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Abstract Recent work has shown that the solutions of the fractal conservation laws driven
by Lévy α-stable diffusions exhibit shocks for bounded, odd, and convex on the positive
half-line, initial data when the parameter α < 1. We study the analogous situation for the
Lévy α-Linnik diffusions in which case the local behavior is strikingly different, although we
are able to establish analytically that the large time behavior of the two types of conservation
laws are similar. But the main new insights obtained via large-scale numerical experiments
is that, for any 0 < α ≤ 2, the conservation laws driven by α-Linnik diffusions display
shocks that do not dissipate over time, while those for α-stable diffusion (0 < α ≤ 1) do.
We formulate rigorous conjectures based on these numerical experiments.

Keywords Multiscale ·Conservation laws · Lévy stable diffusions ·Anomalous diffusion ·
Linnik diffusions · Shocks

1 Introduction

Over the past several decades, the subject of linear and nonlinear diffusion equations driven
by non-local, pseudo-differential operators witnessed a considerable research activity well
represented in both mathematical and physical literature, see, e.g., [4–8,18,20,30,33,39,40],
with a wide range of applications to anomalous diffusion phenomena, mathematical finance
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and dislocation dynamics, see, .e.g., [10,29,31,36]. Moreover, it has evolved into a vital
part of the theory of conservation laws, and more generally nonlocal nonlinear evolution
equations [17,22,23].

It is known from recent work [1,12] that the solutions of fractal conservation laws
driven by Lévy α-stable diffusions exhibit shocks for bounded, odd, and convex on R

+
initial data when the parameter α < 1. We study the analogous situation for the Lévy
α-Linnik diffusions, in which case the shock behavior is strikingly different although,
conceptually, they are not too far from α-stable diffusions. For nonlinear nonlocal evo-
lution equations driven by α-Linnik diffusions no general rigorous mathematical results
are available, but we are able to derive some asymptotic results based on perturbation
of α-stable diffusion framework. But the main new insights came from our simula-
tions and large-scale numerical schemes for α-Linnik conservation laws with respect to
Riemann, piecewise linear, and smooth initial conditions. The main discovery here is
that, despite their similar heavy tail behavior, the Linnik diffusions produce shocks that
do not dissipate in time; such shock do dissipate in the case of α-stable diffusions.
Thus we are able to formulate rigorous conjectures based on these numerical experi-
ments.

The Lévy α-stable distributions and processes have been well studied in the mathemat-
ical and physical literature (under the name “anomalous diffusions” in the latter), see, e.g.,
[2,3,34,35,38]. The fundamental reason for the their importance is the general central limit
theorem of probability theory: The rescaled sums X1 + · · · + Xn , of independent, identi-
cally distributed random variables have asymptotically, as n → ∞, α-stable distributions,
with the Gaussian case corresponding to the situation when the summands have the finite
second moment (essentially). But, if the fixed range of summation n , is replaced by a
randomly distributed integer N , the situation changes, and in the particular case of the
geometric distribution of N , the normalized sum X1 + · · · + X N of the random number
of independent random α-Linnik summands has the α-Linnik distribution. This random
stability fact was the main motivation behind our taking up this work; the finite but ran-
dom number of summands may provide, in certain situations, a better description of the
real-world situations faced by scientists and economists. We note that Fokker–Planck-type
equations driven by α-Linnik diffusion (called there the geometric-stable noise) were studied
in [9].

The paper is organized as follows: In the preliminary Sect. 2, we give a brief overview
and introduce the notation for the classical α-stable distribution and, less classical,
α-Linnik distribution (both are special cases of the general Lévy infinitely divisible dis-
tributions), including properties of the density function and the tail probabilities behavior,
and relationship between the two classes. We also show how the parameters of the α-
Linnik distributions can be estimated. Additionally, we study the fractional lower order
moments and the density of the Lévy measure for the α-Linnik distributions. Section 3
sets up formally the nonlinear nonlocal evolution equations driven by α-stable and α-
Linnik diffusions and describes the basic asymptotics derived from the fact that, in
some ways, α-Linnik diffusions can be viewed as perturbations of α-stable diffusions.
Section 4 summarizes the known results about the shock creation for fractal Burgers
equations, that is the conservation laws with a quadratic nonlinearity. Section 5 con-
tains our numerical results on non-dissipative nature of shocks appearing in the Linnik
context. Section 6 describes our conclusions, conjectures and proposed future work. A
detailed description of our numerical scheme employed in Section 5 is provided in the
Appendix.
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2 Preliminaries: General Lévy, α-Stable, and α-Linnik Distributions and
Processes

2.1 Lévy Processes and Infinitely Divisible Distributions

Let us begin by recalling that a stochastic process X = {Xt ; t ≥ 0} is called a Lévy process
(see [2,3,20,34,35,38] for the detailed expositions)1 if :

(i) X0 = 0, with probability 1,
(ii) It has independent increments, i.e., for any n ∈ N, and any 0 < t1 < t2 < · · · < tn ,

the random variables Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtn − Xtn−1 are independent,
(iii) It has stationary increments, i.e., for any s < t, Xt − Xs is equal in distribution to

Xt−s

(iv) It is right continuous with left limits, with probability 1.

