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Abstract We exhibit examples of mixing subshifts of finite type and of continuous poten-
tials such that there are phase transitions but the pressure is always strictly convex. More
surprisingly, we show that the pressure can be analytic on some interval although there exist
several equilibrium states.
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1 Introduction

1.1 General Background

In this paper, we deal with the notion of phase transitions. More precisely, adopting the
Dynamical System viewpoint, we study the shape of the graph for the pressure function and
(non-)equivalence between analyticity and presence of several equilibrium states.

It is noteworthy that depending on the viewpoint (Statistical Mechanics, Probability The-
ory or Dynamical Systems), the settings, the questions and the interests concerning phase
transitions are different. Furthermore, and this may be source of confusion, the several view-
points share the same terminology and vocabulary for sensibly different objects or notions.

In Statistical Mechanics and in Probability Theory, one usually considers lattices with
interaction energy between the sites. Often, the geometry of the lattice and the decay of
correlation of interactions are the main issues. In Dynamical Systems, one usually consider
one-dimensional lattice �Z (with natural Z-actions) and the main issue is the regularity of
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the potential considered as a function on �Z (see e.g. Sect. 2.4.4 in [25] for a discussion on
that point).

The definition of phase transition also naturally depends on the viewpoint. The Isingmodel
(see e.g. [10,13]) and the Potts model are studied in Probability Theory, either in mean fields
case (see [1,4,11]), or via percolation theory (see [3,15]). In both cases, a phase transition
means the co-existence of several probability measures resolving or resulting from some
optimization.

In Physics (see e.g. [25] Sect. 2.6.5), a phase transition can either mean a singularity of
some thermodynamic quantity (Ehrenfest classification) or a change in the number of macro
states (Gibbs classification). A more recent definition involves the Gâteaux differentiability
of the pressure function (see e.g. [8,9,14,20,22]).

The topic is actually relatively new in Dynamical Systems (compared to Statistical
mechanics and Probability Theory), and one usually considers that a phase transition occurs
when the pressure function stops to be analytic (see [5,7,16,19]).

Our main result (Theorem B) is that both definitions (regularity of the pressure vs
co-existence of several equilibria) are not equivalent. Of course, a first-order phase tran-
sition, that is when the pressure function is not C1, yields co-existence of several equilibria.
But we show here that the converse is not true: there are mixing systems such that the
pressure function is analytic on some interval despite the existence of several equilibria
simultaneously.

Theorem A deals with the possible shape of the graph of the pressure function when a
phase transition occurs. It turns out that most of the known examples of phase transitions
in Dynamical Systems are “freezing” phase transitions, that is that the pressure function
is eventually affine. Such transitions are known in Statistical Mechanics as the Fisher–
Felderhof models (see e.g. [12] for a one-dimensional lattice case). Physically, this means
that for some positive temperature, the system reaches its/one ground state and then stops to
change.

It was thus natural to inquire about the possibility to get phase transitions in Dynamical
Systems which are not freezing, that is, that after the transition the pressure is non-flat. This
is the purpose of our Theorem A.

It is not clear whether there exist dictionaries between the different viewpoints to study
phase transition. We hope that beyond the mathematical problems we solve here, the present
paper could help clarify similarities and differences between the viewpoints.

On the other hand, we believe that several viewpoints is also source of fruitful transfer
of knowledge. The thermodynamic formalism was introduced in Dynamical Systems during
the 1970s, mostly by Sinai, Ruelle and Bowen (see [2,22–24]), initially for hyperbolic sys-
tems. Over the years, mathematicians became more interested in developing this formalism
for less regular systems, also motivated by its applications to dimension theory and mul-
tifractal analysis. As a result, the natural questions in mathematics became further remote
from physicists’ interests. Due to the development of the ergodic optimization around 2000,
mathematicians gradually rediscovered notions already known to physicists, such as e.g. the
ground states.

We believe that themathematical tools already developed in the thermodynamic formalism
bymathematicians can be useful to physicists. Our way to prove existence of phase transition
here is based on the study of some inducing scheme and on operator theory. This theory, which
includes conformal measures, eigen-functions and subactions (for the zero temperature case)
could be used in physics.
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1.2 General Settings

We consider a subshift of finite type � on a finite alphabetA. An element ofA can either be
called a letter, or a digit or a symbols. Different alphabets will be considered depending on
the theorem.

A point x in � is a sequence x0, x1, . . . (also called an infinite word) where xi are letters
of A. Admissible transitions are given by an oriented graph. Two cases will be considered
(see Figs. 1, 7). Most of the times we shall use the notation x = x0x1x2 . . ..

The distance between two points x = x0x1 . . . and y = y0y1 . . . is given by

d(x, y) = 1

2min{n, xn �=yn} .

A finite string of symbols x0 . . . xn−1 is also called a word, of length n. For a word w, its
length is |w|. A cylinder (of length n) is denoted by [x0 . . . xn−1]. It is the set of points y
such that yi = xi for i = 0, . . . n − 1.

If i is a digit in A, x = in∗ means that x = i . . . i
︸ ︷︷ ︸

n digits

j where j is any digit �= i such that i j

is admissible in �. In other words, this means that x ∈ [i . . . i
︸ ︷︷ ︸

n digits

]\[ i . . . i
︸ ︷︷ ︸

n+1 digits

].

The alphabet will depend on some integer parameter L . It will be either

{10, 11, 12, . . . , 1L , 2, 3, 4} or {10, 11, 12, . . . , 1L , 2, 3, 4, 3′, 4′},
and L may be equal to 0. For simplicity we set 10 =: 1.

