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Abstract We study open quantum random walks (OQRWs) for which the underlying graph
is a lattice, and the generators of the walk are homogeneous in space. Using the results
recently obtained in Carbone and Pautrat (Ann Henri Poincaré, 2015), we study the quantum
trajectory associated with the OQRW, which is described by a position process and a state
process. We obtain a central limit theorem and a large deviation principle for the position
process. We study in detail the case of homogeneous OQRWs on the lattice Zd , with internal
space h = C

2.

Keywords Quantum randomwalks ·Open quantum randomwalks ·Central limit theorem ·
Large deviations · Markov chains · Quantum dynamical semigroups

1 Introduction

Open quantum random walks (OQRWs) were defined by Attal et al. in [2]. They seem to be
a good quantum analog of Markov chains, and, as such, are a very promising tool to model
many physical problems (see [2,5] for an in-depth description of OQRWs, and [22,24,27]
for applications and extensions).

Let us briefly describe open quantum random walks in a simple (if not the most general)
situation. Our main object of interest is a random process (X p, ρp)p∈N where X p belongs to
a countable set V , and ρp is a positive, trace-class operator on a separable Hilbert space h. We
view X p as describing the position of a particle, and ρp as describing its (internal) quantum
state. The evolution of (X p, ρp)p∈N is determined by a family (Li, j )i, j∈V of operators on h,
satisfying the condition
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∑

i∈V
L∗
i, j Li, j = Id for all j ∈ V

in the sense that, conditionally on (X p, ρp) = ( j, η), the law of (X p+1, ρp+1) is given by

(X p+1, ρp+1) =
(
i,

Li, j η L∗
i, j

Tr(Li, j η L∗
i, j )

)
with probabiliy Tr(Li, j η L∗

i, j ).

The operators (Li, j )i, j∈V therefore entirely encode the transitions of (X p, ρp). Note that
what we call open quantum random walk itself is an operator determined by the (Li, j )i, j∈V
and acting on a space of trace class operators, but we don’t need to mention it for the moment.

In the paper [5], we described the notions of irreducibility and aperiodicity for OQRWs,
and derived, in particular, convergence properties of the process (X p, ρp)p∈N for irreducible,
or irreducible and aperiodic, OQRWs. In the same way as for classical Markov chains, those
convergence results assumed the existence of an invariant state.

In the present paper we focus on space-homogeneous OQRWs on a lattice, i.e. on the
case where V is an additive group and Li, j depends only on j − i . These OQRWs attracted
special attention in many recent papers (see, for instance [1,3,16,21,28,30]). As we have
shown in [5], they do not have an invariant state so that most of the convergence results from
[5] are useless. We will show, however, that there exists an auxiliary map which allows to
characterize many properties of the homogeneous open quantum randomwalk.With the help
of the Perron-Frobenius theorem described in [5], we can obtain a central limit theorem and
a large deviation principle for the position process (X p)p∈N.

The immediate physical application of our results is quantummeasurements, or more pre-
cisely, quantum repeated indirectmeasurements. In that framework, a given systemS interacts
sequentially with external systems Rp , p = 1, 2, . . . representing measuring devices, and
after each interaction, a measurement is done onRp . The connection with the present frame-
work is that the sequence of measurement outcomes is given by the sequence (Mp)p∈N where
Mp = X p − X p−1, and the sequence (ρp)p∈N represents the state of the physical system S
after the first p measurements (for more details on repeated indirect measurement or “Kraus
measurements”, we refer the reader to [18,19]; for the connection with OQRWs, see [1]).
Our results immediately give a law of large numbers, a central limit theorem and a large
deviation principle for the statistics of the measurements (Mp)p∈N.

Wewill pay specific attention to the application of our results to the case where the internal
state space of the particle (what is sometimes called the coin space) is two-dimensional. This
will allow us to illustrate the full structure of space-homogeneous OQRWs, and in particular
the notions of irreducibility, period, as well as the Baumgartner–Narnhofer decompositions
(see [4]) discussed previously in [5].

Of the above cited articles, some give a central limit theorem for the position (X p)p∈N
associated with an OQRWonZd . Themost general result so far is given in [1], and its proof is
based on a central limit theorem formartingales and theKümmerer-Maassen ergodic theorem
(see [20]). Our proof is based on a completely different strategy, using a computation of the
Laplace transform, and uses an irreducibility assumption which does not appear in existing
central limit results.Wewill show, however, that the irreducibility assumption can be dropped
in some situations, and that our central limit theorem contains the result of [1], but yields
more general formulas.

In addition, we can prove a large deviation principle for the position process (X p)p
associated with an homogeneous OQRW on a lattice. The technique we used, based on the
application of the Perron-Frobenius theorem to a suitable deformed positive map, goes back
(to the best of our knowledge) to [13]. None of the articles cited above proves a large deviation

123



Homogeneous Open Quantum Random Walks on a Lattice 1127

principle. As we were completing this paper, however, we learnt of the recent article [29],
which proves a similar result. We comment on this in Sect. 5.

The structure of the present paper is the following: in Sect. 2 we recall the main definitions
of open quantum randomwalks specialized to the case where the underlying graph is a lattice
in R

d , and define the auxiliary map of an open quantum random walk. In Sect. 3 we recall
standard results about irreducibility and period of completely positive maps. In Sect. 4 we
characterize irreducibility and period of the open quantum random walk and its auxiliary
map. In Sect. 5 we state our main results: the central limit theorem and the large deviation
principle. In Sect. 6 we specialize to the situation where the underlying graph is Zd and the
internal state space is C2, and characterize each situation in terms of the transition operators.
In Sect. 7 we study explicit examples.

2 Homogeneous Open Quantum RandomWalks

In this section we recall basic results and notations about open quantum random walks. We
essentially follow the notations of [5], but specialize to the space-homogeneous case. For a
more detailed exposition we refer the reader to [2].

We consider a separable Hilbert space h and a locally finite lattice V ⊂ R
d , which we

assume contains 0, and is positively generated by a set S �= {0}, in the sense that any v in V
can be written as s1 + . . . + sn with s1, . . . , sn ∈ S. In particular, V is an infinite subgroup
of Rd . The canonical example is V = Z

d , with S = {±v1, . . . ,±vd} where (v1, . . . , vd) is
the canonical basis of Rd .

We denote by H the Hilbert space H = h ⊗ C
V . We view H as describing the degrees

of freedom of a particle constrained to move on V : the “V -component” describes the spatial
degrees of freedom (the position of the particle) while h describes the internal degrees of
freedom of the particle. We describe the physical state of the system by a positive, trace-class
operator ρ on H with trace one. Such an operator we will call a state.

We consider a map on the space I1(H) of trace-class operators, given by

M : ρ �→
∑

j∈V

∑

s∈S
(Ls ⊗ | j + s〉〈 j |) ρ

(
L∗
s ⊗ | j〉〈 j + s|) (2.1)

where the Ls , s ∈ S, are operators acting on h satisfying
∑

s∈S
L∗
s Ls = Id. (2.2)

The Ls are thought of as encoding both the probability of a transition by the vector s, and the
effect of that transition on the internal degrees of freedom. Equation (2.2) therefore encodes
the “stochasticity” of the transitions.

Remark 2.1 It is worth underlining that the transition operators Li j , mentioned in the intro-
duction, depend here only on i − j and are therefore replaced by the operators Ls , s = i − j .
This is why we call the present open quantum random walks homogeneous.

Remark 2.2 The map M defined above is a special case of a quantum Markov chain, as
introduced by Gudder in [12]. See [5, Sect. 8] for more comments.

We associate with the OQRW M the auxiliary map L on the space I1(h) of trace-class
operators on h defined by

L : ρ �→
∑

s∈S
Ls ρ L∗

s . (2.3)
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1128 R. Carbone, Y. Pautrat

Both (2.1) and (2.3) define trace-preserving (TP) maps, which are completely positive (CP),
i.e. for any n in N∗, the extensionsM⊗ Id and L⊗ Id to I1(H)⊗B(Cn) and I1(h)⊗B(Cn),
respectively, are positive. In particular, suchmaps transforms states into states. A completely-
positive, trace-preserving map will be called a CP-TP map. We will call a mapM, as defined
by (2.1), an open quantum random walk, or OQRW; and we will call L the auxiliary map
of M. To be consistent with Remark 2.1, we should call M an homogeneous OQRW, but
since only such OQRWs will be considered, we drop the adjective “homogeneous” in the
rest of this paper.

Let us recall that the topological dual I1(H)∗ can be identified with B(H) through the
duality

(ρ, X) �→ Tr(ρ X).

For this reason we will make no distinction between ρ ∈ I1(H) and the map B(H) � X �→
Tr(ρX). Note however that, strictly speaking, we should call such a map a normal state.

Remark 2.3 When � = M (respectively � = L), the adjoint map �∗ is a positive, unital
(i.e. �∗(Id) = Id) map on B(H) (respectively B(h)), and by the Russo-Dye theorem ([25])
one has ‖�∗‖ = ‖�∗(Id)‖where the latter is the operator norm onB(H) (respectivelyB(h)).
This implies that trace-preserving positive maps have norm one, and in particular ‖M‖ = 1
and ‖L‖ = 1.

