 Coupling of Glauber Dynamics

We begin by defining a metric on the configuration space �n . For two configurations σ and
τ in �n , define

d(σ, τ ) =
n∑

j=1

1{σ j = τ j } (13)

which yields the number of vertices at which the two configurations differ.
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Let Xt and Y t be two copies of the Glauber dynamics. Here, we use the standard greedy
coupling of Xt and Y t . At each time step a vertex is selected at random, uniformly from the
n vertices. Suppose Xt = σ , Y t = τ , and the vertex selected is denoted by j . Next, we
erase the spin at location j in both processes, and replace it with a new one according to the
following update probabilities. For all � = 1, 2, . . . , q , define

p� = P(σ→σ j,e� ) and q� = P(τ→τ j,e� )

and let

P� = min{p�, q�} and P =
q∑

�=1

P�.

Now, let B be a Bernoulli random variable with probability of success P . If B = 1, we
update the two chains equally with the following probabilities

P
(
Xt+1

j = e�, Y t+1
j = e� | B = 1

)
= P�

P

for � = 1, 2, . . . , q . On the other hand, if B = 0, we update the chains differently according
to the following probabilities

P
(
Xt+1

j = e�, Y t+1
j = em | B = 0

)
= p� − P�

1 − P
· qm − Pm

1 − P

for all pairs � = m. Then the total probability that the two chains update the same is equal to
P and the total probability that the chains update differently is equal to 1 − P .

Observe that once Xt = Y t , the processes remain matched (coupled) for the rest of the
time. In the coupling literature, the time

min{t ≥ 0 : Xt = Y t }
is refered to as the coupling time.

The mean coupling distance E[d(Xt , Y t )] is tied to the total variation distance via the
following inequality known as the coupling inequality:

‖Pt (x, ·) − Pt (y, ·)‖TV ≤ P(Xt = Y t ) ≤ E[d(Xt , Y t )] (14)

The above inequality implies that the order of the mean coupling time is an upper bound
on the order of the mixing time. See [13] and [14] for details on coupling and coupling
inequalities.

7 Mean Coupling Distance

Fix ε > 0. Consider two configurations σ and τ such that

d(σ, τ ) = d,

where d(σ, τ ) ∈ N is the metric defined in (13) and ε ≤ ‖Ln(σ ) − Ln(τ )‖1 < 2ε.
Let I = {i1, . . . , id} be the set of vertices atwhich the spin values of the two configurations

σ and τ disagree. Define κ(e�) to be the probability that the coupled processes update
differently when the chosen vertex j /∈ I has spin e�. If the chosen vertex j is such that
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σ j = τ j = e�, then expressing κ(e�) by total variation distance and by Corollary 5.2 of
Lemma 5.1,

κ(e�) := 1

2

q∑

k=1

∣∣∣P(σ→σ j,ek ) − P(τ→τ j,ek )

∣∣∣

= 1

2

q∑

k=1

∣∣∣
(
gH,β
k (Ln(σ )) + β

n
ϕ
H,β

k,e� (Ln(σ ))
)

−
(
gH,β
k (Ln(τ )) + β

n
ϕ
H,β

k,e� (Ln(τ ))
)∣∣∣

+ O

(
1

n2

)

= 1

2

q∑

k=1

∣∣∣gH,β
k (Ln(σ )) − gH,β

k (Ln(τ ))

∣∣∣+ O

(
ε

n
+ 1

n2

)
. (15)

Next, we observe that for any C2 function f : P → R, there exists C > 0 such that
∣∣∣ f (z′) − f (z) −

〈
z′ − z,∇ f (z)

〉 ∣∣∣ < Cε2 (16)

for all z, z′ ∈ P satisfying ε ≤ ‖z′ − z‖1 < 2ε.
Therefore for n large enough, there exists C ′ > 0 such that

∣∣∣∣∣κ(e�) − 1

2

q∑

k=1

∣∣∣
〈
Ln(τ ) − Ln(σ ),∇gH,β

k (Ln(σ ))
〉∣∣∣

∣∣∣∣∣ < C ′ε2. (17)

The above result holds regardless of the value of � ∈ {1, 2, . . . , q}.
Similarly, when the chosen vertex j ∈ I, the probability of not coupling at j satisfies

(17).

We conclude that in terms of κσ,τ := 1
2

∑q
k=1

∣∣∣
〈
Ln(τ ) − Ln(σ ),∇gH,β

k (Ln(σ ))
〉∣∣∣, the

mean distance between a coupling of the Glauber dynamics starting in σ and τ with d(σ, τ )

= d after one step has the form

Eσ,τ [d(X, Y )] ≤ d − d

n
(1 − κσ,τ ) + n − d

n
κσ,τ + c ε2

= d ·
[
1 − 1

n

(
1 − κσ,τ + c ε2

d/n

)]
(18)

for a fixed c > 0 and all ε small enough.

8 Aggregate Path Coupling

In the previous section, we derived the form of the mean distance between a coupling of the
Glauber dynamics starting in two configurations whose distance is bounded. We next derive
the form of the mean coupling distance of a coupling starting in two configurations that are
connected by a path of configurations where the distance between successive configurations
are bounded.