In this paper we will concentrate on the on-dimensional case, and it is easy to see that the
characteristic functions (CF) φ(ξ, t) = E exp(iξ X (t)) of the 1-D distributions of the Lévy
processes are infinitely divisible (ID), that is, for every n ≥ 1, t ≥ 0,

φ(ξ, t) = [φ(ξ, t/n)]n, ξ ∈ R. (2.1)

A more detailed description of the structure of characteristic functions of infinitely divis-
ible distributions is given by the following Lévy-Khinchine Representation Theorem:

Theorem 2.1 A random variable X has an infinitely divisible distribution if, and only if,
there exist μ ∈ R, σ ∈ R+, and a nonegative measure � on R\{0} satisfying the condition∫
R
(1 ∧ |x |2)�(dx) < ∞, such that

E[eiξ X ] = e−ψ(ξ), (2.2)

where the characteristic exponent

ψ(ξ) = −iμξ + (σξ)2

2
−

∫

R\{0}
(
eiξ x − 1 − iξ xI|x |<1

)
�(dx). (2.3)

The triplet (μ, σ,�) is called the characteristic triplet of X , ψ(u)—the characteristic
exponent of X , μ ∈ R— the drift coefficient, σ > 0—the Gaussian, or diffusion coefficient,
and �— the Lévy measure of X . The Lévy measure describes the “intensity” of jumps of a
certain height of a Lévy process in a time interval of length 1.

In view of the stationarity of increments, the characteristic function of the Lévy process
X (t) is of the form

φ(ξ, t) = (φ(ξ, 1))t = e−tψ(ξ), (2.4)

where ψ(u) is the characteristic exponent of X1. For any infinitely divisible random variable
X (that is, a random variable with an infinitely divisible distribution), we can construct a Lévy

process (Xt )t≥0 such that X1
d= X .

1 In what follows, in view of the physical context of the discussions, we will also use the term Lévy diffusions,
instead of Lévy processes.
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2.2 α-Stable Distributions

The self-similar (symmetric) Lévy distributions form a class of the classical α-stable distri-
bution (denoted S(α, c) in this paper) with the characteristic functions of the form

φS(ξ ;α, c) = exp(−|c ξ |α), (2.5)

where the constant 0 < α ≤ 2, is called the index of stability, and c is the scale parameter.
In general, probability density functions (PDFs), fS(x;α, c) , of α-stable distributions do
not have clean closed-form representations in terms of elementary functions although a lot
of effort has been expanded on developing “explicit” expressions in terms of other known
special functions. Apart from the obvious Gaussian case of α = 2, we would like to mention
the Cauchy case, α = 1, when the PDF is of the form

fS(x; 1, c) = c

π
(
c2 + x2

) . (2.6)

This particular case displays an interesting duality with the similarly parametrized 1-Linnik
distribution discussed in Sect. 2.3.

The Lévy measure �S of the α-stable distribution S(α, c) is absolutely continuous and its
density λS(x) = �S(dx)/dx of the Lévy measure of the α-stable distribution

λS(x) = �S(dx)

dx
= C

|x |α+1 , (2.7)

with the easily determined constant C = cα(2
∫ ∞
0 (cos v − 1)v−(1+α)dv)−1.

2.3 α-Linnik Distributions and Their Basic Properties

In this subsection, we introduce the (symmetric) α-Linnik distributions and, since they are
less well know in the mathematical physics community than the α-stable distributions (and
the related anomalous diffusions), we also discuss their statistical, analytic and asymptotic
properties. The name, although unorthodox, emphasizes analogies and contrasts between the
properties of α-stable and α-Linnik distributions for the same parameter α; in most of the
literature the latter are just called Linnik distributions.

The univariate Linnik distribution (denoted L(α, γ ) in this paper) with index α ∈ (0, 2],
and the scale parameter γ > 0, is defined by its characteristic function [28],

φL(ξ ;α, γ ) = 1

1 + |γ ξ |α , t ∈ R, γ > 0. (2.8)

Let us denote its density function by fL(x;α, γ ). In the extreme case α = 2 and γ = 1, the
Linnik distribution corresponds to the standard Laplace (two-sided exponential) distribution
with the density function,

f (x; 2, 1) = 1

2
e−|x |/2; x ∈ R. (2.9)

By inverting the characteristic function φL(x;α, 1) one can immediately see [24,25] that
fL(x;α, 1) = fL(−x;α, 1), and

fL(x;α, 1) = 1

π

∫ ∞

0

1

1 + tα
cos(xu)du

= sin(πα/2)

π

∫ ∞

0

tαe−u|x |du

1 + t2α + 2tα cos(πα/2)
.
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Multiscale Conservation Laws Driven... 33

Note that, for 1 < α ≤ 2, L(0;α, 1) < ∞, but, for 0 < α ≤ 1, the density has a
singularity at the origin, L(0;α, 1) = ∞. Also, the absolute first moment is finite only for
1 < α ≤ 2, and the variance is well defined only in the case α = 2. The distribution is
unimodal, and [11] provides an elegant method of generating Linnik random variables, and
contains a constructive proof that (1+ |u|α)−1 is a characteristic function (see Remark 2.2).
A few sample PDFs are shown in Fig. 1.

