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Abstract We consider active maximum a posteriori (MAP) inference problem for hidden
Markov models (HMM), where, given an initial MAP estimate of the hidden sequence,
we select to label certain states in the sequence to improve the estimation accuracy of the
remaining states. We focus on the binary symmetric HMM, and employ its known mapping
to 1d Ising model in random fields. From the statistical physics viewpoint, the active MAP
inference problem reduces to analyzing the ground state of the 1d Isingmodel under modified
external fields. We develop an analytical approach and obtain a closed form solution that
relates the expected error reduction to model parameters under the specified active inference
scheme. We then use this solution to determine most optimal active inference scheme in
terms of error reduction, and examine the relation of those schemes to heuristic principles of
uncertainty reduction and solution unicity.

Keywords Active inference · Ising model · Maximum aposteriori estimation

1 Introduction

In a typical statistical inference problem, we want to infer the true state of some hidden
variables based on the observations of some other related variables. The quality of statistical
inference is generally improved with adding more data or prior information about the hidden
variables. When obtaining such information is costly, it is desirable to select this information
optimally so that it is most beneficial to the inference task.

This notion of active inference (or active learning) [1], where one optimizes not only over
the models, but also over the data, has been used in various inference problems including
Hidden Markov Models (HMMs) [2,3], network inference [4–7], etc.
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The efficiency of active inference is naturally determined from the error reduction of the
inference method [8]. Since this quantity is not readily available in practice, several heuristic
methods were developed [1]. For instance, a class of methods seeks to implement active
inference in a way of obtaining possibly unique solution (or reducing the set of available
solutions) [1,9]. A related family of methods tries to learn those variables whose uncertainty
is large [1,10]. Both heuristics have intuitive rationale and can do well in practice, but
theoretical understanding of how exactly those heuristics relate to error reduction is largely
lacking. In particular, most existing theoretical results are concerned with sub-modular cost
functions that allow to establish certain optimality guarantees [11,12] on active selection
strategies. However, these cost functions do not usually refer directly to the error reduction
of some inference method.

Herewe consider the activemaximuma posteriori (MAP) inference problem for the binary
symmetric HMMs, or BS-HMM (see [3] for a brief review of active estimation methods in
HMM). BS-HMM is sufficiently simple so it allows to study active MAP inference analyti-
cally [13,14], yet it still contains all the essential features of HMMs that make them a flexible
and widely used tool for probabilistic modeling in various fields [15,16]. We emphasize that
even for the simple BS-HMM model considered here, obtaining analytical insights about
active inference strategies is a non-trivial problem, as we demonstrate below.

Similar to other inference problems, the active MAP-estimation for BS-HMM can be
reduced to a properly defined statistical physical system; see [17–19] for general surveys on
the relationship between statistical physics and probabilistic inference. For the present case,
the statistical structure of BS-HMM can be mapped to one-dimensional (1d) Ising model in
random external fields [20,21]. As we show below, active MAP inference can be reduced to
the problem of selecting a ground state of the corresponding 1d Ising model under modified
external conditions (fields). We develop an analytical approach for studying the active MAP
inference problem for BS-HMM, and use it to determine the most efficient schemes of
uncertainty reduction, where labeling a small number of states results in the largest expected
error reduction in the estimation of the remaining (unlabeled) states. Our analysis allows
us to examine how the active inference in BS-HMM relates to the heuristic principles of
uncertainty reduction and solution unicity. Specifically, we obtain a closed form expression
for the expected error reduction as a function of model parameters, and use it to assess
the optimality of active inference schemes. Finally, we compare our analytical predictions
with numerical simulations and obtain excellent agreement within the validity range of the
proposed analysis.

The rest of the paper is organized as follows: Sect. 2 defines generalities of active MAP-
inference. Sections 3 and 4 introduce the BS-HMM and its MAP analysis, respectively.
Section 5 presents our the main analytical findings on active inference, and is followed by
experimental validation of those findings in Sect. 6. We conclude by discussing our main
findings, their relationships to the existing heuristics for active inference, and identifying
some future directions of research in Sect. 7.