Definition 8.1 Let σ and τ be configurations in �n . We say that a path π connecting con-
figurations σ and τ denoted by

π : σ = x0, x1, . . . , xr = τ,
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is a monotone path if

(i)
r∑

i=1
d(xi−1, xi ) = d(σ, τ )

(ii) for each k = 1, 2, . . . , q , the kth coordinate of Ln(xi ), Ln,k(xi ) is monotonic as i
increases from 0 to r ;

Observe that here the points xi on the path are not required to be nearest-neighbors.
A straightforward property of monotone paths is that

r∑

i=1

q∑

k=1

|Ln,k(xi ) − Ln,k(xi−1)| = ‖Ln(σ ) − Ln(τ )‖1

Another straightforward observation is that for any given path

Ln(σ ) = z0, z1, . . . , zr = Ln(τ )

in Pn , monotone in each coordinate, with ‖zi − zi−1‖1 > 0 for all i ∈ {1, 2, . . . , r}, there
exists a monotone path

π : σ = x0, x1, . . . , xr = τ

such that Ln(xi ) = zi for each i .
Let π : σ = x0, x1, . . . , xr = τ be a monotone path connecting configurations σ and τ

such that ε ≤ ‖Ln(xi ) − Ln(xi−1)‖1 < 2ε for all i = 1, . . . , r . Equation (18) implies the
following bound on the mean distance between a coupling of the Glauber dynamics starting
in configurations σ and τ :

Eσ,τ [d(X, Y )]

≤
r∑

i=1

Exi−1,xi [d(Xi−1, Xi )]

≤
r∑

i=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
d(xi−1, xi ) ·

⎡

⎢⎢⎢⎣1 − 1

n

⎛

⎜⎜⎜⎝1 −
1
2

q∑
k=1

∣∣∣
〈
Ln(xi ) − Ln(xi−1),∇gH,β

k (Ln(xi−1))
〉∣∣∣+ cε2

d(xi−1, xi )/n

⎞

⎟⎟⎟⎠

⎤

⎥⎥⎥⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= d(σ, τ )

⎡

⎢⎢⎢⎣1 − 1

n

⎛

⎜⎜⎜⎝1 −

q∑
k=1

r∑
i=1

∣∣∣
〈
Ln(xi ) − Ln(xi−1),∇gH,β

k (Ln(xi−1))
〉∣∣∣+ cε2

2d(σ, τ )/n

⎞

⎟⎟⎟⎠

⎤

⎥⎥⎥⎦

≤ d(σ, τ )

⎡

⎢⎢⎢⎣1 − 1

n

⎛

⎜⎜⎜⎝1 −

q∑
k=1

r∑
i=1

∣∣∣
〈
Ln(xi ) − Ln(xi−1),∇gH,β

k (Ln(xi−1))
〉∣∣∣+ cε2

‖Ln(σ ) − Ln(τ )‖1

⎞

⎟⎟⎟⎠

⎤

⎥⎥⎥⎦ , (19)

as
r∑

i=1
d(xi−1, xi ) = d(σ, τ ).

From inequality (19), if there exists monotone paths between all pairs of configurations
such that there is a uniform bound less than 1 on the ratio

∑q
k=1

∑r
i=1

∣∣∣
〈
Ln(xi ) − Ln(xi−1),∇gH,β

k (Ln(xi−1))
〉∣∣∣

‖Ln(σ ) − Ln(τ )‖1
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then the mean coupling distance contracts which yields a bound on the mixing time via
coupling inequality (14).

Although the Gibbs measure are distributions of the empirical measure Ln defined on the
discrete space Pn , proving contraction of the mean coupling distance is often facilitated by
working in the continuous space, namely the simplexP .We begin our discussion of aggregate
path coupling by defining distances along paths in P .

Recall the function gH,β defined in (12) which is dependent on the Hamiltonian of the
model through the interaction representation function H defined in Definition 2.2.

Definition 8.2 Define the aggregate g- variation between a pair of points x and z in P along
a continuous monotone (in each coordinate) path ρ to be

Dg
ρ(x, z) :=

q∑

k=1

∫

ρ

∣∣∣
〈
∇gH,β

k (y), dy
〉∣∣∣

Define the corresponding pseudo-distance between a pair of points points x and z in P as

dg(x, z) := inf
ρ

Dg
ρ(x, z),

where the infimum is taken over all continuous monotone paths in P connecting x and z.

Notice if the monotonicity restriction is removed, the above infimum would satisfy the
triangle inequality. We will need the following condition.

Condition 8.3 Let zβ be the unique equilibrium macrostate. There exists δ ∈ (0, 1) such
that

dg(z, zβ)

‖z − zβ‖1 ≤ 1 − δ

for all z in P .