Remark 2.4 As noted in [2], classicalMarkov chains can bewritten as open quantum random
walks. In the present case, if we have a subgroup V of Rd generated by a set S, and a Markov
chain on V with translation-invariant transition matrix P = (ti, j )i, j∈V induced by the law
(ts)s∈S on S, then taking h = C and Ls = √

ts induces the Markov chain with transition
matrix P . This OQRW is called the minimal OQRW realization of the Markov chain (see [5]
for a discussion of minimal and non-minimal OQRW realizations). Note that in this case the
reduced map L is trivial: L = 1.

A crucial remark is that, for any initial state ρ on H, which is therefore of the form

ρ =
∑

i, j∈V
ρ(i, j) ⊗ |i〉〈 j |,

the evolved state M(ρ) is of the form

M(ρ) =
∑

i∈V
M(ρ, i) ⊗ |i〉〈i |, where M(ρ, i) =

∑

s∈S
Ls ρ(i − s, i − s) L∗

s . (2.4)

Each M(ρ, i) is a positive, trace-class operator on h and
∑

i∈V TrM(ρ, i) = 1. We notice
that off-diagonal terms ρ(i, j), for i �= j , do not appear inM(ρ), andM(ρ) itself is diagonal.
For this reason, from nowon, wewill only consider states of the form ρ =∑i∈V ρ(i)⊗|i〉〈i |.
Equation (2.4) remains valid, replacing ρ(i, i) by ρ(i).

We now describe the (classical) processes of interest associated with M. We begin with
an informal discussion of these processes and their laws, and will only define the underlying
probability space at the end of this section.We start from a state of the form ρ =∑i∈V ρ(i)⊗
|i〉〈i |. We evolve ρ for a time p, obtaining the stateMp(ρ) which, according to the previous
discussion, is of the form

Mp(ρ) =
∑

i∈V
Mp(ρ, i) ⊗ |i〉〈i |.
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Homogeneous Open Quantum Random Walks on a Lattice 1129

We then make a measurement of the position observable. According to standard rules of
quantum measurement, we obtain the result i ∈ V with probability TrMp(ρ, i). Therefore,
the result of this measurement is a random variable Qp , with law P(Qp = i) = TrMp(ρ, i)
for i ∈ V . In addition, if the position Qp = i ∈ V is observed, then the state is transformed

to Mp(ρ,i)
TrMp(ρ,i) . This process (Qp,

Mp(ρ,Qp)

TrMp(ρ,Qp)
) we call the process “without measurement”,

to emphasize the fact that virtually only one measurement is done, at time p. Notice that, in
practice, two values of this process at times p < p′ cannot be considered simultaneously as
the measure at time p perturbs the system, and therefore subsequent measurements.

Now assume that we make a measurement at every time p ∈ N, applying the evolution
by M between two measurements. Again assume that we start from a state ρ of the form∑

i∈V ρ(i) ⊗ |i〉〈i |. Suppose that at time p, the position was measured at X p = j and the
state (after the measurement) is ρp ⊗ | j〉〈 j |. Then, after the evolution, the state becomes

M(ρp ⊗ | j〉〈 j |) =
∑

s∈S
Ls ρp L

∗
s ⊗ | j + s〉〈 j + s|,

so that a measurement at time p + 1 gives a position X p+1 = j + s with probability
Tr Ls ρp L∗

s , and then the state becomes

ρp+1 ⊗ | j + s〉〈 j + s| with ρp+1 = Ls ρp L∗
s

Tr Ls ρp L∗
s
.

The sequence of random variables (X p, ρp) is therefore a Markov process with transitions
defined by

P

(
(X p+1, ρp+1) =

(
j + s,

Ls η L∗
s

Tr(LsηL∗
s )

) ∣∣∣(X p, ρp) = ( j, η)
)

= Tr(Ls η L∗
s ), (2.5)

for any j ∈ V , s ∈ S and η ∈ I1(h) and initial law

P

(
(X0, ρ0) =

(
i,

ρ(i)

Trρ(i)

))
= Trρ(i).

Note that the sequence X0 = i0, …, X p = i p is observed with probability

P(X0 = i0, . . . , X p = i p) = Tr
(
Lsp . . . Ls1 ρ(i0) L

∗
s1 . . . L∗

sp

)
(2.6)

if i1 − i0 = s1,…i p − i p−1 = sp belong to S, and zero otherwise. In addition, this sequence
completely determines the state ρp:

ρp = Lsp . . . Ls1 ρ(i1) L∗
s1 . . . L∗

sp

Tr Lsp . . . Ls0 ρ(i1) L∗
s0 . . . L∗

sp

. (2.7)

As emphasized in [2], this implies that, for every p, the laws of X p and Qp are the same, i.e.

P(X p = i) = P(Qp = i) ∀i ∈ V .

We now construct a probability space to carry the processes just described. Fixing an open
quantum random walk M on V defined by operators (Ls)s∈S we define the set � = VN,
equipped with the σ -field generated by cylinder sets. An element of � is denoted by
ω = (ωp)p∈N and we denote by (X p)p∈N the coordinate maps. For any state ρ on H of

the form ρ = ∑
i∈V ρ(i) ⊗ |i〉〈i |, we define a probability P

(p)
ρ on V p+1 by formula (2.6).

One easily shows, using the stochasticity property (2.2), that the family (P
(p)
ρ )p is consistent,
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1130 R. Carbone, Y. Pautrat

and can therefore be extended uniquely to a probability Pρ on�.We denote by ρp the random
variable

ρp =
LX p−X p−1 . . . LX1−X0 ρ(X0) L∗

X1−X0
. . . L∗

X p−X p−1

Tr(LX p−X p−1 . . . LX1−X0 ρ(X0) L∗
X1−X0

. . . L∗
X p−X p−1

)
.

We will also denote Qp = X p , but will only use the notation Qp when we consider
“non-measurement” experiments, and in particular will never consider an event implying
simultaneously outcomes Qp and Qp′ for p �= p′. These processes reproduce the behaviour
of the measurement outcomes and of the associated resulting states. In particular, equation
(2.5) above holds in a mathematical sense with Pρ replacing P. From now on, we will usually
drop the ρ in Pρ .

3 Irreducibility and Period: General Results

In this section we focus on the general notions of irreducibility and period for a completely
positive (CP) map � on I1(K), where K is a separable Hilbert space which, in practice, will
be either h or H. We assume � is given in the form

�(ρ) =
∑

κ∈K
AκρA∗

κ (3.1)

where K is a countable set, and the series
∑

κ∈K A∗
κ Aκ is strongly convergent. This is the

case for operators such asM or L and we actually know from the Kraus theorem that this is
the case for any completely positive� (see [17] or [23], where this is called the operator-sum
representation). We recall that such a map is automatically bounded as a linear map on I1(K)

(see e.g. [26, Lemma 2.2]), so that it is also weak-continuous. In most practical cases, we will
additionally assume that ‖�‖ = 1; this will be verified, in particular, if� is trace-preserving.

We give various equivalent definitions of the notion of irreducibility for �, which was
originally defined by Davies in [6]. Note that this original definition holds for � positive, but
for simplicity,we discuss it only formaps�which are completely positive (CP), and therefore
have a Kraus decomposition (3.1). The equivalence between the different definitions, as
well as the relevant references, are discussed in [5]. We recall some standard notations: an
operator X on K is called positive, denoted X ≥ 0, if, for φ ∈ K, one has 〈φ, X φ〉 ≥ 0. It is
called strictly positive, denoted X > 0, if, for φ ∈ K \ {0}, one has 〈φ, X φ〉 > 0.

Definition 3.1 The CP map � is called irreducible if one of the following equivalent condi-
tions hold:

• for any ρ ≥ 0, ρ �= 0 in I1(K), there exists t such that et�(ρ) > 0,
• for any non-zeroφ ∈ K, the setC[A]φ is dense inK, whereC[A] is the set of polynomials

in Aκ , κ ∈ K ,
• the only subspaces of K that are invariant by all operators Aκ are {0} and K.

We will also use the notion of regularity, which is evidently stronger than irreducibility:

Definition 3.2 The CP map � is called N -regular, for N ∈ N
∗, if one of the following

equivalent conditions holds:

• for any ρ ≥ 0, ρ �= 0 in I1(K), one has �N (ρ) > 0,
• for any non-zero φ ∈ K, the set {Aκ1 . . . AκN φ | κ1, . . . , κN ∈ K } is total in K.
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Homogeneous Open Quantum Random Walks on a Lattice 1131

The map � is called regular if it is N -regular for some N in N
∗.

Remark 3.3 The following properties are immediate:

• If � is regular, then it is irreducible.
• If � is irreducible, then ∨κ∈KRanAκ , i.e. the closed vector space spanned by the ranges

of the operators Aκ , coincides with K (while the converse is not true).
• If ∨κ∈KRanAκ = K and ρ is a faithful state, then �(ρ) is faithful. Indeed, we can

write ρ = ∑
j ρ j |u j 〉〈u j |, with ρ j > 0 and (u j ) j an orthonormal basis for K. Then

�(ρ) =∑ j,κ ρ j |Aκu j 〉〈Aκu j |, and the conclusion easily follows.
• If ∨κ∈KRanAκ = K and � in N -regular, N ≥ 1, then � is (N + n)– regular for any

n ≥ 0. This is an immediate consequence of the previous point.

The following proposition, which is a Perron-Frobenius theorem for positive maps on
I1(K), essentially comes from [9] (for the finite dimensional case) and [26] (for the infinite
dimensional case). To state it in sufficient generality, we need to recall the definition of the
spectral radius of a map �:

r(�) = sup{|λ|, λ ∈ Sp�}
where Sp� is the spectrum of �.

