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Abstract We consider the fluctuations of linear eigenvalue statistics of random band n ×
n matrices whose entries have the form Mi j = b−1/2u1/2(|i − j |/b)w̃i j with i.i.d. w̃i j

possessing the (4 + ε)th moment, where the function u has a finite support [−C∗, C∗], so
that M has only 2C∗b + 1 nonzero diagonals. The parameter b (called the bandwidth) is
assumed to grow with n in a way such that b/n → 0. Without any additional assumptions
on the growth of b we prove CLT for linear eigenvalue statistics for a rather wide class
of test functions. Thus we improve and generalize the results of the previous papers (Jana
et al., arXiv:1412.2445; Li et al. Random Matrices 2:04, 2013), where CLT was proven
under the assumption n >> b >> n1/2. Moreover, we develop a method which allows to
prove automatically the CLT for linear eigenvalue statistics of the smooth test functions for
almost all classicalmodels of randommatrix theory: deformedWigner and sample covariance
matrices, sparse matrices, diluted random matrices, matrices with heavy tales etc.

1 Introduction and Main Results

Consider an ensemble of random symmetric n × n matrices with entries of the form

Mi j = (ui j/b)1/2w̃i j , ui j = u(|i − j |/b) (1.1)

where {w̃i j }1≤i< j≤n are i.i.d. (up to the symmetry w̃i j = w̃ j i ) random variables, satisfying
the moment conditions

E{w̃i j } = 0, E{|w̃i j |2} = 1, E{|w̃i j |4} = 3 + κ4, E{|w̃i j |4+ε} ≤ C < ∞, (1.2)

diagonal entries {w̃i i }1≤i≤n are also i.i.d., independent of off diagonal entries,

E{w̃i i } = 0, E{w̃2
i i } = w2, E{|w̃i i |4} ≤ C < ∞, (1.3)
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and u(x) is a piece-wise continuous (with a finite number of jumps) continuous at x = 0
function with a compact support, satisfying the conditions

u(x) = u(−x), 0 ≤ u(x) ≤ C,

∫
u(x)dx = 1, supp u ⊂ [−C∗, C∗]. (1.4)

It is easy to see that the entries ofM are nonzero only inside the band |i − j | ≤ C∗b. Hence
for fixed b we have a matrix with a finite numbers of diagonals, while if b ∼ n, we obtain
some kind of the Wigner matrix, with all of the entries having the variances of the same
order (see [20]). The model is now widely discussed in mathematical literatures, since by
non rigorous conjecture of [6] it is expected that the behavior of local eigenvalue statistics
demonstrates a kind of phase transition: for b << n1/2 the statistics is of Poisson type and for
b >> n1/2 it is of the same type as for the Wigner matrices. Till now this result is not proven
rigorously, but the problem is one of the most challenging in the random matrix theory (see,
e.g. [3,4,18,19] and references therein).

It was proved many years ago (see [10]) that in the limit

b → ∞, b/n → 0, as n → ∞, (1.5)

the normalized eigenvalue counting measure converges weakly to theWigner semicircle low,
which has the density

ρsc(λ) = 1

2π

√
4 − λ21[−2,2]. (1.6)

This means that if we denote {λi }n
i=1 the eigenvaluesM, choose any bounded integrable test

function ϕ, and consider the linear eigenvalue statistics of the form

Nn[ϕ,M] =
n∑

j=1

ϕ(λ j ), N ◦
n [ϕ,M] = Nn[ϕ,M] − E{Nn[ϕ,M]}, (1.7)

then in the limit (1.5) we have

E{n−1Nn[ϕ,M]} →
∫

ϕ(λ)ρsc(λ)dλ, Var{Nn[ϕ,M]} → 0.

In particular, for ϕ(λ) = (λ − z)−1

n−1Nn[ϕ,M] = n−1Tr (M − z)−1 → g(z),

g(z) = 1

2

( − z +
√

z2 − 4
)
. (1.8)

Notice that below we almost always will omit the argument M of Nn[ϕ,M] and use it
only in the proof of Lemma 1, where we compare the linear eigenvalue statistics of M and
of the truncated matrix M .

The next natural question is the behavior of the fluctuations N ◦
n [ϕ] in the same limit, in

particular, the behavior of its variance. This question was solved partially in the paper [9],
where the main term of the covariance of the traces of two resolvents was found in the case
of Gaussian w̃i j and under the additional restriction b = nθ , 1/3 < θ < 1. The next step was
done in the papers [8,11], where the Central Limit Theorem (CLT) for the random variable√

b/nN ◦
n [ϕ] was proved for sufficiently smooth test functions, but again under the technical

condition n >> b >> n1/2.
The main result of the present paper is the proof of CLT for the linear eigenvalue statistics

(1.7) of the bandmatrices under the limiting transition (1.5) without any additional restriction
on the growth of b.
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We consider the test functions from the space Hs , possessing the norm

||ϕ||2s =
∫

(1 + 2|k|)2s |ϕ̂(k)|2dk, s > 2, ϕ̂(k) =
∫

eikxϕ(x)dx . (1.9)

Theorem 1 Consider an ensemble of random real symmetric band matrices (1.1–1.4) and
any test function possessing the norm (1.9)with s > 2. Then the sequence of random variables√

b/nN ◦
n [ϕ] with N ◦

n [ϕ] of (1.7) converges in distribution in the limit (1.5) to the normal
random variable with zero mean and the variance

V [ϕ]

= 1

π2

∫ π

0
dxdyϕ(2 cos x)ϕ(2 cos y)

∫
∂2

∂x∂y
log

∣∣∣∣1 − û(k)ei(x+y)

1 − û(k)ei(x−y)

∣∣∣∣dk

+ (u, u)κ4

π2

(∫ π

0
ϕ(2 cos x) cos 2xdx

)2

+ u(0)(w2 − 2)