Observe that if it is shown that dg(z, zβ) < ‖z − zβ‖1 for all z in P , then by continuity
the above condition is equivalent to

lim sup
z→zβ

dg(z, zβ)

‖z − zβ‖1 < 1

Suppose Condition 8.3 is satisfied. Then let denote by NGδ the family of neo-geodesic
smooth curves, monotone in each coordinate such that for each z = zβ in P , there is exactly
one curve ρ = ρz in the family NGδ connecting zβ to z, and

Dg
ρ(z, zβ)

‖z − zβ‖1 ≤ 1 − δ/2

Condition 8.4 For ε > 0 small enough, there exists a neo-geodesic family NGδ such that
for each z in P satisfying ‖z − zβ‖1 ≥ ε , the curve ρ = ρz in the family NGδ that connects
zβ to z satisfies

∑q
k=1

∑r
i=1

∣∣∣
〈
zi − zi−1,∇gH,β

k (zi−1)
〉∣∣∣

‖z − zβ‖1 ≤ 1 − δ/3

for a sequence of points z0 = zβ, z1, . . . , zr = z interpolating ρ such that

ε ≤ ‖zi − zi−1‖1 < 2ε for i = 1, 2, . . . , r.
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It is important to observe that Condition 8.3 is often simpler to verify than Condition 8.4.
Moreover, under certain simple additional prerequisites, Condition 8.3 implies Condition 8.4.
For example, this is achieved if there is a uniform bound on the Cauchy curvature at every
point of every curve in NGδ . So it will be demonstrated on the example of Curie–Weiss–Potts
model that the natural way for establishing Condition 8.4 for themodel is via first establishing
Condition 8.3.

In addition to Condition 8.4 that will be shown to imply contraction when one of the two
configurations in the coupled processes is at the equilibrium, i.e. Ln(σ ) = zβ , we need a
condition that will imply contraction between two configurations within a neighborhood of
the equilibrium configuration. We state this assumption next.

Condition 8.5 Let zβ be the unique equilibrium macrostate. Then,

lim sup
z→zβ

‖gH,β(z) − gH,β(zβ)‖1
‖z − zβ‖1 < 1.

Since H(z) ∈ C3, the above Condition 8.5 implies that for any ε > 0 sufficiently small, there
exists γ ∈ (0, 1) such that

‖gH,β(z) − gH,β(w)‖1
‖z − w‖1 < 1 − γ

for all z and w in P satisfying

‖z − zβ‖1 < ε and ‖w − zβ‖1 < ε.

9 Main Result

A sufficient condition for rapid mixing of the Glauber dynamics of Gibbs ensembles is
contraction of the mean coupling distance Eσ,τ [d(X, Y )] between coupled processes start-
ing in all pairs of configurations in �n . The classical path coupling argument [2] is a
method of obtaining this contraction by only proving contraction between couplings start-
ing in neighboring configurations. However for some classes of models (e.g. models that
undergo a first-order, discontinuous phase transition) there are situations when Glauber
dynamics exhibits rapid mixing, but coupled processes do not exhibit contraction between
some neighboring configurations. Such models include the mean-field Blume–Capel (in the
discontinuous phase transition region) and Curie–Weiss–Potts models. A major strength of
the aggregate path coupling method introduced in [11] for mean-field Blume–Capel model
and further expanded in this study is that, in addition to its generality, it yields a proof for
rapid mixing even in those cases when contraction of the mean distance between couplings
starting in all pairs of neighboring configurations does not hold.

The strategy is to take advantage of the large deviations estimates discussed in Sect. 3.
Recall from that section that we assume that the set of equilibrium macrostates Eβ , which
can be expressed in the form given in (9), consists of a single point zβ . Define an equilibrium
configuration σβ to be a configuration such that

Ln(σβ) = zβ = ((zβ)1, (zβ)2, . . . , (zβ)q).

First we observe that in order to use the coupling inequality (14) we need to show contraction
of the mean coupling distance Eσ,τ [d(X, Y )] between a Markov chain initially distributed
according to the stationary probability distribution Pn,β and a Markov chain starting at any
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given configuration. Using large deviations we know that with high probability the former
process starts near the equilibrium and stays near the equilibrium for long duration of time.

Our main result Theorem 9.2 states that once we establish contraction of the mean cou-
pling distance between two copies of a Markov chain where one of the coupled dynamics
starts near an equilibrium configuration in Lemma 9.1, then this contraction, along with the
large deviations estimates of the empirical measure Ln , yields rapid mixing of the Glauber
dynamics converging to the Gibbs measure.