Proposition 3.4 Assume a CP map � on I1(K) has an eigenvalue λ of modulus r(�), with
eigenvector ρ, and either dimK < ∞ or r(�) = ‖�‖. Then:
• |λ| is also an eigenvalue, with eigenvector |ρ|,
• if � is irreducible, then dimKer (� − λ Id) = 1.

In particular, if � is irreducible and has an eigenvalue of modulus r(�), then r(�) is an
eigenvalue with geometric multiplicity one, with an eigenvector that is a strictly positive
operator.

Remark 3.5 When � is a completely positive, trace-preserving map, one has ‖�‖ = 1, so
that the conclusion applies if λ is of modulus 1. In [5], this was enough, since we applied this
result to the operator M. In Sect. 5, however, we will also need to apply it to a deformation
of the operator L, which will no longer be trace-preserving.

Remark 3.6 The previous proposition gives in particular uniqueness and faithfulness of the
invariant state, when it exists, for an irreduciblemap�. As one can expect, the converse result
holds: if � admits a unique invariant state and that state is faithful, then � is irreducible (see
[5, Sect. 7]).

We now turn to the notion of period for positive maps. From now on, quantities like j + 1
or j − 1 for j = 0, . . . , d − 1 will always refer to addition or subtraction modulo d .

Definition 3.7 Let � be a completely positive, trace-preserving, irreducible map and con-
sider a resolution of the identity (P0, . . . , Pd−1), i.e. a family of orthogonal projections
such that

∑d−1
j=0 Pj = Id. One says that (P0, . . . , Pd−1) is �-cyclic if Pj Aκ = Aκ Pj−1

for j = 0, . . . , d − 1 and any κ . The supremum of all d for which there exists a �-cyclic
resolution of the identity (P0, . . . , Pd−1) is called the period of �. If � has period 1 then we
call it aperiodic.

Remark 3.8 When � is the minimal OQRW realization of a classical Markov chain, Defini-
tion 3.7 coincides with the standard definition of the period, and the projectors Pi are simply
the indicator functions of subsets of the state space. See Remark 4.7 in [5].
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1132 R. Carbone, Y. Pautrat

Remark 3.9 If dimK is finite then the period is always finite.

The following proposition is the analog of a standard result for classical Markov chains:

Proposition 3.10 Assume � is completely positive, irreducible, with finite period d, and
denote by P0, . . . , Pd−1 a �-cyclic resolution of the identity. Then:

1. we have the relation �(Pi ρ Pj ) = Pi+1 �(ρ) Pj+1,

2. for any j = 0, . . . , d−1, the restriction�d
j of�

d to PjI1(K)Pj is irreducible aperiodic,

3. if� has an invariant state ρinv, then�d
j has a unique invariant state ρinv

j
def= d×Pjρ

invPj .

Proof 1. The first relation is obvious, and shows that PjI1(K)Pj is stable by �d .
2. Consider a state PjρPj in PjI1(K)Pj . By irreducibility of �, et�(PjρPj ) is faithful,

so Pjet�(PjρPj )Pj is faithful in Ran Pj . But by the relation in point 1,

Pje
t�(PjρPj )Pj =

∞∑

n=0

tdn

(dn)! �dn(PjρPj ) =
∞∑

n=0

tdn

(dn)! (�d
j )
n(PjρPj ).

This shows that �d
j is irreducible. Now, if �d

j has a cyclic resolution of identity
(Pj,0, . . . , Pj,δ−1) then by the commutation relations this induces a �-cyclic resolution
of the identity with d × δ elements. Therefore, δ = 1.

3. The invariance of ρinv
j is trivial by point 1, and the irreducibility of�d

j implies the unique-

ness of the invariant state (recall Remark 3.6). By Remark 4.8 in [5], Tr(Pjρ
invPj ) does

not depend on j , so it is 1/d .
��

The following results were originally proved by Fagnola and Pellicer in [10] (with partial
results going back to [9] and [11]). We recall that the point spectrum of an operator is its set
of eigenvalues, and that we denote by Sppp�

∗ the point spectrum of �∗.

Proposition 3.11 If� is an irreducible, completely positive, trace-preserving map on I1(K)

and has finite period d then:

• the set Sppp�
∗ ∩ T, is a subgroup of the circle group T,

• the primitive root of unity ei2π/d belongs to Sppp�
∗ if and only if � is d-periodic.

An immediate consequence is the following:

Proposition 3.12 If a completely positive, trace-preserving map � on I1(K) is irreducible
and aperiodic with invariant state ρinv, and K is finite-dimensional then

• Sppp � ∩ T = {1},
• for any ρ ∈ I1(K) one has �p(ρ) → ρinv as p → ∞.

4 Irreducibility and Period ofM and L

Nowwe turn to the case where the operator� is an open quantum randomwalkM generated
by Ls , s ∈ S, or the auxiliary map L as defined by (2.3). We will study irreducibility and
periodicity properties of both operators M and L, and connections between them. This will
explain why we focus on a study of L, when M should intuitively be the object of interest.
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Homogeneous Open Quantum Random Walks on a Lattice 1133

For any v in V we denote

P
(v) =
⎧
⎨

⎩π = (s1, . . . , s
) ∈ S
 |

∑

p=1

sp = v

⎫
⎬

⎭

and, in addition, we consider

P(v) = ∪
≥1P
(v), P
 = ∪v∈VP
(v) P = ∪
∈NP
 = ∪v∈VP(v).

In analogy with [5], we use the notation

Lπ = Ls
 · · · Ls1 , for π = (s1, . . . , s
) ∈ P
.

We remark that the notations for the paths and the set of paths are slightly different from our
previous paper [5] since we can use homogeneity, which allows us to drop the dependence
on the particular starting point.

The irreducibility of L and M are easily characterized in terms of paths. This is true in
general forOQRWs (see [5], Proposition 3.9 in particular), but the following characterizations
are specific to homogeneous OQRWs.

Proposition 4.1 Let M be an open quantum random walk defined by transition operators
Ls , s ∈ S, and L its auxiliary map.

1. The operator L is irreducible if and only if the operators {Ls, s ∈ S} have no invariant
closed subspace in common, apart from {0} and h.

2. The operator M is irreducible if and only if the operators {Lπ0 , π0 ∈ P(0)} have no
invariant closed subspace in common, apart from {0} and h.

Proof Point 1 is proven by a direct application of Definition 3.1 (third condition).
To prove point 2, remark that irreducibility ofM amounts to the fact that, for any x ⊗|w〉,

the set {Lπ x ⊗|v +w〉, π ∈ P(v)} is dense in h for any v ∈ V (see the details in Proposition
3.9 of [5]). Now, if M is not irreducible, then, for some v ∈ V , the closed space

hv = Vect{Lπ x, π ∈ P(v)}
is nontrivial. Since the concatenation of π0 ∈ P(0) with π ∈ P(v) gives an element of P(v),
the space hv must be Lπ0 -invariant, and this holds for any π0 ∈ P(0). Conversely, if all
operators Lπ0 , π0 ∈ P(0) have an invariant subspace h′ in common, then for any x ∈ h′ and
w = v = 0, we have a contradiction to the above criterion for irreducibility of M. ��

This proposition obviously implies the following result:

Corollary 4.2 If M is irreducible, then L is irreducible.

Proposition 4.1 also allows us to construct examples of OQRWs such that L is irreducible,
but not M.

Example 4.3 Let V = Z, h = C
2, S = {−1,+1}, denote L− = L−1, L+ = L+1 (this will

be a particular case of the OQRWs treated in Example 6.11) and choose

L+ =
(
0 a+
b+ 0

)
L− =

(
0 a−
b− 0

)

with a+, a−, b+, b− positive, with a2+ + b2+ = a2− + b2− = 1 and a+b− �= a−b+. Then, by
Proposition 4.1, L is irreducible, but M is not, since the vectors of the canonical basis are
eigenvectors for any Lπ , π ∈ P(0) (see also Proposition 6.12).
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The following proposition is proved in [5]. We reprove it here.

Proposition 4.4 Assume M is irreducible. Then it has no invariant state.

Proof By Corollary 4.2, L is irreducible, so it has a unique invariant state ρinv on h, which
is faithful. AssumeM has an invariant state; by irreducibility it is unique. SinceM is space-
homogeneous, any translation of that state would be also invariant, so by unicity the invariant
state must be of the form

∑
i∈V ρinv ⊗ |i〉〈i |, but this has infinite trace, a contradiction. ��

The only reason that prevents the proposed operator from being an invariant state for M
is the fact that its trace is infinite. This is similar to the situation for space-homogeneous
classical Markov chains. In the same way that, for classical Markov chains, one can consider
invariant, non necessarily finite, measures, we could extend the map M, using expression
(2.4), to a wider domain and study invariant positive operators which are not trace class. If L
has an invariant state ρinv (which is the case if e.g. h is finite), then

∑
i∈V ρinv ⊗ |i〉〈i | will

be an invariant operator for the extension of M.
All ergodic convergence results for M given in [5] assume the existence of an invariant

state. However, some interesting asymptotic properties ofM can be studied in the absence of
an invariant state, and this includes large deviations or central limit theorems. As we will see,
such properties can be derived from the study of L. This is why, in the study of homogeneous
OQRWs, the focus shifts from M to L.

