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Abstract We obtain the rate function for the level 2.5 of large deviations for pure jump and
diffusion processes. This result is proved by two methods: tilting, for which a tilted process
with an appropriate typical behavior is considered, and a spectral method, for which the
scaled cumulant generating function is used. We also briefly discuss fluctuation relations,
pointing out their connection with large deviations at the level 2.5.
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1 Introduction

An important recent progress in nonequilibrium statistical physics was the discovery of
various fluctuation relations, which are identities involving the statistics of a fluctuating
entropy. In particular, the Gallavotti–Cohen–Evans–Morriss (GCEM) relation [25,26,29]
imposes a peculiar symmetry related to the rare events associatedwith this fluctuating entropy.
The appropriate theory to describe such rare events is large deviation theory, which is a very
fashionable subject in statistical physics [42,49] and in modern probability [16–18,23,50],
as evidenced by the Abel Prize awarded to S. R. S Varadhan in 2007.

“I would like to offer some remarks about the word “formal”. For the mathematician, it usually means “accord-
ing to the standard of formal rigor, of formal logic”. For the physicists, it is more or less synonymous with
“heuristic” as opposed to “rigorous””. Pierre Cartier. Mathemagics (A Tribute to L. Euler and R. Feynman).
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A Formal View on Level 2.5 Large Deviations 1155

We recall that a time dependent measureμT (dx) satisfies the large deviation principle if at
large times it takes an exponential decreasing form. This exponential decay is characterized
by a lower semi-continuous positive function I (x), which is called the rate function. This
function is such that for any set A

− inf
x∈A0

I (x) ≤ lim inf
T→+∞

1

T
lnμT (A) ≤ lim sup

T→+∞
1

T
lnμT (A) ≤ − inf

x∈A
I (x), (1)

where A0 is the interior of A and A is the closure of A. This can be stated less formally as

μT (dx) ∼ exp (−T I (x)) dx . (2)

Historically, large deviation theory originated in the nineteenth century with pioneering
works in statistical mechanics [8]. One of the most important contributions to large deviation
theory was the general approach for Markov processes developed by Donsker and Varadhan
[19–22]. In this series of papers, they identified three levels of large deviations:

– Level 1, which is the study of fluctuations of additive observables with respect to themean.
– Level 2, related to fluctuations of the fraction of time spent in each state.
– Level 3, concerning fluctuations on the statistics of infinite trajectories.

The ranking of these levels establishes a hierarchy in which a lower level can be deduced
from a higher one by contraction. Donsker and Varadhan proved the large deviation principle
for Markov processes at the level 3 by studying random probability measures on infinite
trajectories. This queen large deviation result posses an explicit rate function, which is the
relative entropy density. Moreover, they proved the large deviation principle at the level 2
for the empirical density, defined as the fraction of time spent in each state up to time T .
Contrary to level 3, the rate function for level 2 admits a variational representation, which is
in general not explicit. Hence, the explicit character of level 3 disappears after contracting
to level 2. At discrete time a more detailed picture is available: it is possible to investigate
the large deviation of the k symbol empirical measure and prove that the rate function can
be obtained explicitly if k ≥ 2. Thus filling the gap between level 2 and 3.

However, in discrete time the extended process (Xt , Xt+1, . . . , Xt+k−1) is itself aMarkov
chain and therefore the intermediate level can be derived from the level 2. This magnification
trick is no longer possible in continuous time. Until recently, no result existed in the literature
to fill this level 2–3 gap for continuous time. The first study of this gap in the continuous
time setting was by Kesidis and Walrand [32], for pure jump processes with two states. They
obtained explicitly the rate function for the joint probability of the empirical density and
the empirical flow counting the number of jumps between pair of states up to time T. This
intermediate level was then called 2.5. This issue was later studied by De La Fortelle [15],
who obtained a weak large deviation in the same context but for countable space.

Somewhat in parallel, in nonequilibrium statistical physics, it has been found that the
empirical density at level 2 is not sufficient to study fluctuations of the entropy production
and of currents. This also motivated the search of an intermediate level for pure jump and
diffusion processes, by Maes and collaborators [39,40], and by Chernyak et al. [9]. Finally,
Bertini et al. [5] succeeded in proving rigorously the level 2.5 for pure jump processes in a
countable space. Rigorous results for diffusion processes have been obtained in [36].

The purpose of our contribution is to present the level 2.5 of large deviations for continuous
time processes and discuss its connection with fluctuation relations. Whereas the explicit
rate functions for the level 2.5 of large deviations calculated here have been obtained in
[5,9,15,39,40], our presentation unifies the proofs for pure jump and diffusion processes,
and clearly compares the two different methods used to obtain these rate functions, namely,
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1156 A. C. Barato, R. Chetrite

tilting and a spectral method. Moreover, some of the proofs presented here are completely
original.

The organization of the paper is as follows. Section 2 sets the stage with the definition of
Markov processes, which include jump and diffusion processes. Particularly, in Sect. 2.1 we
recall basic concepts of Markov processes like transition probability, generator, stationary
and equilibrium states, and trajectorial measure. In Sect. 2.2, we introduce the empirical
density, empirical flow, empirical current, and the action functional, which are the fluctuating
observables studied in the paper. In Sect. 3we obtain the finite time fluctuation relation, which
results as a tautology from the definition of the action functional. Section 4 is the cornerstone
of the paper and deals with the level 2.5 of large deviations. In Sect. 4.1 we use the tilting
method to obtain the rate function characterizing the level 2.5. This proof is related to results
from [39,40], but the presentation given here is original. Section 4.2 contains the spectral
method. In this case, for pure jump processes our proof is original. For diffusion processes
the spectral method has been used in [9], in comparison to this reference we expurgate
the field theoretical language by using the Girsanov lemma. Finally, in Sect. 5 we obtain a
stationary fluctuation relation at the level 2.5 and, by contraction, the GCEM symmetry for
the fluctuating entropy.