Now, the classical path coupling relies on showing contraction along any monotone path
connecting two configurations, in one time step. Here we observe that we only need to show
contraction along one monotone path connecting two configurations in order to have the
mean coupling distance Eσ,τ [d(X, Y )] contract in a single time step. However, finding even
one monotone path with which we can show contraction in the equation (19) is not easy.
The answer to this is in finding a monotone path ρ in P connecting the Ln values of the two
configurations, σ and τ , such that

q∑
k=1

∫
ρ

∣∣∣
〈
∇gH,β

k (y), dy
〉∣∣∣

‖Ln(σ ) − Ln(τ )‖1 < 1

Although ρ is a continuous path in continuous space P , it serves as Ariadne’s thread for
finding a monotone path

π : σ = x0, x1, . . . , xr = τ

such that Ln(x0), Ln(x1), . . . , Ln(xr ) in Pn are positioned along ρ, and

q∑

k=1

r∑

i=1

∣∣∣
〈
Ln(xi ) − Ln(xi−1),∇gH,β

k (Ln(xi−1))
〉∣∣∣

is a Riemann sum approximating
q∑

k=1

∫
ρ

∣∣∣
〈
∇gH,β

k (y), dy
〉∣∣∣. Therefore we obtain

q∑
k=1

r∑
i=1

∣∣∣
〈
Ln(xi ) − Ln(xi−1),∇gH,β

k (Ln(xi−1))
〉∣∣∣

‖Ln(σ ) − Ln(τ )‖1 < 1,

that in turn implies contraction in (19) for ε small enough and n large enough. See Fig. 1.
Observe that in order for the above argument towork,weneed to spreadpoints Ln(xi ) ∈ Pn

along a continuous path ρ at intervals of fixed order ε. Thus π has to be not a nearest-
neighbor path in the space of configurations, another significant deviation from the classical
path coupling.

Lemma 9.1 Assume Condition 8.4 and Condition 8.5. Let (X, Y ) be a coupling of the
Glauber dynamics as defined in Sect. 6, starting in configurations σ and τ and let zβ
be the single equilibrium macrostate of the corresponding Gibbs ensemble. Then there exists
an α > 0 and an ε′ > 0 small enough such that for n large enough,

Eσ,τ [d(X, Y )] ≤ e−α/nd(σ, τ )

whenever ‖Ln(σ ) − zβ‖1 < ε′.

Proof Let ε and δ be as in Condition 8.4, and let ε′ = ε2δ/M with a constant M � 0.
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Fig. 1 Case q = 3. Dashed
curve is the continuous monotone
path ρ. Solid lines represent the
path Ln(x0), Ln(x1), . . . ,
Ln(xr ) in Pn

Case I Suppose Ln(τ ) = z and Ln(σ ) = w, where ‖z − zβ‖1 ≥ ε and ‖w − zβ‖1 < ε′.
Then there is an equlibrium configuration σβ with Ln(σβ) = zβ such that there is amonotone
path

π ′ : σβ = x ′
0, x ′

1, . . . , x
′
r = τ

connecting configurations σβ and τ on �n such that ε ≤ ‖Ln(x ′
i ) − Ln(x ′

i−1)‖1 < 2ε, and
by Condition 8.4,

q∑
k=1

r∑
i=1

∣∣∣
〈
Ln(x ′

i ) − Ln(x ′
i−1),∇gH,β

k (Ln(x ′
i−1))

〉∣∣∣

‖Ln(σβ) − Ln(τ )‖1 ≤ 1 − δ/4

for n large enough. Note that the difference between the above inequality and Condition 8.4
is that here we take Ln(x ′

i ) ∈ Pn . Now, there exists a monotone path with from σ to τ

π : σ = x0, x1, . . . , xr = τ

such that

‖Ln(xi ) − Ln(x
′
i )‖1 ≤ ε′ for all i = 0, 1, . . . , r.

The new monotone path π is constructed from π ′ by insuring that either

0 ≤
〈
Ln(xi ) − Ln(xi−1), e

k
〉
≤
〈
Ln(x

′
i ) − Ln(x

′
i−1), e

k
〉

or
〈
Ln(x

′
i ) − Ln(x

′
i−1), e

k
〉
≤
〈
Ln(xi ) − Ln(xi−1), e

k
〉
≤ 0

for i = 2, . . . , r and each coordinate k ∈ {1, 2, . . . , q}.
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Then
∣∣∣∣∣∣∣∣∣

q∑
k=1

r∑
i=1

∣∣∣
〈
Ln(xi ) − Ln(xi−1),∇gH,β

k (Ln(xi−1))
〉∣∣∣

‖Ln(σ ) − Ln(τ )‖1

−

q∑
k=1

r∑
i=1

∣∣∣
〈
Ln(x ′

i ) − Ln(x ′
i−1),∇gH,β

k (Ln(x ′
i−1))

〉∣∣∣

‖Ln(σβ) − Ln(τ )‖1

∣∣∣∣∣∣∣∣∣

≤ C ′′rε′/ε

for a fixed constant C ′′ > 0. Noticing that rε′/ε ≤ δ/M as r ≤ 1/ε, and taking M large
enough, we obtain

q∑
k=1

r∑
i=1

∣∣∣
〈
Ln(xi ) − Ln(xi−1),∇gH,β

k (Ln(xi−1))
〉∣∣∣

‖Ln(σ ) − Ln(τ )‖1 ≤ 1 − δ/4.

