
J Stat Phys (2015) 160:497–511
DOI 10.1007/s10955-015-1265-2

Stochastic Resonance in a Fractional Oscillator
with Random Mass and Random Frequency

Li-Feng Lin1 · Cong Chen1 · Su-Chuan Zhong2 ·
Hui-Qi Wang3

Received: 22 July 2014 / Accepted: 14 April 2015 / Published online: 25 April 2015
© Springer Science+Business Media New York 2015

Abstract For a fractional linear oscillator subjected to two multiplicative dichotomous
noises and a additive fractional Gaussian noise and driven by a periodic signal, we study
the stochastic resonance (SR) in this paper. Using (fractional) Shapiro–Loginov formula
and the Laplace transformation technique, we acquire the exact expression of the first-order
moment of the system’s steady response. Meanwhile, we discuss the evolutions of the out-
put amplitude with frequency of the periodic signal, noise parameters, fractional order, and
friction coefficient. We find that SR in the wide sense existing in this system. Specially, the
evolution of the output amplitude with frequency of the periodic signal presents one-peak
oscillation and two-peak oscillation. Moreover, the friction coefficient can induce stochastic
multi-resonance.

Keywords Stochastic resonance in the wide sense · Fractional oscillator · Dichotomous
noise · Random mass · Random frequency

1 Introduction

The concept of stochastic resonance (SR) was first introduced in 1981 by Benzi et al. to
explain the periodic recurrence of ice ages on Earth [1]. Since then, the phenomenon of SR
has been studied extensively in theory and experiment [2–27,30–35], and has been found in
many fields such as biological system, laser system, optical system, and so on. In the early
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researches, the SR phenomenon is typically found in non-linear dynamical systems driven
by periodic signal and noise [2–4]. Nevertheless, the recent researches show that SR can also
take place in linear systems subjected to periodic signal and multiplicative noise or linear
systems driven just by multiplicative noises [5,6]. In addition, the original understanding
of SR is extended. The conventional SR refers to the phenomenon that the SNR is non-
monotonic with the changes of characteristic parameters of noise (such as the noise intensity
and the correlation rate). However, the SR in the wide sense was introduced by Gitterman,
which means that the non-monotonic behaviors of some functions of system response (such
as the moments, the autocorrelation function, the power spectrum and the SNR) depend on
the changes of characteristic parameters (such as the amplitude and the frequency of input
signal, the noise intensity and the correlation rate, etc.) [7].

As the simplest model to describe the different phenomena in nature, the harmonic oscil-
lators driven by multiplicative noise have attracted great attention [9–21]. A great number of
literatures have investigated the problems where particle dynamic behaviors can be modeled
as a harmonic oscillator with random frequency [9–12], and random damping [13,14]. For
example, these include problems of spin precession in a random external field [15], open
flows of liquids [14], to name a few. In contrast, the harmonic oscillator with random mass
[16–20] has received less attention from researchers. In fact, there are many situations in
chemical and biological solutions in which the viscous medium contains molecules which
are capable of both colliding with the Brownian particle and adhering to it randomly. There-
fore, the mass of Brownian particle in viscous medium is fluctuant. One application of such
a model is a nano-mechanical resonator which randomly absorbs and desorbs molecules
[21]. Recently, Gitterman and Shapiro [16] have examined the stability conditions for the
averaged moment of a harmonic oscillator having a quadratic randommass, and investigated
the SR phenomenon in this kind of linear system. Gitterman [17,18] considered an oscillator
with randommass, which describes a new type of Brownian motion—Brownian motion with
adhesion, and analyzed the stability of the averaged moment as well as the SR phenomenon
in this linear system. Zhong et al. [20] obtained the expressions of the first moment and
the amplitude of the output signal, and investigated the SR phenomenon in an underdamped
linear harmonic oscillator with fluctuating mass and fluctuating frequency under an external
periodic force.