To avoid discussing trivial cases, in the rest of this paperwewill usuallymake the following
assumption, which by Remark 3.3 automatically holds as soon as L (or M) is irreducible:

Assumption H1 one has the equality
∨

s∈S Ran Ls = h.
This assumption is a natural one, since after just one step, even in the reducible case, the

system is effectively restricted to the space
∨

s∈S Ran Ls . More precisely, for any positive
operator ρ on h, one has, for any s,

supp Ls ρ L∗
s ⊂ suppL(ρ) ⊂

∨

s∈S
Ran Ls .

Note thatwehave not given results equivalent to Proposition 4.1 for the notion of regularity.
We do this here:

Lemma 4.5 The operatorL is N-regular if and only if for any x �= 0 in h, the set {Lπ x, | π ∈
PN } is total in h. The operator M can never be regular.

Proof This is obtained by direct application of Definition 3.2, that shows the criterion for L.
It also shows that M is N -regular if and only if for any x �= 0 in h, any v in V , the set
{Lπ x, | π ∈ PN (v)} is total in h. However, if the distance from the origin to v is larger than N ,
then PN (v) is empty. ��

One could be tempted to consider a weaker version of regularity for L where the index N
can depend on ρ. The following result shows that, if h is finite-dimensional, this is not weaker
than regularity:

Lemma 4.6 Assume h is finite-dimensional. If for every ρ ≥ 0 in I1(h) \ {0}, there exists
N > 0 such that LN (ρ) is faithful, then there exists N0 such that L is N0-regular.

Proof First observe that L is necessarily irreducible and so assumption H1 must hold.
Besides, the current assumption implies that, for any x in h, there exists Nx > 0 such that
LNx (|x〉〈x |) is faithful. Since faithfulness of LNx (|x〉〈x |) is equivalent to the existence of a
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familyπ1, . . . , πdim h of paths of length Nx , such that the determinant of (Lπ1 x, . . . , Lπdimh x)
is nonzero, there exist open subsets Bx of the unit ball, such that x ∈ Bx0 implies that
LNx0 (|x〉〈x |) is faithful. By compactness of the unit ball, there exists a finite covering by
Bx1 ∪ . . . ∪ Bxp . Remark 3.3 then implies that if we let N0 = supi=1,...,p Nxi one has
LN0(|x〉〈x |) faithful for any nonzero x . This implies that L is N0-regular. ��
Remark 4.7 Notice that the same result cannot be true when the dimension of h is infinite:
assume for example that h = C

N, and L is itself a minimal OQRW realization of a classical
Markov chain on N with stochastic matrix

t0 j > 0 ∀ j ∈ N, t j, j−1 = t j, j+1 = 1

2
∀ j ∈ N \ {0}.

Wenow turn to the notion of period forL andM. ByDefinition 3.7, a resolution of identity
(p0, . . . , pd−1) of h will be L-cyclic if and only if

p j Ls = Ls p j−1 for j = 0, . . . , d − 1 and any s ∈ S.

Consequently, by Proposition 3.10, we have

L(p j ρ p j ) = p j+1 L(ρ) p j+1. (4.1)

Remark 4.8 Since the p j ’s sum up to Idh, the period of L cannot be greater than dim h, a
feature which will be extremely useful when dim h is small.

On the other hand, as we observed in [5], a resolution of identity (P0, . . . , Pd−1) of H will
be M-cyclic if and only if it is of the form

Pk =
∑

i∈V
Pk,i ⊗ |i〉〈i | with Pk,i Ls = Ls Pk−1,i+s . (4.2)

Remark 4.9 The M-cyclic resolutions of the identity are translation invariant, in the sense
that, if Pk = ∑

i∈V Pk,i ⊗ |i〉〈i |, k = 0, ...d − 1, is a M-cyclic resolution of the identity,
then also P ′

k =∑i∈V Pk,i+v ⊗ |i〉〈i |, k = 0, ...d − 1, is a cyclic resolution for any v.

We will, however, make little use ofM-cyclic resolutions of the identity in this paper. On
the other hand, the periodicity of L can be an easy source of information on M:

Proposition 4.10 We have the following properties:

1. The period of M, when finite, is even.
2. If L is irreducible and has even period d, then M is reducible.

Proof 1. Assume that (P0, . . . , Pd−1) is a M-cyclic resolution of identity associated
with M. As we observed above, the Pk are of the form

Pk =
∑

i∈V
Pk,i ⊗ |i〉〈i | with Pk,i Ls = Ls Pk−1,i+s .

Then if we call i in V odd or even depending on the parity of its distance to the origin,
define

Pk,odd =
∑

i odd

Pk,i ⊗ |i〉〈i | and Pk,even =
∑

i even

Pk,i ⊗ |i〉〈i |.

Then (P0,odd, P1,even, P2,odd, . . .) is a M-cyclic resolution of identity.
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2. Denote by (p0, . . . , pd−1) a L-cyclic resolution of identity. Define

podd =
∑

k odd

pk peven =
∑

k even

pk .

It is obvious from relations (4.2) that Ran podd and Ran peven are nontrivial invariant
spaces for any Lπ0 , π0 ∈ P(0). We conclude by Proposition 4.1.

��
Last, we give an analog of a classical property of Markov chains with finite state space:

Lemma 4.11 If h is finite-dimensional, then the map L is irreducible and aperiodic if and
only if it is regular.

Proof If L is irreducible and aperiodic, then by Proposition 3.12 for any state ρ on h, one has
Ln(ρ) −→

n→∞ ρinv so that Ln(ρ) is faithful for large enough n. By Lemma 4.6, this implies the

regularity of L. Conversely, if L is N -regular, then it is irreducible, and for any projection p,
the operator LN (p) is faithful, so that p cannot be a member of a cyclic resolution of identity
unless p = Id. ��

5 Central Limit Theorem and Large Deviations

The Perron-Frobenius theorem for CP maps allows us to obtain a large deviations principle
and a central limit theorem for the position process (X p)p∈N (or, equivalently, for the process
(Qp)p∈N) associated with an open quantum random walk M and an initial state ρ (see
Sect. 2). In most of our statements, we assume for simplicity that L is irreducible. We discuss
extensions of our results at the end of this section.

Before going into the details of the proof, we should mention that, as we were completing
the present article, we learnt about the recent paper [29], which proves a large deviation
result for empirical measures of outputs of quantum Markov chains, which can be viewed
as the “steps” Mp = X p − X p−1 taken by an open quantum random walk. This result
is similar to the statement in our Remark 5.6, and implies a level-1 large deviation result
for the position (X p)p∈N when the OQRW is irreducible and aperiodic. In addition, the
statement in [29] extends to a large deviations principle for empirical measures of m-tuples
(Mp, . . . , Mp+m−1)p . Our (independent) result, however, treats the case where the OQRW
is irreducible but not aperiodic, and can be extended beyond the irreducible case.

For the proofs of this section, it will be convenient to introduce some new notations. For
u in R

d we define L(u)
s = e〈u,s〉/2Ls , and denote Lu the map induced by the L(u)

s , s ∈ S: for
ρ in I1(h),

Lu(ρ) =
∑

s

L(u)
s ρL(u)∗

s .

This operator is a deformation of L. It is still a completely positive map on I1(h) but,
in general, it is not trace-preserving. The operators Lu will be useful in order to treat the
moment generating functions of the random variables (X p)p∈N:

Lemma 5.1 For any u in R
d one has

E(exp 〈u, X p − X0〉) =
∑

i0∈V
Tr
(
L
p
u (ρ(i0))

)
. (5.1)

123



Homogeneous Open Quantum Random Walks on a Lattice 1137

Proof For any k in N
∗ let Sk = Xk+1 − Xk and consider u ∈ R

d . Then we have

E(exp 〈u, X p − X0〉)
=
∑

i0∈V

∑

s1,...,sp∈S p

P(X0 = i0, S1 = s1, . . . , Sp = sp) exp 〈u, s1 + . . . + sp〉

=
∑

i0∈V

∑

s1,...,sp∈S p

Tr(Lsp . . . Ls1 ρ(i0) L
∗
s1 . . . L∗

sp ) exp 〈u, s1 + . . . + sp〉

and this gives formula (5.1). ��
Remark 5.2 One also has

E(exp 〈u, X p〉) = E(exp 〈u, Qp〉) =
∑

i0∈V
exp〈u, i0〉Tr

(
L
p
u (ρ(i0))

)
.

This will allow us to give results analogous to Theorems 5.4 and 5.12 for the process (Qp)p .
Note that considering X p or X p − X0 is essentially equivalent, but as we remarked in Sect. 2,
Qp and Q0 should not be considered simultaneously.

The following lemma describes the properties of the largest eigenvalue of Lu :

Lemma 5.3 Assume that h is finite-dimensional and L is irreducible. For any u in R, the

spectral radius λu
def= r(Lu) of Lu is an algebraically simple eigenvalue of Lu, and has an

eigenvector ρu which is a faithful state. In addition, the map u �→ λu can be extended to be
analytic in a neighbourhood of Rd .

Proof By Proposition 4.1, if L is irreducible, then so is any Lu for u ∈ R
d . Proposition 3.4,

applied here specifically to anHilbert space of finite dimension, gives the first sentence except
for the algebraic simplicity of the eigenvector λu , as it implies only the geometric simplicity.
If we can prove that, for all u in R

d , the eigenvalue λu is actually algebraically simple then
the theory of perturbation of matrix eigenvalues (see [15, Chapt. II]) will give us the second
sentence. Now, in order to prove the missing point, consider the adjoint L∗

u of Lu on B(h),
which in this finite-dimensional setting, can be identified, with I1(h). It is easy to see from
Definition 3.1 that L∗

u is irreducible. Its largest eigenvalue is λu , with eigenvector Mu , which,
by Proposition 3.4, is invertible. We can consider the map

L̃u : ρ �→ 1

λu
M1/2

u Lu(M
−1/2
u ρ M−1/2

u )M1/2
u .