Thus equation (19) will imply

Eσ,τ [d(X, Y )] ≤ d(σ, τ )

⎡

⎢⎢⎢⎣1 − 1

n

⎛

⎜⎜⎜⎝1 −

q∑
k=1

r∑
i=1

∣∣∣
〈
Ln(xi ) − Ln(xi−1),∇gH,β

k (Ln(xi−1))
〉∣∣∣+ c ε2

‖Ln(σ ) − Ln(τ )‖1

⎞

⎟⎟⎟⎠

⎤

⎥⎥⎥⎦

≤ d(σ, τ )

[
1 − 1

n

(
1 − (1 − δ/4) − δ/20

)]

= d(σ, τ )

[
1 − 1

n
δ/5

]

as c ε2

‖Ln(σ )−Ln(τ )‖1 ≤ c ε ≤ δ/20 for ε small enough.

Case II Suppose Ln(τ ) = z and Ln(σ ) = w, where ‖z − zβ‖1 < ε and ‖w − zβ‖1 < ε′.
Similarly to (18), equation (15) implies for n large enough,

E[d(X, Y )] ≤ d(σ, τ ) ·
[
1 − 1

n

(
1 − ‖gH,β

(
Ln(σ )

)− gH,β
(
Ln(τ )

)‖1
‖Ln(σ ) − Ln(τ )‖1

)]
+ O

(
1

n2

)

≤ d(σ, τ ) ·
[
1 − γ

n

]
+ O

(
1

n2

)

≤ d(σ, τ ) ·
[
1 − γ

2n

]

by Condition 8.5 (see also discussion following Condition 8.5). ��
We now state and prove the main theorem of the paper that yields sufficient conditions for

rapid mixing of the Glauber dynamics of the class of statistical mechanical models discussed.

Theorem 9.2 Suppose H(z) and β > 0 are such that Condition 8.4 and Condition 8.5 are
satisfied. Then the mixing time of the Glauber dynamics satisfies

tmix = O(n log n)
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Proof Let ε′ > 0 and α > 0 be as in Lemma 9.1. Let (Xt , Y t ) be a coupling of the Glauber

dynamics such that X0 dist= Pn,β , the stationary distribution. Then, for sufficiently large n,

‖Pt (Y 0, ·) − Pn,β‖TV
≤ P{Xt = Y t }
= P{d(Xt , Y t ) ≥ 1}
≤ E[d(Xt , Y t )]
= E[E[d(Xt ,Y t ) |Xt−1,Y t−1]]
≤ E[E[d(Xt ,Y t ) |Xt−1,Y t−1] | ‖Ln(X

t−1) − zβ‖1 < ε′] · P{‖Ln(X
t−1) − zβ‖1 < ε′}

+ nP{‖Ln(X
t−1) − zβ‖1 ≥ ε′}.

By Lemma 9.1, we have

E
[
E[d(Xt ,Y t ) |Xt−1,Y t−1] | ‖Ln(X

t−1) − zβ‖1 < ε′]

≤ e−α/n
E
[
d(Xt−1, Y t−1) | ‖Ln(X

t−1) − zβ‖1 < ε′] (20)

By iterating (20), it follows that

‖Pt (Y 0, ·) − Pn,β,K ‖TV
≤ e−α/n

E[d(Xt−1, Y t−1) | ‖Ln(X
t−1) − zβ‖1 < ε′] · P{‖Ln(Xt−1) − zβ‖1 < ε′}

+ nP{‖Ln(X
t−1) − zβ‖1 ≥ ε′}

≤ e−α/n
E[d(Xt−1, Y t−1)] + nP{‖Ln(X

t−1) − zβ‖1 ≥ ε′}
...
...

≤ e−αt/n
E[d(X0, Y 0)] + n

t−1∑

s=0

P{‖Ln(X
s) − zβ‖1 ≥ ε′}

= e−αt/n
E[d(X0, Y 0)] + nt Pn,β{‖Ln(X

0) − zβ‖1 ≥ ε′}
≤ ne−αt/n + nt Pn,β{‖Ln(X

0) − zβ‖1 ≥ ε′}.
We recall the LDP limit (6) for β in the single phase region B,

Pn,β{Ln(X
0) ∈ dx} �⇒ δzβ asn→∞.

Moreover, for any γ ′ > 1 and n sufficiently large, by the LDP upper bound (4), we have

‖Pt (Y 0, ·) − Pn,β‖TV ≤ ne−αt/n + nt Pn,β{‖Ln(X
0) − zβ‖1 ≥ ε′}

< ne−αt/n + tne
− n

γ ′ Iβ (ε′)
.

For t = n
α
(log n + log(2/ε′)), the above right-hand side converges to ε′/2 as n→∞. ��

10 Aggregate Path Coupling Applied to the Generalized Potts Model

In this section, we illustrate the strength of our main result of Sect. 9, Theorem 9.2, by
applying it to the generalized Curie–Weiss–Potts model (GCWP), studied recently in [10].
The classical Curie–Weiss–Potts (CWP) model, which is the mean-field version of the well
known Potts model of statistical mechanics [16] is a particular case of the GCWP model
with r = 2. While the mixing times for the CWP model has been studied in [4], these are
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the first results for the mixing times of the GCWP model. Moreover, the application of our
methods gives a significantly shorter derivation for the region of rapid mixing than the one
used for the CWP model in [4], where the result in [4] is part of a complete analysis of the
CWP model that includes cut-off.