2 Models and Observables

2.1 Homogeneous Ergodic Markov Processes

We start with a brief overview of homogeneous Markov processes [13,44,46,48], consid-
ering continuous time Markov processes Xt taking values in a state space E , which can be
continuous, as for example Rd , or a counting space.

2.1.1 Elements of Ergodic Markov Processes

A time-homogeneous Markov process can be defined by a family of transitions kernel
Pt (x, dy), which is the conditional probability that Xt+t ′ ∈ [y, y + dy] given that Xt ′ = x .
This conditional probability satisfies the Chapmann-Kolmogorov rule∫

E
Ps(x, dy)Pt (y, dz) = Ps+t (x, dz), (3)

where the measure dy means the Lebesgue measure or the counting measure, depending on
E . The semi-group associated with the transition kernel is defined by its action on a bounded
measurable function f in E ,

Pt [ f ](x) ≡
∫
E
Pt (x, dy) f (y). (4)

The infinitesimal generator L , formally defined as Pt ≡ exp (t L), leads to the forward and
backward Kolmogorov equations,

∂t Pt = Pt ◦ L and ∂t Pt = L ◦ Pt , (5)

respectively. The symbol ◦ means composition of operators and the initial condition is P0 =
I, where I is the identity kernel. Conservative processes (without death or explosion), for
which the normalization condition

∫
Pt (x, dy) = 1 holds, are often considered in Physics.

The generator must then obey L[1] = 0, where 1 is the function which is equal to 1 on E .
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A Formal View on Level 2.5 Large Deviations 1157

The timeevolutionof the instantaneous onepointmeasureμt (dy)=
∫
E μ0(dx0)Pt (x0, dy)

can be deduced from the Kolmogorov equation (5), leading to the Fokker–Planck equation
∂tμt = L†[μt ], where L† is the adjoint of L with respect to the Lebesgue or counting
measure. Since we are considering ergodic Markov processes, there is a unique invariant
probability measure μinv satisfying

L†[μinv] = 0. (6)

The process is said to be in equilibrium w.r.t μinv if the detailed balance relation is satisfied,
i.e.,

μinv(dx)Pt (x, dy) = μinv(dy)Pt (y, dx). (7)

In the following it is assumed that the one point measure is smooth with respect to the
Lebesgue measure, for example with the conditions of the Hormander theorem [30,41] for a
diffusion process, leading to μt (dx) ≡ ρt (x)dx . With μinv(dx) ≡ ρinv(x)dx , the detailed
balance condition (7) can be written as1

ρinv ◦ L ◦ ρ−1
inv = L†. (8)

In addition to the characterization by the semi-group or the generator, a Markov process
can be characterized by its trajectorial measure. The sample path of the process up to time
T is the random function XT

0 : t ∈ [0, T ] → Xt . It is a random variable in the space of
trajectories D ([0, T ], E). This trajectorial measure dPL ,μ0,T [xT0 ], where μ0 is the initial
measure, is roughly the probability that the trajectory XT

0 equals xT0 . The expectation of an
arbitrary functional F

[
XT
0

]
of the trajectories is then written as,

EL ,μ0 [F] =
∫
F
[
xT0

]
dPL ,μ0,T

[
xT0

]
. (9)

The finite time distributions are sufficient to characterize dPL ,μ0,T , more precisely, Eq. (9)
may be rewritten as

EL ,μ0 [F] =
∫
En+1

F(x0, x1, . . . , xn−1, xn)μ0(dx0) exp (t1L) (x0, dx1) (10)

× exp ((t2 − t1) L) (x1, dx2) · · · exp ((T − tn−1) L) (xn−1, dxn),

for the cylindrical functional

F [X ] = F(X0, Xt1 , Xt2 , . . . , Xtn−1 , XT ), (11)

with 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ T . In the following we consider the two most prominent
classes of Markov processes: jump and diffusion processes.

2.1.2 Pure Jump Processes

A Markov process is called a pure jump process if after “arriving” into a state the system
stays there for a random exponentially distributed time interval and then jumps to another
state. The transition rates W (x, y) give the probability per unit of time for the transition
x → y. Moreover, with regularity conditions (see [24, Chap. 8] for example), it is possible to

1 The expression ρinv ◦ L ◦ ρ−1
inv

must be understood as the composition of three operators, first the operator

multiplication by ρ−1
inv

, second the operator L and last the operatormultiplication by ρinv . This type of notation
is recurrently used in the article.
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1158 A. C. Barato, R. Chetrite

prove that for pure jump possesses the generator acting on the bounded measurable function
h : E → R is

L [h] (x) =
∫
E
W (x, y) (h(y) − h(x)) dy, (12)

for all x ∈ E . The detailed balance condition (7) with respect to the density ρinv takes the
form

ρinv(x)W (x, y) = ρinv(y)W (y, x). (13)

A relevant quantity in this paper is the current associated with the density ρt ,

Jρt (x, y) ≡ ρt (x)W (x, y) − W (y, x)ρt (y). (14)

From equation (6), the current associated with the invariant density is conserved,∫
dy Jρinv

(x, y) = 0. (15)

At the trajectory level it is possible to compare the trajectorial measure (9) of two processes
with different transition rates, with the condition that they both have the same set of non
vanishing rates. To this end, we introduce the non conservative Markovian generator2

LV1,V2 [h] (x) ≡
(∫

E
W (x, y)

[
exp (V2(x, y)) h(y) − h(x)

]
dy

)
+ V1(x)h(x), (16)

for all functions h, with V1 : E → R and V2 : E2 → R. We call this generator the twisted
generator. From the Girsanov lemma [34, Proposition 2.6] and the Feynamn Kac relation
[44,46], it follows that dPLV1,V2 ,μ0,T is absolutely continuous w.r.t. dPL ,μ0,T , and the explicit
Radon Nykodym derivative is given by

dPLV1,V2 ,μ0,T

dPL ,μ0,T

[
xT0

]
= exp

⎛
⎝ ∑

0≤s≤T/xs− �=xs+
V2(xs− , xs+) +

∫ T

0
dsV1(xs)