2π2

(∫ π

0
ϕ(2 cos x) cos xdx

)2

,

(1.10)

where (u, u) = ∫
u2(x)dx and û(k) is the Fourier transform of the function u defined as in

(1.9)

Remark Inspecting the proof of Theorem 1 it is easy to see, that it can be easily adopted to the
hermitian case, i.e., the model (1.1) with complex valued independent (up to the symmetry
conditions) entries w̃i j , satisfying the first, the second and the forth moment relations of (1.2)
and (1.3). If we assume in addition that real and imaginary parts of entries are also i.i.d. and
denote κ

(1)
4 = E{(
w12)

4} − 3E2{(
w12)
2}, then the variance will have similar to (1.10)

form with the first summand divided by 2, the second summand with κ4 replaced by 2κ(1)
4

and the third summand with w2 − 2 replaced by w2 − 1.

To prove CLT for the band matrices, we use the CLT for martingale (see [2, Theorem
35.12]).

Theorem 2 Let Xn,k = E<k{Y − EkY } be a martingale differences array, corresponding to
the real valued function Y (V1, . . . , Vn) depending on the family of some independent random
vectors V1, . . . , Vn, Sn = ∑n

k=1 Xk. Here and below Ek means the averaging with respect
to Vk and E<k = E1, . . . , Ek−1. Set σn = ∑n

k=1 E{X2
k } and let σn = O(1). Assume that

(1)
∑

E{X4
k } ≤ εn, (2) Var

{ n∑
k=1

X2
k

}
≤ ε̃n . (1.11)

Then

|E{eit Sn } − e−t2σn/2| ≤ C ′(t)
(
ε
1/2
n + ε̃

1/2
n

)
. (1.12)

Remark Here we have replaced a more general condition
∑

E{X2
k1|Xk |>δ} → 0 used in [2]

by condition (1) which is more easy to check for the random matrix models.

The idea to use Theorem 2 for the proof of CLT in the random matrix theory is not new.
Since the paper of [1] it was used many times (see, e.g., [7,13,15]), but the method of the
proof of CLT used in the present paper allows to prove CLT by the same way for all classical
models of random matrix theory: deformed Wigner and sample covariance matrices, sparse
and diluted random matrices etc. It becomes even simpler than that for band matrices, since
the proof of condition (2) becomes simpler.

123



76 M. Shcherbina

The paper is organized as follows. In Section 2.1 we give the sketch of the proof of CLT,
introduce truncated bandmatrix and explain how one can extendCLT from some special class
of the test functions to all functions of Hs . In Section 2.2 we check conditions (1.11) and in
Section 2.3 prove Lemma 1 (given in Section 2.1) about the difference of linear eigenvalue
statistics of initial and truncated matrices. In Sect. 3 we compute the variance (1.10). And
in Sect. 4 the proofs of some auxiliary results (partially known before) are given in order to
make the proof of Theorem 1 more self consistent.

2 Proof of CLT

2.1 Strategy of the Proof

We start from the proof of CLT for the truncated and “periodically continued” model:

Mi j = (ui j/b)1/2wi j , ui j = u(|i − j |n/b)

wi j =
{

w̃i j1|w̃i j |≤b1/2 − E{w̃i j1|w̃i j |≤b1/2}, |i − j | ≤ C∗b

ωi j , ||i − j | − n| ≤ C∗b
(2.1)

Here and below

|i − j |n := max{|i − j |, ||i − j | − n|}, (2.2)

and {ωi j }||i− j |−n|≤C∗b are independent (up to the symmetry conditions) and independent
from M copies of w12. Thus we not only truncate the entries of M, but also add entries
in upper right and lower left corners of it, in order to obtain the periodic distribution, i.e.,
invariant with respect to the shift i → |i + 1|n .

Then the standard argument gives us that for |i − j |n ≤ C∗b

E{wi j } = 0, E{|wi j |2} = 1 + O(b−1−ε/2),

E{|wi j |4} = 3 + κ4 + O(b−ε/2), E{|wi j |8} ≤ Cb4−ε/2. (2.3)

Moreover, it is easy to see that

n−1E
{
Tr (M − M)2

} ≤ Cb−ε/2. (2.4)

Then, using Theorem 2, we prove CLT for ν1n := (b/n)1/2N ◦
n [ϕη, M]with the test functions

of the form

ϕη = ϕ ∗ Pη, (2.5)

where ∗ means a convolution, Pη is a Poisson kernel

Pη(λ) = π−1η

λ2 + η2
, (2.6)

and ϕ ∈ Hs ∩ L1(R). It is easy to see that then

Nn[ϕη, M] = π−1
∫

ϕ(λ)�γn(λ + iη)dλ, γn(z) = Tr(M − z)−1. (2.7)

Then we shall prove the lemma

Lemma 1 Set G(z) = (M− z)−1, γ̃n(z) := Tr G(z) and compare γ̃n(z) with γn(z) of (2.7).
Then for any fixed η > 0 uniformly in z : �z > η

123



On Fluctuations of Eigenvalues... 77

b

n
Var

{
γn(z) − γ̃n(z)

}
≤ C(η)b−ε/2. (2.8)

The lemma implies that for any ϕ ∈ Hs ∩ L1(R) if we set ν2n := (b/n)1/2N ◦
n [ϕη,M], then

Var{ν2n − ν1n} = b

n
Var

{
Nn[ϕη,M] − Nn[ϕη, M]

}

= b

π2n

∫ ∫
dλ1dλ2ϕ(λ1)ϕ(λ2)

× Cov{�γn(λ1 + iη) − �γ̃n(λ1 + iη),�γn(λ2 + iη) − �γ̃n(λ2 + iη)}
≤ Cb−ε

∫ ∫
dλ1dλ2|ϕ(λ1)ϕ(λ2)| ≤ C ′b−ε/2.