2 Active Inference: Generalities

2.1 MAP Inference

Let x = (x1, . . . , xN ) and y = (y1, . . . , yN ) be realizations of discrete-time random
processes X and Y , respectively. Y is the noisy observation of X . We assume a binary
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alphabet xi = ±1, yi = ±1 and write the probabilities as p(x) and p(y). The influence
of noise is described by the conditional probability p(y|x). Given an observation sequence
y, the MAP estimate x̂(y) = (x̂1(y), ..., x̂N (y)) of x is found from maximizing over x the
posterior probability p(x|y) = p(y|x)p(x)/p(y):

x̂(y) = argmax
x

p(x|y). (1)

In general, the maximization can produce N (y) outcomes. Since they are equivalent, each
of them is chosen (for a given y) with probability 1/N (y), which defines a realization x̂ of a
random variable X̂ .

The estimation accuracy is measured using the overlap (larger O means better estimate)

Ō =
∑

y

p(y)
1

N (y)

∑

x̂(y)

O[x̂(y), y], (2)

O[x̂(y), y] =
∑

x

N∑

i=1

x̂i (y)xi p(x|y), (3)

Note that the definition of Ō involves averaging over X , Y and X̂ . The error probability is
expressed through the overlap as Pe = 1

2 [1− Ō
N ]. Belowwe are interested by the conditional–

over a fixed y and x̂–overlap O[x̂(y), y].
2.2 Active MAP Inference

Given y and x̂(y) we request the true value of one of the variables (say x1, generalization to
many variables is straightforward). Below we refer to this procedure as supervising. After
supervising x1, we re-estimate other variables:

(x̂2(y), ..., x̂N (y)) → (x̃2(x1, y), ..., x̃N (x1, y)), (4)

where x̃i (x1, y) is obtained under the MAP estimation with the fixed value of x1. Let us
define the overlap gain

ΔO[x̂(y), y; 1] =
∑

x

N∑

i=2

[x̃i (x1, y) − x̂i (y)]xi p(x|y), (5)

Then supervising x1 is meaningful if this gain is positive, ΔO > 0. Note that the sum
∑N

i=2
is taken over the non-supervised variables [cf. (2)]. In ΔO[x̂(y), y] the average is taken also
over all possible values x = (x1, ..., xN ). The fully averaged overlap gain ΔŌ is determined
from ΔO[x̂(y), y; 1] as in (2).

If x1 was already correctly recovered using the initial MAP estimation, then supervising
x1 does not change anything: {x̃i (x̂1(y), y)}Ni=2 = {x̂i (y)}Ni=2. Hence, we get from (5):

ΔO[x̂(y), y; 1] =
∑

x2,...,xN

N∑

i=2

[x̃i (−x̂1(y), y) − x̂i (y)]

×xi p(−x̂1(y), x2, ..., xN |y). (6)
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3 Reducing HMMs to the Ising Model

We now consider a binary symmetric HMM. X is a Markov process given by the following
state-transition probabilities

p(x) =
∏N

k=2
p(xk |xk−1)p(x1), xk = ±1, (7)

where p(xx |xk−1) is the transition probability parameterized by a single number 0 < q < 1:

p(+1| + 1) = p(−1| − 1) = 1 − q,

p(+1| − 1) = p(−1| + 1) = q.

The noise is memory-less and unbiased:

p(y|x) =
∏N

k=1
π(yk |xk), yk = ±1 (8)

where

π(−1| + 1) = π(+1| − 1) = ε,

π(+1| + 1) = π(−1| − 1) = 1 − ε,

and ε is the probability of error. Here memory-less refers to the factorization in (8), while
unbiased means that the noise acts symmetrically on both realizations of theMarkov process:
π(1| − 1) = π(−1|1).

Recall that the composite process XY is Markovina, but Y is generally not a Markovian
process [15,16].

To proceed further, we use the following parametrization of the HMM [20]:

p(xk |xk−1) = eJ xk xk−1

2 cosh J
, J = 1

2
ln

[
1 − q

q

]
, (9)

π(yi |xi ) = ehyi xi

2 cosh h
, h = 1

2
ln

[
1 − ε

ε

]
, (10)

MAP estimation is then equivalent to minimizing the Hamiltonian defined as H(y, x) ≡
− ln[ p(y|x)p(x) ] [20]:

H(y, x) = −J
∑N

k=1
xkxk+1 − h

∑N

k=1
ykxk, (11)

where we have omitted irrelevant factors that are either additive or vanish for N � 1. The
Hamiltonian Eq. 11 formally describes a 1d Ising model with random external fields [22],
where the distribution of those fields is governed by p(y) = ∑

x p(x, y). We note that one
dimensional Ising-type models have been also used to study error correcting codes [21,23].