For α ∈ (0, 2), the α-Linnik distributions, like the corresponding α-stable distributions,
have ‘fat tails’ (no longer exponential). More precisely, they have the following asymptotic
behavior at infinity:

Theorem 2.2 ([24]) For any α ∈ (0, 2),

fL(x;α, 1) ∼ 1

π

∞∑

k=1

{

(−1)k−1�(1 + αk) sin

(
παk

2

)}

|x |−1−αk, as x → ∞, (2.10)

or, equivalently,

fL(x;α, 1) = 1

π

n∑

k=1

{

(−1)k−1�(1 + αk) sin

(
παk

2

)}

|x |−1−αk + Rn,α(x), (2.11)

where

|Rn,α(x)| ≤ � (1 + α(n + 1))

π sin(πα/2)
|x |−1−α(n+1). (2.12)

Consequently, for any α ∈ (0, 2), the density fL(x;α, 1) decreases at ∞ at the rate of the
power function x−(1+α). More precisely,

fL(x;α, 1) ∼ 1

π

{
�(1 + α) sin

(πα

2

)}
|x |−(1+α), as x → ∞. (2.13)

The importance of α-stable distributions comes from their universality as approximants
of the distributions of sums of a fixed but large numbers of independent, identically dis-
tributed random variables. Indeed, the fundamental central limit theorem states that if
X1, X2, . . . , Xn are independent, identically distributed (i.i.d.) random variables then their
sums Sn = X1+ X2+· · ·+ Xn converge in distribution (after some rescaling ) to an α-stable
distribution for some α ∈ (0, 2]. This fact is directly related to the “stability” property: if
X1, X2, . . . , Xn are symmetric α-stable themselves then Y = n−1/α(X1 + X2 + · · · + Xn)

has the same distribution as each of the X ′
i s.

The α-Linnik distributions have a similar stability property, but under random geometric
summation. More precisely [26], we have the following simple, but revealing, result:

Proposition 2.1 If X, X1, X2, . . . are i.i.d. random variables and N is an independent of
X1, X2, . . . random variable with the geometric distribution with mean 1/p, 0 < p < 1,
that is, P(N = n) = p(1 − p)n−1, n = 1, 2, . . . , then the following two statements are
equivalent:

(i) X is α-stable with respect to geometric summation, i.e.,

p1/α
N∑

i=1

Xi
d= X,

(ii) X has the α-Linnik distribution.
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Proof The verification is straightforward via the characteristic function:

E exp[iξp1/α(X1 + X2 + · · · + X N )]

=
∞∑

n=1

E
(
exp[iξp1/α(X1 + X2 + · · · + X N )]|N = n

)
p(1 − p)n−1

=
∞∑

n=1

(
1

1 + |γ ξp1/α|α
)n

p(1 − p)n−1 = 1

1 + |γ ξ |α .


�
Two elementary, but crucial observations are in order here:

Remark 2.1 The α-Linnik distributions are in the domain of attraction of the α-stable dis-
tribution, that is, if Zn = n−1/α(X1 + X2 + · · · + Xn) are i.i.d. and Xi ∼ L(α, γ ) for
all i , then the distribution of Zn converges to a, α-stable distribution as n tends to infinity.
Indeed, working again with characteristic functions, we get

lim
n→∞E(exp(iξ Zn)) = lim

n→∞(1 + |ξγ |α/n)−n = exp(−|γ ξ |α).

Remark 2.2 If Z is the standard exponential random variable, and Y ∼ S(α, c) is an inde-
pendent α-stable random variable then

X = Z1/αY (2.14)

is a Linnik random variable with the distribution L(α, γ ), and γ = c, see [11]. Indeed,

E eiξ Z1/αY =
∫ ∫

eiξ z1/α y fY (y)e−z dy dz =
∫ ∞

0
e−z(1+|cξ |α)dz = 1

1 + |cξ |α .

2.4 Comparison of Tails and Lower-Order Fractional Moments of α-Stable and
α-Linnik Distributions

For 0 < α < 2, the tail behavior of the distribution of Y ∼ S(α, c) is as follows [34]:

lim
y→∞ yα

P(|Y | > y) = Cαcα, (2.15)

where

Cα = sin(πα/2)�(α)

π
, (2.16)

In the α-Linnik case we have a similar result.

Proposition 2.2 X ∼ L(α, γ ), 0 < α < 2, then

lim
y→∞ yα

P(|X | > y) = Cαγ α. (2.17)

Proof Indeed, in view of Remark 2.2,

lim
x→∞ xα

P(|X | > x) = lim
x→∞ xα

P
(|Y | > x Z−1/α)

= lim
x→∞ xα

∫ ∫

{|y|>xz−1/α}
fY (y)e−z dy dz

123



36 B. Gunaratnam, W. A. Woyczyński

=
∫ ∞

0

(

lim
x→∞(xz−1/α)α

∫

{|y|>xz−1/α}
fY (y) dy

)

ze−z dz

= Cαγ α

∫ ∞

0
ze−z dz = Cαγ α.