Hence, for any fixed x ∈ R

|E{eixν1n } − E{eixν2n }| ≤ |x |Var1/2{ν1n − ν2n} ≤ |x |Cb−ε/4.

Thus, CLT for v1n and Lemma 1 imply CLT for v2n , if the test function has the form (2.5).
To extend CLT to the test functions from Hs , we use a proposition (see [14, Proposition

3.2.9]).

Proposition 1 Let {ξ (n)
l }n

l=1 be a triangular array of random variables, Nn[ϕ] =∑n
l=1 ϕ(ξ

(n)
l ) be its linear statistics, corresponding to a test function ϕ : R → R, and

{dn}l≥1 be some sequence of positive numbers. Assume that

(a) there exists a vector space L endowed with a norm ‖...‖ such that uniformly in ϕ ∈ L
dnVar{Nn[ϕ]} ≤ C ||ϕ||2, ∀ϕ ∈ L; (2.9)

(b) there exists a dense linear manifold L1 ⊂ L such that CLT is valid for Nn[ϕ], ϕ ∈ L1,
i.e., there exists a continuous quadratic functional V : L1 → R+ such that we have
uniformly in x, varying on any compact interval

lim
n→∞ Zn[xϕ] = e−x2V [ϕ]/2, ∀ϕ ∈ L1, where Zn[xϕ] := E

{
eixd1/2

n N ◦
n [ϕ]}.

(2.10)

Then V admits a continuous extension to L and CLT is valid for all Nn[ϕ], ϕ ∈ L.

The proposition allows to extend CLT from any dense subset ofHs for which we are able
to prove CLT on the wholeHs , if we can check (2.9). This can be done by using the another
proposition (proven in [16] and also [17]) and Lemma 2.

Proposition 2 For any s > 0 and any M

Var{Nn[ϕ,M]} ≤ Cs ||ϕ||2s
∫ ∞

0
dye−y y2s−1

∫ ∞

−∞
Var{Tr G(x + iy)}dx . (2.11)

Lemma 2 If the conditions (1.1) and (1.4) are satisfied, then for any 0 < y < 1
2

b

n

∫
dxVar{Tr G(x + iy)} ≤ Cy−4 log y−1 (2.12)

The proof of the lemma is given in Sect. 4.
Combining the proposition with (2.12), we prove (2.9).
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78 M. Shcherbina

2.2 Checking of Conditions (1.11)

According to the previous section, it suffices to prove CLT for the functions of the form (2.5)
with a fixed n-independent η. Hence, everywhere below we assume that |�z| ≥ η with some
n-independent η and hence almost all bounds depend on η.

To apply Theorem 2, we denote E p the averaging with respect to the variable {wp, j } j≥p ,
E<p = E1 . . . E p−1 and consider

X p[ϕη] = π−1(b/n)1/2
∫

ϕ(λ)�X̃ p[λ + iη]dλ,

X̃ p[z] = E<p{γn(z) − E pγn(z)}. (2.13)

Then, according to Theorem 2, we have to check conditions (1,2) of (1.11) for {X p[ϕη]}. It
is evident, that condition (1) follows from the bounds

E p{|X̃ p[z]|2} ≤ Cb−1, |X̃ p[z]| ≤ C, (2.14)

valid uniformly in |�z| ≥ η. And since

Var
{∑

X2
p −

∑
E p{X2

p}
}

=
∑

p

E
{|X2

p − E p{X2
p}|2

} ≤
∑

p

E{X4
p} ≤ εn,

condition (2) of (1.11) follows from the uniform in |�z1|, |�z2| ≥ η bound

Var{�(z1, z2)} ≤ ε̃n,

�(z1, z2) := b

n

∑
p

E p{X̃ p[z1]X̃ p[z2]}. (2.15)

Let us prove (2.14) and (2.15).
Denote M (p) the (n − 1) × (n − 1) matrix which is obtained from M by removing the

pth line and column. Set also

G(p) = (M (p) − z)−1, v(p) := (vp1, . . . , vp,p−1, vp,p+1, . . . , vpn) ∈ R
n−1,

vi j := u1/2
i j wi j . (2.16)

Use the identities

G pp = −A−1
p , Gi j = G(p)

i j − Q(p)
i j , Tr G − Tr G(p) = − ∂

∂z
log Ap(z), (2.17)

where

Ap := z + b−1/2vpp + b−1(G(p)v(p), v(p)
)
,

Q(p)
i j = b−1A−1

p

(
G(p)v(p)

)
i

(
G(p)v(p)

)
j . (2.18)

Since for the resolvent G(z) = (M − z)−1 of any symmetric or hermitian matrix M and any
vector m

�(G(z)m, m) = �z(G(z)m, G(z)m), (2.19)

we have for |�z| ≥ η

|Ap(z)| ≥ |�Ap(z)| = |�z|(1 + b−1(G(p)v(p), G(p)v(p))
) ≥ η, (2.20)

| Ā p| ≥ |� Ā p| ≥ η, where Ā p := E p{Ap},
‖Q(p)‖ ≤ |Ap|−1|b−1(G(p)v(p), G(p)v(p))| ≤ η−1, (2.21)
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and
∣∣∣ A′

p(z)

Ap

∣∣∣ ≤ |1 + b−1((G(p))2v(p), v(p))|
�Ap

≤ η−1 ⇒ |X̃ p| ≤ 2η−1,

which implies the second inequality of (2.14).
The last relation of (2.17) yields

E p{X̃ p(z1)X̃ p(z2)} =: ∂2

∂z1∂z1
Dp(z1, z2)

Dp(z1, z2) := E p

{
E<p

{
(log Ap(z1))

◦
p

}
E<p

{
(log Ap(z2))

◦
p

}}
.