In most of the aforementioned studies, the models which are used to demonstrate SR are
usually restricted to normal diffusion [9,10,13–21]. However, anomalous diffusion processes
can be found in a wide range of areas [22–27], which can be described by the fractional
Langevin equation. Examples of such systems include nuclear fusion reactions [22], amor-
phous semiconductors [23], molecular motor in viscoelastic cytosol [27], and so on. As
mathematical descriptions of anomalous diffusion processes, the fractional oscillators (FO)
[28,29] play a significant role and the characteristic of fractional operators makes it suit-
able for describing those systems with long-range dependence and long-memory. Therefore,
close attention has been paid to exploring SR mechanics in fractional oscillators in recent
years [30–35]. For example, Shen et al. [30] obtained the first-order approximate solutions
and studied the subharmonic resonance of van der Pol (VDP) oscillator with fractional-
order derivative by the averaging method. Mankin et al. [32] investigated the long-time limit
behavior of the positional distribution for an underdamped Brownian particle in a fluctuating
harmonic potential well by using the generalized Langevin equation with a power-law-type
memory kernel. Laas [33] investigated the resonant behavior of a fractional oscillator with
random damping. Yu et al. [35] used the fractional Shapiro–Loginov formula with Laplace
transformation technique to study the resonant behavior of a fractional harmonic oscillator
with fluctuating mass. However, the synergy of the random mass and random frequency
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was still missing in literature. Due to the synergy of random mass and random frequency,
the dynamics of a system can be influenced. Motivated by the aforementioned discussion, a
fractional linear oscillator with randommass and random frequency is proposed in this paper
to investigate the characteristics of Brownian motion in viscous medium.

The paper is organized as follows. Section 2 presents the model of the fractional linear
oscillator with random mass and random frequency, and gives analytical expression of the
first-order moment of the system’s steady response. Section 3 presents the simulation results.
Section 4 concludes.

2 System Model

We consider an under-damped fractional linear oscillator subjected to two multiplicative
dichotomous noises ξ(t) and η(t), an additive internal noise ζ(t), and an external periodic
force, which is described by the generalized Langevin equation (GLE) with m = 1:

[1 + ξ(t)]
d2x(t)

dt2
+ γ

∫ t

0
β(t − t ′)ẋ(t ′)dt ′ + ω2 [1 + η(t)] x(t) = R cos(�t) + ζ(t), (1)

where x(t) is the displacement of a particle, ẍ(t) is the Newton’s acceleration term, γ is the
friction coefficient, ω is the intrinsic frequency of the system, and R and � are the amplitude
and frequency of the periodic signal, respectively.

In many physical and biological environments, viscous medium usually has a power-law
memory that represents the dependence of the viscous force on the velocity history of particle
[36,37]. Therefore, the damping kernel function β(t) is expressed as β(t) = 1

	(1−α)
|t |−α .

According to Caputo’s definition of fractional derivative, Eq. (1) can be written as:

[1 + ξ(t)]
d2x(t)

dt2
+ γ C

0 D
α
t x(t) + ω2 [1 + η(t)] x(t) = R cos(�t) + ζ(t), (2)

and Eq. (2) was named as a fractional Langevin equation.
We investigate this fractional linear oscillator mentioned above, which is described by Eq.

(2). The “external noises”ξ(t) and η(t) are modeled as symmetric dichotomous noises. ξ(t)
is the fluctuation of the mass and takes two values σξ and −σξ . For the sake of 1+ ξ(t) > 0,
σξ < 1 must be hold. η(t) is the fluctuation of the intrinsic frequency ω and takes two values
ση and −ση. The statistical properties of ξ(t) and η(t) are

〈ξ (t)〉 = 0,
〈
ξ (t) ξ

(
t ′
)〉 = σ 2

ξ exp
(−λξ

∣∣t − t ′
∣∣) ,

〈η (t)〉 = 0,
〈
η (t) η

(
t ′
)〉 = σ 2

η exp
(−λη

∣∣t − t ′
∣∣) , (3)

where σ 2
ξ and λξ are the noise intensity and the correlation rate of ξ(t), σ 2

η and λη are the
noise intensity and the correlation rate of η(t), respectively. In addition, ζ(t) represents the
“internal noise” which drives the GLE and share the same origin as the damping force of
system [38]. Therefore, the relationship between the damping kernel function β(t)and the
additive noise ζ(t) can be established via the fluctuation-dissipation theorem [39]:

〈
ζ(t)ζ(t ′)

〉 = κBTγβ(t − t ′) = κBTγ

∣∣t − t ′
∣∣−α

	(1 − α)
, (4)

where κB is the Boltzmann constant and T is the absolute temperature.
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In this paper, ζ(t) is modeled as the fractional Gaussian noise (fGn) [40,41], and satisfies