�
Given the above asymptotic results (see also Theorem 2.2), both, the α-Linnik amd α-

stable random variables with 0 < α < 2 have finite moments of fractional order less than α;
the higher-order moments are infinite. More precisely, if Y ∼ S(α, c), and 0 < p < α, then
[34]

E|Y |p =
2p+1cp�

(
p+1
2

)
�

(− p
α

)

α
√

π�
(− p

2

) . (2.18)

On the other hand, for the α-Linnik distributions we have the following result:

Proposition 2.3 Let X ∼ L(α, γ ), with 0 < α < 2. Then, for every p, 0 < p < α,

E|X |p = 2p+1 pγ p�
( p+1

2

)
�
( − p

α

)
�
( p

α

)

α2
√

π�
( − p

2

) . (2.19)

Proof In view of Remark 2.2,

E|X |p = EZ p/α · E|Y |p =
∫ ∞

0
z p/αe−z dz · E|Y |p = �

( p

α
+ 1

)
E|Y |p,

which gives (2.19) as a result of (2.18), and the identity �(x + 1) = x�(x). 
�
Remark 2.3 Thus the α-stable and α-Linnik ditributions have exactly matching probability
distribution tails if c = γ . We will exploit this fact in the numerical work presented in Sect. 5.
However, the exactlymatching tails of S(α, c) and L(α, γ ) in the case c = γ do not imply that
their fractional momentsmatch. To assure the equality of the p-th order fractional lower order
moment of the α-Linnik distribution L(α, γ ), and the α-stable distribution S(α, c, β, μ),
which may be also useful in simulations, their parameters have to be related via the following
equality

pγ p� (p/α)

α
= cp, 0 < p < α. (2.20)

For example, if α = 3/2, then to assure the equality of the first-order moments we must have
c = 0.902745γ .

2.5 Lévy Measure of the Linnik Distribution

There is an obvious relationship between the characteristic function φS(ξ ;α, 1) of the
symmetric stable distribution, and the characteristic function φL(ξ ;α, 1) of the Linnik dis-
tribution:

φL(ξ) = 1

1 − logφS(ξ)
. (2.21)

This fact permits expressing the density of the Lévy measure of �L of the α-Linnik
distribution in terms of the α-stable distribution [27]:
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Multiscale Conservation Laws Driven... 37

�L(dx)

dx
= α

2|x |E exp
(
−

∣
∣
∣

x

X

∣
∣
∣
α)

, (2.22)

where X ∼ S(α, 1).
Finally, using the tail asymptotics (2.16) of the S(α, 1c), one obtains the following asymp-

totics for the Lévy measure of the α-Linnik distribution:

lim
x→∞ xα�L([x,∞)) = 1

2�(1 − α) cos(πα/2)
; 0 < α < 2. (2.23)

2.6 Generalized Linnik Distributions

Several authors, see, e.g., [15,32], defined the generalizedLinnik distributions as distributions
with the characteristic functions

φGL(ξ, α, γ, t) = 1

(1 + |γ ξ |α)t
, (2.24)

where α ∈ (0, 2], and γ, t > 0. For integer values of t , the generalized Linnik distribution
is simply the convolution of regular Linnik distributions. For arbitrary t > 0, they are the
distributions of the corresponding Lévy process, see (2.4), or, equivalently, the distributions
of the semigroup generated by the basic Linnik distribution, L(α, γ ). They will play a natural
role in the subsequent discussion of conservation laws driven by Linnik diffusions.

3 Conservation Laws Driven by α-Stable and α-Linnik Diffusions

Mathematical conservation laws are integro-differential evolution equations, such as Navier–
Stokes and Burgers equations, expressing the physical principles of conservation of mass,
energy, momentum, enstrophy, etc., in different dynamical situations. For general theory of
conservation laws we refer to the monograph [37].

3.1 Infinitesimal Generators of α-Stable and α-Linnik Diffusions

We are now turning to a study of 1-D evolution equations, for a function u = u(t, x), of the
form

ut + Lu + ( f (u))x = 0, (3.1)

where L is an infinitesimal generator of the semigroup associated with a Lévy process and
f : R → R is a (nonlinear) function. Such equations are often called fractal, or anomalous
conservation laws (see, e.g., [5,6]). The operators L are easiest to describe in terms of their
actions in the Fourier domain; they are both so-called Fourier multiplier operators. Let’s
begin by recalling the basic terminology and establishing the notation.