Here and below for any random variable ξ we denote ξ◦
p = ξ − E p{ξ}.

Since Dp(z1, z2) is an analytic function on z1, z2 : |�z1|, |�z2| ≥ η/2, in order to prove
the first bound of (2.14), it suffices to prove that uniformly in |�z| ≥ η/2

E p{|E<p{(log Ap(z))
◦
p}|2} ≤ η−2E p{|E<p{A◦

p(z)}|2} ≤ Cb−1.

Evidently

E<p{A◦
p(z)} = b−1/2vpp + b−1

∑
i, j>p,i �= j

E<p{G(p)
i j (z)}vpi vpj + b−1

∑
i>p

E<p{G(p)
i i (z)}(v2pi − u pi ).

Hence, averaging with respect to E p and using (2.3), we obtain the first bound of (2.14).
Similarly one can get the relation which we need below

E p{|E<p{A◦
p(z

′)}|4} ≤ Cb−1−ε/2. (2.22)

We are left to check (2.15). Writing Ap = Ā p + A◦
p , expanding log Ap around Ā p , and

using (2.22), we obtain

�(z1, z2) = b

n

∑
p

E p{X p(z1)X p(z2)} = ∂2

∂z1∂z1
�̃(z1, z2)

�̃(z1, z2) =: b

n

∑
Dp(z1, z2) = b

n

∑
( Ā p(z1) Ā p(z2))

−1Tp(z1, z2)

+ b

n

∑(
O(E p{|A◦

p(z1)|3}) + O(E p{|A◦
p(z2)|3}

)

= b

n

∑
( Ā p(z1) Ā p(z2))

−1Tp(z1, z2) + O(b−ε/4), (2.23)

where

Tp(z1, z2) := E p
{

E<p{A◦
p(z1)}E<p{A◦

p(z2)}
}

= 2b−2
∑

i, j>p

u pi u pj E p
{

E<p{G(p)
i j (z1)}E<p{G(p)

i j (z1)}
}

+ κ4b−2
∑

u2
pi E p

{
E<p{G(p)

i i (z1)}E<p{G(p)
i i (z2)}

} + w2b−1u pp. (2.24)

Lemma 3 Given η > 0 there exists δ(η) > 0 such that uniformly in z : |�z| > η

Var{G(p)
j j } ≤ b−δ, E{|G(p)

j j − E{G j j }|} ≤ C2
0b−1,

E{|G(p)
j j (z) − g(z)|} ≤ C0b−δ, (2.25)

where g(z) is defined by (1.8).
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80 M. Shcherbina

The proof of the lemma is given in Sect. 4.

Remark 1 Below we will often use a simple observation. If for some random variables
|Rk | ≤ Ck ,

∑
k Ck ≤ C , and fk : E{| fk − f ∗

k |} ≤ C1b−δ , where f ∗
k are some constants,

then we have with the same C and C0 of (2.25)
∑

Rk fk =
∑

Rk f ∗
k + r, E{|r |} ≤ CC1b−δ. (2.26)

In particular, since in view of (2.24) |Tp(z1, z2)| ≤ Cb−1, we have

�̃(z1, z2) = b

n

∑
( Ā p(z1) Ā p(z2))

−1Tp(z1, z2) + o(1)

= 2

bn

∑
g(z1)g(z2)T

′
p(z1, z2) + κ4(g(z1)g(z2))

2 + u(0)w2g(z1)g(z2) + o(1),

(2.27)

where T ′
p(z1, z2) is the first sum in the r.h.s. of (2.24). The constant term here does not

contribute into the variance of �(z1, z2), so it is not important in the proof of (2.15).
Let us denote M̃ (<p) the matrix M whose entries wi j with min{i, j} < p are replaced

by w′
i j which are independent from all {wkl}n

k,l=1 and have the same distribution as wi j . Let

also M̃ (<p,q) be the matrix M̃ (<p) without qth line and column. We denote also Ẽ<p the
averaging with respect to all wi j and w′

i j with min{i, j} < p. Set

G̃(<p,q) = (M̃ (<p,q) − z)−1, G̃(<p) = (M̃ (<p) − z)−1. (2.28)

Then evidently

T ′
p(z1, z2) =

∑
jk

E p
{

Ẽ<p
{
G̃(<p,p)

jk (z1)G
(p)
jk (z2)

}}
u jpukp

= E p{Ẽ<p{TrG̃(<p,p)(z1)I (p)G(p)(z2)I (p)}},
where we denote by I (p) the diagonal matrix with the entries

I (p)
jk = δ jkukp1k>p. (2.29)

Moreover, if we replace G(p) in (2.24) by G and set

T ′′
p (z1, z2) =

∑
i, j>p

u pi u pj E p{E<p{Gi j (z1)}E<p{Gi j (z1)}}

= E p{Ẽ<p{Tr G̃(<p)(z1)I (p)G(z2)I (p)}}, (2.30)

then in view of (2.17) and (2.21)

|T ′′
p (z1, z2) − T ′

p(z1, z2)| ≤ |E p{Ẽ<p{Tr Q̃(p)(z1)I (p)G(z2)I (p)}}|
+ |E p{Ẽ<p{Tr G̃(<p,p)(z1)I (p)Q(p) I (p)}}| ≤ C, (2.31)

where we have used that since Q(p) is a rank one matrix with a bounded norm, we have for
any bounded matrix B

Tr Q(p) B ≤ ‖B‖‖Q‖.
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Thus we need to study the variance of

�1 = 1

bn

∑
p

T ′′
p (z1, z2). (2.32)

To prove (2.15), it suffices to show that

Var{�1} =
∑

r

E{|E2
<r {

(
�1

)◦
r }|2} → 0.