〈ζ(t)〉 = 0,
〈
ζ(t)ζ(t ′)

〉 = 2DH(2H − 1)
∣∣t − t ′

∣∣2H−2
, (5)

where D is the noise intensity of ζ(t) and H is the Hurst parameter. By comparing Eq. (4)
with Eq. (5), we obtain:

H = (2 − α) /2, D = κBT γ /	 (3 − α) . (6)

We assume that the “external noises” ξ(t), η(t) and the “internal noise”ζ(t) are uncorre-
lated for they have different origins, that is, the three noises satisfy:

〈
ξ(t)ζ(t ′)

〉 = 〈
η(t)ζ(t ′)

〉 = 0. (7)

In addition, we assumed that “external noises” ξ(t) and η(t) are statistically independent,
i.e., 〈

ξ(t)η(t ′)
〉 = 0. (8)

In the next part, we will obtain the exact expression of the first-order moment of the system’s
steady response.

2.1 First-Order Moment of the System Stationary State Response

Average Eq. (2), then we will obtain

d2 〈x(t)〉
dt2

+ 〈ξ(t)ẍ(t)〉 + γ C
0 D

α
t 〈x(t)〉 + ω2 [〈x(t)〉 + 〈η(t)x(t)〉] = R cos(�t). (9)

To obtain the first-order moment of the system stationary state response, we use the well-
known formula for splitting the correlations [17] as bellows:

〈ξ(t)η(t)x(t)〉 = 〈ξ(t)η(t)〉 〈x(t)〉 . (10)

Multiplying both sides of Eq. (2) by ξ(t) and averaging all terms by using Eqs. (3), (8) and
(10), we have

σ 2
ξ

d2 〈x(t)〉
dt2

+ 〈ξ(t)ẍ(t)〉 + γ
〈
ξ(t)C0 D

α
t x(t)

〉
+ ω2 〈ξ(t)x(t)〉 = 0. (11)

Multiplying both sides of Eq. (2) by η(t) and averaging all terms by using Eqs. (3), (8) and
(10), we have

〈η(t)ẍ(t)〉 + γ
〈
η(t)C0 D

α
t x(t)

〉
+ ω2σ 2

η 〈x(t)〉 + ω2 〈η(t)x(t)〉 = 0, (12)

To perform the splitting of correlators, we use the well-known Shapiro–Loginov formula
[42], which reads as〈

ξ
dng

dtn

〉
=

(
d

dt
+ λξ

)n

〈ξg〉 ,

〈
η
dng

dtn

〉
=

(
d

dt
+ λη

)n

〈ηg〉 . (13)

At the same time, applying the fractional Shapiro–Loginov formula [35] to
〈
ξ(t)C0 D

α
t x(t)

〉
and

〈
η(t)C0 D

α
t x(t)

〉
, we have

〈
ξ(t)C0 D

α
t x(t)

〉
= e−λξ t C

0 D
α
t (〈ξ(t)x(t)〉 eλξ t ),

〈
η(t)C0 D

α
t x(t)

〉
= e−λη t C

0 D
α
t (〈η(t)x(t)〉 eλη t ). (14)
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Inserting Eqs. (13) and (14) into Eqs. (9), (11) and (12), we obtain the fractional differential
equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
d2

dt2 + γ C
0 D

α
t + ω2

)
〈x(t)〉 +

(
d
dt + λξ

)2 〈ξ(t)x(t)〉 + ω2 〈η(t)x(t)〉 = R cos�t,

(
σ 2

ξ
d2

dt2
)

〈x(t)〉 +
[(

d
dt + λξ

)2 + ω2
]

〈ξ(t)x(t)〉 + γ e−λξ t C
0 D

α
t

(〈ξ(t)x(t)〉 eλξ t
) = 0,

(
ω2σ 2

η

)
〈x(t)〉 +

[(
d
dt + λη

)2 + ω2
]

〈η(t)x(t)〉 + γ e−λη t C
0 D

α
t

(〈η(t)x(t)〉 eλη t
) = 0.