Like any Markov processes,2 the Lévy process, Xt , t > 0, has associated with it a semi-
group, Pt , Pt+s = Pt Ps, t, s,> 0, of convolution operators acting on a bounded function
f (x) via the formula

Pt f (x) = E
x ( f (X (t)) =

∫

R

f (x + y) P(X (t) ∈ dy). (3.2)

2 See, e.g., [8,18], for basic information in this area.
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38 B. Gunaratnam, W. A. Woyczyński

The infinitesimal generator L of such a semigroup is defined by the formula

L = lim
h→0

Ph − P0

h
(3.3)

and the family of functions (densities) v(t, x) = Pt f (x) satisfies clearly the (generalized)
Fokker–Planck evolution equation

vt = Lv, (3.4)

because

lim
h→0

Pt+h − Pt

h
= lim

h→0

Ph − P0

h
Pt = LPt . (3.5)

In the case of a general Lévy processes Xt , we have the identity

F(L f )(ξ) = −ψ(ξ)F f (ξ) (3.6)

where F stands for the Fourier transform 3, and ψ(u) is the characteristic exponent of X (1)
defined in (2.3). So, L is the pseudo-differential operator with the Fourier multiplier ψ(ξ),
which is also called the symbol of the semigroup (Pt ). Indeed,

F(Pt f )(ξ) =
(∫

R

e−iξ x
E f (X (t) + x) dx

)

= E

(∫

R

e−iξ(y−X (t)) f (y) dy

)

= Eeiξ X (t)
∫

R

e−iξ y f (y) dy = exp(−tψ(ξ)F f (ξ),

which implies (3.6), in view of of (3.3).
In the case of the usual Brownian motion the infinitesimal operator L is just the classical

Laplacian . For the α-stable process with X (1) ∼ S(α, c),

F(L f )(ξ) = −|cξ |αF f (ξ), (3.7)

And, for the α-Linnik process, X (1) ∼ L(α, γ ), in view of (2.8),

F(L f )(ξ) = − log(1 + |γ ξ |α)(F f (ξ), (3.8)

For general theory, including Feller processes, see, e.g., [8,18,19].
Now we are ready to state the results about the existence, uniqueness and the asymptotic

behavior of the Lévy and Linnik conservation laws driven by stable and Linnik diffusions.

3.2 Asymptotics of Solutions of α-Stable and α-Linnik Conservation Laws with
Supercritical Nonlinearity (α > 1)

In this subsection we describe several asymptotic results for the 1-D Cauchy problem for
nonlinear pseudodifferential equations of the form

ut + Lu + ∇Nu = 0, u(x, 0) = u0(x), (3.9)

where u = u(x, t), x ∈ R, t ≥ 0, u : R×R
+ → R, −L is a generator of a Lévy semigroup

with symbol ψ(ξ), and N is a nonlinear operator to be specified later. All these equations
are generalizations of the classical Burgers equation

ut − uxx + (u2)x = 0, (3.10)

3 In this paper we use the convention, (F f )(ξ) = ∫
R

e−iξ x f (x) dx , and (F−1g)(x) = 1
2π

∫
R

eiξ x g(ξ) dξ .
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Multiscale Conservation Laws Driven... 39

The main point here is the observation that for the α-stable and α-Linnik diffusions the large
time behavior of the solutions is similar. This is in contrast to the phenomena observed in
the next section where, for these two types of diffusions and the Riemann- type initial data,
shocks behave dramatically differently.

The solutions to the Cauchy problem (3.9) have to be understood in some weak sense and
several options are here available, and have been studied in detail in [4–7,23]. For the sake
of this presentation let us just say that as the solution to (3.9) we mean a mild solution of the
integral equation,

u(t) = e−tLu0 −
∫ t

0
∇ · e−(t−τ)L(Nu)(τ ) dτ, (3.11)

motivated by the classical Duhamel formula. The regularity of the solutions is expressed in
terms of the Sobolev space W 2,2.

Theorem 3.1 (see, [6])

(i) Assume that f ∈ C1(R,Rd) and L is the infinitesimal generator of a Lévy process and
its symbol (characteristic exponent), ψ(ξ), satisfies the condtion

lim sup
|ξ |→∞

ψ(ξ) − a0|ξ |2
|ξ |̃α < ∞ for some 0 < α̃ < 2, and a0 > 0. (3.12)

Given u0 ∈ L1(R) ∩ L∞(R), there exists a unique solution u ∈ C([0,∞); L1(R) ∩
L∞(R)) of the problem

ut + Lu + ∇ · f (u) = 0, u(x, 0) = u0(x). (3.13)

This solution is regular, u ∈ C((0,∞); W 2,2(R)) ∩ C1((0,∞); L2(R)), satisfies the
conservation of integral property,

∫
u(x, t) dx = ∫

u0(x) dx, and the contraction prop-
erty,

‖u(t)‖p ≤ ‖u0‖p, (3.14)

for each p ∈ [1,∞] and all t > 0. Moreover, the maximum and minimum principles
hold: ess inf u0 ≤ u(x, t) ≤ ess sup u0, a.e. x, t , as well as the comparison principle
for u0 ≤ v0 ∈ L1(R):

u(x, t) ≤ v(x, t) a.e. x, t, and ‖u(t) − v(t)‖1 ≤ ‖u0 − v0‖1. (3.15)