We find it convenient to introduce the following gauge transformation:

zi = xi yi , τi = yi yi+1. (12)

For a given y, the role of observations will be played by τ = {τi }, while the original hidden
variables now correspond to z = {zi }. Hence, (11) reads

H(τ , z) = −J
∑N

k=1
τk zk zk+1 − h

∑N

k=1
zk, (13)

p(τ , z) ∝ exp[−H(τ , z)]. (14)
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We shall refer to τk = ±1 as bond (plus or minus), and to zk = ± as spin (up and down).
Eq. 13 describes the Hamiltonian of a one-dimensional Ising model with random bonds τk
in an external field h [20]. The MAP inference reduces to minimizing this Hamiltonian for
a given τ , i.e. to taking the zero-temperature limit T → 0 [24]. Note also that Eq. 14 is the
Gibbs distribution at temperature T = 1 [24].

In the new variables, the overlap gain given by Eq. 6 reads:

ΔO[ẑ, τ ; 1] =
∑

z2,...,zN

N∑

i=2

[z̃i (−ẑ1(τ ), τ ) − ẑi (τ )]

zi p(−ẑ1(τ ), z2, ..., zN |τ ). (15)

Below we suppress the arguments of ΔO , if they are clear from the context.

4 Domain Structure of MAP

The MAP estimation for BS-HMMs is characterized by (countably infinite) numbers of
operational regimes that are related to each other via first-order phase transitions [13]. Those
transitions occur at the parameter values

hmc = 2J/m, (16)

or alternatively, at the critical noise intensities [13]

εmc = 1/[1 + ε4J/m] , m = 1, 2, .. (17)

Furthermore, for any noise intensity above the critical value ε > ε1c , the MAP solution is
macroscopically degenerate: For any observation sequence of length N , there are exponen-
tially many (in N ) sequences that simultaneously maximize the MAP objective [13].

Let us focus on the structure of theMAP solution. A straightforward analysis (first carried
out in [25] for the one-dimensional Ising model) shows that the dependence of ẑ(τ ) on
τ is local: τ is factorized into non-overlapping domains τ = (τ 1,w1, τ 2,w2, ...), where
wk are the walls separating domains. Walls are sequences of two or more up spins joined
by positive bonds; see below. The estimated sequence ẑ admits similar factorization ẑ =
(ẑ1,w1, ẑ2,w2, ...), such that ẑk has the same length as τ k , and is determined solely from τ k

(non-uniquely in general).
We now proceed to describe the domain structure for those different regimes as charac-

terized by h/J . Without loss of generality we assume J > 0, h > 0.

4.1 The Maximum Likelihood Regime

For sufficiently weak noise [cf. (10)]

h > 2J, (18)

the MAP estimation coincides with the observed sequence x̂ = y. Hence, ẑi = 1 for all i ;
see (13). The prior probability p(x) is irrelevant in this regime: on can take J = 0, i.e. the
MAP estimation reduces to the maximum-likelihood estimation, where the noise probability
p(y|x) is maximized for a fixed y; see (8).

The overlap gain (15) nullifies for (18), because supervising a spin does not change other
spins: ẑi = z̃i .
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4.2 First Non-trivial Regime

We now focus on the following regime:

J < h < 2J, (19)

Here 2J > h ensures that there are ẑ-spins equal to −1 [otherwise we are back to (18)],
while h > J means that two spins joined by a positive bound are both equal to 1. To verify
it consider

↑ − ↑ + ↑ − ↑, (20)

↑ − ↓ + ↓ − ↑, (21)

where zi = 1 and zi = −1 are represented as ↑ and ↓, respectively, while ± refer to τi = ±.
The energy of (20) is J −4h which is smaller than the energy−3J of (21) precisely when

h > J . Hence, the minimal size of the wall in the regime (19) is just two (+1) spins joined
by a positive bond.