(15)
To solve the Eqs. (15) with three variables x1 = 〈x(t)〉, x2 = 〈ξ(t)x(t)〉 and x3 = 〈η(t)x(t)〉,
we use the Laplace transformation technique and obtain [43]:

⎧⎨
⎩
d11X1 (s) + d12X2 (s) + d13X3 (s) = Rs

s2+�2 + d14,
d21X1 (s) + d22X2 (s) + d23X3 (s) = d24,
d31X1 (s) + d32X2 (s) + d33X3 (s) = d34,

(16)

where Xi (s) = L {xi (t)} �= ∫ +∞
0 xi (t)e−st dt , i = 1, 2, 3,

d11 = s2 + γ sα + ω2, d12 = (s + λξ )
2, d13 = ω2,

d14 = (s + γ sα−1)x1(0) + ẋ1(0) + (s + 2λξ )x2(0) + ẋ2(0),
d21 = σ 2

ξ s
2, d22 = (s + λξ )

2 + γ (s + λξ )
α + ω2, d23 = 0,

d24 = σ 2
ξ sx1(0) + σ 2

ξ ẋ1(0) + [
s + 2λξ + γ (s + λξ )

α−1
]
x2(0) + ẋ2(0),

d31 = ω2σ 2
η , d32 = 0, d33 = (s + λη)

2 + γ (s + λη)
α + ω2,

d34 = [
s + 2λη + γ (s + λη)

α−1
]
x3(0) + ẋ3(0),

and x1(0), x2(0) and x3(0) are the initial conditions.
The solutions of Eqs. (16) can be represented as

⎧⎪⎪⎨
⎪⎪⎩

X1 (s) = d22d33
d11d22d33−d12d21d33−d13d22d31

Rs
s2+�2 + d14d22d33−d12d24d33−d13d22d34

d11d22d33−d12d21d33−d13d22d31
,

X2 (s) = − d21d33
d11d22d33−d12d21d33−d13d22d31

Rs
s2+�2 + d13(d21d34−d24d31)+d33(d11d24−d14d21)

d11d22d33−d12d21d33−d13d22d31
,

X3 (s) = − d22d31
d11d22d33−d12d21d33−d13d22d31

Rs
s2+�2 + d31(d12d24−d22d14)+d34(d11d22−d12d21)

d11d22d33−d12d21d33−d13d22d31
.

(17)

Applying the inverse Laplace transformation technique, we obtain

xi (t) = R
∫ t

0
hi0

(
t − t ′

)
cos

(
�t ′

)
dt ′ +

3∑
k=1

hik (t)xk (0) , i = 1, 2, 3, (18)

where Hik(s) are the Laplace transforms of hik(t), k = 0, 1, 2, 3, and can be determined by
Eq. (17). Specifically, H10(s) is the transfer function of system, which is written as:

H10(s) = d22d33
d11d22d33 − d13d22d31 − d12d21d33

. (19)

In the long-time regime t → ∞, the functions hik(t), k = 1, 2, 3 tend to zero only if

σ 2
η <

(
σ 2

η

)
cr

= 1 + λ2η + γ λα
η

ω2 , λη > 0. (20)
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In this paper, we assume that the condition is satisfied. Thus, in the case of the long-time
limit t → ∞, the influence of initial conditions will vanish, and the asymptotic expression
of 〈x(t)〉 is written in the following forms:

〈x(t)〉as = 〈x(t)〉 |t→∞ = R
∫ t

0
h10(t − t ′) cos(�t ′)dt ′. (21)

Using the linear response theory, Eq. (21) can be further expressed as [43]:

〈x(t)〉as = 〈x(t)〉 |t→∞ = A cos(�t + ϕ), (22)

where A and ϕ are the amplitude and the phase shift of the system stationary state response
〈x(t)〉as , respectively, and they satisfy:

A = R |H10( j�)| , ϕ = arg(H10( j�)). (23)

Using Eqs. (16) and (19), one can obtain that

A = R

√
f 27 + f 28
f 29 + f 210

, (24)

ϕ = arctan

(
f8 f9 − f7 f10
f7 f9 + f8 f10

)
, (25)

where

f1 = ω2 − �2 + γ�α cos
(π

2
α
)

, f2 = γ�α sin
(π

2
α
)