(ii) If

0 < lim inf
ξ→0

ψ(ξ)

|ξ |α ≤ lim sup
ξ→0

|ψ(ξ)|
|ξ |α < ∞, 0 < inf

ξ

|ψ(ξ)|
|ξ |2 , (3.16)

for some 0 < α < 2, then the bound

‖u(t)‖p ≤ C p min
(
t−n(1−1/p)/2, t−n(1−1/p)/α

)‖u0‖1 (3.17)

holds for all 1 ≤ p ≤ ∞. Moreover, if u0 ∈ L1(Rd) ∩ L∞(Rd), then

‖u(t)‖p ≤ C(1 + t)−n(1−1/p)/α (3.18)

with a constant C which depends on ‖u0‖1 and ‖u0‖p.
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(iii) Assume that u is a solution of the Cauchy problem (3.13) with u0 ∈ L1(R) ∩ L∞(R)

and e−tL satisfies (3.12) and ( 3.16) with some 0 < α < 2. Furthermore, suppose that
f ∈ C1, lim sups→0 | f (s)|/|s|r < ∞ for some

r > max((α, 1)). (3.19)

Then, for every 1 ≤ p ≤ ∞, the relation

lim
t→∞ t (1−1/p)/α‖u(t) − e−tLu0‖p = 0 (3.20)

holds.

Remark 3.1 It may be worthwhile to observe that the third condition in (3.16) means
that the Gaussian part is nontrivial, that is, σ 2 > 0. Indeed , it is well known that
σ 2 = lim|ξ |→∞ |ψ(ξ)|/|ξ |2 ≥ infξ |ψ(ξ)|/|ξ |2. Under the condition given in the first part
of (3.16) the asymptotics of ψ(ξ) at ξ = 0 is like |ξ |α , so, effectively, (3.16) is equivalent to
saying that

0 < lim inf
ξ→0

ψ(ξ)

|ξ |α ≤ lim sup
ξ→0

|ψ(ξ)|
|ξ |α < ∞, and σ 2 > 0.

Recall that e−tLu0 denotes the action of the Lévy semigroup on the function u0, that
is a solution of the linear equation ut + Lu = 0, with the initial data u0 and that for the
linear equation the asymptotics is clear: there exists a nonnegative function η ∈ L∞(0,∞)

satisfying limt→∞ η(t) = 0, and such that
∥
∥
∥etL ∗ u0 −

∫

R

u0(x) dx · pL(t)
∥
∥
∥

p
≤ t−(1−1/p)/αη(t),

where pL(t) is the kernel of the operator L in (6). Higher order asymptotics is also available,
(see, [5]).

The above general result has direct consequences for multifractal conservation laws

ut + Lu + f (u)x = 0, (3.21)

driven by stable and Linnik diffusions.4 Recall that the multifractal stable operator is defined
as follows:

L = −a0 +
k∑

j=1

a j (−)α j /2, (3.22)

0 < α j < 2, a j > 0, j = 0, 1, . . . , k, where (−)α/2, 0 < α < 2, is the fractional
Laplacian defined as the Fourier multiplier operator

((−)α/2v) = F−1(|ξ |α(Fv)(ξ)). (3.23)

Similarly, the multifractal Linnik operator will be understood here as the operator of the
form

L = −a0 +
k∑

j=1

a j Lα j , (3.24)

4 The particle approximations and the propagation of chaos results for such systems have been studied in [22].
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where

Lαv = F−1(log(1 + |ξ |α)(Fv)(ξ)). (3.25)

Note the parabolic regularization included in the operator. To avoid confusion wewill assume
that all the α j ’s are different.

Corollary 3.1 All the statements of Theorem 3.1 are valid for the conservation laws (3.21)
driven by multifractal stable and Linnik diffusions with

α = min(α1, . . . , αk).

In particular, if u is a solution of the Cauchy problem (3.21) with u0 ∈ L1(R) ∩ L∞(R),
e−tL satisfies (3.12) and ( 3.16) with some 0 < α < 2, and f ∈ C1, lim sups→0 | f (s)|/|s|r
< ∞, for some

r > max((α, 1)), (3.26)

then, for every 1 ≤ p ≤ ∞, the relation

lim
t→∞ t (1−1/p)/α‖u(t) − e−tLu0‖p = 0 (3.27)

holds. Moreover,
∥
∥
∥etL ∗ u0 −

∫

R

u0(x) dx · pL(t)
∥
∥
∥

p
≤ t−(1−1/p)/αη(t),

where pL(t) is the kernel of the operator L in (3.21).