Let us consider positive real numbers α, γ , δ and ε considered as fixed parameters. The
potential φ is defined by

φ(x) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

−α < 0 if x0 ∈ {1, 11, 12, . . . , 1L }
− log

( n+1
n

)

if x = 2n∗, 1 � n � +∞
γ − ε log

( n+1
n

)

if x0 = 3 or 3′ and n = min{ j � 1, x j = 2},
γ + δ − ε log

( n+1
n

)

if x0 = 4 or 4′ and n = min{ j � 1, x j = 2}.
Hence, if x = 2∗, φ(x) = − log 2. If x = 3 x1 . . . xn−2

︸ ︷︷ ︸

n−2 digits=3,4

32 . . ., then φ(x) = γ −

ε log

(

n + 1

n

)

. If x = 4 x1 . . . xn−2
︸ ︷︷ ︸

n−2 digits=3,4

32 . . ., then φ(x) = γ + δ − ε log

(

n + 1

n

)

. By

convention
+∞ + 1

+∞ = 1, which defines φ(x) for x in e.g. [3] with no digit 2. Note that φ

is continuous.
We recall that for β � 0, the pressure function P(β) is defined by

P(β) = max
μ T−inv

{

hμ + β

∫

φ dμ

}

,

where hμ is the Kolmogorov entropy of the measure μ. We refer the reader to [2] for clas-
sical results on thermodynamic formalism of the shift. A measure for which the maximum
is attained in the above equality is called an equilibrium state for β.φ. Existence of an
equilibrium state simply follows from the continuity of φ and the upper semi-continuity of
μ �→ hμ.
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Definition 1 We say that P(β) (or equivalently that the potential φ) has a phase transition
(at βc) if β �→ P(β) is not analytic at β = βc.

1.3 Results

Wefirst consider the caseA = {1, 11, 12, . . . , 1L , 2, 3, 4}. The transitions are given by Fig. 1.
This gives a “butterfly” with two wings, each one tending to be autonomous. Both wings
{1, 11, . . . , 1L }N and {3, 4}N are full shifts of finite type. The unique exit letters from the
wings are respectively 1 and 3, and any transition from one wing to the other must pass
through 2. Digits 1 and 3 are also the unique entrance digits into the wings.

We emphasize that the system is irreducible but has several subsystems. In particular we
shall consider �34 := {3, 4}N ⊂ � and �234 := {2, 3, 4}N ∩ �, the restriction of � to the
invariant set of infinite words containing only the letters 2, 3 or 4. For the same potential φ,
we shall consider the associated pressure functions, P34(β) and P234(β). We leave it to the
reader to check that P34(β) = γ.β + log(1 + eδ.β).

Theorem A There exist two positive real numbers β1 < βc such that P(β) and P234(β)

have a phase transition at βc and β1 respectively. More precisely (see Fig. 2),

(1) the pressure function P34(β) is analytic and strictly convex,

Fig. 1 Dynamics for Theorem A

Fig. 2 Different graphes
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(2) for β < βc, the pressure function P(β) is analytic and satisfies P(β) > P34(β),
(3) for β � βc, the pressure function P(β) satisfies P(β) = P34(β),
(4) for β < β1, the pressure function P234(β) is analytic and satisfies P234(β) > P34(β),
(5) for β � β1, the pressure function P234(β) satisfies P234(β) = P34(β).

For β � β1, there is a unique equilibrium state for �234 and it has full support in �234.
For β < βc, there is a unique equilibrium state for � and it has full support. For β > βc

there is a unique equilibrium state and it has support in �34.
For β = βc, there are two ergodic equilibrium states for � if and only if εβc > 2. This

inequality can be realized (depending of the parameters α, ε, γ and δ) or non-realized.
At each phase transition (β = β1 or β = βc) the entropy is positive.
The pressure is differentiable at the critical value if and only if ε.βc � 2.

As it was said above, the main motivation for Theorem A was to build phase transitions
with a non-flat pressure function after the transition. Actually such an example was already
known in [6]. However, in that case, the map is a skew product over a Horseshoe and the
potential, the logarithm of the derivative in the central direction (equivalent to the direction of
fibers). Then, when it is projected onto the Horseshoe, the potential is not a function anymore.
Hence, that phase transition cannot be realized as a continuous potential defined on a subshift
of finite type.

To be complete concerning the shape of the pressure, we also have to mention [16]. There,
they also show that the pressure may be non-flat after the transition. However, and this is
the main difference, in their construction they always need some interval where the pressure
is flat. In their words, for this interval the system is transient, which means that it has no
conformal measure. In our example, at any β there exists a conformal measure and the
pressure is always strictly convex.

Let us now present the main result of the paper. As we said above, the regularity of the
pressure function is an indicator of the uniqueness of the equilibrium state. This regularity
can be understood in two different ways.

First, regularity of the map β �→ P(β) is studied. Conversely, non-regularity yields
different order of phase transitions as was seen above.

Another point is the Gâteaux-differentiability of the functional P(φ + .) on C(�). In
[26, Cor.2], it is shown that Gâteaux-differentiability at φ is equivalent to uniqueness of the
equilibrium state for φ. Of course the latter point is more subtle than the regularity of P(β).
It was usually expected that the analyticity for P(β) would insure the uniqueness of the
equilibrium state. We prove here that this is not the case.

Theorem B There exist irreducible subshifts of finite type and continuous potentials such
that their pressure function is analytic on some interval ]β ′

c,+∞[ but there coexist several
equilibrium states.

There exist an infinite-dimensional space of functions ϕ such that for every β > β ′
c,

ϕ �→ P(φ + ϕ) is Gâteaux-differentiable in the ϕ-direction.