In the regime (19) there are the following domains [25].

– A frustrated 2n + 1-domains consists of an odd (and larger than one) number 2n + 1
of consequitive minus bonds (i.e. bonds with τk = −1) that are bound from both ends
by positive bonds. Frustrated means the correspondence between {τk} and {ẑk} is not
unique, e.g. the following two configurations have the same energy

+ ↑ − ↑ − ↓ − ↑ +, (22)

+ ↑ − ↓ − ↑ − ↑ + . (23)

Both (22) and (23) have the same values of {τk}5k=1. However, the sequences {ẑk}4k=1 are
different, though they have exactly the same energy. More generally, a frustrated 2n+ 1-
domain supports n + 1 equivalent sequences [25]; see also below. This non-uniqueness
is reflected via a zero-temperature entropy [13,25].

– Non-frustrated domains consist of an even number of consecutive minus bonds bound
from both ends by positive bonds. In this case, the correspondence between {τk} and {ẑk}
is unique, e.g. (+ ↑ − ↓ − ↑ +).

It is worthwhile to note that the notion of frustration described above is inherently related
to the exponential degeneracy (in the number of observations N ) of the MAP solution above
the first critical noise intensity [13]. Indeed, consider, for instance, the frustrated 3-domain
shown in (20) and (21). In any observation sequence y of length N , the expected number
of such frustrated 3-domains nd scales linearly with N , nd = αN , where α is a (possibly
small) constant. And since each such domain multiplies the number of MAP solution by two
(i.e., simultaneously flipping both frustrated spins is still a solution), there overall number of
solutions will scale as ∝ 2αN , thus indicating exponential degeneracy.

4.3 Further Regimes

Now lets us focus on the third regime defined by

2J/3 < h < J, (24)

In this regime, the walls are formed by two (or more) up-spins joined together by two (or
more) positive bonds. Thus 2J/3 < h is precisely the condition why three spins joined by
two positive bonds always look up, while h < J means that two spins joined by one positive
bonds can both look down.
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– The old domains stay intact if they are separated (from both ends) by (at least) three
up-looking spins joined by (at least) two positive bonds.

– Newdomains are formedbypair(s) of spins joinedby apositive bond,which are immersed
into a set of negative bonds. In the new domains only the pairs of spins joined by positive
bond can be frustrated. The frustration rule follows the above pattern, where now the
pairs (super-spin) play the role of single spins in the previous regime (19), while the odd
(even) number of negative spins built up into one negative (positive) superbond [25].
Here is an example of this situation

+ ↑ + ↑︸ ︷︷ ︸
↑

− ↓ − ↑ −︸ ︷︷ ︸
−

↓ + ↓︸ ︷︷ ︸
↓

−︸︷︷︸
−

↑ + ↑ +︸ ︷︷ ︸
↑

, (25)

where the super-spins and super-bonds are shown in the second line. This domain is not
frustrated. Note that in the regime (19, 25) breaks down into two separate domains, the
first of which is frustrated.

The domain structure for h < 2J/3 (and smaller values of h) is constructed recursively
following the above pattern [25].

5 Active Estimation of Basic Domains

We implement active estimation for separate domains, i.e. in each domain we supervise one
spin z1. Advantages of this implementation are as follows: (i) properly choosing already one
spin (and finding out that it is incorrect) allows to get rid of the non-uniqueness of the MAP
estimate; (ii) the re-estimation ẑ(τ ) → z̃(x1, τ ) is restricted to one domain only; (iii) (15)
can be calculated approximately.

5.1 Frustrated 3-domain

In the domain (22) we supervise the second spin. If it is opposite to the MAP estimate, then
we move to the configuration (23) that has the same energy:

ẑ(τ ) = (+ ↑ − ⇑ − ↓ − ↑ +), (26)

z̃(τ ) = (+ ↑ − ⇓ − ↑ − ↑ +), (27)

where⇑ shows the supervised spin. Hence, the active estimation removes the non-uniqueness
of the MAP solution. The overlap gain is calculated from (15):

ΔO = 2
∑

z3
z3 p(−1, z3|τ ), (28)

where z3 is the third spin in (26, 27); the one that changes after the re-estimation. Themarginal
probability p(−1, z3|τ ) in (28) cannnot be determined in a closed analytic form [13,14].