Let q be a fixed integer and define � = {e1, e2, . . . , eq}, where ek are the q standard
basis vectors of Rq . A configuration of the model has the form ω = (ω1, ω2, . . . , ωn) ∈ �n .
We will consider a configuration on a graph with n vertices and let Xi (ω) = ωi be the spin
at vertex i . The random variables Xi ’s for i = 1, 2, . . . , n are independent and identically
distributed with common distribution ρ.

For the generalized Curie–Weiss–Potts model, for r ≥ 2, the interaction representation
function as in Definition 2.2, has the form

Hr (z) = −1

r

q∑

j=1

zrj

and the generalized Curie–Weiss–Potts model is defined as the Gibbs measure

Pn,β,r (B) = 1

Zn(β)

∫

B
exp

{−βn Hr (Ln(ω))
}
dPn (21)

where Ln(ω) is the empirical measure defined in (1).
In [10], the authors proved that there exists a phase transition critical value βc(q, r)

such that in the parameter regime (q, r) ∈ {2} × [2, 4], the GCWP model undergoes a
continuous, second-order, phase transition and for (q, r) in the complementary regime, the
GCWP model undergoes a discontinuous, first-order, phase transition. This is stated in the
following theorem.

Theorem 10.1 (Generalized Ellis–Wang Theorem) Assume that q ≥ 2 and r ≥ 2. Then
there exists a critical temperature βc(q, r) > 0 such that in the weak limit

lim
n→∞ Pn,β,r (Ln ∈ ·) =

{
δ1/q(1,...,1) if β < βc(q, r)
1
q

∑q
i=1 δu(β,q,r)ei+(1−u(β,q,r))/q(1,...,1) if β > βc(q, r)

where u(β, q, r) is the largest solution to the so-called mean-field equation

u = 1 − exp(�(u))

1 + (q − 1) exp(�(u))

with �(u) := − β

qr−1

[
(1 + (q − 1)u)r−1 − (1 − u)r−1

]
. Moreover, for (q, r) ∈ {2} × [2, 4],

the function β �→ u(β, q, r) is continuous whereas, in the complementary case, the function
is discontinuous at βc(q, r).

For the GCWP model, the function gH,β
� (z) defined in general in (11) has the form

gH,β
k (z) = [∂k
] (β∇H(z)) = [∂k
] (βz) = eβzr−1

k

eβzr−1
1 + . . . + eβzr−1

q
.

For the remainder of this section, we will replace the notation H, β and refer to gH,β(z) =(
gH,β
1 (z), . . . , gH,β

q (z)
)
as simply gr (z) = (

gr1(z), . . . , g
r
q(z)

)
. As we will prove next, the

rapid mixing region for the GCWP model is defined by the following value.

βs(q, r) := sup
{
β ≥ 0 : grk(z) < zk for all z ∈ P such that zk ∈ (1/q, 1]} . (22)
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Lemma 10.2 If βc(q, r) is the critical value derived in [10] and defined in Theorem 10.1,
then

βs(q, r) ≤ βc(q, r)

Proof We will prove this lemma by contradiction. Suppose βc(q, r) < βs(q, r). Then there
exists β such that

βc(q, r) < β < βs(q, r).

Then, by Theorem 10.1, since βc(q, r) < β, there exists u > 0 satisfying the following
inequality

u <
1 − e�(u)

1 + (q − 1)e�(u)
, (23)

where �(u) := − β

qr−1

[
(1 + (q − 1)u)r−1 − (1 − u)r−1

]
. Here, the above inequality (23)

rewrites as

e�(u) = exp

{
β

[(
1 − u

q

)r−1

−
(
1 + (q − 1)u

q

)r−1
]}

<
1 − u

(q − 1)u + 1
. (24)

Next, we substitute λ = (1 − u)
q−1
q into the above inequality (24), obtaining

exp

{
β

[(
λ

q − 1

)r−1

− (1 − λ)r−1

]}
<

λ

(1 − λ)(q − 1)
. (25)

Now, consider

z =
(
1 − λ,

λ

q − 1
, . . . ,

λ

q − 1

)
.

Observe that z1 = 1−λ = 1− (1− u)
q−1
q = 1+u(q−1)

q > 1
q as u > 0. Here, the inequality

(25) can be consequently rewritten in terms of the above selected z as follows

z1 = 1 − λ <
eβ(1−λ)r−1

eβ(1−λ)r−1 + (q − 1)eβ
(

λ
q−1

)r−1 = gr1(z),

thus contradicting β < βs(q, r). Hence βs(q, r) ≤ βc(q, r). ��
Combining Theorem 10.1 and Lemma 10.2 yields that for parameter values (q, r) in

the continuous, second-order phase transition region βs(q, r) = βc(q, r), whereas in the
discontinuous, first-order, phase transition region, βs(q, r) is strictly less than βc(q, r). This
relationship between the equilibrium transition critical value and the mixing time transition
critical value was also proved for the mean-field Blume–Capel model discussed in [11]. This
appears to be a general distinguishing feature between models that exhibit the two distinct
types of phase transition. We now prove rapid mixing for the generalized Curie–Weiss–Potts
model for β < βs(q, r) using the aggregate path coupling method derived in Sect. 9.