⎞
⎠ , (17)

where xs− ≡ limδ→0 xs−δ and xs+ ≡ limδ→0 xs+δ . Hence, the sum
∑

0≤s≤T/xs− �=xs+ is over

all jumps in the trajectory xT0 . In particular, for two conservative jump processes, one with
rates W and the other with rates WV2(x, y) = W (x, y) exp (V2(x, y)) relation (17) becomes

dPLV2 ,μ0,T

dPL ,μ0,T
[x] = exp

⎛
⎝ ∑

0≤s≤T/xs− �=xs+
V2(xs− , xs+)−

∫ T

0
ds (W exp (V2)−W ) [1] (xs)

⎞
⎠,

(18)
where LV2 is the conservative generator obtained from (16) by setting

V1 = (W ) [1] − (W exp (V2)) [1] =
∫

W (x, y)dy −
∫

W (x, y) exp(V2(x, y))dy. (19)

2.1.3 Diffusion Processes

A diffusion process Xt in a d-dimensional manifold is described by the differential equation

dX = A0(X)dt +
∑
α

Aα(X) ◦ dWα(t). (20)

2 In operational notation LV1,V2 = W exp (V2) − W [1] + V1.
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A Formal View on Level 2.5 Large Deviations 1159

where the drift A0 and the diffusion coefficient Aα are arbitrary smooth vector fields on E ,
Wα are independent Wiener processes, and the range of α is model dependent. The symbol ◦
indicates that the Stratonovich convention is used. The explicit form of the generator related
to (20) is

L = A0 · ∇ +
∑
α

1

2
(Aα.∇)2 = Â0 · ∇ + 1

2
∇ · D · ∇, (21)

with the modified drift and covariance

Â0(x) = A0(x) − 1

2

∑
α

(∇ · Aα) (x)Aα(x) and Di j (x) =
∑
α

Ai
α(x)A j

α(x), (22)

respectively, where i = 1, . . . , d and j = 1, . . . , d . It is assumed that D is strictly positive.
The detailed balance relation (7) with respect to the invariant measureμinv(dx) = ρinv(x)dx
is then equivalent to Â0 = D

2 ∇ (ln ρinv).
A central quantity for diffusion processes is the hydrodynamic probability current [45]

Jρt = Â0ρt − D

2
(∇ρt ). (23)

The conservation of the current associated with the invariant density then reads

∇ · Jρinv
= 0. (24)

Similar to jump processes, the trajectorial measure of two diffusion processes can be
compared with a generator corresponding to a non-conservative process, which in the present
case is defined as

L ′ ≡ L + B2 · ∇ + B1, (25)

where B2 and B1 are arbitrary vector field and scalar, respectively. Combining the Cameron–
Martin–Girsanov lemma [46,48] and the Feynamm–Kac relation [44,46], it follows that

dPL ′,μ0,T [x]

dPL ,μ0,T [x]
= exp(VT [x]), (26)

where

VT =
∫ T

0

[
D−1(xu)B2(xu) ◦ dxu

+
(
B1(xu) − D−1(xu)B2(xu)

(
Â0 + B2

2

)
(xu) − 1

2
(∇ · B2) (xu)

)
du

]
. (27)

Choosing

B2 = DV2 and B1 = V2 ·
(
Â0 + DV2

2

)
+ 1

2
∇ · (DV2) + V1, (28)

we obtain

VT =
∫ T

0
dt [V1(Xt ) + V2(Xt ) ◦ dXt ] . (29)

Equation (26) then becomes

dPLV1,V2 ,μ0,T

dPL ,μ0,T
[X ] = exp

(∫ T

0
dt [V1(Xt ) + V2(Xt ) ◦ dXt ]

)
, (30)
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1160 A. C. Barato, R. Chetrite

where the twisted generator reads

LV1,V2 = L ′ = L + DV2∇ + V2 ·
(
Â0 + DV2

2

)
+ 1

2
∇ · (DV2) + V1

= Â0 · (∇ + V2) + (∇ + V2) ◦ D

2
◦ (∇ + V2) + V1. (31)

2.2 Empirical Observables and Ergodic Behavior

2.2.1 Empirical Density, Flow and Current

The set of functional observables that define the level 2.5 of large deviations depend of the
type of Markov processes considered. For pure jump processes the set of observables is the
empirical density ρe

T and empirical flow Ce
T . They are given by

ρe
T (x) = 1

T

∫ T

0
δ (Xt − x) dt and

Ce
T (x, y) = 1

T

∑
0≤s≤T/Xs− �=Xs+

δ (Xt− − x) δ (Xt+ − y) . (32)

The empirical density ρe
T (x)3 can be understood as the fraction of time spent in x over [0, T ]

and the empirical flow Ce
T (x, y) as the number of jumps from x to y (times 1/T ) during the

trajectory. Another functional of central interest is the empirical current

J eT (x, y) = Ce
T (x, y) − Ce

T (y, x). (33)

Since we assume the system to be ergodic, the law of large numbers for the empirical density
and flow becomes

ρe
T → ρinv and Ce

T → Cρinv
, (34)

where
Cρinv

(x, y) = ρinv(x)W (x, y). (35)

Moreover, the finite time Kirchkoff’s law [33] reads∫
dyCe

T (x, y) −
∫

dyCe
T (y, x)

= 1

T

∑
0≤s≤T/Xs− �=Xs+

δ (Xt− − x) − 1

T

∑
0≤s≤T/Xs− �=Xs+

δ (Xt+ − x)

= δ (X0 − x) − δ (XT − x)

T
= O(1/T ). (36)

In the following we will show that the large deviation rate function of Ce
T is infinite for any

untypical C not fulfilling ∫
dyC(x, y) =

∫
dyC(y, x). (37)

For diffusion processes, the set of observables is composed by the empirical density ρe
T

and the empirical current j eT , which read

3 Rigorously, we should instead define the empirical measure μe
T = 1

T

∫ T
0 δXt dt .
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A Formal View on Level 2.5 Large Deviations 1161

ρe
T (x) = 1

T

∫ T

0
δ (Xt − x) dt and j eT (x) = 1

T

∫ T

0
δ (Xt − x) ◦ dXt . (38)