We calculate p(z2, z3|τ ) in a impenetrable wall approximation: when J and h are suf-
ficiently large, then one can neglect fluctuations of the spins within the walls separating
domains as compared to spins located within the domains. Hence, we write for n-domain
(n = 3, 5, 7, ... and normalization is omitted)

p(z2, ..., zn |τ ) ∝ e−J (z2+zn)−J
∑n−1

k=2 zk zk+1+h
∑n

k=2 zk . (29)
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We checked numerically that even for thinnest two-spin walls the approximation works well
already for J 
 1; see below. Using (29) with n = 3 in (28) we get

ΔO = 2(1 − e−2h)

2 + e−2h + e−4J+2h . (30)

Likewise, if the originally estimate sequence is given by (31), then upon supervising the
second spin we obtain

ẑ(τ ) = (+ ↑ − ⇓ − ↑ − ↑ +), (31)

z̃(τ ) = (+ ↑ − ⇑ − ↓ − ↑ +). (32)

Instead of (28), we need to use

ΔO = −2
∑

z3
z3 p(1, z3|τ ), (33)

which yields

ΔO = 2(1 − e−2(2J−h))

2 + e−2h + e−4J+2h . (34)

Remarkably, (34) and (30) are different. This seems surprising, since given the apparent
symmetry between (26, 27) and (31, 32), one would expect that the overlap gain should
be the same in both cases. This is not the case, however, since (33) and (28) are defined
differently, e.g. (33) involves p(1, z3|τ ), while (28) has p(−1, z3|τ ).

Both (30) and (34) are positive in the regime (19), but (30)>(34): when the supervised
spin (initially) agrees with the observation, the expect gain due to active inference is larger.

For h < J we can employ the same two domains (26, 27) and (31, 32) provided that they
are surrounded by sufficiently thick walls; see Sect. 4.3. Now the opposite relation holds:
(30)<(34).

Note finally that whenever the supervising shows that the true value of the spinwas already
recognized correctly, the overlap does not change, but it is still useful, since the number of
solutions decreases, i.e. instead of two solutions in (22, 23) we have only one.

5.2 Frustrated 5-domain

There are 3 MAP sequences for the 5-domain

ẑ = (+ ↑ − ↑ − ↓ − ⇑ − ↓ − ↑ +), (35)

z̃ = (+ ↑ − ↓ − ↑ − ⇓ − ↑ − ↑ +), (36)

(+ ↑ − ↓ − ↑ − ↑ − ↓ − ↑ +). (37)

The following scenarios are the most efficient ones, i.e. they lead to the largest ΔO (under
(19)): (i) going from (35) to (36) by supervising the fourth spin (denoted by ⇑ in (35)). (ii)
going from (36) to (35) by supervising the third spin. Both these cases have the same overlap
gain (38) due to the mirror symmetry with respect to the center of the domain that is shared
also by (29).

The optimal overlap gain is calculated from (29)

ΔO = 2
∑

z2,z3,z5

(z3 + z5 − z2)p(z2, z3,−1, z5|τ )

= 2e4J
(
e2h

((
3e2h + 1

)
e4J − 2e2h + e4h − 2

) − 1
)

(
3e2h + 2

)
e2h+8J + (

2e2h + 3e4h + 4e6h + 1
)
e4J + e8h

. (38)
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It can be shown that (38) is larger than (30), which is the best overlap gain for a 3-domain.
In (37) there are no spins whose supervision can lead to the maximal overlap gain.

For the 5-domainwemeet a situation that was absent in the previous 3-domain case.While
(38) calculates the average overlap gain for supervising the fourth spin in (35), it is possible
that this spin was recovered by the MAP correctly, i.e. it does not flip after supervising. Then
we are left with no overlap gain and also with uncertainty between (35) and (37), since they
both have the correct fourth spin. We can now supervise an additional spin, so as to recover
the unique original sequence. It is seen from (35, 37) that when starting from (35) there are
2 possibilities: to supervise the second spin or the third one. Additional 2 possibilities exist
when supervising from (37). Out of these 4 possibilities the largest overlap gain is achieved
for supervising the second spin in (35):

ΔO = 2
∑

z3,z5

z3 p(−1, z3, 1, z5|τ )

= 8e4h+6J sinh(h) cosh(h − 2J )(
3e2h + 2

)
e2h+8J + (

2e2h + 3e4h + 4e6h + 1
)
e4J + e8h

, (39)

where p(−1, z3, 1, z5|τ ) shows that the fourth spin is fixed to its correct MAP value 1. The
same ΔO as in (39) is reached when supervising the third spin in (37). The remaining two
possibilities are inferior.