We state the lemmas that we prove below, and the main result for the Glauber dynamics
of the generalized Curie–Weiss–Potts model, a Corollary to Theorem 9.2.

Lemma 10.3 Condition 8.3 and Condition 8.4 are satisfied for all β < βs(q, r).

Lemma 10.4 Condition 8.5 is satisfied for all β < βs(q, r).
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Corollary 10.5 If β < βs(q, r), then

tmix = O(n log n).

Proof Condition 8.4 and Condition 8.5 required for Theorem 9.2 are satisfied by Lemma
10.3 and Lemma 10.4. ��

Proof of Lemma 10.4 Denote z′ = (z′1, . . . , z′q) = z − zβ . Then by Taylor’s Theorem, we
have

lim sup
z→zβ

‖gr (z) − gr (zβ)‖1
‖z − zβ‖1 = lim sup

z→zβ

q∑
k=1

∣∣∣∣∣∣∣
eβzr−1

k
q∑
j=1

e
βzr−1

j
− 1

q

∣∣∣∣∣∣∣
q∑

k=1

∣∣∣zk − 1
q

∣∣∣

= lim
z′→0

q∑
k=1

∣∣∣∣∣
β(r−1)

(
1
q

)r−2
z′k+O

(
(z′1)2+...+(z′q )2

)

q+O
(
(z′1)2+...+(z′q )2

)
∣∣∣∣∣

q∑
k=1

∣∣z′k
∣∣

= β(r − 1)

qr−1 . (26)

Recall that βs(q, r) ≤ βc(q, r) was shown in Lemma 10.2, and βc(q, r) ≤ qr−1

r−1 was shown

in the proof of Lemma 5.4 of [10]. Therefore, β <
qr−1

r−1 and the last expression above is less
than 1, and we conclude that

lim sup
z→zβ

‖gr (z) − gr (zβ)‖1
‖z − zβ‖1 < 1.

��

Proof of Lemma 10.3 First, we prove that the family of straight lines connecting to the equi-
librium point zβ = (1/q, . . . , 1/q) is a neo-geodesic family as it was defined following
Condition 8.3. Specifically, for any z = (z1, z2, . . . , zq) ∈ P define the line path ρ connect-
ing z to zβ by

z(t) = 1

q
(1 − t) + z t, 0 ≤ t ≤ 1 (27)

Then, along this straight-line path ρ, the aggregate g-variation has the form

Dg
ρ(z, zβ) :=

q∑

k=1

∫

ρ

∣∣∣
〈
∇grk(y), dy

〉∣∣∣ =
q∑

k=1

∫ 1

0

∣∣∣∣
d

dt
[grk (z(t))]

∣∣∣∣ dt

Next, for all k = 1, 2, . . . , q and t ∈ [0, 1], denote

z(t)k = 1

q
(1 − t) + zk t
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Then

grk(z(t)) = eβ
(
(1/q)(1−t)+zk t

)r−1

∑q
j=1 e

β
(
(1/q)(1−t)+z j t

)r−1 (28)

and

d

dt

[
grk(z(t))

]=β(r−1)grk(z(t))

[(
1

q
(1−t)+zk t

)r−2 (
zk − 1

q

)
− 〈z − zβ, gr (z(t))〉ρ

]

(29)

where 〈z − zβ, gr (z(t))〉ρ is the weighted inner product

〈z − zβ, gr (z(t))〉ρ :=
q∑

j=1

grj (z(t))

(
zk − 1

q

)(
1

q
(1 − t) + zk t

)r−2

Now, observe that for z(t) as in (27) with z = zβ , the inner product 〈(z − zβ), gr (z(t))〉ρ is
monotonically increasing in t since

d

dt
〈z − zβ, gr (z(t))〉ρ ≥ β(r − 1)Vargr

((
zk − 1

q

)(
1

q
(1 − t) + z j t

)r−1
)

> 0

where Vargr (·) is the variance with respect to gr .
So 〈z − zβ, gr (z(t))〉ρ begins at 〈z − zβ, gr (z(0))〉ρ = 〈z − zβ, zβ〉 = 0 and increases

for all t ∈ (0, 1).
The above monotonicity yields the following claim about the behavior of grk(z(t)) along

the straight-line path ρ.

(a) If zk ≤ 1/q , then grk(z(t)) is monotonically decreasing in t .
(b) If zk > 1/q , then grk(z(t)) has at most one critical point t∗k on (0, 1).