Roughly speaking, the empirical current (see [28] for a rigorous definition) is the sum of the
displacements that the system makes if it is at x . For diffusion processes, with the ergodic
assumption the law of large numbers takes the form

ρe
T → ρinv and j eT → Jρinv

. (39)

where the current Jρinv
is defined in relation (23). From the definition (38), we obtain the

pathwise constraint4

∇ · j eT (x) = 1

T
(δ (X0 − x) − δ (Xt − x)) . (40)

Hence, analogously to (37) the large deviation rate function of j eT is infinite at any j not
fulfilling

∇. j = 0. (41)

2.2.2 Action Functional and Fluctuating Entropy

For time-homogeneous processes, the action functional WT is obtained by comparing the
trajectorial measure of Xt with the time-reversed trajectorial measure. At the level of tra-
jectories, we introduce the path-wise time inversion5 R acting on the space of trajectories
as

R
[
XT
0

]
t
≡
[
XT
0

]
T−t

, (42)

where
[
XT
0

]
t ≡ Xt .

The action functional is defined by the relation

exp (−WT ) ≡
R�

(
dPL ,μb

0,T

)

dPL ,μ0,T
. (43)

where μb
0 is the arbitrary initial measure of the reversed trajectory and the push-forward

measure can be loosely written as R�

(
dPL ,μb

0,T

)
[xT0 ] = dPL ,μb

0,T

[
R
[
xT0

]]
. Due to the

freedom in choosing μ0 and μb
0, it is possible to identify the action functional WT with

different quantities. It becomes the fluctuating total entropy production σT for μb
0(dx) =

μT (dx) ≡ ∫
dyρ0(y)PT

0 (y, x)dx and the fluctuating entropy increase of the external envi-
ronment JT for μ0(dx) = μb

0(dx) = dx . The difference between σT and JT is the boundary
term ln (ρ0(x0)) − ln (ρT (xT )), which is the variation of the entropy of the system. We note
that names like total entropy production or entropy increase of the external environment
become meaningful only if a Markov process is given a clear physical interpretation. In this
case these functionals are related to key thermodynamic quantities [47].

4 ∫
E
dxg(x)∇ · jeT (x) = −

∫
E
dx jeT (x) · ∇g(x) = − 1

T

∫ T

0
∇g(Xt ) ◦ dXt

= 1

T
(g(X0) − g(Xt)) , for all functions g.

5 Here, we do not consider the case where the time inversion acts non-trivially on the space E . For example,
such a situation takes place for the non-over-damped Kramers equation [10].
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1162 A. C. Barato, R. Chetrite

For pure jump processes this action functional is [37,38]

WT = ln (ρ0(X0)) − ln
(
ρb
0 (XT )

)
+

∑
0≤s≤T/Xs− �=Xs+

ln

[
W (Xt− , Xt+)

W (Xt+ , Xt−)

]
. (44)

For diffusion processes it reads [37]

WT = ln (ρ0(X0)) − ln
(
ρb
0 (XT )

)
+ 2

∫ T

0
dt Â0 (Xt ) · D−1 (Xt ) ◦ dXt . (45)

3 Transient Fluctuation Relation

Before obtaining the rate function at the level 2.5, let us briefly discuss the transient fluctuation
relation. From the definition of the action functional (43) it follows that for all functionals
F[0,T ],

Eμb
0,L

[
F[0,T ] ◦ R

] = Eμ0,L
[
F[0,T ] exp (−WT )

]
. (46)

The backward action functional is defined as

exp
(
−W

b
T

)
≡ R�

(
dPL ,μ0,T

)
dPL ,μb

0,T
. (47)

Comparing (43) and (47) we obtain the antisymmetric relation

W
b
T = −WT ◦ R. (48)

For the special case F[0,T ] = δ(WT − W ), with δ denoting the indicator function, relation
(46) becomes the generalized Crooks relation [10,14,37,38,47]

Pμb
0,L

(Wb
T = −W ) = exp (−W )Pμ0,L(WT = W ). (49)

From (46), we also deduce the Jarzynski equality [14,31]

Eμ0,L
[
exp(−WT )

] = 1. (50)

This relation implies two important results. First, (50) and Jensen’s inequality gives the
second law of thermodynamics Eμ0,L [WT ] ≥ 0. Second, (50) and the Markov inequality

Pμ0,L (exp (−WT ) ≥ exp(L)) ≤ Eμ0,L [exp(−WT )]
exp(L)

gives an upper bound6 on the probability
of “transient deviations” from the second law, i.e., Pμ0,L (WT ≤ −L) ≤ exp (−L) .

4 Heuristic Proof for 2.5 Large Deviations

In this section we demonstrate that the joint fluctuation of empirical density and empirical
flow for jump processes, and the joint fluctuation of empirical density and empirical current
for diffusion processes admit a large deviation regimewith an explicit rate function. For jump
processes this rate function reads [40]

6 A better upper bound has been obtained in [11] using the classical Martingale inequality.
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A Formal View on Level 2.5 Large Deviations 1163

I [ρ,C]

=

⎧⎪⎨
⎪⎩
∫
dxdy

(
−C(x, y) + ρ(x)W (x, y)

+C(x, y) ln C(x,y)
ρ(x)W (x,y)

)
if ∀x ∈ E : ∫ dyC(x, y) = ∫

dyC(y, x)

∞ otherwise,
(51)

while for diffusion processes it is [9,39]

I [ρ, j] =
{ 1

2

∫
dx( j − Jρ)(ρD)−1( j − Jρ) if ∇ · j = 0

∞ otherwise.
(52)

Note that the constraints
∫
dyC(x, y) = ∫

dyC(y, x) and ∇ · j = 0 come from (36) and
(40), respectively. Formally, by contraction we can obtain the Donsker–Varadhan variational
expression for the rate function for the level 2 of large deviations from the level 2.5 rate
function. Explicitly, for pure jump processes I (ρ) = minC [I (ρ,C)], whereas for diffusion
processes I (ρ) = min j [I (ρ, j)]. These relations lead to