Our analysis shows that the gain described by Eq. 39 is smaller than both (38) and (30).
Thus, one can turn to the situation described by (39), only if some budget is left after super-
vising 3-domains; cf. the discussion after (50).

5.3 Frustrated 7-domains

In this case there are four MAP sequences defined as follows:

ẑ = (+ ↑ − ↑ − ↓ − ⇑ − ↓ − ↑ − ↓ − ↑ +), (40)

z̃ = (+ ↑ − ↓ − ↑ − ⇓ − ↑ − ↑ − ↓ − ↑ +), (41)

ẑ = (+ ↑ − ↓ − ↑ − ↓ − ⇑ − ↓ − ↑ − ↑ +), (42)

z̃ = (+ ↑ − ↓ − ↑ − ↑ − ⇓ − ↑ − ↓ − ↑ +). (43)

Two most efficient active inference schemes are realized by transitions from (40) to (41) and
from (42) to (43). They are again related to each other by the mirror symmetry, hence their
overlap gains are equal and is calculated from (29). Furthermore, tedious but straightforward
calculations demonstrate that the overlap gain for those scheme is larger than the one given
by (38), the best overlap gain for a 5-domain. We also note that the most efficient supervision
is absent if one starts from (41) or from (43).

Similar to 5-domain, it is possible that a spin does not flip after semi-supervising (e.g.,
it was recovered correctly in the original MAP inference). In this case, one should consider
supervising other spins in the domain. The analysis of possible strategies can be performed
as explained in Sect. 5.2.

5.4 Non-frustrated Domains

A simple analysis suggests that it is meaningless to supervise a spin inside a non-frustrated
domain (even number of negative bonds surrounded by two walls). Indeed, consider
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ẑ = (+ ↑ − ↓ − ⇑ − ↓ − ↑ +), (44)

z̃ = (+ ↑ − ↑ − ⇓ − ↑ − ↑ +), (45)

where the third spin is supervised.Calculating the overlap gain following to the abovemethod,
we confirm that this gain is zero.

5.5 Supervising Inside a Wall

It is possible that even after supervising all the frustrated domains, one still has budget for
supervising additional spins. Hence, we study supervising of a spin inside a wall. Consider
the thinnest wall (two spins joined by a positive bond) in the regime (19), and assume that it
is surrounded by larger walls (at least two positive bonds).

ẑ = (+ ↑ + ↑ − ⇑ + ↑ − ↑ + ↑ +), (46)

z̃ = (+ ↑ + ↑ − ⇓ + ↓ − ↑ + ↑ +), (47)

where, as above, ⇑,⇓ indicate on the supervised spin. We have [cf. (28)]

ΔO = −2
∑

z4
z4 p(−1, z4|τ ). (48)

We employ [cf. (29)]

p(z3, z4|τ ) ∝ e−J z3+J z3z4−J z4+h(z3+z4) (49)

and get for (48)

ΔO = 2(e2(2J−h) − 1)

2 + e2h + e4J−2h . (50)

This is smaller than both (30) and (34): it is less efficient to supervise a spin inside a (two-
spin) wall than inside a (two-spin) domain. In the regime (19), (50) can be both smaller or
larger than (39) depending on concrete values of h and J .

5.6 Summary

To summarize this section, we converge to the following picture of active inference: given the
unsupervised MAP-sequence, one fixes the walls and factorizes the sequence over frustrated
domains of odd-numbered bonds. Starting from the longest domain (as it corresponds to the
largest overlap gain) one supervises the spin (or spins) in each domain that yield maximum
expected overlap gain, as described above. Thereby, a unique supervised MAP-sequence is
gained. Once all the domains are supervised in this way, one should spend the remaining
“budget” for supervising spins inside the walls.