,

f3 = ω2 − �2 + λ2ξ + γ bα
1 cos (αθ1) , f4 = 2�λξ + γ bα

1 sin (αθ1) ,

f5 = ω2 − �2 + λ2η + γ bα
2 cos (αθ2) , f6 = 2�λη + γ bα

2 sin (αθ2) ,

f7 = f3 f5 − f4 f6, f8 = f4 f5 + f3 f6,

f9 = [ f5 ( f1 f3 − f2 f4) − f6 ( f2 f3 + f1 f4)] − ω4σ 2
η f3 + �2σ 2

ξ

[
f5

(
λ2ξ − �2

)
− 2 f6�λξ

]
,

f10 = [ f5 ( f2 f3 + f1 f4) + f6 ( f1 f3 − f2 f4)] − ω4σ 2
η f4 + �2σ 2

ξ

[
f6

(
λ2ξ − �2

)
+ 2 f5�λξ

]
,

b1 =
√

�2 + λ2ξ , θ1 = arctan

(
�

λξ

)
,

b2 =
√

�2 + λ2η, θ2 = arctan

(
�

λη

)
.

3 Numerical Discussion

Now we do the numerical work on the above analytical expression in Eq. (24), which show
the behaviors of the output amplitude A for any combination of the parameters α, �, γ , σ 2

ξ ,

λξ , σ 2
η , λη.

In Fig. 1, we plot the curves of the output amplitude A each as a function of the noise
intensity σ 2

ξ with different values of parameters (includingα,�, γ , λξ , σ 2
η and λη). Moreover,

from the equation
d(A)

d(σ 2
ξ )

= 0, (26)
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the position of the peak of the curve A(σ 2
ξ ) is determined by

σ 2
ξ = −

[
f1 f7− f2 f8−ω4σ 2

η f3
] [

f5(λ2ξ −�2)−2 f6�λξ

]
+

[
f2 f7+ f1 f8−ω4σ 2

η f4
] [

f6(λ2ξ − �2) + 2 f5�λξ

]

�2
[
f5(λ2ξ − �2) − 2 f6�λξ

]2 + �2
[
f6(λ2ξ − �2) + 2 f5�λξ

]2 .

(27)

As shown in Fig. 1, each curve shows that A attains a maximum value with increasing
σ 2

ξ , indicating that the SR in the wide sense takes place. Under the synergy between external
noises, internal noise and periodic signal, the power of multiplicative noise transforms into
the power of periodic signal, therefore, it enhances the output amplitude. Figure 1a shows that
with the increase of the fractional order α, the maximum of A decreases, and the resonance
peak gets flat. Figure 1a also shows that the position of the peak shifts toward the left with the
increase of α for α < 0.6, however, the position of the peak shifts toward the right slightly
with the increase of α in the range α > 0.6. From Eq. (27), the positions of resonance peaks
can be determined. The position of the peaks of Fig. 1a are σ 2

ξ = 0.224, 0.2078, 0.193,
0.1699, 0.1697, 0.1884 for α = 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, respectively. In Fig. 1b, with the
increase of the frequency of periodic signal �, the maximum of A increases and the position
of the peak shifts toward the right. From Eq. (27), we can obtain the position of the peaks of
Fig. 1b,which areσ 2

ξ =0.0705, 0.1739, 0.2717, 0.4351 for� =1.7, 1.9, 2.1, 2.5, respectively.

In Fig. 1c, with the increase of the noise intensity σ 2
η , the maximum of A decreases and the

position of the peak shifts toward the left slightly. From Eq. (27), we can obtain the position
of the peaks of Fig. 1c, which are σ 2

ξ = 0.2343, 0.2308, 0.2274, 0.224 for σ 2
η = 0.1, 0.4,

0.7, 1, respectively. In Fig. 1d, with the increase of friction coefficient γ , the maximum of
A decreases and the position of the peak shifts toward the left obviously. From Eq. (27), we
can obtain the position of the peaks of Fig. 1d, which are σ 2

ξ = 0.368, 0.224, 0.1113, 0.0298
for γ = 0.5, 1, 1.5, 2, respectively. In Fig. 1e, with the increase of λξ in the range λξ < 0.75,
the maximum of A decreases and the position of the peak shifts toward the right slightly,
however, with the increase of λξ in the range λξ > 0.75, the maximum of A increases and
the position of the peak shifts toward the right obviously. From Eq. (27), we can obtain the
position of the peaks of Fig. 1e, which are σ 2