We recall that a function f is Gâteaux-differentiable at x in the direction y if

lim
t→0

f (x + t y) − f (x)

t

exists.
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1.4 Overview of the Paper. Main Tool. Heuristic Explanation of the Phase
Transitions

1.4.1 Overview of the Paper

Themain tool is the notion of local equilibrium state as itwas introduced in [17] and developed
in further works by the author. We briefly recall below the principal points of that theory.

In Sect. 2 we prove most of the results concerning Theorem A and the phase transition
for P(β). In Sect. 3 we prove the “small” phase transition for �234 and finish the proof of
Theorem A. In Sect. 4, we prove Theorem B. To do so, we add a new wing {3′, 4′}N copying
the wing {3, 4}N. We show that the effect of this addition is just to move βc but does not
change that fact that P(β) eventually equals P34(β). But P34(β) = P3′4′(β) and then two
equilibria coexist, one in �34, the other in �3′4′ .

1.4.2 Local Equilibrium

We refer to [18] for a synthesis concerning the notion of local equilibrium. The principal
points are the following.

Consider a cylinder J and denote by τJ (x) the first return time into the cylinder J . Let
g denote the first return map into J , i.e., g(x) := σ τJ (x)(x). Note that it is not defined
everywhere but the inverse branches are well-defined. We recall φ + . . . + φ ◦ σ n−1 is
denoted by Sn(φ). Given Z ∈ R, the Induced Transfer Operator on the cylinder J for the
first return time map and for the potential

βφ(x) + · · · + βφ ◦ σ τJ (x)−1(x) − τJ (x)Z ,

is defined by

LZ ,β,J (ψ)(x) :=
∑

y: g(y)=x

eSτJ (y)(β.φ)(y)−ZτJ (y)ψ(y),

where ψ : J → R is continuous.
The main point is that for every β, there exists Zc(β) such that LZ ,β,J is well-defined

for Z > Zc(β) (and sometimes also for Z = Zc(β)) and LZ ,β,J (1lJ )(x) diverges for every
x and Z < Zc(β). For these Z ’s, if λZ ,β,J denotes the spectral radius of LZ ,β,J , then, the
existence of a global equilibrium state is related to the value lim

Z↓Zc(β)
λZ ,β,J =: λc(β):

(1) If λc(β) > 1, there exists a unique equilibrium state for β.φ and it has full support.
(2) If λc(β) < 1, no equilibrium state for β.φ gives positive weight to J .
(3) The case λc = 1 is the critical one. There exists an equilibrium state with full support if

and only if LZc(β),β,J (τJ ) < +∞.

This machinery works if φ is such that the induced potential βφ(x) + · · · + βφ ◦
σ τJ (x)−1(x) − τJ (x)Z has bounded variations with respect to the induced map g. We shall
check this point. More precisely, we shall also choose J properly such that the computation
of λZ ,β,J is easy. In particular we will consider J satisfying LZ ,β,J (1lJ )(x) = λZ ,β,J for
every x in J .

1.4.3 Why Do Phase Transitions Arise

Continuing with the same notations, we can show that Zc(β) � P(β) (see [18, Prop.2.2]).
Then, roughly speaking, there exists an equilibrium state μβ for β.φ satisfying μβ(J ) > 0
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Chaos: Butterflies also Generate Phase Transitions 157

if and only if λP(β),β,J = 1. If this later condition does not hold, then an equilibrium state
has support in the dotted system, that is, the set of trajectories which avoid the cylinder J .

In our case, we emphasize that φ is very negative on the left wing, lightly negative on [2]
and extremely positive on the right wing. For β = 0, the entropy makes the difference, but as
β increases, entropy is not sufficient to balance the sign of β.φ. At some point, the potential
is too positive in the dotted system and too negative on the left wing to compensate the
difference of entropy. This gives the phase transition at βc where the pressure of subsystem
�234 equals the global pressure.

Choosing J properly, we show that this also happens for �34 with respect to �234 at β1.

Remark 1 This is e.g. exactly what happens for the Manneville–Pomeau map and the Hof-
bauer potential. ��

2 The Phase Transition for P(β)

2.1 The Induced Operator on [1]

We study the induced transfer operator on the cylinder [1]. Denote by τ[1](x) the first return
time into the cylinder [1] and by g the first return map. We set

LZ ,β,[1](ψ)(x) :=
∑

y: g(y)=x

eSτ[1](y)(β.φ)(y)−Zτ[1](y)ψ(y).

Trajectories returning to [1] after having left it are of the following form:

(1) They leave [1], visit {11, . . . , 1L} for a while and then come back into [1].
(2) They leave [1], visit [2] for a while and then come back into [1].
(3) They leave [1], visit [2] for some time, visit {3, 4}, and more generally, alternate visit to

[2] and to the right hand side wing, and eventually come back to [1] after a last visit to
[2].

A counting argument yields

LZ ,β,[1](1l[1])(x) =
+∞
∑

n=1

e−nβα−nZ+(n−1) log L +
+∞
∑

n=1

(

1

n + 1

)β

e−nZ · e−αβ−Z

×
⎡

⎣

+∞
∑

k=0

(+∞
∑

n=1

(

1

n + 1

)β

e−nZ ·
+∞
∑

n=1

(

1

n + 1

)εβ

Ln(β, [3])e−nZ

)k
⎤

⎦ ,

(1)

where
Ln(β, [3]) =

∑

w∈{3,4}n ,w0=wn−1=3

eβSn(φ)(w2). (2)

The first summand corresponds to the first kind of trajectories. They are of the form
x = 1x2x3 . . . xn−11 with xi ∈ {11, . . . , 1L }. For those points we have that βφ(x) + · · · +
βφ ◦ σ τ[1](x)−1(x) − τ[1](x)Z = −nβα − nZ . Moreover, since the system restricted to
{1, 11, . . . , 1L } is a full-shift on L symbols, for each n there are exactly Ln−1 different words
of that form. Hence the factor (n − 1) log L .
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The second term concerns points of the form x = 12n1 . . . . In this case e−βα−Z takes into

account the potential at x and the contribution of the string of 2’s yields the term

(

1

n + 1

)β

.