6 Comparison with Numerical Results

We now report on our experiments aimed at validating our analytical predictions. We will
focus on the non-trivial regime of sufficiently high noise intensities (ε > ε1c ), for which there
are exponentially many (in the number of observations) MAP solutions corresponding to a
given observation sequence [13]. Recalling our discussion of the frustrated domains, it is
clear that all those solutions correspond to permuted configurations of the frustrated spins.

In our experiments, we generate random HMM sequences, then run the Viterbi algorithm
to find one of the MAP sequences. We then apply the active inference strategies described
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(a) (b)

(c)

Fig. 1 a Fraction of spins belonging to different domains plotted against noise; b The average overlap gain
plotted against noise obtained from simulations (open symbols) and analytical predictions given by Eqs. 30
and 34 (solid lines); c Inference error for different methods plotted against noise. In all three figures we use
J = 1.5. For b and c, we used sequences of size 105, and averaged the results over 1000 random realizations

above, and compare the numerical findings with the analytic predictions. For simplicity, here
we focus on our prediction for 3-domains; see Sect. 5.1. Recall that our analytical results are
obtained under the impenetrable wall approximation (29), which requires that the constant
J is not very small; cf. (10). In the experiments below we set J = 1.5.

First, we study the statistics of different domains as a function of noise. Figure 1a shows
the fraction fi of spins that belong to frustrated domains of size i , for i = 3, 5, 7, 9. We
observe that the overall fraction of spins inside those domains is rather small. For instance,
for ε = 0.1, only 2%of spins belong to 3-domains, and less then 0.01%belong to 9-domains.
Thus, for the parameter range considered here, any gain in active inference will be mostly
due to 3, 5, and 7-domains.

Next, we compare our analytical predictionwith simulation results for two active inference
strategies applied to 3-domains. For the simulations, we generated sufficiently long sequences
(105), identified all 3-domains, and applied two active inference strategies as described in
Sect. 5.1. For the first strategy, we always supervise one of two spins that is looking up (i.e.,
the inferred hidden state is aligned with the observation). The expect gain in overlap for this
strategy is given by Eq. 30. And for the second strategy, we supervise the spin that is looking
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down (i.e., the inferred hidden state is misaligned with the observation). In this case, the
expected overlap gain is given by Eq. 34.

The results are shown in Fig. 1b, where we plot the expected overlap gain as a function
of noise, in the range εc

1 ≤ ε ≤ ε3c ; cf. (17). The agreement between the prediction and
the simulations is near-perfect when the noise intensity is in the range εc

1 ≤ ε ≤ ε2c . In
particular, the switching of the optimal supervising strategy, as predicted from Eqs. 30 and
34, is reproduced in the experiments. Interestingly, for one of the “branches” (given byEq. 34),
the agreement remains near-perfect even for larger noise intensities. However, the agreement
with the other branch (given by Eq. 34) deteriorates with increasing noise. We recall that
the analytical predictions are obtained under the impenetrable wall approximation, which
assumes that domains are surrounded by sufficiently thick walls. When increasing noise, the
assumptions starts to gradually break down, and the approximation becomes less accurate.

Finally, Fig. 1c compares inference errors for the original MAP, MAP with random super-
vising, and MAP with active inference. We see that the active inference strategy yields lower
inference error over the whole range of noise intensities. In fact, this difference becomes
more pronounced for large noise intensities. We also note that the slight kinks in the curves
corresponding to the phase transition between different domains [13].

7 Conclusion

7.1 Discussion of the Main Results

We have developed an analytical approach to study active inference problem in binary sym-
metric HMMs.We obtained a closed-form expression that relates the expected accuracy gain
to model parameters within the impenetrable domain approximation, specified the validity
range of the analysis, and tested our analytical predictions with numerical simulations. Based
on the analytical insights, we suggest an optimal active inference strategies for BS-HMM,
that can be summarized as follows: Given an observation sequence y and a correspond-
ing (unsupervised) MAP-sequence x̂(y), we first find all the frustrated domains composed
of odd-numbered bonds. Then, starting from the longer domains, we supervise one of the
spins inside the domain, according to the optimality criteria outline in (30, 38). Only after
supervising all the frustrated domains (and subject to budget constraints), one can consider
supervising schemes described in (39) and (50).