The last relation is a corollary of of the bounds, which we are going to prove

n2E{|(�1
)◦

r |2} ≤ C, r = 1, . . . , n. (2.33)

By (2.32),

n
(
�1

)◦
r = 1

b

∑
p≤r

(
T ′′

p (z1, z2)
)◦

r . (2.34)

Notice also that
(
T ′′

p (z1, z2)
)◦

r = 0 for p ≥ r + 1, hence the sum in (2.35) is over p ≤ r .
Then (2.17) yields

(
T ′′

p (z1, z2)
)◦

r

=
(

Ẽ≤p{Tr G̃(<p)(z1)I (p)G(z2)I (p)} − Ẽ≤p{Tr G̃(<p,r)(z1)I (p)G(r)(z2)I (p)}
)◦

r

=
(

Ẽ≤p
{
(Ar b)−1(G(r)(z2)I (p)G̃(<p,r)(z1)I (p)G(r)(z2)v

(r), v(r))
})◦

r

+ sim +
(

Ẽ≤p
{
(Ar b)−2(G(r)(z2)I (p)G̃(r)(z1)ṽ

(r), v(r))2
})◦

r

=: (
F̃ (r)
1p (z1, z2)

)◦
r + (

F̃ (r)
1p (z2, z1)

)◦
r + (

F̃ (r)
2p (z1, z2)

)◦
r ,

where “+sim” means the adding of the term which can be obtained from the previous one by
replacing z2 and z1. Since E{|ξ◦

r |2} ≤ E{|ξ |2} for any random variable ξ , (2.34) yields

n2E{|(�1
)◦

r |2}
≤ C E

{∣∣∣b−1
∑
p≤r

(
F̃ (r)
1p (z1, z2) + F̃ (r)

1p (z2, z1) + F̃ (r)
2p (z1, z2)

)∣∣∣2
}

≤ C E
{∣∣∣b−2

∑
p≤r

E≤p
{(

I (p)G(r)(z1)v
(r), G(r)(z1)v

(r)
)(
1 + b−1(v(r), v(r))

)}∣∣∣2
}

+ sim

=: C E
{∣∣∣b−2

∑
p≤r

(
F (r)

p (z1) + F (r)
p (z2)

)∣∣∣2
}
. (2.35)

To sum in the r.h.s of (2.35) with respect to p we would like to use the property

n∑
p=1

I (p) ≤ CbI, (2.36)
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but since p appears not only in I (p), first we need to remove p from other places. Write

E
{
n2

∣∣(�1
)◦

r

∣∣2}
≤ Cb−4

∑
p≤q≤r

E{F (r)
p F (r)

q }

≤ Cb−4
r∑

q=1

q∑
p=1

E
{

E≤q
{
(I (p)G(r)v(r), G(r)v(r))(1 + b−1(v(r), v(r)))

}
F (r)

q

}

≤ Cb−2
r∑

q=1

E
{

E≤q
{
b−1(v(r), v(r))(1 + b−1(v(r), v(r)))

}
F (r)

q

}

≤ Cb−2
r−C∗b∑

q=1

E
{(

I (q)G(r)v(r), G(r)v(r)
)(
1 + b−1(v(r), v(r))

)3}

+ C E{(1 + b−1(v(r), v(r)))4} ≤ C ′E{(1 + b−1(v(r), v(r)))4}.
Here in the first line we use (2.35), in the second line we use first that for p ≤ q the averaging
E≤p can be replaced by E≤q , and then use (2.36) for summation over p ≤ r . The third line
follows from the second one in view of the bound ‖G(r)‖ ≤ C . Next we split the sum over q
into two parts: one over q < r − C∗b and another over r − C∗b ≤ q ≤ r , and observed that
for the q in the first part (v(r), v(r)) is a constant with respect to the averaging E<q , hence

E
{

E<q
{
b−1(v(r), v(r))

(
1 + b−1(v(r), v(r))

)}
F (r)

q

}
= E

{(
(G(r))∗ I (q)G(r)v(r), v(r)

)
b−1(v(r), v(r))

(
1 + b−1(v(r), v(r))

)2}
.

Then we can take the sum over q < r − C∗b, using again the bound (2.36), and finish to
estimate the sum using the bound ‖G(r)‖ ≤ C . As for the terms with r − C∗b ≤ q ≤ r , they
are estimated just using the boundedness of ‖G(r)‖ and ‖I (p)‖. Thus we have proved (2.33).

��
2.3 Proof of Lemma 1

Set

G(p) := (M(p) − z)−1, Ap := z + b−1(G(p)ṽ(p), ṽ(p)), �Ap := Ap − Ap.

The same argument as in the previous section implies that it suffices to check that

b

n

∑
p

E{|�Ap − E p{�Ap}|2} → 0. (2.37)

Since we know that [see (2.24)]

b

n

∑
|p|n≤C∗b

E{|�Ap − E p{�Ap}|2} ≤ b

n

∑
|p|n≤C∗b

2
(

E{|A◦
p|2} + E{|A◦

p|2}
)

≤ Cb

n
,

we conclude that it suffices to prove that

b

n

∑
|p|n>C∗b

E{|�Ap − E p{�Ap}|2} → 0. (2.38)
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Let us write

�Ap = b−1/2�vpp + b−1(G(p)�v(p),�v(p)) + 2b−1(G(p)�v(p), v(p))

+ b−1((G(p) − G(p))v(p), v(p)) =: J0p + J1p + 2J2p + J3p. (2.39)

Averaging with respect to v(p) and ṽ(p) we get similarly to (2.24) for |p|n ≥ cb

E{|J1p − E p{J1p}|2} = b−2
∑
i �= j

E{|G(p)
i j |2(vpi − ṽpi )

2(vpj − ṽpj )
2}

+ b−2
∑

i

E{|G(p)
i i |2}(vpi − ṽpi )