Finally, trajectories of the third kind correspond to words of the form

1(string of 2’s) (intermittence of eligible strings of 3’s or 4’s and strings of 2’s) 1 . . .

Note that an eligible string of 3’s and 4’s starts andfinishes by 3, and such a string is necessarily
followed by a string of 2’s before returning to 1. Moreover, we emphasize that φ is constant
on cylinders of the form [ω2] where ω is an eligible word of finite length of 3’s and 4’s. The
sum over k in (1) is for k visits (and possibly k = 0 for trajectories of the second form) to
the right hand side wing.

Now, if ω = ω0 . . . ωn−1 is a word of length n with k letters equal to 4 such that ω2
is eligible, then Sn(φ)(ω2) is equal to nβ + kδ and k � n − 2 because ω0 = ωn−1 = 3.
Therefore, the computation for trajectories in the right hand side wing gives

Ln(β, [3]) = enβγ
n−2
∑

k=0

ekβδ

(

n − 2

k

)

= enβγ (1 + eβδ)n−2 =
(

eγβ + e(γ+δ)β
)n

(1 + eδβ)2
= 1

(1 + eδβ)2
enP34(β). (3)

Let us set for simplicity

�1 = �1(Z , β) :=
+∞
∑

n=1

e−nβα−nZ+(n−1) log L

�2 = �2(Z , β) :=
+∞
∑

n=1

(

1

n + 1

)β

e−nZ

�3 = �3(Z , β) := 1

(1 + eδβ)2

+∞
∑

n=1

(

1

n + 1

)εβ

en(P34(β)−Z).

With these notations we get that for every x in [1]

LZ ,β,[1](1l[1])(x) = �1 + �2e
−αβ−Z

+∞
∑

k=0

(

�2�3
)k

= �1 + �2e−αβ−Z

1 − �2�3
.

2.2 Critical Value Zc(β) for LZ,β,[1]

The quantity LZ ,β,[1](1l[1]) is well-defined if and only if

�1 < +∞, (4a)

�2�3 < 1. (4b)

Condition (4a) is satisfied if only if Z > log L − αβ.
Let us now study Condition (4b). First, we emphasize that a necessary condition is Z �

P34(β). Now we have:
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Fig. 3 Existence of critical β1

Lemma 2 There exists a maximal β1 > 0 such that the implicit equation

�2�3 = 1 with constraint Z � P34(β)

admits a (unique) solution ˜Zc(β) for every 0 � β � β1 (See Fig. 3).

Proof Both �2 and �3 are decreasing in Z for fixed β, which yields uniqueness (if it exists)
of ˜Zc(β) satisfying

�2(Z , β)�3(Z , β) = 1.

Note that both �2 and �3 go to 0 if Z goes to +∞. Then, the existence of ˜Zc(β) follows
from the value of �2(P34(β), β)�3(P34(β), β). If it is larger than 1 then ˜Zc(β) exits, if it is
smaller than 1, then ˜Zc(β) does not exist. Now,

�2(P34(β), β)�3(P34(β), β) =
+∞
∑

n=1

(

1

n + 1

)β

e−nP34(β) ζ(εβ) − 1

(1 + eδβ)2
,

β �→ P34(β) increases in β, thus β �→ �2(P34(β), β)�3(P34(β), β) decreases in β. It goes
to +∞ if β goes to 0 and to 0 if β goes to +∞.

Therefore, there exists a unique β1 such that

�2(P34(β1), β1)�3(P34(β1), β1) =
+∞
∑

n=1

(

1

n + 1

)β1

e−nP34(β1)
ζ(εβ1) − 1

(1 + eδβ1)2
= 1 (5)

Remark 2 We point out that εβ1 > 1 because the Zeta function in (5) converges. ��
Note that for every β < β1, ˜Zc(β) > P34(β) and it is given by the following implicit

formula

+∞
∑

n=1

(

1

n + 1

)β

e−n˜Zc(β) 1

(1 + eδβ)2

+∞
∑

n=1

(

1

n + 1

)εβ

e−n(˜Zc(β)−P34(β)) = 1.

It shows that ˜Zc(β) is analytic in β for β < β1.
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160 R. Leplaideur

As a consequence of the proof of Lemma 2, it follows that:

(1) for every 0 � β < β1

(a) ˜Zc(β) > P34(β),
(b) �2�3 < 1 for Z > ˜Zc(β),
(c) �2�3 > 1 for P34(β) � Z < ˜Zc(β),
(d) �2�3 = 1 for Z = ˜Zc(β).

(2) For every β > β1, Condition (4b) holds for every Z � P34(β).
(3) For β = β1 (4b) holds for every Z > P34(β1).

Remark 3 We will see below that ˜Zc(β) = P234(β). See also [18, Th 1] ��
The functionβ �→ log L−αβ is decreasing and goes to−∞ if β → +∞, whereasP34(β)

increases to +∞. Therefore, there eventually exists β2 � 0 such that P34(β) � log L − αβ

if and only if β � β2. Consequently (see Fig. 6, p. 16),

(1) if β2 � β1, then Zc(β) = log L − α.β for β � β2 and Zc(β) = P34(β) for β > β2.
(2) if β2 < β1 then Zc(β) = log L − αβ for some (possibly empty) interval [0, ˜β], then

Zc(β) = ˜Zc(β) for ˜β � β � β1 and Zc(β) = P34(β) for β � β1.