Note that while our focus was on batch active inference, our results are also applicable
to the online settings (e.g., active filtering), owing to the separation of the estimated hidden
sequence into separate weakly interacting domains.

7.2 Relationship to Existing Heuristics for Active Inference

Here we discuss to which extent solutions studied above relate to heuristic methods for active
inference; see Sect. 1. Belowwe always assume the regime of parameters, where (29) applies.

Within the uncertainty reduction heuristics we supervise xl if some suitable measure of
uncertainty, e.g. 1 − ∑

xk=±1 p
2(xk |y), maximizes at k = l. For the 3-domain (26, 27) both

spins of the domain are equally uncertain [see (29)], but we saw that their supervising leads to
different results. Thus, the uncertainty reduction does not correlate with the optimal scheme.

For the 5-domain (35–37) the third spin (and due to the mirror symmetry the fourth one)
is the most uncertain one. This correlates with the optimal scheme (35, 36), but does not
allow to recover this scheme, e.g. supervising the third spin in (37) is not optimal. The same
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correlation is seen for the 7-domain, where the fourth spin is the most uncertain one; see
(40–43).

Consider now another (related) heuristic principle for active inference that tries to super-
vise spins in such a way that it leads to a unique solution. This principle does not apply
3-domain, since here the choice of either spin leads to a unique solution. It partially holds for
the optimal solution of the 5-domain: if in (35) the supervised spin was found to be wrong,
then we are left with only one possible configuration (36), e.g. supervising the third spin
in (35) does lead to unique sequence: it can be either (36) or (37). However, if the super-
vised spin in (35) was found to be correct, we are not left with a unique configuration [an
additional supervising is necessary to achieve a unique configuration, but it is beneficial to
supervise instead another 3-domain of 5-domain; see the discussion after (39)]. Likewise,
for the 7-domain, no correlation exists between the optimal supervising and the uniqueness
of the resulting configuration: even if the optimally supervised is found to be wrong, we do
not automatically appear in a unique configuration; see (40, 41).

7.3 Open Problems

There are several interesting directions for extending the presented results. First, here we
focusedon the inference task, assuming that themodel parameters are known. Inmore realistic
scenarios, those parameters ((q, ε), or (J, h)) are unknown and need to be estimated from
the data, e.g., using Baum–Welch algorithm [16]. While developing a full analytical solution
for the joint active inference/learning problem might be challenging even for the simple BS-
HMMconsidered here, it should be possible to extend themethods presented here for studying
the robustness of optimal inference strategies with respect to misspecified parameters. In
particular, a regime where J � h [cf. (9, 10)] was left open in our consideration. This case is
realizedwhen, in particular, the noise is very strong ε → 1/2. It is known from the experience
of the 1d random-field Ising model that this case is rather non-trivial due to the presence of
(partially hidden) non-analytic features [26]. We hope to account for this regime in future.

Another interesting and important question is to what extent the optimal active inference
schemes analyzed here apply to more general class of HMMs. We believe that the answer
to this question can be examined via a generalized definition of frustration. In the context
of MAP estimation, this implies looking at generalized (k-best) Viterbi algorithm that return
several candidates solutions having approximately equal likelihoods or energies [27,28]. In
this scenario, we can intuitively define frustrated variables as those that change from one
solution to sanother.

Also, using the analogy with statistical physics, we believe that the active MAP inference
via domains and walls can be generalized beyond the (one-dimensional) HMM models, and
it possibly applies to active recognition of two-dimensional patterns. Now instead of one-
dimensional Ising model, one has a two-dimensional (2d) random Ising spin system. We
note that 2d Ising-type models have been used extensively in various pattern recognition
tasks such as computer vision [29].

Finally, there are several interesting analogies between the optimal inference strategies
uncovered here and human heuristics in information processing [30,31]. Note that the opti-
mal scheme in the regime (19) amounts to supervising the up-spins, e.g., the ones that agree
with observations. This point can be related to falsifiability [30], where one looks at cases
when the existing (prior) knowledge can be challenged. In contrast, people often show con-
firmation bias, i.e. they tend to confirm the existing knowledge rather than question it; see
[31] for a review. Further development of those ideas may provide interesting connections
with cognitive aspects of active inference strategies.
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