Proof All that is required is verification the conditions (3.12) and (3.16) are satisfied. Indeed,
for the mutifractal stable case (3.22) with the symbol,

ψ(ξ) = a0|ξ |2 +
k∑

j=1

a j |ξ |α j , (3.28)

we have, for α∗ = max(α1, . . . , αk), and α j∗ = α∗

lim sup
|ξ |→∞

ψ(ξ) − a0|ξ |2
|ξ |α∗ = a j∗ < ∞

and with α∗ = min(α1, . . . , αk)

0 < lim
ξ→0

ψ(ξ)

|ξ |α∗ = a j∗ < ∞,

where α j∗ = α∗, and

inf
ξ

ψ(ξ)

|ξ |2 = a0 > 0,

For the mutifractal Linnik case (3.24) with the symbol,

ψ(ξ) = a0|ξ |2 +
k∑

j=1

a j log(1 + |ξ |α j ),
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verification of condition (3.12) also gives

lim sup
|ξ |→∞

ψ(ξ) − a0|ξ |2
|ξ |α∗ = lim sup

|ξ |→∞

∑k
j=1 a j log(1 + |ξ |α j )

|ξ |α∗ = a j∗ < ∞,

while

0 < lim
ξ→0

a0|ξ |2 + ∑k
j=1 a j log(1 + |ξ |α j )

|ξ |α = a j∗ < ∞,

and, similarly, for condition (3.16) we have

inf
ξ

a0|ξ |2 + ∑k
j=1 a j log(1 + |ξ |α j )

|ξ |2 ≥ a0 > 0.


�
Remark 3.2 Explicit asymptotic expressions. The explicit representationss of the kernels of
some of those multifractal operators in terms of special functions are being studied in [16].

3.3 Asymptotics of Solutions of α-Stable and α-Linnik Conservation Laws with
Critical Nonlinearity (α > 1)

By contrast with the results of the previous section, let us note, (see, [41]), that the first order
asymptotics of solutions to the Cauchy problem for the Burgers equation (3.10) is described
by the relation

t (1−1/p)/2‖u(t) − UM (t)‖p → 0, as t → ∞,

where

UM (x, t) = t−1/2 exp(−x2/4t)

(

K (M) + 1

2

∫ x/2
√

t

0
exp(−ξ2/4) dξ

)−1

is the, so-called, source solution such that u(x, 0) = Mδ0. It is easy to verify that this solution
is self-similar, i.e.,UM (x, t) = t−1/2U (xt−1/2, 1). Thus, the long time behavior of solutions
to the classical Burgers equation is genuinely nonlinear, i.e., it is not determined by the
asymptotics of the linear heat equation.

As it turns out that genuinely nonlinear behavior of the Burgers equation is due to the
precisely matched balancing influence of the regularizing Laplacian diffusion operator and
the gradient-steepening quadratic inertial nonlinearity.

The next result finds such a matching critical nonlinearity exponent for the nonlocal
multifractal conservation law so that the solutions of (3.13) behave asymptotically like self-
similar source solutions U of (3.13) with singular initial data Mδ0.

Theorem 3.2 (see, [6]) Let u be a solution of the Cauchy problem (3.13) with the operator
L = (−)α/2 + K, where 1 < α < 2, and K is an infinitesimal generator of a Lévy process
whose symbol k satisfies the condition

lim
ξ→0

k(ξ)

|ξ |α = 0, (3.29)

and u0 ∈ L1(Rd),
∫
Rd u0(x) dx = M > 0. Assume that the nonlinearity f is such that

lim
s→0

f (s)

s|s|(α−1)/n
∈ R. (3.30)
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Then, for each 1 ≤ p ≤ ∞,

lim
t→∞ tn(1−1/p)/α‖u(t) − U (t)‖p = 0, (3.31)

where U = UM is the unique solution of the problem (3.13) with r = max((α−1)/n +1, 1))
and the initial data Mδ0. Moreover, U is of self-similar form U (x, t) = t−n/αU (xt−1/α, 1),∫
Rd U (x, 1) dx = M, and U ≥ 0.

Analogous to Corollary 3.1., we also have the following result in the case of multifractal
conservation laws with critical nonlinearities.

Corollary 3.2 All the statements of Theorem3.2are valid for conservation laws (3.13)driven
by multifractal stable, and multifractal Linnik diffusions, with the infinitesimal generator with
the symbol

ψ(ξ) =
n∑

j=1

a j |ξ |α j , a j > 0, j = 1, 2, . . . , n,

in the stable case,

ψ(ξ) =
n∑

j=1

a j log(1 + |ξ |α j ), a j > 0, j = 1, 2, . . . , n,

in the Linnik case, and

α = α∗ ≡ min(α1, . . . , αk).

Proof In this context, denoting a j∗ = α∗ = α, the perturbation K of the operator L has the
symbol

k(ξ) =
n∑

j=1

a j |ξ |α j − a j∗ |ξ |α j∗ ,

in the stable case, and

k(ξ) =
n∑

j=1

a j log(1 + |ξ |α j ) − a j∗ log(1 + |ξ |α j∗ ),

in the Linnik case. Now, remembering that the a j ’s were assumed earlier to be all different,
the verification of the condition (3.29) is immediate. 
�
Remark 3.3 Note that, in contrast to Corollary 3.1, the parabolic regularization (inclusion of
the Gaussian term) is not necessary in the above critical case.