2.3 Spectral Radius of LZ,β,[1]

We emphasize that the induced potential is constant on cylinders for the induced map on [1].
Consequently it satisfies the Bowen condition (H2) of [18]. Moreover, for every x in [1],
LZ ,β,[1](1l[1])(x) is equal to the spectral radius λZ ,β,[1]:

λZ ,β,[1] = LZ ,β,[1](1l[1])(x) = �1 + �2e−αβ−Z

1 − �2�3
. (6)

We are interested by the level curve λZ ,β,[1] = 1 because it partially determines the
implicit function Z = P(β).

Lemma 3 There exists βc > max(β1, β2) such that for every β < βc, there exists a unique
Zc(β) < Z = Z(β) such that λZ(β),β,[1] = 1 (see Fig. 4).

Moreover, for every β > βc and for every Z � Zc(β) = P34(β), λZ ,β,[1] < 1.

Fig. 4 Implicit curve for spectral
radius equal to 1, with L = 0
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Fig. 5 The graph of F(β)

Proof We emphasize that �1, �2 and �3 are decreasing in Z for fixed β. They go to 0 as Z
goes to +∞.

Therefore, the existence of a Z such that λZ ,β,[1] = 1 follows from the value of

F(β) := lim
Z↓Zc(β)

λZ ,β,[1].

•Let us first consider the case L = 0. Then, Zc(β) = ˜Zc(β) for β � β1 and Zc(β) = P34(β)

forβ � β1. Let usfirst consider the caseβ � β1. For afixedβ, if Z ↓ ˜Zc(β),λZ ,β,[1] increases
to +∞ because �2�3 goes to 1. On the other hand, if Z goes to +∞, λZ ,β,[1] goes to 0.

Therefore, there exists a unique Z such that λZ ,β,[1] = 1.
Let us now assume β > β1. Then,

F(β) := e−αβ−P34(β) +
∑+∞

n=1

(

1
n+1

)β

e−nP34(β)e−αβ−P34(β)

1 − 1
(1+eδβ )2

∑+∞
n=1

(

1
n+1

)β

e−nP34(β)
∑+∞

n=1

(

1
n+1

)εβ
(7)

and the existence of a solution for λZ ,β,[1] = 1 is thus a consequence of the inequality
F(β) � 1. As β �→ P34(β) increases, we claim that F(β) decreases in β. If β ↓ β1, �2�3

goes to 1 and then F(β) goes to +∞. If β → +∞, F(β) → 0.
Consequently, there exists a unique βc, such that F(βc) = 1 (see Fig. 5).We have βc > β1

because limβ↓β1 F(β) = +∞.
For β < βc, the implicit equation λZ ,β,[1] = 1 has a unique solution, Z = P(β). For

β > βc there are no solutions.
• The case L � 1. In that case �1 is equal to

�1 :=
+∞
∑

n=1

e−nβ.α−nZ+(n−1) log L = e−β.α−Z

1 − e−β.α−Z+log L , (8)

and it decreases inβ (for fixed Z ), decreases in Z (for fixedβ) and diverges if Z = log L−β.α.
The shape of F(β) is the same as in the previous case, whatever the relative positions of
β1 and β2 are : F(β) = +∞ for every β � max(β1, β2) and then F(β) decreases for
β � max(β1, β2) because for these β’s Zc(β) = P34(β). Therefore, there exists a unique βc

such that F(βc) = 1. ��
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Fig. 6 Principal curves

2.4 Thermodynamic Formalism for β < βc

If β < βc we use Th. 4, Th. 2 and Remark 3 in [18]. The pressure function P(β) is given by
an implicit function inside the interior of the domain of analyticity in both variables Z and β

for λZ ,β,[1]. Analyticity for β �→ P(β) for β < βc thus follows from analyticity of implicit
function (see e.g. [21]).

By construction, P(β) > Zc(β) � P34(β) (see Fig. 6).
We point out that increasing L does not affect the existence of βc but may only shift the

level curve λZ ,β,[1] = 1 up, and therefore increase βc (see Fig. 6, p. 16). As a by-product,
this shows that εβc can be made as big as wanted if L is increased.

Lemma 4 lim
β→β−

c

P(β) = P34(βc).

Proof Remember thatP(β) is given by the implicit formula λZ ,β,[1] = 1. On the other hand,
for every β1 < β < βc and Z = P34(β) we set

λZ ,β,[1] = F(β).

Furthermore, F(β) > 1 for β < βc and it goes to 1 if β → βc (by definition of βc).
As for any fixed β, Z �→ λZ ,β,[1] decreases, for β = βc, Z = P34(β) is the unique

solution for

λZ ,β,[1] = 1 (see Fig. 5),

thus P(βc) = P34(βc). ��
2.5 Thermodynamic Formalism for β > βc and Number of Equilibrium States

at βc

Due to [18, Th. 4] no equilibrium state can give a positive weight to [1] for β > βc.
The next lemma shows that an equilibrium cannot give a positive weight to the left hand

side wing without giving weight to [1].
Lemma 5 If μ is an equilibrium state for β.φ and μ([1]) = 0, then μ([11]) = . . . =
μ([1L ]) = 0.
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Proof Assume μ is an equilibrium state for β.φ and μ([1]) = 0. By considering an ergodic
component of μ, we can assume that μ is ergodic.

Then, ifμ([11]∪ . . .∪[1L ]) > 0, by ergodicity,μ([11]∪ . . .∪[1L ]) = 1. As the potential
φ is constant on [11] ∪ . . . ∪ [1L ], μ is the measure with maximal entropy supported in
{11, . . . , 1L }N and P(β) = log L − βα.