This L̃u is clearly completely positive, and is trace-preserving since L̃∗
u(Id) = Id. Proposi-

tion 3.4 shows that L̃u has 1 as a geometrically simple eigenvalue, with a strictly positive
eigenvector ρ̃u . Then 1 must also be algebraically simple, otherwise there exists ηu such that
L̃u(ηu) = ηu + ρ̃u , but taking the trace of this equality yields Tr(ρ̃u) = 0, a contradiction.
This implies that Lu has λu as a algebraically simple eigenvalue. ��

We can now state our large deviation result:

Theorem 5.4 Assume that h is finite-dimensional and that L is irreducible. Then the process
( 1p (X p − X0))p∈N∗ associated withM satisfies a large deviation principle with a good rate

function I . Explicitly, the function I : Rd → [0,+∞] defined by
I (x) = sup

u∈Rd

(〈u, x〉 − log λu
)
,
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(where λu is defined in Lemma 5.3) is lower semicontinuous, has compact level sets
{x | I (x) ≤ α}, and for any open G and closed F with G ⊂ F ⊂ R

d , one has

− inf
x∈G I (x) ≤ lim inf

p→∞
1

p
logP

(
X p − X0

p
∈ G

)

≤ lim sup
p→∞

1

p
logP

(
X p − X0

p
∈ F

)
≤ − inf

x∈F I (x).

Remark 5.5 If we add the assumption that X0 has an everywhere defined moment generating
function, i.e. that the initial state ρ satisfies E(exp 〈u, X0〉) =∑i0∈V e〈u,i0〉Trρ(i0) < ∞ for
all u in R

d , then this theorem also holds for (X p)p∈N, or equivalently (Qp)p∈N, in place of
(X p − X0)p∈N.

Remark 5.6 If ϕ is any function S → R and Sp = ∑p
k=1 ϕ(Xk − Xk−1) then the

process (
Sp
p )p∈N also satisfies a large deviation principle, with rate function

Iϕ(x) = sup
t∈R

(
t x − log λtϕ

)

where λtϕ is the largest eigenvalue of

Ltϕ : ρ �→
∑

s∈S
etϕ(s)Ls ρL∗

s .

This is shown by an immediate extension of the proofs of Lemma 5.3 and Theorem 5.4,
and immediately yields a level-2 large deviation result for the process (Mp)p∈N, where
Mp = X p − X p−1. Using the techniques of [29], one can prove a large deviation property
for the empirical law of m-tuples (Mp, . . . , Mp+m−1)p∈N. Under the same condition as in
Remark 5.5, this implies a large deviation property for m-tuples (X p, . . . , X p+m−1)p∈N. All
of these results can be derived under the assumption that L is irreducible, not necessarily
aperiodic. The irreducibility assumption can be relaxed, as we discuss at the end of this
section.

Proof We start with Eq. (5.1). Since h is finite-dimensional, if ρ(i0) is faithful, then, with
ru,i0 = inf Sp(ρ(i0)) > 0 and su,i0 = Trρ(i0)

inf Sp(ρu)
> 0,

ru,i0 ρu ≤ ρ(i0) ≤ su,i0 ρu . (5.2)

Note that ru,i0 ≤ Trρ(i0) so that both ru,i0 and su,i0 are summable along i0. Consequently,
we shall have

ru,i0 λ
p
u ρu ≤ L

p
u
(
ρ(i0)

) ≤ su,i0 λ
p
u ρu . (5.3)

Using these bounds in relation (5.1), we immediately obtain, for all u ∈ R
d ,

λ
p
u

∑

i0∈V
ru,i0 ρu ≤ E(exp 〈u, X p − X0〉) ≤ λ

p
u

∑

i0∈V
su,i0 ρu

where the sums are finite and strictly positive; so that

lim
p→∞

1

p
logE(exp 〈u, X p〉) = log λu . (5.4)

Now, if ρ(i0) is not faithful, but L is aperiodic, due to Proposition 3.12, then LN (ρ(i0)) is
faithful for large enough N , and (5.2) holds with LN

u (ρ(i0)) in place of ρ(i0) and (5.3) holds
with (p − N ) instead of p in the exponents of λu . We still recover (5.4).
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Finally, if ρ(i0) is not faithful andL has period d > 1, then, considering a cyclic decompo-
sition of identity (p0, . . . , pd−1), we can consider the single blocks of the form p jρ(i0)p j .
By Proposition 3.10, Ld is irreducible aperiodic when restricted to each p jI1(h)p j and
Ld
u(p jρu p j ) = λdu p jρu p j . Then, by the regularity of the restrictions of Ld , using Remark

3.3 and the obvious extension of (4.1) to Lu , there exist N ∈ N and ru,i0 , su,i0 > 0 such that,
for any block p jρ(i0)p j �= 0,

ru,i0 p j ρu p j ≤ p j L
dN
u

(
ρ(i0)

)
p j ≤ su,i0 p j ρu p j

and if p = dN + r , r ∈ {0, . . . , d − 1},
ru,i0 λ

p−dN
u p j+r ρu p j+r ≤ L

p
u
(
p j ρ(i0) p j

) ≤ su,i0 λ
p−dN
u p j+r ρu p j+r .

Summing over j , we recover Eq. (5.4) again.
In any case, we obtain (5.4) for all u ∈ R

d . Lemma 5.3 shows that u �→ log λu is analytic
on R. We can now apply the Gärtner-Ellis theorem (see [7]) to conclude. ��
Remark 5.7 As noted in Remark 2.4, whenM is theminimal OQRWrealization of a classical
Markov chain with transition probabilities (ts)s∈S , the mapL is trivial: it is just multiplication
by 1 on R. The maps Lu , however, are not trivial: they are multiplication by

λu =
∑

s∈S
exp〈u, s〉 ts .

We therefore recover the same rate function as in the classical case, see e.g. [7, Sect. 3.1.1].

Remark 5.8 The technique of applying thePerron-Frobenius theorem to au-dependent defor-
mation of the completely positive map defining the dynamics, goes back (to the best of our
knowledge) to [13], and is a non-commutative adaptation of a standard proof for Markov
chains.

We denote by c the map c : Rd � u �→ log λu . As is well-known (see e.g. [8, Sect. II.6]),
the differentiability of c at zero is related to a law of large numbers for the process (X p)p∈N.
Similarly, the second order differential will be relevant for the central limit theorem.

Corollary 5.9 Assume that h has finite dimension and that L is irreducible. The function c
on R

d is infinitely differentiable at zero. Denote by

L′
u : ρ �→

∑

s∈S
〈u, s〉 LsρL

∗
s and L′′

u : ρ �→
∑

s∈S
〈u, s〉2LsρL

∗
s .

Then, denoting λ′
u
def= d

dt |t=0λtu and λ′′
u
def= d2

dt2 |t=0
λtu , we have

λ′
u = Tr

(
L′
u(ρ

inv)
)

(5.5)

λ′′
u = Tr

(
L′′
u(ρ

inv)
)+ 2Tr

(
L′
u(ηu)

)
(5.6)

where ηu is the unique solution with trace zero of the equation
(
Id − L

)
(ηu) = L′

u(ρ
inv) − Tr

(
L′
u(ρ

inv)
)
ρinv. (5.7)

This implies immediately that

dc(0) (u) = λ′
u d2c(0) (u, u) = λ′′

u − λ′
u
2. (5.8)
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Proof Lemma 5.3 shows that cu is infinitely differentiable at any u ∈ R
d . In addition (again

see [15, Chapt. II]), the largest eigenvalue λu of Lu is an analytic perturbation of λ0 = 1,
and has an eigenvector ρu which we can choose to be a state, and this ρu is an analytic
perturbation of ρ0. Then one has

λtu = 1 + tλ′
u + t2

2
λ′′
u + o(t2)

ρtu = ρinv + t ηu + t2

2
σu + o(t2)

Ltu = L + t L′
u + t2

2
L′′
u + o(t2)

and since every ρtu is a state then Tr ηu = Tr σu = 0. The relation Ltu(ρtu) = λtu ρtu yields

L′
u(ρ

inv) + L(ηu) = ηu + λ′
u ρinv

1

2
L(σu) + L′

u(ηu) + 1

2
L′′
u(ρ

inv) = 1

2
σu + λ′

u ηu + 1

2
λ′′
u ρinv.

Taking the trace of the first relation immediately yields relation (5.5). In addition, it yields
relation (5.7). Since Id − L has kernel of dimension one, and range in the set of operators
with zero trace, it induces a bijection on that state, so that (5.7) has a unique solution with
trace zero. Then taking the trace of the second relation above, and using the fact that L is
trace-preserving gives relation (5.6). ��
Corollary 5.10 Assume that h has finite dimension and L is irreducible, and let m =∑

s Tr(Lsρ
invL∗

s ) s. Then the process ( 1p (X p − X0))p∈N associated withM converges expo-
nentially to m, i.e. for any ε > 0 there exists N > 0 such that, for large enough p,

P

(∥∥∥∥
X p − X0

p
− m

∥∥∥∥ > ε

)
≤ exp(−pN ).