The above claim (a) follows immediately from (29) as 〈z − zβ, gr (z(t))〉ρ > 0 for t > 0.
Claim (b) also follows from (29) as its right-hand side, zk − 1/q > 0 and 〈z− zβ, gr (z(t))〉ρ
is increasing. Thus there is at most one point t∗k on (0, 1) such that d

dt

[
grk(z(t))

] = 0.
Next, define

Az = {k : zk > 1/q}
Then the aggregate g-variation can be split into

Dg
ρ(z, zβ) =

∑

k∈Az

∫ 1

0

∣∣∣∣
d

dt
[grk (z(t))]

∣∣∣∣ dt +
∑

k /∈Az

∫ 1

0

∣∣∣∣
d

dt
[grk(z(t))]

∣∣∣∣ dt

For k /∈ Az , claims (a) and (b) imply
∫ 1

0

∣∣∣∣
d

dt
[grk(z(t))]

∣∣∣∣ dt = −
∫ 1

0

d

dt
[grk (z(t))] dt = grk(z(0)) − grk(z(1)) = 1

q
− grk (z)

For k ∈ Az , let tk = max{t∗k , 1} ,where t∗k is defined in (b). Then, we have
∫ 1

0

∣∣∣∣
d

dt
[grk(z(t))]

∣∣∣∣ dt =
∫ t∗k

0

d

dt
[grk(z(t))] dt −

∫ 1

t∗k

d

dt
[grk(z(t))] dt

= 2grk(z(t
∗
k )) − grk(z) − 1

q
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Combining the previous two displays, we get

Dg
ρ(z, zβ) =

∑

k∈A

(
2grk(z(t

∗
k )) − grk(z) − 1

q

)
+
∑

k /∈A

(
1

q
− grk(z)

)

= 2
∑

k∈A

(
grk(z(t

∗
k )) − 1

q

)

Since β < βs and k ∈ Az , we have

grk(z(t
∗
k )) < z(t∗k )k ≤ z(1)k = zk

and we conclude that

Dg
ρ(z, zβ) < 2

∑

k∈A

(
zk − 1

q

)
= ‖z − zβ‖1

Thus

dg(z, zβ)

‖z − zβ‖1 ≤ Dg
ρ(z, zβ)

‖z − zβ‖1 < 1 for all z = zβ in P.

Next, since we are dealing with the straight line segments ρ,

lim sup
z→zβ

Dg
ρ(z, zβ)

‖z − zβ‖1 = lim sup
z→zβ

‖g(z) − g(zβ)‖1
‖z − zβ‖1 < 1

by (26), the Mean Value Theorem, and H(z) ∈ C3. This, in turn, guarantees the continuity
required for Condition 8.3:

lim sup
z→zβ

dg(z, zβ)

‖z − zβ‖1 ≤ lim sup
z→zβ

Dg
ρ(z, zβ)

‖z − zβ‖1 < 1

Thus Condition 8.3 is proved for the GCWP model. Moreover this proves that the family of
straight line segments ρ is a neo-geodesic family (see definition following Condition 8.3).
Indeed, there is δ ∈ (0, 1) such that

{
ρ : z(t) = 1

q
(1 − t) + zt, z ∈ P

}
is a NGδ family of smooth curves,

i.e. ∀z = zβ in P , and corresponding ρ : z(t) = 1
q (1 − t) + zt ,

Dg
ρ(z, zβ)

‖z − zβ‖1 ≤ 1 − δ/2

Since the family of straight line segments ρ is a neo-geodesic family NGδ , the integrals

Dg
ρ(x, z) :=

q∑

k=1

∫

ρ

∣∣∣
〈
∇grk(y), dy

〉∣∣∣

can be uniformly approximated by the corresponding Riemann sums of small enough step
size by the Mean Value Theorem as H(z) ∈ C3 and therefore each grk(z) ∈ C2. That is,
there exists a constant C > 0 that depends on the second partial derivatives of gr (z) =

123



Rapid Mixing of Glauber Dynamics of Gibbs Ensembles... 575

(
gr1(z), . . . , g

r
q(z)

)
, such that for ε > 0 small enough, the curve ρ = 1

q (1 − t) + zt in the
family NGδ that connects zβ to z satisfies
∣∣∣∣∣

q∑

k=1

r∑

i=1

∣∣∣
〈
zi − zi−1,∇grk(zi−1)

〉∣∣∣− Dg
ρ(z, zβ)

∣∣∣∣∣ < Crε2 ∀z ∈ P s.t. ‖z − zβ‖1 ≥ ε

for a sequence of points z0 = zβ, z1, . . . , zr = z ∈ P interpolating ρ such that

ε ≤ ‖zi − zi−1‖1 < 2ε for i = 1, 2, . . . , r.

Hence

q∑
k=1

r∑
i=1

∣∣∣
〈
zi − zi−1,∇grk (zi−1)

〉∣∣∣

‖z − zβ‖1 ≤ 1 − δ/2 + Cε ≤ 1 − δ/3

for ε ≤ δ/(6C). This concludes the proof of Condition 8.4. ��

Finally, the region of exponentially slow mixing β > βs(q, r) can be shown using the
standard approach of bottleneck ratio similar to Sect. 7 in [11].
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