I [ρ] = − inf
[h]>0

[∫
dxρ(x)h−1(x)L [h] (x)

]
, (53)

where the minimization is over strictly positive functions h. A rigorous proof of this contrac-
tion for pure jump processes can be found in [6]. Similarly, a formal contraction implies that
the action functional (44) (or (45) for diffusion processes) fulfills a Large Deviation principle.
It is also possible to obtain the rate function related to the joint probability of the empirical
density ρe

T (x, y) and the empirical current J eT (x, y) by contraction from (51) [40].
We present two methods to prove (51) and (52): tilting and a spectral method. The proof

for jump processes using the spectral method is original. Proofs using tilting for pure jump
processes can be found in [40] and for diffusion processes in [39]. Another proof for diffusion
processes using the spectral method was obtained in [9]. The novelty in these cases is in our
presentation, which highlight the generality of bothmethods. A third method, which is totally
rigorous, for pure jump processes in a countable space related to the contraction of the rate
function of the level 3 of large deviations has been recently obtained in [5]. Whereas the
proof using the tilting method is more direct, in the spectral method a connection between
the rate function and the maximum eigenvalue of a modified generator is established. This
connection is often useful for numerical calculations of rate functions.

4.1 Tilting

We consider, for general stochastic processes Xt ,7 the joint large deviation of N observables−→
ωe
t ≡

{
ωe
t,1, ω

e
t,2, . . . , ω

e
t,N

}
. The trajectorial measure is denoted by dPμ0,T and −−→ωinv ≡{

ωinv,1, ωinv,2, . . . , ωinv,N
}
represents the typical behavior of

−→
ωe
t , with typical behavior

meaning almost sure convergence. If the following two conditions are satisfied then the

family of probability measures

(
Pμ0,T ◦

{−→
ωe
t

}−1
)
t≥0

, or equivalently
−→
ωe
t , satisfies a large

deviation principle with rate function I
(−→ω )

, where −→ω = {ω1, ω2, . . . , ωN } is the desired
untypical behavior.

– Condition 1 There exists an ergodic tilted process X ′
t , with trajectorial measure dP′

μ0,T
,

such that its typical behavior is
−→
ωe
t .

7 Xt does not need to be Markovian here.
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– Condition 2 For this tilted process, there exists a function I defined by the asymptotic

relation
dPμ0,T

dP′
μ0,T

[X ] ∼ exp
(
−T I

(−→
ωe
T

))
. This means that asymptotically the Radon-

Nykodym derivative can be expressed in terms of the N observablesωe
t,1, ω

e
t,2, . . . , ω

e
t,N .

Note that larger N makes the fulfillment of the first condition harder, while the fulfillment

of second condition becomes easier. For a fixed process Xt and a fixed observable
−→
ωe
t , we

postulate that the process X ′
t exists.

Formal proof From the second condition it follows that

Pμ0,T

[−→
ωe
T � −→ω

]
=
∫

dPμ0,T [X ] δ(
−→
ωe
T − −→ω )

=
∫

dP′
μ0,T [X ] .

dPμ0,T

dP′
μ0,T

[X ] δ(
−→
ωe
T − −→ω )

∼
∫

dP′
μ0,T [X ] . exp

(
−T I

(−→
ωe
T

))
δ(

−→
ωe
T − −→ω )

∼ exp
(−T I

(−→ω )) ∫
dP′

μ0,T [X ] δ(
−→
ωe
T − −→ω ). (54)

Since the process X ′
t is assumed to be ergodic, with the first condition, we obtain∫

dP′
μ0,T [X ] δ(

−→
ωe
T − −→ω ) = P

′
μ0

[−→
ωe
T � −→ω

]
→ 1, (55)

which, with (54), gives the required Large deviation rate function I . Rigorously, following

the same procedure for Pμ0

[−→
ωe
T ∈ B

(−→ω , ε
)]
, where B

(−→ω , ε
)
an open ball of radius ε, the

lower bound of the rate function (1) is obtained [5]. We note that these two conditions are not
enough for a rigorous proof, which requires a lower and an upper bound on the rate function
[5,36].

Examples:

– If Xt is a Markov process and
−→
ωe
t ≡ {

ρe
t

}
, from the Girsanov relation (18) (or (26) for

diffusion processes), we obtain that it is not possible to find a process fulfilling the second
condition. The solution to find an explicit rate function is then to increase N .

– If Xt is a pure jump process and
−→
ωe
t = {

ρe
t ,C

e
t

}
, by choosing X ′ with the transition rates

W ′(x, y) = C(x, y)

ρ(x)
, (56)

the ergodic behavior of X ′
t becomes ρ′

inv = ρ and Cρ′
inv

= C , which implies the fulfill-
ment of condition 1. The process X ′

t also obeys the conservation law (15), leading to the
constraint on the marginal of C in the rate function (51). The Girsanov relation (18) with

V2(x, y) = ln
(

C(x,y)
ρ(x)W (x,y)

)
becomes

dPLV2 ,T

dPL ,T
[X ] = exp

⎡
⎣ ∑
0≤s≤T/Xs− �=Xs+

ln

(
C(Xs− , Xs+)

ρ(Xs−)W (Xs− , Xs+)

)

−
∫ T

0
ds

∫
E
dy

(
C(Xs, y)

ρ(Xs)
− W (Xs , y)

)⎤
⎦

123



A Formal View on Level 2.5 Large Deviations 1165

= exp

[
T
∫
E2

dydx

[
Ce
T (x, y) ln

(
C(x, y)

ρ(x)W (x, y)

)

−ρe
T (x)

(
C(x, y)

ρ(x)
− W (x, y)

)]]
. (57)

Hence, condition 2 is exactly verified at finite time with the rate function I given by (51).