In that case, the measure of maximal entropy supported in {1, 11, . . . , 1L }N has a pressure
log(L + 1) − βα > P(β) which is in contradiction with the definition of the pressure. ��
Consequently, for β > βc, any equilibrium state has its support in {2, 3, 4}N ∩ �. The
thermodynamic formalism for β > βc is thus a consequence of the results in Sect. 3.

At the transition, β = βc, P(βc) = P34(βc) follows from Lemma 4, which yields that the
unique equilibrium state in �34 for β.φ is an equilibrium state for the global system. Then,
existence of an equilibrium state giving positive weight to [1] is related to the condition
LP34(βc),βc,[1](τ[1]) < +∞ (see again [18, Th. 4]). A simple computation shows

LP34(βc),βc,[1](τ[1]) =
∣

∣

∣

∣

∂LZ ,β,[1](1l[1])(x)
∂Z |Z=P34(βc)

∣

∣

∣

∣
.

Hence we have

Proposition 6 If εβc > 2, then there are at least two ergodic equilibrium states for β = βc

and only one of them has full support. If εβc � 2, then no equilibrium state for β = βc gives
positive weight to [1].
Proof We recall that for every x in [1]

λZ ,β,[1] = LZ ,β,[1](1l[1])(x) = �1(Z , β) + �2(Z , β)e−αβ−Z

1 − �2(Z , β)�3(Z , β)
.

Therefore we have to compute
∂λZ ,β,[1]

∂Z
|Z=P34(β). Using the chain rule for computation of

the derivative of product function,
∂λZ ,β,[1]

∂Z
|Z=P34(β) involves �1 �2, �3,

∂�1

∂Z
,
∂�2

∂Z
and

∂�3

∂Z
.

All these terms are series, and more precisely power series in e−Z . Therefore,
∂λZ ,β,[1]

∂Z
|Z=P34(β) converges if and only if all these series converge.

We have already seen that at the transition, Zc(β) = P34(βc) > log L − βc.α which

yields the convergence of �1 and
∂�1

∂Z
|Z=P34(β). We have also seen that for β > βc > β1,

�2�3 < 1 which yields convergences for both�2 and�3.We also claim that
∂�2

∂Z
|Z=P34(βc)

converges because P34(βc) > 0.

Therefore, the global convergence is equivalent to the convergence of
∂�3

∂Z
|Z=P34(βc), that

is
∑

n

(

1

n + 1

)εβ

n < +∞. (9)

This holds if and only if εβc > 2. ��
Remark 4 As was said above, if εβc > 2, by [18, Th.4] there exists a unique equilibrium
state which gives a positive weight to [1]. It is also the unique equilibrium with full support.

��
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Remark 5 Existence of at most 2 equilibrium states will follow from the uniqueness of the
equilibrium state in {2, 3, 4}N ∩ � for β > β1. ��

3 Phase Transition for P234(β). End of the Proof of Theorem A

3.1 First Inequalities and Preliminary Results

One of the main difficulties is that we do not know, at that stage, whether the pressure for
β > βc is strictly bigger than P34(β) or not.

Let P234(β) be the pressure for the sub-system {2, 3, 4}N ∩ � of points in � with no
symbols in {1, 11, . . . , 1L } and for the potential β.φ. As it is a subsystem of the global one,
P234(β) � P(β). Conversely, {3, 4}N is a subsystem of {2, 3, 4}N ∩ � and then P234(β) �
P34(β). Therefore Lemma 4 yields that

P234(βc) = P(βc) = P34(βc)

at the transition. The main question is to know whether for β > βc an equilibrium state (for
�) gives a positive weight to the cylinder [2] or not.

Since we only have to show that for β > βc, P234(β) = P34(β) holds, from now on
untill the end of this section, equilibrium states are with respect to the system�234. We recall
that φ is continuous and the entropy is upper semi-continuous. Thus, there exist at least one
equilibrium state, say μ̂β , in �234.

Lemma 7 For every β, for every equilibrium state μ̂β , μ̂β([3]) > 0.

Proof If μ̂β([3]) = 0, then any ergodic component of μ̂β is either δ2∞ or δ4∞ . In the first
case the pressure is 0, in the second case it is β.(δ + γ ). In both cases, the value is strictly
lower than P34(β) � P234(β). ��
Lemma 8 There exists an equilibrium state, μ̂β , for β.φ satisfying μ̂β([32]) = 0 if and only
if P234(β) = P34(β).

Proof Let μ̂β be an equilibrium state such that μ̂β([32]) = 0. Thenσ -invariance immediately
yields that every cylinder of the form [i0i1 . . . in−132] has null μ̂β -measure. As μ̂β([3]) > 0,
this shows that μ̂β(�34) = 1, thus P234(β) � P34(β). The converse inequality holds as was
seen above: the unique equilibrium state in�34 (for β.φ) is an equilibrium state for�234 and
it gives no weight to [32]. ��

For our purpose we will thus induce on the cylinder [32]. To avoid heavy notations, the
first return time will simply be denoted by τ and the first return map by T .

3.2 Induced Operator in [32]

Consider a point in [32] say x := 32x2x3 . . .. Any y satisfying T (y) = x is of the form

y = 3 2 . . . 2
︸ ︷︷ ︸

at least one 2

3ω32x2x3 . . . ,

where ω is a word in 3 and 4.
If x ′ := 32x ′

2x
′
3 . . . y := 32n3ω32x2x3 . . . and y′ := 32n3ω32x ′

2x
′
3 . . ., we emphasize

that
Sn+1+|ω|+1(φ)(y′) = Sn+1+|ω|+1(φ)(y) (10)
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holds. In otherwords, ifwe induce on [32], the induced potential satisfies theBowen condition
(H2) of [18] and we can apply the same machinery that was used for the cylinder [1].