ξ = 0.224, 0.2404, 0.28, 0.3612, 0.4028, 0.4348
for λξ = 0.1, 0.4, 0.7, 1.2, 1.5, 1.8, respectively. In Fig. 1f, with the increase of λη in the
range λη < 0.6, the maximum of A decreases and the position of the resonance peak shifts
toward the right, however, with the increase of λη in the range λη > 0.6, the maximum of A
increases and the position of the resonance peak shifts toward the right. From Eq. (27), we
can obtain the position of the peaks of Fig. 1f, which are σ 2

ξ = 0.1734, 0.194, 0.2128, 0.224,
0.2328, 0.2365 for λη = 0.1, 0.4, 0.7, 1, 1.5, 2, respectively.

In Fig. 2, we present the curves of the output amplitude A versus noise intensity σ 2
η with

different values of parameters (including α, �, γ , σ 2
ξ , λξ and λη).

As shown in Fig. 2, each curve shows that A attains a maximum value with increasing σ 2
η ,

indicating that the SR in the wide sense occurs. In Fig. 2a, with the increase of α for α < 0.35,
the maximum of A decreases, the resonance peak gets flat and the position of the peak shifts
toward the left. In addition, the resonance peak vanishes for α > 0.35. In Fig. 2b, with the
increase of � in the range 0.7 < � < 2, the maximum of A increases, the resonance peak
gets sharp slightly and the position of the peak shifts toward the left, and there is no resonance
peak for about � < 0.7 and 2 < �. In Fig. 2c, with the increase of γ , the maximum of A
decreases, the resonance peak gets flat and the position of the peak shifts toward the right.
In Fig. 2d, with the increase of σ 2

ξ , the maximum of A decreases and the position of the
peak shifts toward the left slightly. In Fig. 2e, with the increase of λξ , the maximum of A
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Fig. 1 SR in the wide sense for the response function A versus the parameter σ 2
ξ . Other parameter values:

a R = 1, ω = 1, � = 2, γ = 1, λξ = 0.1, σ 2
η = 1, λη = 1; b R = 1, ω = 1, γ = 1, λξ = 0.1, σ 2

η =
1, λη = 1, α = 0.1; c R = 1, ω = 1, � = 2, γ = 1, λξ = 0.1, λη = 1, α = 0.1; d R = 1, ω = 1, � =
2, λξ = 0.1, σ 2

η = 1, λη = 1, α = 0.1; e R = 1, ω = 1, � = 2, γ = 1, σ 2
η = 1, λη = 1, α = 0.1;

f R = 1, ω = 1, � = 2, γ = 1, λξ = 0.1, σ 2
η = 1, α = 0.1

increases and the position of the peak shifts toward the right slightly. Moreover, there exists
a critical noise intensity (σ 2

η )c. When σ 2
η < (σ 2

η )c, A gradually lowers with the increase of
λξ ; when σ 2

η > (σ 2
η )c, A gradually increases with the increase of λξ . In Fig. 2f, with the

increase of λη, the maximum of A increases and the position of the peak shifts toward the
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Fig. 2 SR in the wide sense for the response function A versus the parameter σ 2
η . Other parameter values:

a R = 1, ω = 1, � = 1, γ = 1, σ 2
ξ = 0.1, λξ = 0.1, λη = 0.5; b R = 1, ω = 1, γ = 1, σ 2

ξ = 0.1, λξ =
0.1, λη = 0.4, α = 0.1; c R = 1, ω = 2, � = 1, σ 2

ξ = 0.1, λξ = 0.1, λη = 2, α = 0.5; d R = 1, ω =
2, � = 1, γ = 0.1, λξ = 1, λη = 2, α = 0.2; e R = 1, ω = 1,� = 1, γ = 1, σ 2

ξ = 0.1, λη = 0.5, α = 0.1;

f R = 1, ω = 1, � = 1, γ = 1, σ 2
ξ = 0.1, λξ = 0.1, α = 0.2

right obviously. Moreover, there exists a critical noise intensity (σ 2
η )c. When σ 2

η < (σ 2
η )c, A

gradually lowers with the increase of λη; when σ 2
η > (σ 2

η )c, A gradually increases with the
increase of λη. From the equation
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d(A)

d(σ 2
η )

= 0, (28)

we can determine the position of the resonance peaks in Fig. 2.
Figure 3 shows the curves of the output amplitude A versus the frequency of periodic

signal � for different values of parameters (including α, γ , σ 2
ξ , σ

2
η , λξ and λη).