– If Xt is a diffusion process and
−→
ωe
t = {

ρe
t , j

e
t

}
, condition 1 is fulfilled by choosing X ′

t
with drift and diffusion coefficient

A′
0 = j + D

2 ∇ρ

ρ
and A′

α = Aα. (58)

This can be shown with the ergodic law (38), which implies

ρ′
inv = ρ and Jρ′

inv
= j, (59)

where ρ′
inv is the invariant density of the process X ′

t . From the Girsanov relation (26),
condition 2 is verified with I given by (52).

– It is possible to apply the tilting method to find the rate function of more informative
quantities, e.g., them-words generalization of empirical flow associated with a pure jump
process [12]. The method can also be used to obtain the rate function of the empirical
density and flow of pure jump processes that are non-homogeneous and periodic in time
[7].

4.2 Spectral Method

4.2.1 Generating Function

The scaled cumulant generating function associated with the vector
−→
ωe
t is defined as

Λ [V1, V2, . . . , VN ] = lim
T→∞

1

T
ln

(
Eμ0,L

[
exp

(
T

N∑
i=1

〈
ωe
t,i , Vi

〉)])
(60)

where Vi are objects having the same tensorial nature as ωe
t,i and 〈., .〉 denotes the associated

canonical scalar product. Assuming that the Gärtner-Ellis theorem [16,17] is still valid in
this functional form8, then if Λ exist and is differentiable for all Vi , the family of probability

measures

(
Pμ0,T ◦

{−→
ωe
t

}−1
)
t≥0

satisfies a large deviation principle with rate function

I [ω1, ω2, . . . , ωN ] = sup−→
V

{
N∑
i=1

〈ωi , Vi 〉 − Λ [V1, V2, . . . , VN ]

}
. (61)

For pure jump processes, with
−→
ωe
t = {

ρe
t ,C

e
t

}
, the scaled cumulant generating function

becomes

Λ [V1, V2]

= lim
T→∞

1

T
ln

⎛
⎝Eμ0,L

⎡
⎣exp

⎛
⎝
∫ T

0
dtV1(Xt ) +

∑
0≤s≤T/Xs− �=Xs+

V2 (Xt− , Xt+)

⎞
⎠
⎤
⎦
⎞
⎠. (62)

8 For a theoretical Physicist point of view, this theorem is a functional Laplace transform followed by a saddle
point approximation.
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For diffusion processes, with
−→
ωe
t = {

ρe
t , j

e
t

}
we obtain

Λ [V1, V2] = lim
T→∞

1

T
ln

(
Eμ0,L

[
exp

(∫ T

0
dt [V1(Xt ) + V2(Xt ) ◦ dXt ]

)])
. (63)

4.2.2 Twisted Process

Defining

Ae
T ≡ 1

T

⎛
⎝
∫ T

0
dtV1(Xt ) +

∑
0≤s≤T/Xs− �=Xs+

V2 (Xt− , Xt+)

⎞
⎠ , (64)

relation (17), which is valid for pure jump processes, is equivalent to

EL ,μ0

[
exp

(
T Ae

T

)
F
] = ELV1,V2 ,μ0 [F] , (65)

where F is a generic functional and LV1,V2 is defined in (16) for pure jump processes. For
diffusion processes

Ae
T ≡ 1

T

(∫ T

0
dt [V1(Xt ) + V2(Xt ) ◦ dXt ]

)
, (66)

and relation (30) is equivalent to (65), with LV1,V2 defined in (31).
The special functional F = δ(XT − y) gives the Feynamn–Kac type relation

EL ,μ0

[
exp

(
T Ae

T

)
δ(XT − y)

] =
∫
E

μ0(dx0) exp
(
T LV1,V2

)
(x0, y). (67)

We assume that the twisted operator LV1,V2 is of Perron–Frobenius type, i.e., there exists
a positive gaped principal eigenvalue with maximal real part λ [V1, V2] related to a unique
positive right eigenvector r [V1, V2] and a unique positive left eigenvector l [V1, V2]9. Mul-
tiplicative factors are fixed by normalization as∫

E
l [V1, V2] (x)dx = 1 and

∫
E
l [V1, V2] (x)r [V1, V2] (x)dx = 1. (68)

It is also assumed that the initial measure fulfills∫
E

μ0(dx)r [V1, V2] (x) < ∞. (69)

With this principal eigenvalue and its associated eigenvectors, the semi-group generated by
LV1,V2 can be expanded as

exp
(
T LV1,V2

)
(x, y) = exp

(
TλV1,V2

) (
r [V1, V2] (x)l [V1, V2] (y)+O

(
exp

(−tΔV1,V2

)))
,

(70)

9 These properties follow from the Krein–Rutman theorem [35], which, however, requires that the operator
LV1,V2 is compact. For a uniformly elliptic operator in divergent form as the generator of a diffusion process,
a version of the Krein–Rutman theorem is proven, for example, in [27, Chap. 6.5.2], where the hypothesis
are: E is bounded, open and connected; ∂E is smooth; D and Â0 are smooth; LV1,V2 [1] ≥ 0 on E . Strictly
speaking, the theorem is not valid if, for example, E is not bounded, with the extension for an unbounded
E being a difficult and contemporary problem [4]. Even though we are not aware of proof for unbounded E
in the mathematics literature, more sophisticated related results do exist, as for example in [43, Chap. 4.11].
From a physicist perspective, if the drift of the process is sufficiently confining then the result for bounded E
case should also be true for unbounded E .
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whereΔV1,V2 is the spectral gap. Combining this last equationwith the Feynman–Kac relation
(67) we obtain

Eμ0,L
[
exp

(
T Ae

T

)
δ(XT − y)

] = exp
(
TλV1,V2

) ∫
E

μ0(dx0) (r [V1, V2] (x)l [V1, V2] (y)

+O
(
exp

(−tΔV1,V2

)))
. (71)

Therefore, the scaled cumulant generating function of Ae
T is

Λ [V1, V2] = λ [V1, V2] . (72)

We are now ready to prove that (61) allows us to obtain the explicit forms (51) and (52).