This implies the almost-sure convergence of (
X p
p )p∈N to m.

Remark 5.11 The almost-sure convergence holds replacing X p by Qp .

Proof This is a standard result, see e.g. [8, Theorems II.6.3 and II.6.4]. ��
Theorem 5.12 Assume that h is finite-dimensional and L is irreducible. Denote by m the
quantity defined in Corollary 5.10, and by C the covariance matrix associated with the
quadratic form u �→ λ′′

u − λ′
u
2. Then the position process (X p)p∈N associated with M

satisfies

X p − p m√
p

−→
p→∞ N (0,C)

where convergence is in law.

Proof Let us first consider the case where L is irreducible and aperiodic. Equation (5.1)
implies

E(exp〈u, X p − X0〉) =
∑

i0∈V
Tr
(
L
p
u (ρ(i0))

)
.
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Now, considering the Jordan form of L shows that, if

δ
def= sup{|λ|, λ ∈ SpL \ {1}},

then δ < 1 and for u in a real neighbourhood of 0 and p in N,

L
p
u = λ

p
u
(
ϕu(·) ρu + O((δ + ε)p)

)
(5.9)

for some ε such that δ + ε < 1, where ϕu is a linear form on I1(h), analytic in u and such
that ϕ0 = Tr and the O((δ + ε)p) is in terms of the operator norm on I1(h). This implies

1

p
log
∑

i0∈V
Tr(Lp

u (ρ(i0))) = log λu + 1

p
log
∑

i0∈V
ϕu(ρ(i0)) + O((δ + ε)p) (5.10)

for u in the above real neighbourhood of the origin. This and Lemma 5.3 implies that the
identity

lim
p→∞

1

p
logE(exp〈u, X p − X0〉) = log λu (5.11)

holds for u in a neighbourhood of the origin. In addition, by equation (5.10) and Corollary
5.9,

lim
p→∞

1

p

(∇ logE(exp〈u, X p−X0〉) − pm)=0 lim
p→∞

1

p
∇2 logE(exp〈u, X p − X0〉)=C.

By an application of the multivariate version of Bryc’s theorem (see Appendix A.4 in [14]),
we deduce that

X p − X0 − p m√
p

−→
p→∞ N (0,C)

and this proves our statement in the case where L is irreducible aperiodic.
We now consider the case where L is irreducible with period d . Let p0, . . . , pd−1 be a

cyclic resolution of the identity; then, writing p = qd + r we have for any i0 ∈ V

Tr
(
L
p
u (ρ(i0))

) =
d−1∑

j=0

Tr
(
p j L

qd+r
u (ρ(i0)) p j

)

=
d−1∑

j=0

Tr
(
L
qd
u (p j L

r
u(ρ(i0)) p j )

)

by a straightforward extension of (4.1) to Lu . By Proposition 3.10, for any j , r and the
previous discussion, one has

lim
q→∞

1

qd
log Tr

(
L
qd
u (p j L

r
u(ρ(i0)) p j )

) = log λu

and one can extend all terms in this identity so that it holds in a complex neighbourhood of
the origin. This finishes the proof of our statement. ��
Remark 5.13 Again this result holds replacing X p by Qp .

Remark 5.14 The reader might wonder whywe need to go through the trouble of considering
relations (5.9) and (5.10) to derive the extensionof (5.11) to complexu. This is because there is
no determination of the complex logarithm that allows to consider logE(exp〈u, X p−X0〉) for
complex u and arbitrarily large p. This forces us to start by transforming 1

p logE(exp〈u, X p−
X0〉).

123



1142 R. Carbone, Y. Pautrat

Remark 5.15 The formulas for the mean and variance are the same as in [1] when V = Z
d

and S = {±vi , i = 1, . . . , d} (v1, . . . , vd is the canonical basis of Rd ). This can be observed
from the fact that, if Yu is the unique (up to a constant multiple of Id) solution of equation

(Id − L∗)(Yu) =
∑

s∈S
〈u, s〉L∗

s Ls − 〈u,m〉 Id,

(note that this Yu is the Ll of [1]) then

Tr
(
L′
u(ηu)

) = Tr
(
L′
u(ρ

inv)Yu
)− Tr

(
L′
u(ρ

inv)
)
Tr
(
ρinvYu

)

and denoting Yi = Yvi we have

〈u,Cu〉 =
d∑

i, j=1

uiu j

(
1li= j

(
Tr(L+iρ

invL∗+i ) + Tr(L−iρ
invL∗−i )

)

+ 2Tr(L+iρ
invL∗+i Y j ) − 2Tr(L−iρ

invL∗−i Y j )

− 2miTr(ρ
inv Y j ) − mim j

)

which leads to the formula for C given in [1]:

Ci, j = 1li= j
(
Tr(L+iρ

invL∗+i ) + Tr(L−iρ
invL∗−i )

)

+ (Tr(L+iρ
invL∗+i Y j ) + Tr(L+ jρ

invL∗+ j Yi )
)

(
Tr(L−iρ

invL∗−i Y j ) + Tr(L− jρ
invL∗− j Yi )

)

− (miTr(ρ
inv Y j ) + m jTr(ρ

inv Yi )
)− mim j .

Generalizations of Theorems 5.4 and 5.12 We finish with a discussion of possible
generalizations of Theorems 5.4 and 5.12 beyond the case of irreducible L. To this aim, we
introduce the following subspaces of h:

D =
{
φ ∈ h | 〈φ,Lp(ρ) φ〉 −→

p→∞ 0 for any state ρ

}
and R = D⊥. (5.12)

Alternatively, R can be defined as the supremum of the supports of L-invariant states, and
D as R⊥. Note in particular that dimR ≥ 1 and R is invariant by all operators Ls , s ∈ S.
These subspaces are the Baumgartner–Narnhofer decomposition of h associated with L (see
[4] or [5]). Note that, in [5], we only considered the subspacesDM andRM ofH associated
with M. In the present situation, the decomposition for M plays no role and RM is equal
to {0}.

The following result will replace the Perron-Frobenius theorem when L is not irreducible.
The proof can be easily adapted from Proposition 3.4, Remark 3.6 and Lemma 5.3.

Proposition 5.16 The following properties are equivalent:

1. the auxiliary map L has a unique invariant state ρinv,
2. the restriction L|I1(R) of L to I1(R) is irreducible,
3. the value 1 is an eigenvalue of L with algebraic multiplicity one.

If, in addition, L|I1(R) is aperiodic, then 1 is the only eigenvalue of modulus one, and for
any state ρ, one has Lp(ρ) −→

p→∞ ρinv.

This leads to an extension of Theorem 5.12 to the cases
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• where L|I1(R) is irreducible (even ifR �= h); by Proposition 5.16, this is equivalent to L

having a unique invariant state;
• when R = h.

With these two extensions, our central limit theorem has the same generality as the one given
in [1]: the first case is Theorem 5.2 of that reference, the second case is treated in [1, Sect. 7].
These extensions are proven observing that:

• by Proposition 5.16, the proof of Theorem 5.12 can immediately be extended to the
situation where L|I1(R) is irreducible aperiodic, and from there to the situation where
L|I1(R) is irreducible periodic;

• when R = h, it admits a decomposition R = ⊕kRk (see [5]), each I1(Rk) is stable by
L, the restrictions L|I1(Rk ) are irreducible, and the non-diagonal blocks do not appear in
a probability like (2.6).

We have seen in [5] that one can always decompose h into h = D ⊕⊕k∈K Rk with each
Rk as discussed above. However, in the general case, we do not have a clear statement of
Theorems 5.4 and 5.12 because if D is non-trivial and card K ≥ 2, it is difficult to control
how the mass of ρ0 will flow from D into the different components Rk .

Last, remark that the proof of Theorem 5.4 relies on the fact that Lu is irreducible. This
holds if L is irreducible; the converse, however, is not true, and the two spacesR associated
with L and Lu may be different. The proof of Theorem 5.4 can be extended to derive a lower
large deviation bound in the case when R = h using the idea described above, but when L

is not irreducible, the quantity λu may not be analytic, in which case we a priori obtain only
the upper large deviation bound, see Example 7.3.

6 Open Quantum Random Walks with Lattice Zd and Internal Space C2

The goal of this section is to illustrate our various concepts, and give explicit formulas in the
case where V = Z

d and h = C
2. We start with a study of the operator L, a characterization

of its (ir)reducibility, and of the associated decompositions of the state space in this specific
situation.

We begin in Proposition 6.1 with a classification of the possible situations depending on
the dimension ofR (as defined in 5.12) and its possible decompositions. Then, in Lemma 6.3
we characterize those situations in terms of the form of the operators Ls . Later on, we also
consider the period. To avoid discussing trivial cases, we will make a second assumption:

Assumption H2 the operators Ls are not all proportional to the identity.
This is equivalent to saying that we assume L �= Id.

Proposition 6.1 Consider the operators Ls , s ∈ S, defining the open quantum random walk
M, and suppose that assumptions H1 and H2 hold. Then we are in one of the following three
situations.