4}

≤ b−4−ε
∑
i �= j

E{|G(p)
i j |2}I (p)

i i I (p)
j j + b−2−ε/2

∑
i

E{|G(p)
i i |2}I (p)

i i

≤ Cb−1−ε/2. (2.40)

Similarly

E{|J2p − E p{J2p}|2} ≤ Cb−2−ε/2, E{|J0p − E p{J0p}|2} ≤ Cb−2−ε/2. (2.41)

In addition, again similarly to (2.24) we have

E{|J3p − E p{J3p}|2} ≤ Cb−2E{Tr I (p)(G(p) − G(p))I (p)(G(p)∗ − G(p)∗)}. (2.42)

Now by the same way as in (2.30,2.31) we can replace here G(p) by G and G(p) by G with
an error O(b−2):

E{|J3p − E p{J3p}|2} ≤ 2b−2E{Tr I (p)(G − G)I (p)(G∗ − G∗)} + O(b−2). (2.43)

The resolvent identity implies

G − G = G(M (p) − M)G = −G�MG.

Hence, the last term in the r.h.s. of (2.42) can be estimated as

b−2E{Tr I (p)(G − G)I (p)(G∗ − G∗)} = b−2E{Tr I (p)G�MG I (p)G∗�MG∗)}
≤ Cb−2E{Tr I (p)G(�M)2G∗)}.

Hence, using (2.36) and (2.4), we obtain

b

n

∑
C∗b<p<n−C∗b

E{|J3p − E p{J3p}|2} ≤ Cn−1b−1E{Tr G(�M)2G∗}

≤ Cn−1b−1E{Tr (�M)2} ≤ Cb−1−ε/2. (2.44)

Combining (2.44) with (2.39–2.42), we get (2.38).

3 Variance

In view of (2.32), to find �1, it suffices to find the main order of b−1E{T ′′
p (z1, z2)} defined

in (2.30). For this aim it suffices to compute for any i the main order of

ti =
∑
j>p

u pj Ẽ<p{G̃i j (z1)Gi j (z2)}.
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Consider

si :=
∑
j>p

u pj Ẽ<p

{
G̃ ji (z1)

∑
k

b−1/2vik Gkj (z2)
}

=
∑
j>p

u pj Ẽ<p

{
G̃ ji (z1)

∑
k

(
b−1/2vik − z2δik + z2δik

)
Gkj (z2)

}

=
∑
j>p

u pjδi j E{Gii (z1)} + z2ti = u pi g(z1) + z2ti + O(b−δ/2), (3.1)

where we used Lemma 3 for the last equality.
The idea is to compute the l.h.s. above in a way which gives us an equation with respect

to {ti }i>p . It is possible by using the formula (see e.g.[14]) valid for any random variable ξ

which has zero mean and possesses m + 2 moments, and any function F , possessing m + 1
bounded derivatives

E{ξ F(ξ)} =
m∑

s=1

κs+1E{F (s)(ξ)}
s! + rm, |rm | ≤ C E{|ξ |m+2}max |F (m+1)|, (3.2)

where κs is the sth cumulant of ξ , i.e., the coefficient at xs in the formal expansion of
log E{exξ } in the series with respect to x . We need to know that κ1 = E{ξ}, κ2 = E{|ξ◦|2},
and κs ≤ Cs E{|ξ |s} with some absolute Cs .

Applying the formula for ξ = b−1/2vik , m = 4, and Fi jk = G̃ ji (z1)Gik(z2), we get

si = −
∑
j>p

u pj Ẽ<p

{
G̃ ji (z1)Gi j (z2)

∑
k

b−1uik Gkk(z2)
}

− 1i>p

∑
k>p

uik

∑
j>p

b−1u pj Ẽ<p

{
G̃ii (z1)G̃ jk(z1)Gkj (z2)

}

+ R1 + R2 + R3 + R4. (3.3)

Here we used the differentiation formula for the resolvent of any symmetric matrix M

d

d Mik
Gsl(z) = −Gsk(z)Gil(z) − Gsi (z)Gkl(z) (3.4)

and split the terms corresponding to s = 1 in (3.2) into two parts. The terms, corresponding to
the first summand in the r.h.s of (3.4), arewritten in the r.h.s. of (3.3), the terms, corresponding
to the second summand in the r.h.s of (3.4), are collected in the remainder R1 (see below).
The remainders R2 and R3 collect the terms, corresponding to s = 2 and s = 3 respectively.
And the remainder R4 appears because of the remainder in (3.2). Let us analyze the order of
each of these terms. By (3.4)

R1 = −b−1
∑

j>p,k

u jpuik Ẽ<p{G̃i j (z1)Gik(z2)Gkj (z2)}

− b−1
∑

j,k>p

u jpuik Ẽ<p{G̃ik(z1)G̃i j (z1)Gkj (z2)}

= −b−1 Ẽ<p{(G̃ I (p)G I (i,p)G)i i } − b−1 Ẽ<p{(G̃ I (p)G I (i,p)G̃)i i } = O(b−1).

where I (i,p)
lk = δlkulk1k>p .

To estimate R2, observe that by (3.4) after two differentiation we obtain the sum of terms
of the type Ĝl1l2 Ĝl3l4 Ĝl5l6 Ĝl7,l8 , where Ĝ can be G or G̃ and the set of indexes l1, l2 . . . l7, l8
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contains 3 times i , 3 times k, and 2 times j , but Ĝ j j can not appear. Thus, each term contains
either Ĝ jk Ĝ ji or Ĝ jk Ĝ jk , or Ĝ ji Ĝ ji . Any of this combinations after summationwith respect
to j gives us O(1). Hence, after summation with respect to k we obtain O(b). But the factor
which appears because of the third cumulant is b−3/2, hence R2 = O(b−1/2). By the same
argument R3 = O(b−1).