4.2.3 Level 2.5 for Jump Processes

Using (72), relation (61), with
−→
ωe
t ≡ {

ρe
t ,C

e
t

}
, becomes

I [ρ,C] = sup
V1,V2

{∫
E
dxρ(x)V1(x) +

∫ ∫
E2

dxdyC(x, y)V2(x, y) − λ [V1, V2]

}
. (73)

The functions V �
1 and V �

2 extremizing the above expression are then obtained by solving the
equations

δλ [V1, V2]

δV1(x)

∣∣∣∣
V �
1 ,V �

2

= ρ(x) and
δλ [V1, V2]

δV2(x, y)

∣∣∣∣
V �
1 ,V �

2

= C(x, y). (74)

Furthermore, the normalization (68) and LV1,V2 [r [V1, V2]] (x) = λ [V1, V2] r [V1, V2] (x),
lead to ∫

E
l [V1, V2] (x)LV1,V2 [r [V1, V2]] (x)dx = λ [V1, V2] . (75)

From (16), applying functional derivatives to (75) we obtain
⎧⎨
⎩
l [V1, V2] (x)r [V1, V2] (x) = δλ[V1,V2]

δV1(x)

l [V1, V2] (x)W (x, y)
[
exp (V2(x, y))

]
r [V1, V2] (y) = δλ[V1,V2]

δV2(x,y)
,

(76)

which, with (74), leads to
⎧⎨
⎩
l
[
V �
1 , V �

2

]
(x)r

[
V �
1 , V �

2

]
(x) = ρ(x)

l
[
V �
1 , V �

2

]
(x)W (x, y)

[
exp

(
V �
2 (x, y)

)]
r
[
V �
1 , V �

2

]
(y) = C(x, y).

(77)

From the definitions of l [V1, V2] and r [V1, V2] as the left and right eigenvectors of LV1,V2 ,
the second equation in (77) implies

{∫
dxC(x, y) = (

λ
[
V �
1 , V �

2

] + W [1] (y) − V1(y)
)
l
[
V �
1 , V �

2

]
(y)r

[
V �
1 , V �

2

]
(y)∫

dxC(y, x) = (
λ
[
V �
1 , V �

2

] + W [1] (y) − V1(y)
)
l
[
V �
1 , V �

2

]
(y)r

[
V �
1 , V �

2

]
(y),

(78)
where the first (second) line is obtained with an integration in x (y). Hence, the constraint
(37) is a necessary condition for the extremization and, moreover, using the first equation in
(77) we obtain
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λ
[
V �
1 , V �

2

] + W [1] (y) − V �
1 (y) =

∫
dxC(x, y)

ρ(y)
. (79)

Finally, from (73) we obtain the rate function (51) as follows,

I [ρ,C] =
∫ ∫

E2
dxdyC(x, y)V �

2 (x, y) −
∫
E
dxρ(x)

(
λ
[
V �
1 , V �

2

] − V �
1 (x)

)

=
∫ ∫

E2
dxdyC(x, y) ln

[
C(x, y)

l
[
V �
1 , V �

2

]
(x)W (x, y)r

[
V �
1 , V �

2

]
(y)

]

−
∫
E
dxρ(x)

(∫
dyC(y, x)

ρ(x)
− W [1] (x)

)

=
∫ ∫

E2
dxdyC(x, y) ln

[
C(x, y)

l
[
V �
1 , V �

2

]
(x)r

[
V �
1 , V �

2

]
(x)W (x, y)

]

+
∫ ∫

E2
dxdyC(x, y) ln

[
r
[
V �
1 , V �

2

]
(x)

r
[
V �
1 , V �

2

]
(y)

]

−
∫
E
dxρ(x)

(∫
dyC(y, x)

ρ(x)
−
∫

dyW (x, y)

)

=
∫ ∫

E2
dxdyC(x, y) ln

[
C(x, y)

ρ(x)W (x, y)

]

−
∫
E
dxρ(x)

(∫
dyC(y, x)

ρ(x)
−
∫

dyW (x, y)

)

+
∫
E
dx ln

[
r
[
V �
1 , V �

2

]
(x)

] ∫
E
dy (C(x, y) − C(y, x)) . (80)

Passing from the first to the second linewe used V �
2 (x, y) = ln

[
C(x,y)

l[V �
1 ,V �

2 ](x)W (x,y)r[V �
1 ,V �

2 ](y)

]
,

which follows from (77), andEq. (79).Moreover, in the last equalitywe used the first equation
in (77) and the last term is zero due to the constraint (37), thus leading to expression (51) for
the rate function.

4.2.4 Level 2.5 for Diffusion Processes

Using (72), for diffusion processes (61) becomes

I [ρ, j] = sup
V1,V2

{∫
E
dxρ(x)V1(x) + j (x).V2(x) − λ [V1, V2]

}
. (81)

The following three change of variables lead to the final expression (52).

– First, (V1, V2) → (
V ′
1 = ln (r [V1, V2]) , V2

)
, leading to

I [ρ, j] = sup
V ′
1,V2

{∫
E
dxρ(x)

(− exp
(−V ′

1(x)
)
L0,V2

[
exp

(
V ′
1

)]
(x)

) + j (x).V2(x)

}
.

(82)
This is proved in Appendix 1. Note that ln (r [V1, V2]) is well defined because r [V1, V2]
is positive (from the Perron–Frobenius theorem).
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– Second,
(
V ′
1, V2

) → (
V ′
1, V

′
2 = V2 + ∇V ′

1

)
, leading to

I [ρ, j] = − inf
V ′
1

(∫
E
dx j (x).∇V ′

1

)

− inf
V ′′
2

(∫
E
dx

[(
V ′
2 − (ρD)−1 ( j − Jρ

)) ρD

2

(
V ′
2 − (ρD)−1 ( j − Jρ

))])

+
∫

dx
(
j − Jρ

) (ρD)−1

2

(
j − Jρ

)
. (83)

This is proved in Appendix 2.
– Third,

(
V ′
1, V

′
2

) → (
V ′
1, V

′′
2 = V ′

2 − (ρD)−1 ( j − Jρ
))
, finally gives

I [ρ, j] = − inf
V ′
1

(∫
E
dx j (x).∇V ′

1

)

− inf
V ′′
2

(∫
E
dxV ′′

2 (x)
ρD

2
(x)V ′′

2 (x)

)
+
∫

dx
(
j − Jρ

) (ρD)−1

2

(
j − Jρ

)
.