1. If the Ls have no eigenvector in common, then L is irreducible, there exists a unique
L-invariant state which is faithful, and one has

R = h D = {0}.
2. If the Ls have only one (up to multiplication) eigenvector e1 in common, then L is not

irreducible, the state |e1〉〈e1| (if ‖e1‖ = 1) is the unique L-invariant state, and for any
nonzero vector e2 ⊥ e1, one has

R = C e1 D = C e2.
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3. If the Ls have two linearly independent eigenvectors e1 and e2 in common, any invariant
state is of the form ρinv = t |e1〉〈e1| + (1 − t)|e2〉〈e2| for t ∈ [0, 1], and one has

R = h = C e1 ⊕ C e2 D = {0}.
Proof We recall that, by Definition 3.1, the map L is irreducible if and only if the Ls do not
have a common, nontrivial, invariant subspace. If h = C

2 then this is equivalent to saying
that the Ls do not have a common eigenvector.

Now assume that L is not irreducible, so that the Ls have a common norm one
eigenvector e1, with Ls e1 = αs e1 for all s. Then |e1〉〈e1| is an invariant state. Complete (e1)
to an orthonormal basis (e1, e2). Then, if ρ is an invariant state, ρ = ∑

i, j=1,2 ρi, j |ei 〉〈e j |,
and

L(ρ) =
∑

i, j=1,2

∑

s∈S
ρi, j |Lsei 〉〈Lse j |.

Then

ρ2,2 = 〈e2, ρ e2〉 =
∑

s∈S
ρ2,2 |〈e2, Lse2〉|2

so that either ρ2,2 = 0 or
∑

s∈S |〈e2, Lse2〉|2 = 1; but, since
∑

s∈S ‖Lse2‖2 = 1, this is
possible only if e2 is an eigenvector of all Ls , s ∈ S.

Now, ρ ≥ 0 and ρ2,2 = 0 impose ρ1,2 = ρ2,1 = 0. Therefore, in situation 2, |e1〉〈e1|
is the only invariant state. In situation 3, observe that if there existed an invariant state with
ρ1,2 = ρ2,1 �= 0, then any state would be invariant and L would be the identity operator, a
case we excluded. ��
Remark 6.2 In situations 2 and 3 we recover the fact, proven in [5] (and originally in [4])
that, if |e1〉〈e1| is an invariant state and e2 �= 0 is in e⊥

1 ∩R then |e2〉〈e2| is an invariant state.
The above proposition gives an explicit Baumgartner–Narnhofer decomposition of h (see [4]
or [5, Sects. 6 and 7]). In the case where h = C

2, it turns out thatR can always be written in
a unique way as R = ⊕Rk with L|I1(Rk ) irreducible (except for the trivial case when L is
the identity map). This is not true in general and is a peculiarity related to the low dimension
of h.

Next we study the explicit form of the operators Ls in each of the situations described by
Proposition 6.1. We will use the standard notation that, for two families of scalars (αs)s∈S
and (βs)s∈S , ‖α‖2 is∑s∈S |αs |2 and 〈α, β〉 is∑s∈S αsβs .

Lemma 6.3 With the assumptions and notations of Proposition 6.1:

• We are in situation 2 if and only if there exists an orthonormal basis of h = C
2 in which

Ls =
(

αs γs
0 βs

)

for every s with

‖α‖2 = ‖β‖2 + ‖γ ‖2 = 1, 〈α, γ 〉 = 0,

sup
s∈S

|βs | > 0, sup
s∈S

|γs | > 0,

there exist s �= s′ in S such that (αs − βs) γs′ �= (αs′ − βs′) γs .
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• We are in situation 3 if and only if there exists an orthonormal basis of h = C
2 in which

Ls =
(

αs 0
0 βs

)

for every s, with

‖α‖2 = ‖β‖2 = 1,

there exists s in S such that αs �= βs .

Proof This is immediate by examination. ��
Remark 6.4 In situation 2, let ρ be any state. One has

〈e2,Lp(ρ) e2〉 = Tr
(
ρ L∗ p(|e2〉〈e2|)

) = ‖β‖2p 〈e2, ρ e2〉 −→
p→∞ 0

by the observation that ‖β‖2 < 1. We recover the fact that D = C e2.

We now turn to the study of periodicity for the operator L. We start with a simple remark:

Remark 6.5 Whenever the operators Ls have a common eigenvector e, then the restriction
of L to I1(Ce) is aperiodic. In particular, if L is not irreducible but has a unique invariant
state, then by Proposition 6.1, R is one-dimensional and L|I1(R) must be aperiodic.

In greater generality, because dim h = 2, by Remark 4.8, any irreducible L has period
either one or two. The following lemma characterizes those Ls defining an operator L with
period 2:

Lemma 6.6 ThemapL is irreducible periodic if and only if there exists a basis of h for which

every operator Ls is of the form

(
0 γs
νs 0

)
. In that case, for any s �= s′, one has γs νs′ �= γs′ νs

and ‖γ ‖2 = ‖ν‖2 = 1, and the unique invariant state of L is 1
2 Id.

Proof If the period of L is two, then the cyclic resolution of identity must be of the form
|e1〉〈e1|, |e2〉〈e2| and the cyclicity imposes the relations

Lse1 ∈ C e2, Lse2 ∈ C e1 for any s ∈ S.

This gives the form of the Ls . The condition
∑

s |γs |2 = ∑
s |νs |2 = 1 simply follows

by the trace preservation property. Now observe that the eigenvalues of Ls are solutions of
λ2s = γsνs . Fix one solution λs , the other being −λs . Then a vector t (x, y) is an eigenvector
if and only if γs y = ±λs x . Therefore, two operators Ls and Ls′ have an eigenvector in
common if and only if νs λs′ = ±νs′ λs . This is easily seen to be equivalent to γs νs′ = γs′ νs .
Last, one easily sees that the equation

∑

s∈S
Ls

(
a b
c d

)
L∗
s =

(
a b
c d

)

is equivalent to a = d , b = 〈ν, γ 〉 c and c = 〈γ, ν〉 b. Moreover, |〈γ, ν〉| = 1 would imply
that the vectors (γs)s∈S and (νs)s∈S are proportional, which is forbidden by irreducibility.
Therefore a = d and b = c = 0. ��

The following theorem is a central limit theorem for all open quantum random walks
satisfying H1 and H2. It gives more explicit expressions for the parameters of the limiting
Gaussian, exceptwhenL is irreducible aperiodic, inwhich case the parameters of theGaussian
are given in Theorem 5.12.
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Theorem 6.7 Assume an open quantum random walk with V = Z
d and h = C

2 satisfies
assumptions H1, H2. Then there exist m ∈ C

d and C a d × d positive semi-definite matrix
such that we have the convergence in law

X p − p m√
p

−→
p→∞ N (0,C).

Following the notation of Lemmas 6.3 and 6.6 we have:

• In situation 1, if L is periodic, consider two random variables A and B with P(A = s) =
|νs |2 and P(B = s) = |γs |2. Then

m = 1

2
(E(A) + E(B)) C = 1

2
(var(A) + var(B)).

• In situation 2, consider a classical random variable A with P(A = s) = |αs |2. Then
m = E(A) C = var(A).

• In situation 3, consider two classical random variables A and B with P(A = s) = |αs |2
and P(B = s) = |βs |2, and denote p = ∑

i∈V 〈e1, ρ(i) e1〉, where ρ is the initial state.
Then

m = p E(A) + (1 − p)E(B) C = p var(A) + (1 − p) var(B).

Proof If L is irreducible periodic, for any σ =
(

σ11 σ12
σ21 σ22

)
, we have

Lsσ L∗
s =

(
σ22|γs |2 σ21γs ν̄s
σ12γ̄sνs σ11|νs |2

)
.

By direct examination of the equation Lu(σ ) = λu σ we obtain

λu = √E(exp〈u, A〉)√E(exp〈u, B〉) . (6.1)

We immediately deduce

λ′
u =

〈
u
1

2
(E(A) + E(B))

〉
λ′′
u − λ′

u
2 =

〈
u
1

2
(var A + var B) u

〉
.

In situation 2, we can use the extension discussed at the end of Sect. 5 with PR = |e1〉〈e1|,
and apply the formulas of Theorem 5.12 with L replaced by LI1(Ce1). We see easily that the
largest eigenvalue of Lu is

λu = max

(
∑

s∈S
e〈u,s〉|αs |2,

∑

s∈S
e〈u,s〉|βs |2

)
(6.2)

and in a neighbourhood of zero, the first term is the largest, so that

λ′
u =

∑

s∈S
〈u, s〉 |αs |2 and λ′′

u =
∑

s∈S
〈u, s〉2 |αs |2.

In situation 3, we again use the extension discussed at the end of Sect. 5 with R1 = Ce1
and R2 = Ce2. The limit parameters for each corresponding restriction are computed in
the previous point and correspond to those for the random variables A and B. Since for any
initial state ρ, a probability P(X0 = i0, . . . , Xn = in) equals

〈e1, ρ(i0) e1〉
n∏

k=1

|αik−ik−1 |2 + 〈e2, ρ(i0) e2〉
n∏

k=1

|βik−ik−1 |2
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and we recover the parameters given in the statement above. ��
Remark 6.8 The irreducible periodic case described above can be understood in terms of a
classical random walk, in a similar way to situation 3. Indeed, call a site i in V odd or even
depending on the parity of its distance to the origin. Then exchanging the order of the basis
vectors e1 and e2 at odd sites only is equivalent to considering a non-homogeneous OQRW
with

Li,i+s =
(

νs 0
0 γs

)
if i is even, Li,i+s =

(
γs 0
0 νs

)
if i is odd

(strictly speaking, such OQRWs do not enter into the framework of this article, but in the
general case studied in [5]). Then, we define (Ap)p∈N and (Bp)p∈N to be two i.i.d. sequences
with same law as A, B respectively, and, if for example X0 = 0 is even, we define a random
variable π to take the values 1 and 2 with probabilities p = 〈e1, ρ(i0) e1〉, 1− p respectively.
Then, conditioned on π = 1, the variable X p − X0 has the same law as A1 + B2 + A3 +
. . . (where the sum stops at step p). This explains the formulas given in Theorem 6.7 for
situation 1, with L periodic, as well as the next proposition.