As shown in Fig. 3, all the curves show that A attains a maximum value with increasing
�, indicating that SR in the wide sense occurs. Figure 3a shows that there are two peaks in
the response A(�) for α < 0.4, where the resonance and the inhibition both exist at the same
time. Figure 3a also shows that there exists one peak in the curve A(�) for 0.4 < α < 0.6, and
there is no resonance peak for about 0.7 < α. In Fig. 3b, with the increase of γ , the maximum
of A decreases, the resonance peak gets flat and the position of the peak shifts toward the
right. In Fig. 3c, there are two peaks in the response A(�), the left peak decreases and the
position of the left peak shifts toward the left slightly with the increase of σ 2

ξ . Moreover,
the right peak does not change obviously, and the position of the right peak shifts toward
the right with the increase of σ 2

ξ . Figure 3d shows that there are two peaks in the response

A(�), and the two peaks decreases slightly with the increase of σ 2
η . Figure 3d also shows

that the position of the left peak shifts toward the left slightly, however, the right peak shifts
toward the right with the increase of σ 2

η . Moreover, there exists a critical frequency�c. When
� < �c, A gradually increases with the increase of σ 2

η ; when � > �c, A gradually lowers
with the increase of σ 2

η . Figure 3e shows that there are two peaks in the response A(�) for
λξ < 0.25, and there exists one peak in the curve A(�) for 0.25 < λξ . Figure 3f shows that
there are two peaks in the response A(�) for λη < 0.4, and there exists one peak in the curve
A(�) for 0.4 < λη. It is worth emphasizing that the peak in the one-peak resonance and the
valley in the two-peak resonance appear at the same position.

Specially, as shown in Fig. 3, there is more than one peak in each curve of A versus �,
i.e., stochastic multi-resonance (SMR) [44,45] phenomenon occurs, which is not observed
in conventional linear system.

From the equation
dA

d�
= 0, (29)

we can determine the position of the resonance peaks in Fig. 3.
Figure 4 shows the curves of the output amplitude A versus the fractional order α for

different values of parameters (including σ 2
ξ , σ 2

η , λξ , λη and γ ).
As shown in Fig. 4, each curve shows that A attains a maximum value with increasing α,

indicating that SR in the wide sense appears. In Fig. 4a, with the increase of σ 2
ξ for σ 2

ξ < 0.2,
the maximum of A increases, the resonance peak gets sharp and the position of the peak
shifts toward the left slightly. The resonance peak vanishes for σ 2

ξ > 0.2. In Fig. 4b, with

the increase of σ 2
η for σ 2

η < 0.7, the maximum of A increases, and the position of the peak
shifts toward the left slightly. The resonance peak vanishes for σ 2

η > 0.7. In Fig. 4c, with
the increase of λξ for λξ < 0.2, the maximum of A decreases, and the position of the peak
shifts toward the left slightly. The resonance peak vanishes for λξ > 0.2. In Fig. 4d, with the
increase of λη, the maximum of A decreases and the position of the peak shifts toward the
right slightly. In Fig. 4e, with the increase of γ for γ < 1.1, the maximum of A increases, the
resonance peak gets sharp slightly and the position of the peak shifts toward the left slightly.
The resonance peak vanishes for γ > 1.1. From the equation

dA

dα
= 0, (30)
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Fig. 3 SR in thewide sense for the response function A versus the parameter�. Other parameter values: a R =
1, ω = 1, γ = 1, σ 2

ξ = 0.1, λξ = 0.1, σ 2
η = 1, λη = 1; b R = 1, ω = 1, σ 2

ξ = 0.1, λξ = 0.5, σ 2
η = 0.5,

λη = 1, α = 0.2; c R = 1, ω = 1, γ = 1, λξ = 0.1, σ 2
η = 1, λη = 1, α = 0.2; d R = 1, ω = 1, γ = 1,