In that case, the family of transfer operators for T and β.φ is defined by

LZ ,β,[32](ψ)(x) := 1

2εβ
eγβ−Z

+∞
∑

n=1

∑

ω

(

1

n + 1

)β

× e−nZ
(

2

|ω| + 2

)εβ

e|ω|γβ+(#4∈ω).δβ−|ω|Zψ(32nωx), (11)

where ψ belongs to C0([32]), x starts with 32…, ω is a (possibly empty) word with digits 3
and 4 and starting with 3 and #4 ∈ ω is the number of 4’s in ω. The computation gives1

LZ ,β,[32](1l[32]) = 1

(1 + eδβ)2

+∞
∑

n=1

(

1

n + 1

)β

e−nZ
+∞
∑

m=1

(

1

m + 1

)εβ

em(P34(β)−Z).

Note that the induced potential is constant on cylinders associated to T (in [32]), hence
λZ ,β,[32] = LZ ,β,[32](1l[32])(x) for every x in [32]. We emphasize that LZ ,β,[32](1l[32])(x) is
actually equal to �2�3. Therefore, the implicit equation

λZ ,β,[32] = 1,

is exactly verified for Z = ˜Zc(β) (see Lemma 2) and holds if and only if β � β1. By
definition of β1, for every β > β1, �2�3 < 1. Therefore, from [18] we get:

• P234(β) = ˜Zc(β) for β < β1,
• there is a unique equilibrium state for β < β1, and it is fully supported in �234,
• there is a unique equilibrium state for β > β1 and it is the one in �34,
• there are two ergodic equilibrium states for β = β1 if and only if εβ1 > 2 (to get

convergence for ∂�3
∂Z ).

At that point, all the results stated in Theorem A are proved except ε.β1 < 2, the fact
that conditions ε.βc � 2 can be realized and (non-)differentiability for P(β) at the transition
β = βc

3.3 End of the Proof of Theorem A

3.3.1 Proof that εβ1 < 2

We recall that β1 is defined by the implicit formula (5):

+∞
∑

n=1

(

1

n + 1

)β1

e−nP34(β1)
ζ(εβ1) − 1

(1 + eδβ1)2
= 1,

with P34(β) = γβ + log(1 + eδβ). Note that P34(β) is always bigger than log 2, thus for
every choices of the parameters

ζ(εβ1) � (1 + eδβ1)2 + 1 > 5.

Now, ζ(2) = π2

6
, which shows εβ1 < 2.

1 see the computation of Ln(β, [3]) page 8 for how to deal with #4 ∈ ω.
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3.3.2 Values for εβc

We remind that βc is given by the implicit formula derived from Equality (7):

+∞
∑

n=1

e−nαβc−nP34(βc)+(n−1) log L +
∑+∞

n=1

(

1
n+1

)βc
e−nP34(βc)e−αβc−P34(βc)

1 − 1
(1+eδβc )2

∑+∞
n=1

(

1
n+1

)βc
e−nP34(βc)

∑+∞
n=1

(

1
n+1

)εβc
= 1.

(12)
We have already seen that increasing L is a simple way to force εβc > 2 to hold.

Remind that βc > β1 and ε.β1 > 1 and P34(β) = β.γ + log(1+ eβ.δ). Then, assume that
δ → +∞, ε being fixed, this yields δβc → +∞. Substituting this in (12), the first summand
and the numerator of the fraction go to 0 if δ → +∞. Consequently, the denominator must
also tend to 0, and as δβc tends to +∞, we must have

εβc → 1.

It is thus lower than 2 if δ is sufficiently large.

3.3.3 Non-differentibality at βc for ε.βc > 2

The right-derivative for P(β) at the transition βc is equal to P ′
34(β) = γ + δ. eδ.β

1+eδ.β . This is
a positive real number.

On the other hand, for β � βc, P(β) is given by the implicit formula

P(β) = Z and λZ ,β,[1] = �1(Z , β) + �2(Z , β)e−αβ−Z

1 − �2(Z , β)�3(Z , β)
= 1.

Therefore, the left-derivative for P(β) is given by

P ′
l (β) = −∂λZ ,β,[1]

∂β
.

1
∂λZ ,β,[1]

∂Z

. (13)

We emphasize that the partial derivatives on the right-hand side are well-defined for β < βc

(see Sect. 3.3.4) but also for β = βc because ε.βc > 2. We remind equalities

�1 = �1(Z , β) :=
+∞
∑

n=1

e−nβα−nZ+(n−1) log L

�2 = �2(Z , β) :=
+∞
∑

n=1

(

1

n + 1

)β

e−nZ

�3 = �3(Z , β) := 1

(1 + eδβ)2

+∞
∑

n=1

(

1

n + 1

)εβ

en(P34(β)−Z),

which easily show that Z �→ λZ ,β,[1], β �→ �1(Z , β) and β �→ �2(Z , β) decrease (thus
have negative derivative).

Computing terms in the right-hand side of (13), we claim (and let the reader check) that
∂λZ ,β,[1]

∂β
is of the form A + P ′

34(β)S and
∂λZ ,β,[1]

∂Z
is of the form B − S, where A and B

are negative and S is positive. This yields

P ′
l (β) = − A + P ′

34(β)S

B − S
= P ′

34(β) + P ′
34(β)B + A

S − B
< P ′

34(β). (14)
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Fig. 7 Dynamics for Theorem B

3.3.4 Differentiability at βc if ε.βc � 2

We claim that equality (13) still holds for β < βc because the diverging term for β = βc is

S = 1

(1 + eδ.β)2

+∞
∑

n=1

n

(

1

n + 1

)ε.β

en(P34(β)−P(β)).