For the case of irreducible, periodic L we also have a simpler explicit formula for the rate
function of large deviations:

Lemma 6.9 Assume an open quantum random walk with V = Z
d and h = C

2 satisfies
assumptions H1,H2 and is irreducible periodic. Then, with the same notation as in Theorem
6.7, the position process (X p − X0)p satisfies a full large deviation principle, with rate
function

c(u) = 1

2
(logE(exp〈u, A〉)) + logE(exp〈u, B〉))).

Proof This follows immediately from Theorem 5.4 and Eq. (6.1) giving λu . ��
Remark 6.10 In situation 2 of Lemma 6.3, one sees that the largest eigenvalue λu is given
by (6.2). For u in a neighbourhood of zero, one has ‖αu‖ > ‖βu‖, but, if there exists u such
that ‖αu‖ = ‖βu‖, then λu may not be differentiable and the large deviations principle may
break down: see Example 7.3. A similar phenomenon can also appear in situation 3.

In this section we have characterized the properties of L in terms of the operators (Ls)s∈S .
The connection between (Ls)s∈S and M is more complex; to illustrate this, and to give a
positive result in this direction we finish this section with the following example:

Example 6.11 We consider the case d = 1, h = C
2, S = {−1,+1} and denote L− = L−1,

L+ = L+1. We state the next two propositions without proofs, as these are lengthy. The
extension of these statements to finite homogeneous open quantum random walks, as well
as the proofs, will be given in a future note.

Proposition 6.12 Irreducibility. Define

W
def= {common eigenvectors of L+L− and L−L+}.

The homogeneous OQRW on Z is reducible if and only if one of the following facts holds

• W contains an eigenvector of L− or L+
• W = Ce0 ∪ Ce1 \ {0}, for some linearly independent vectors e0 and e1 satisfying

L−e0, L+e0 ∈ Ce1 and L−e1, L+e1 ∈ Ce0.
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Proposition 6.13 Period. Suppose that the open quantum random walkM is irreducible. Its
period can only be 2 or 4. It is 4 if and only if there exists an orthonormal basis of C2 such
that the representation of the transition matrices in that basis is

Lε =
(
a 0
0 b

)
, L−ε =

(
0 c
d 0

)

for some ε ∈ {+,−}, where a, b, c, d ∈ C \ {0} are such that |a|2 + |d|2 = |b|2 + |c|2 = 1.

7 Examples

All the examples of this section will live in the context of Example 6.11, that is, we consider
OQRWswith V = Z, S = {−1,+1}, h = C

2 with canonical basis e1, e2. Every operator will
be written in matrix form with respect to this basis, if not specified otherwise. The different
models will be completely determined once the transition operators L− = L−1, L+ = L+1

are defined.

Example 7.1 We consider the standard example from [2], which is treated in [1, Sect. 5.3].
This OQRW is defined by the transition operators

L+ = 1√
3

(
1 1
0 1

)
L− = 1√

3

(
1 0

−1 1

)
.

The only eigenvector of L+ is e1, the only eigenvector of L− is e2, so that we are in situation 1
of Proposition 6.1 and L is irreducible. Again L2+ and L2− have no eigenvector in common,
so by Lemma 6.6, we conclude that L is aperiodic (and therefore regular, by Lemma 4.11).
We observe that ρinv = 1

2 Id is the invariant state of L. We compute the quantities m and
C ∈ R+ from Theorem 5.12:

m = Tr(L+L∗+) − Tr(L−L∗−) = 0.

To compute C we need to find the solution η of

(Id − L)(η) = 1

6

(
1 2
2 −1

)

satisfying Tr η = 0. We find η = 1
12

(
5 2
2 −5

)
, and we have

C = Tr
(
L+ρinvL∗+ + L−ρinvL∗−) + 2 Tr

(
L+ηL∗+ − L−ηL∗−

) = 8

9
.

By Theorem 5.12, we have the convergence in law

X p − X0√
p

−→
p→∞ N

(
0,

8

9

)
.

By Theorem 5.4, the process
(
X p−X0

p

)

p
satisfies a large deviation property with good rate

function equal to the Legendre transform I of u �→ log λu , where λu is the largest eigenvalue
of Lu . This map Lu , written in the canonical basis of the set of two by two matrices, has basis
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Fig. 1 Rate function for
(
X p−X0

p

)

p
in Example 7.1

1

3

⎛

⎜⎜⎝

eu + e−u eu eu eu

−e−u eu + e−u 0 eu

−e−u 0 eu + e−u eu

e−u −e−u −e−u eu + e−u

⎞

⎟⎟⎠

and by a tedious computation, one shows that λu equals

1

3

(
eu + e−u + (eu + e−u +

√
e2u + e−2u + 3)1/3 − (eu + e−u +

√
e2u + e−2u + 3)−1/3).

As expected from Lemma 5.3, this is a smooth and strictly convex function. Numerical
computations prove that the rate function I has the form displayed in Fig. 1.

Example 7.2 We consider the OQRW with transition operators

L+ =
(

0
√
3/2

1/
√
2 0

)
L− =

(
0 1/2

1/
√
2 0

)
.

From Lemma 6.6, the map L is irreducible and 2-periodic. Then, according to Theorem 6.7,
defining A and B to be random variables with values in S satisfying

P(A = +1) = P(A = −1) = 1/2, P(B = +1) = 1 − P(B = −1) = 3/4,

with mean, variance, and cumulant generating function

mA = 0, CA = 1, cA(u) = log(eu + e−u) − log 2,

mB = 1/2, CB = 3/4, cB(u) = log(3eu + e−u) − 2 log 2;
then, with the notations of Theorem 6.7,

m = (mA + mB)/2 = 1/4, C = (CA + CB)/2 = 7/8,
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and one has the convergence in law

X p − p/4√
p

−→
p→∞ N

(
0,

7

8

)
.

In addition, the process
(
X p−X0

p

)

p∈N satisfies a large deviation property with a good rate

function I obtained as the Legendre transform of

c(u) = 1

2
(cA(u) + cB(u)) = 1

2

(
log(eu + e−u) + log(3eu + e−u)

)− 3

2
log 2.

Explicitly, one finds that I (t) = +∞ for t /∈] − 1, 1[ and, for t ∈] − 1,+1[,

I (t) = t ut + 3

2
log 2 − 1

2

(
log(eut + e−ut ) + log(3eut + e−ut )

)
,

where ut = 1
2 log 2t+√

t2+3
3(1−t) . This rate function has the profile displayed in Fig. 2.

Example 7.3 Consider the OQRW defined by the transition operators

L+ =
(

1√
2

1
2
√
2

0
√
3
2

)
L− =

(
1√
2

− 1
2
√
2

0 0

)
.

First observe that the map L is not irreducible in this case, as we are in situation 2 of
Proposition 6.1. A straightforward computation shows that the largest eigenvalue of Lu is

λu = sup

(
eu + e−u

2
,
3 eu

4

)
.

Fig. 2 Rate function for
(
X p−X0

p

)

p
in Example 7.2
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Fig. 3 Rate function for
(
X p−X0

p

)

p
in Example 7.3

For u close to zero λu is eu+e−u

2 so that λ′
u = 0 and λ′′

u = 1 for u = 0. We must therefore
have

X p − X0√
p

−→
p→∞ N (0, 1).

Due to the generalizations discussed at the end of Sect. 5, we have R = Ce1, D = Ce2
and the central limit theorem holds: the behavior of the process (X p)p∈N, associated with L,
is the same as the one of the process (X̃ p)p∈N associated with the restriction L|I1(R).

As we commented previously, giving a large deviations result in this case is harder and
we cannot use the general results we proved. The Gärtner-Ellis theorem could be applied by
direct computation of themoment generating functions. In general, however, the rate function
for the process (X p)p∈N will not coincide with the one for (X̃ p)p∈N, since it will essentially
depend on how much time the evolution spends in D.

More precisely, for the transition matrices introduced above and taking the initial state
ρ = |e2〉〈e2| ⊗ |0〉〈0|, we have, by relation (2.6),

P(X p = p) = Tr(|L p
+e2〉〈L p

+e2|) =
(
3

4

)p

+
(
1

8

)
21−p

√
3p − √

2p√
3 − √

2

and consequently

lim
p

1

p
logE[euX p ] ≥ log

(3
4
eu
)

for all u,

while lim p
1
p logE[eu X̃ p ] = log

(
eu+e−u

2

)
, which for u > log 2 is smaller than the bound

log
( 3
4e

u
)
.

This clarifies the fact that the large deviations will not depend only on L|R. Moreover, a
second problem arises in this example, which is the lack of regularity of λu . Indeed, λu is the
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supremum of two quantities which coincide for u0 = 1
2 log 2, and log λu is not differentiable

at u0: the left derivative is equal to 1
3 and the right derivative to 1. The restriction to [−1,+1]

of the Legendre transform of log λu is displayed in Fig. 3 (it is +∞ outside of this interval)
and we observe that it is not strictly convex.
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