Finally, to estimate R4, observe that we have two summations with respect to p < j <

p + C∗b and i − C∗b < k < i + C∗b, and the factor which appears because of b−3E{|vik |6}
is bounded by b−2−ε/2. At the last step of transformations of (3.3) we write

Gkk(z2) = g(z2) + (Gkk(z2) − g(z2)), Gii (z1) = g(z1) + (Gii (z1) − g(z1))

and use the bound (2.25). Then we obtain

si = −g(z2)ti − g(z1)
∑

k

U (p)
ik tk + ri , ri ≤ Cb−ε/2,

where

Uik = b−1uik, U (p)
ik = b−1uik1i>p1k>p. (3.5)

Combining (3.1) and (3.3) with above estimates for the reminders and using that by (1.8) we
have (z2 + g(z2)) = −g−1(z2), we obtain the system of equations

(
(ζ − U (p))t

)
i = u(p)

i + r ′
i , r ′

i ≤ C(b−ε/2 + b−δ/2),

with ζ = (g(z1)g(z2))
−1, u(p)

i = 1i>pu pi . (3.6)

Since |g(z1)g(z2)| < 1 and

‖U (p)‖ ≤ max
k

∑
i

|Uki | ≤ 1 + o(1),

the operator (ζ − U (p))−1 can be defined by the Neumann series

(ζ − U (p))−1 =
∞∑

m=0

ζ−m−1(U (p))m,

and it possesses the properties
∑

k

|(U (p) − ζ )−1
ik | ≤ C, i > p, |(U m)i i | ≤ Cb−1, 1 ≤ i ≤ n. (3.7)

An application of (ζ − U (p))−1 to both parts of (3.6) and (3.7) implies

ti = (
(U (p) − ζ )−1u(p)

)
i + r̃i , |r̃i | ≤ C(b−ε/2 + b−δ/2),

⇒ b−1T ′′
p (z1, z2) = b−1((ζ − U (p))−1u(p), u(p)

) + o(1),

⇒ E{�1} = 2

nζ

∑
p

b−1((ζ − U (p))−1u(p), u(p)
) + o(1), (3.8)

where �1 was defined in (2.32).

Proposition 3 Let the matrices U and U (p) be defined by (3.5), {ui j }n
i, j=1 satisfy conditions

(1.4), the vectors u(p) be defined by (3.6), and |ζ | > 1. Then
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1

ζn

n∑
p=1

b−1((ζ − U (p))−1u(p), u(p)) = −b

n

(
Tr log(1 − ζ−1U ) + ζ−1TrU

)
+ O(b−1).

(3.9)

Proof Denoting by S1(z) the l.h.s. of (3.9) and by S2(z) the main term in the r.h.s. of (3.9),
we have

S2(z) = b

n

∞∑
m=2

m−1ζ−m
∑

Ui1i2 . . . Uimi1

= b

n

n∑
p=1

∞∑
m=2

m−1ζ−m
∑

min{i1,...,im }=p

Ui1i2 . . . Uimi1

= b

n

n∑
p=1

∞∑
m=2

ζ−m
∑

i2,...,im−1>p

Upi2 . . . Uim p + O(b−1)

= 1

bn

n∑
p=1

∞∑
m=2

ζ−m((U (p))m−2u(p), u(p)) + O(b−1) = S1(z) + O(b−1).

The term O(b−1) appears in the third line above as a sum of the terms, which have at least
two p among {i1, . . . , im}. But the contribution of these terms for fixed m in view of (3.7)
can be estimated as

m|z|−m−1
m−1∑
k=1

(U k)pp(U
m−k)pp ≤ m2|z|−m−1b−2.

After summation with respect to m and multiplication by b we obtain O(b−1). ��
Now observe that the r.h.s. of (3.9) has a limit, as n, b → ∞ like in (1.5).

S2(z) =
∞∑

m=2

1

mζm

∫
u(x1)u(x1 − x2) . . . u(xm−2 − xm−1)u(xm−1)dx̄ + rn,b

= −
∫

log
(
1 − ζ−1û(k)

)
dk − ζ−1u(0) + o(1),

where û is the Fourier transform of the function u defined as in (1.9). Hence, the proposition
and the last line of (3.8) yield

E{�1} = −2
( ∫

log
(
1 − ζ−1û(k)

)
dk + ζ−1u(0)

)
+ o(1).

Thus by (2.23) and (2.27) we obtain

b

n
Cov{γ (z1), γ (z2)} = E{�(z1, z2)}

= ∂2

∂z1∂z2

(
− 2

∫
log

(
1 − g(z1)g(z2)û(k)

)
dk

+ (w2 − 2)g(z1)g(z2)u(0) + κ4g2(z1)g
2(z2)

)
+ o(1)

=: C(z1, z2) + o(1),
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where we used also that by (3.6) ζ−1 = g(z1)g(z2). According to the definition (2.7) and
the above relation

b

n
Var{Nn[ϕη]} →

∫
dλ1dλ2ϕ(λ1)ϕ(λ1)Cη(λ1, λ2),

where

Cη(λ1, λ2) = 1

4π2

(C(λ1 + iη, λ2 − iη) + C(λ1 − iη, λ2 + iη)

− C(λ1 + iη, λ2 + iη) − C(λ1 − iη, λ2 − iη)
)
.

Now by Proposition 1 for any ϕ possessing the norm (1.9) we have

b

n
Var{Nn[ϕ]} → lim

η→0

∫
dλ1dλ2ϕ(λ1)ϕ(λ1)Cη(λ1, λ2).

Let us make the change of variables λ1 = 2 cos x1, λ2 = 2 cos x2. Then, using that [see
(1.8)]

lim
η→+0

g(λα ± iη) = −e∓i xα , α = 1, 2,

we obtain (1.10) by a simple calculus.