(84)

The first term vanishes with fulfillment of the constraint (41) and is−∞ otherwise, while
the second term vanishes. This last equation gives the final form (52).

5 Stationary Fluctuation Relation at the Level 2.5

We now consider the fluctuating entropy JT , which is obtained from the action functional
(43) setting μ0(dx) = μb

0(dx) = dx . We define the function

JT /T = w(ρe
T ,Ce

T ) and JT /T = w(ρe
T , j eT ), (85)

for pure jumpanddiffusion processes, respectively. From formulas (44) and (45), this function
reads

w(ρ,C) =
∫

dxdyC(x, y) ln

[
W (x, y)

W (y, x)

]
and w(ρ, j) = 2

∫
dx Â0 (x) .D−1 (x) j (x),

(86)
The choice F[0,T ] = δ(ρe

T − ρ,Ce
T − C) for pure jump and F[0,T ] = δ(ρe

T − ρ, j eT − j) for
diffusion processes in (46) gives the finite time relation

{
Pμ0,L(ρe

T = ρ,Ce
T = Ct ) = exp (−Tw(ρ,C))Pμ0,L(ρe

T = ρ,Ce
T = C)

Pμ0,L(ρe
T = ρ, j eT = − j) = exp (−Tw(ρ, j))Pμ0,L(ρe

T = ρ, j eT = C)
, (87)

where we used the general relations ρe
T ◦ R = ρe

T , j
e
T ◦ R = − j eT , and Ce

T ◦ R = (
Ce
T

)t ,
with the index t indicating transposition. With the rate function for the large deviations at the
level 2.5 obtained in the last section, the large time asymptotic of both sides of the previous
relation becomes the stationary fluctuation relation at level 2.5

I (ρ,Ct ) = w [ρ,C] + I (ρ,C) and I (ρ,− j) = w [ρ, j] + I (ρ, j). (88)

From this relation, with the contraction I (w) = minw(ρ,C)=w [I (ρ,C)] ( or I (w) =
minw(ρ, j)=w [I (ρ, j)] for diffusion processes), we obtain the stationary fluctuation relation
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I (−w) = I (w) + w. (89)

This symmetry on the rate function of JT is the GCEM symmetry. This relation can also
be obtained from the transient fluctuation relation (49). We note that currents with such a
symmetry in the rate function that are different from the fluctuating entropy JT have been
found in [1–3]. Investigating, the relation between this symmetric non-entropic currents and
large deviations at the level 2.5 would be interesting.

Acknowledgments We thank Krzysztof Gawedzki for helping in the proof presented in Sect. 4.2.4 and
Hugo Touchette for carefully reading the manuscript.

Appendix 1: Proof of (82)

We prove relation (82) from relation (81). Writing
(
L0,V2 + V1

)
r [V1, V2] (x) = λ [V1, V2] r [V1, V2] (x), (90)

we obtain
V1 − λ [V1, V2] = − (r [V1, V2] (x))

−1 L0,V2 (r [V1, V2]) (x). (91)

With this last equation (81) becomes

I [ρ, j] = sup
V1,V2

(∫
E
dxρ(x) (V1(x) − λ [V1, V2]) + j (x) · V2(x)

)

= sup
V1,V2

(∫
E
dxρ(x)

(− (r [V1, V2] (x))
−1 L0,V2 (r [V1, V2]) (x)

) + j (x) · V2(x)
)

= sup
V ′
1,V2

(∫
E
dxρ(x)

(− exp
(−V ′

1(x)
)
L0,V2

[
exp

(
V ′
1

)]
(x)

) + j (x) · V2(x)
)

,

(92)

where V ′
1 = ln r(V1, V2).

Appendix 2: Proof of (83)

The goal here is to prove relation (83) from (82). From a direct calculation we obtain

exp
(−V ′

1

)
L0,V2

(
exp V ′

1

) = L0,V2+∇V ′
1
[1]. (93)

Relation (82) then becomes

I [ρ, j] = sup
V ′
1,V2

(∫
E
dx

(
j (x) · V2(x) − ρ(x)L0,V2+∇V ′

1
[1](x)

))

= sup
V ′
1,V

′
2

(∫
E
dx

(
− j (x) · ∇V ′

1 + j (x) · V ′
2(x) − ρ(x)L0,V ′

2
[1](x)

))

= − inf
V ′
1

(∫
E
dx j (x) · ∇V ′

1

)
+ sup

V ′
2

(∫
E
dx

(
j (x) · V ′

2(x) − ρ(x)L0,V ′
2
[1](x)

))
.

(94)
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We obtain the final relation (83) with L0,V ′
2
[1] = Â0 · V ′

2 + V ′
2 · D

2 · V ′
2 + ∇ · ( D2 · V ′

2

)
and

the algebraic manipulation

∫
E
dx

(
j (x) · V ′

2(x) − ρ(x)L0,V ′
2
[1](x)

)

=
∫
E
dx

(
j (x) · V ′

2(x) − ρ(x)

(
Â0 · V ′

2 + V ′
2 · D

2
· V ′

2 + ∇ ·
(
D

2
· V ′

2

)))

=
∫
E
dx j (x) · V ′

2(x) −
[
ρ(x)V ′

2 · D
2

· V ′
2 + V ′

2 ·
(
Â0ρ(x) − D

2
· ∇ρ + j

)]

=
∫
E
dx

[
−ρ(x)V ′

2 · D
2

· V ′
2 + V ′

2 · ( j − Jρ
)]

= −
∫
E
dx

[ (
V ′
2 − (ρD)−1 ( j − Jρ

)) ρD

2

(
V ′
2 − (ρD)−1 ( j − Jρ

))

− (
j − Jρ

) (ρD)−1

2

(
j − Jρ

)]
, (95)

which included formal integration by parts.
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