σ 2
ξ = 0.1, λξ = 0.1, λη = 1, α = 0.2; e R = 1, ω = 1, γ = 1, σ 2

ξ = 0.1, σ 2
η = 1, λη = 1, α = 0.2; f

R = 1, ω = 1, γ = 1, σ 2
ξ = 0.1, λξ = 1, σ 2

η = 0.5, α = 0.2

we can determine the position of the resonance peaks in Fig. 4.
Figure 5 shows the curves of the output amplitude A versus the friction coefficient γ for

different values of parameters (including α, �, σ 2
ξ , σ 2

η and λξ ).
As shown in Fig. 5, each curve shows that A attains a maximum value with increasing γ ,

indicating that SR in the wide sense appears. In Fig.5a, there are two peaks in the response
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Fig. 4 SR in the wide sense for the response function A versus the parameter α. Other parameter values:
a R = 1, ω = 1,� = 2, γ = 0.9, λξ = 0.1, σ 2

η = 0.1, λη = 0.1; b R = 1, ω = 1, � = 2, γ = 0.9,

σ 2
ξ = 0.15, λξ = 0.1, λη = 0.1; c R = 1, ω = 1,� = 2, γ = 0.9, σ 2

ξ = 0.15, σ 2
η = 0.2, λη = 0.1;

d R = 1, ω = 1,� = 2, γ = 0.9, σ 2
ξ = 0.15, σ 2

η = 0.2, λξ = 0.1; e R = 1, ω = 1, � = 2, σ 2
ξ = 0.15,

λξ = 0.1, σ 2
η = 0.2, λη = 0.1

A(γ ) for α < 0.25, and there is one peak for 0.25 < α. Figure 5a also shows that the
maximum of A decreases, the resonance peak gets flat and the position of the peak shifts
toward the left with the increase of α. Figure 5b shows that there are two peaks in the response
A(γ ), and the two resonance peaks decrease and get flat, and their positions shift toward the
right obviously with the increase of �. Figure 5c shows that there are two peaks in the
response A(γ ), the left peak increases sharply and the position of the left peak shifts toward
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Fig. 5 SR in the wide sense for the response function A versus the parameter γ . Other parameter values: a
R = 1, ω = 1, � = 2, σ 2

ξ = 0.1, λξ = 0.1, σ 2
η = 0.1, λη = 0.1; b R = 1, ω = 1, α = 0.1, σ 2

ξ = 0.1,

λξ = 0.1, σ 2
η = 0.1, λη = 0.1; c R = 1, ω = 1, � = 2, α = 0.1, λξ = 0.1, σ 2

η = 0.1, λη = 0.1;

d R = 1, ω = 1, � = 2, α = 0.1, σ 2
ξ = 0.1, λξ =0.1, λη =0.1; e R = 1, ω = 1,� = 2, α=0.1, σ 2
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σ 2
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the left slightly with the increase of σ 2
ξ . However, the right peak decreases and the right peak

shifts toward the right with the increase of σ 2
ξ . Figure 5d shows that there are two peaks in

the response A(γ ), the left peak increases and the position of the left peak shifts toward the
left slightly with the increase of σ 2

η . However, the right peak decreases and the right peak
shifts toward the right with the increase of σ 2

η . Figure 5e shows that there are two peaks
in the response A(γ ) for λξ < 0.45, and the two peaks decreases with the increase of λξ .
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Moreover, the position of the left peak shifts toward the right slightly and the position of the
right peak shifts toward the left slightly with the increase of λξ for λξ < 0.45. Figure 5e
also shows that there is one peak in the response A(γ ) for λξ > 0.45, the maximum of A
increases, the resonance peak gets sharp slightly, and the position of the peak shifts toward
the right slightly with the increase of λξ . From the equation

dA

dγ
= 0, (31)

we can calculate the position of the resonance peak in Fig. 5.

4 Conclusions

In this paper, we investigate the phenomenon of stochastic resonance in a fractional linear
system subjected to two multiplicative dichotomous noises and a fractional Gaussian noise
and driven by a periodic signal, since randommass and random frequency affect the dynamics
of the particles at the same time.We detect SR in the wide sense existing in this linear system.
Specially, the evolution of the output amplitude A with � presents one-peak oscillation
and two-peak oscillation. Moreover, the friction coefficient γ can induce stochastic multi-
resonance (SMR).

In conclusion, with the proper adjustments of the parameters mentioned above, we can
effectively control the stochastic resonance of this fractional linear system within a certain
range. In addition, we expect that the model of a fractional oscillator with a random mass
and random frequency will find many application in modern science.
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