This term diverges for β = βc but converges for β < βc because P(β) > P34(β). Then,

P ′
l (β) = − A + P ′

34(β)S

B − S
= P ′

34(β) + P ′
34(β)B + A

S − B

still holds2 for β < βc. Therefore, if β ↑ βc, S goes to +∞. We let the reader check that A
and B are bounded thus, P ′

l (β) goes to P ′
34(βc) as β ↑ βc.

4 Proof of Theorem B

For proving Theorem B we consider the next subshift of finite type (Fig. 7):
The right hand side wing has been replaced by two copies of itself. The left hand side

wing is a full shift with L + 1 symbols, each wing at the right hand side is also a full shift
with two symbols. The unique exit digits of the wings are also the unique entrance digits and
are the symbols 1, 3 and 3′. To go from one of these symbols to another one, one must pass
through 2.

4.1 Phase Transition for P(β)

We now explain how to adapt the results from the proof of Theorem A to this new case.
Inducing in [1], orbits of the third form (see the enumeration before Equality (1)) leave [1],
visit [2] for a while and then can either visit �34 or visit �3′4′ . More precisely, after a string
of 2’s we can either get a word of the form 3ω3 where ω is a word with digits 3 or 4, or a
word of the form 3′ω′3′ with ω′ a word with digits 3′ and 4′.

By symmetry of the potential, any sum �3 has thus to be replaced by 2�3 = �3 + �3,
one for a string in 3 and 4 and one for a string in 3′ and 4′.

2 Actually this is the exact derivative because the pressure is analytic.
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Consequently

LZ ,β,[1](1l[1]) = �1 + �2

+∞
∑

k=0

(2�3�2)
k,

and Condition (4b) has to be replaced by

�2�3 <
1

2
. (15)

The implicit formula (similar to (5)) we have to consider is

�2(P34(β3), β3)�3(P34(β3), β3) = 1

2
,

where β3 replaces β1: for β < β3, ˜Zc(β) is strictly larger than P34(β). For β � β3, ˜Zc(β) =
P34(β).

Similarly, the new value for the spectral radius λZ ,β,[1] is

�1 + �2e−αβ−Z

1 − 2�2�3
,

and there exists β ′
c > max(β2, β3) such that for every β > β ′

c, λZ ,β,[1] < 1. Then, for
β > β ′

c, P(β) = P2343′4′(β), and any equilibrium state has support in �2343′4′ which is �

restricted to words without digits 1, 11, . . . 1L .

4.2 Phase Transition for P2343′4′(β)

Again, we shall induce on the cylinder [32]. In that new case, the orbits leaving [32] and then
returning back to [32] have the form: 32(string of 2’s) (intermittence of strings3 of 3′’s or
4′’s and strings of 2’s) (3 and one string of 3’s or 4’s)32. This yields that the new equation to
consider for λZ ,β,[32] is

λZ ,β,[32] = �2(Z , β)

(+∞
∑

n=0

(�2(Z , β)�3(Z , β))n

)

�3(Z , β)

= �2(Z , β)�3(Z , β)

1 − �2(Z , β)�3(Z , β)
,

where we took into account the symmetry of �34 and �3′4′ .

Note that z �→ z

1 − z
increases for z < 1, and

z

1 − z
< 1 ⇐⇒ z <

1

2
. Then,

λZ ,β,[32] < 1 ⇐⇒ �2(Z , β)�3(Z , β) <
1

2
.

This shows that β3 is a transition parameter for �2343′4′ : for β < β3 there exists a unique
equilibrium state in �2343′4′ and it is fully supported. For β > β3, no equilibrium state gives
weight to [32]. For symmetry reasons, no equilibrium state gives a positive weight to [3′2],
and thus, there are two equilibrium states which are the ones in �34 and in �3′4′ .

For β > β ′
c, there is no more a single global equilibrium state (for � and P(β)) but there

are two “smaller” equilibria in �34 and in �3′4′ . Nevertheless, P(β) = P34(β) is analytic
for β > β ′

c.

3 We only consider eligible strings, that is of the form 3′ω3′.
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4.3 Gâteaux-Differentiability in Other Directions

To use the vocabulary from [16], the potential φ is a kind of grid function: it is constant on
cylinders of the form [1], [1i ], [2n∗], [3ω32] with ω ∈ {3, 4}n for some n and [3′ω3′2] with
ω ∈ {3′, 4′}n for some n.

Let V be the set of such functions, which are in addition Hölder continuous and totally
symmetric in 3 ↔ 3′ and 4 ↔ 4′. V is infinite-dimension in C(�).

It we pick some ϕ in V , for β > β ′
c, and for t ∈ (−η, η)with η ≈ 0+, the induced transfer

operators for β.φ + t.ϕ and β.φ have close spectrum.
As things are totally symmetric in �34 or �3′4′ , there will still be two equilibrium states

and the pressure is differentiable in direction ϕ because we are into the domains with spectral
radiuses <1.

Remark 6 It is actually highly likely that P(β.φ+ .) is Gâteaux differentiable in the direction
of any ϕ which is Hölder and totally symmetric in 3 ↔ 3′ and 4 ↔ 4′ (and not necessarily
a grid function). ��
Acknowledgments Part of this researchwas supported byPUC-Santiago.RLwould like to thank anonymous
referees for suggestions and corrections and Daniel Boivin for corrections.
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