4 Auxiliary Results

Proof of Lemma 2 The first identity of (2.17) yields that it suffices to estimate E{|A′
p A−1

p −
E1{A′

p A−1}|2}. Note that for any a independent of {w1i } we have

E p{|ξ◦
p|2} ≤ E p{|ξ − a|2}.

Hence it suffices to estimate
∣∣∣∣

A′
p

Ap
− E p{A′

p}
E1{Ap}

∣∣∣∣ =
∣∣∣∣

A′◦
p

E p{A} − A′◦
p

E1{Ap}
A′

p

Ap

∣∣∣∣ ≤
∣∣∣∣

A′◦
p

E p{Ap}
∣∣∣∣ +

∣∣∣∣
A◦

p

yE p{Ap}
∣∣∣∣.

Here and below z = x + iy, y > 0. Let us use also the relation (2.19) which yields, in
particular, that |A′

p/Ap| ≤ y−1 . Using (2.18), we get

E p

{∣∣∣ A◦
p

E p{Ap}
∣∣∣2

}
≤ Cb−2Tr G(p) IpG(p)∗

|E p{Ap}|2 , (4.1)

Similarly

E p

{∣∣∣∣
A′◦

p

E p{Ap}
∣∣∣∣
2}

≤ Cb−2Tr (G(p))2 Ip(G(p)∗)2

|E p{Ap}|2 ≤ Cb−2Tr G(p) IpG(p)∗

y2|E p{Ap}|2 .

Thus

b

n
E{|(γn(z))◦|2} ≤ Cn−1

∑
p

Tr G(p) IpG(p)∗

by2|E p{Ap}|2 . (4.2)
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Notice that the Hölder inequality implies for any δ > 0
∫ ∣∣∣b−1

∑
| j−p|≤bC∗

u pj G
(p)
j j (x + iy)

∣∣∣1+δ

dx

≤ Cb−1
∑

| j−p|≤bC∗
u pj

∫
|G(p)

j j (xu pj + iy)|1+δdx

≤ b−1
∑

| j−p|≤bC∗
u pj

∫ ∑
k

|(ψk, e j )|2
|(x − λk)2 + y2|(1+δ)/2

dx ≤ Cδ−1y−δ.

Hence, denoting Lp = {x : | ∑ u pj G
(p)
j j (x + iy)| > 1}, we obtain for 0 ≤ y < 1

2

∫
1Lp dx ≤ C min

δ
{δ−1y−δ} ≤ C log y−1.

Then, using once more that by (2.19) each summand in the r.h.s. of (4.2) is bounded by y−4,
we get

∫
b

n
E{|(γn(zx + iy))◦|2}dx

≤ Cn−1
∑

p

( ∫
R\([−1,1]∪Lp)

(y2b)−1Tr G(x + iy)IpG(p)∗(x + iy)dx

+ Cy−4
∫

[−1,1]∪Lp

dx

)

≤ Cy3 + Cy−4 log y−1 ≤ C ′y−4 log y−1.

��
Proof of Lemma 3. It follows from (2.17) that

E{|G pp − E{G pp}|2} ≤ |�z|−2E{|Ap − E{Ap}|2}
≤ 2|�z|−1(E{| Ā p − E{ Ā p}|2} + Var{A◦

p})
≤ 2|�z|−2b−1

∑
u piVar{G(p)

i i } + Cb−1. (4.3)

But since

E{|Gii − G(p)
i i |} ≤ |�z|−2b−1E{|(G(p)v(p))i |2} ≤ C |�z|−2b−1,

we have

Var{G(p)
i i } = Var{Gii } + O(b−1) = Var{G pp} + O(b−1). (4.4)

Here the last equality is due to the invariance of the distribution of M with respect to the
“shift” i → (i + 1) mod (n). Hence for any z : |�z| ≥ 2 we obtain from (4.3)

Var{G pp} ≤ 2|�z|−2Var{G pp} + Cb−1Var{G pp} + 2Cb−1. (4.5)

Let us fix any z = x + iη with 0 < η < 2 and consider the function

φ(ζ ) = log(c0b1/2|Cov{G pp(ζ ), G pp(z)}|)
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in the half-circle � = {�ζ < 2} ∩ {|ζ − x − 2i | ≤ |2− η/2|}. It is a harmonic function, and
in view of (4.5) for �ζ = 2 we can choose c0 sufficiently small to have

c0b1/2|Cov{G pp(ζ ), G pp(z)}| ≤ c0b1/2Var1/2{G pp(ζ )}Var1/2{G pp(z)} ≤ 1

⇒ φ(ζ ) ≤ 0, ζ ∈ �1 := ∂� ∩ {�ζ = 2}.
Moreover, in view of the trivial bound |G pp(ζ )| ≤ |�ζ |−1, we have

φ(ζ ) ≤ log b1/2 + log c0η
−2, ζ ∈ �2 := ∂� ∩ {|ζ − x − 2i | = |2 − η/2|}.

Hence, by the theorem on two constants (see [5], p. 296), we have

φ(ζ ) ≤ (log b1/2 + log c0η
−2)ω(ζ ), (4.6)

where the harmonic function

ω(ζ ) := 2

π
� log

2 − η/2 − (ζ − x − 2i)

2 − η/2 + (ζ − x − 2i)
,

satisfy the conditions

ω(ζ ) = 0, ζ ∈ �1, ω(ζ ) = 1, ζ ∈ �2.

Since ω(z) = 1 − 2δ with some δ(η) > 0, (4.6) implies the first line of (2.25):

c0b1/2Var{G pp(z)} ≤ (c0b1/2)1−2δ ⇒ Var{G pp(z)} ≤ Cb−δ.

Using (2.17), (4.3), and (4.6), we get similarly to (4.4),

E{G pp(z)} = −(z + E{G pp(z)})−1 + O(b−δ)

⇒ E{G pp(z)} = g(z) + O(b−δ).

Thus, we have proved the second line of (2.25). ��
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