4 Shock Creation for Fractal Burgers Equations: Analytical Results

In the remainder of this paper we consider conservation laws with quadratic nonlinearity
and α-stable and α-Linnik driving diffusions, α ∈ (0, 2). The first type was introduced and
studied as fractal Burgers equation in [4] and, in the α-stable case, shock appearance for their
solutions was studied in [1,12,13]. The main purpose of this section is to set up the stage
for a numerical study (see, Sect. 6) expanding on the work in [12], which shows that the
behavior of shocks is significantly different in the α-Linnik case than in the α-stable case.
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Let us begin with the standard definition of an entropy solution for a general 1-D fractal
conservation law (see, e.g., [1]),

ut + Lu + ( f (u))x = 0, u(0, x) = u0(x), (4.1)

where u = u(t, x), t > 0, x ∈ R, u0 ∈ L∞(R), f : R → R is locally Lipschitz
continuous, and L is the α-stable infinitesimal generator, α ∈ (0, 2), defined as the Fourier
multiplier, with the integral representation

[Lu](x)=−cα

(∫

|z|≤r

u(x + z) − u(x) − u
′
(x)z

|z|1+α
dz +

∫

|z|>r

u(x + z) − u(x)

|z|1+α
dz

)

(4.2)

where cα = α�( 1+α
2 )/(2

√
ππα�(1 − α

2 )).
An entropy solution to (4.1) is a function u ∈ L∞ ((0,∞) × R) , such that, for all non-

negative ϕ ∈ C∞
c ((0,∞) × R) , for all smooth convex function η : R → R , and all

φ : R → R such that φ
′ = η

′
f

′
, and all r > 0, we have

∫ ∞

0

∫

R

(η(u)∂tϕ + φ(u)∂xϕ)

+ cα

∫ ∞

0

∫

R

∫

|z|>r
η

′
(u(t, x))

u(t, x + z) − u(t, x)

|z|1+α
ϕ(t, x)dtdxdz

+ cα

∫ ∞

0

∫

R

∫

|z|≤r
η(u(t, x))

ϕ(t, x + z) − ϕ(t, x) − ∂xϕ(t, x).z

|z|1+α
dtdxdz

+
∫

R

η(u0)ϕ(0, ·) ≥ 0. (4.3)

In the special case of the quadratic nonlinearity, that is, of the 1-D fractal Burgers equation
of the form

ut + (u2/2)x + L(u) = 0, u(0, x) = uo(x), (4.4)

it was demonstrated in [1] that the solution of the equation (4.4) can exhibit shocks (i.e., jump
discontinuities) for bounded, odd onR, and convex on R

+ initial data when α < 1.No such
effect is present in the case α > 1 , as in that case the fractional Laplacian has a regularizing
effect, see, e.g., [4,6,7,14]. The basic analytical result on shock creation is as follows:

Theorem 4.1 (see, [1]) Consider the fractal Burgers equation (4.4) driven by an α-stable
generator of the form (4.2) with α ∈ (0, 1). Then , locally in time, shocks in initial data
are preserved, and with continuous initial data, shocks do appear, also locally in time, if the
initial data and its derivative are simultaneously large; other wise no shocks are created.
More precisely

(a) (Short term preservation of initial shocks) Let u0 be discontinuous at 0, bounded, odd on
R, and convex on the positive half-line. If u is the unique entropy solution to (4.4) then
u ∈ Cb ([0,∞) × R \ {0}) is odd and non-increasing with respect to space variable,
and there exists ε > 0 such that

inf
t∈[0,0+ε)

{u(t, 0−) − u(t, 0+)} > 0,

where u(t, 0±) denote the limits limx→0± u(t, x).
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(b) (Short term shock creation for initial continuous data) There exists S(α) > 0 such
that if u0 is bounded, odd on R, and convex on the positive half-line, and for some
x∗ > 0 we have u0(x∗) < −S(α)x1−α∗ , then the unique entropy solution to (4.4) u ∈
Cb ([0,∞) × R \ {0}) is odd and non-increasing with respect to space variable and there
exist 0 ≤ t∗ < ∞, and ε > 0, such that

inf
t∈[t∗,t∗+ε)

{u(t, 0−) − u(t, 0+)} > 0,

where u(t, 0±) denote the limits limx→0± u(t, x).

(c) (No creation of shocks) If u0 ∈ W 1,∞(R), and

‖u
′
0‖1−α

L∞(R) · ‖u0‖α
L∞(R) <

�( 1+α
2 )

2α+1π
1
2+α�(1 − α

2 )
,

then the entropy solution u of (4.4) belongs to the Sobolev space W 1,∞((0,∞),R), and,
for all t > 0, satisfies the inequalities

‖u(t, .)‖L∞(R) ≤ ‖u0‖L∞(R), and ‖∂x u(t, .)‖L∞(R)‖u
′
0‖L∞(R).

5 Shock Creation, Persistence and Dissolution for α-Stable and α-Linnik
Burgers Equation: Numerical Results

In this section we present results of numerical studies of solutions of the α-stable and α-
Linnik conservation laws with quadratic nonlinearity (fractal Burgers equations) contrasting
dramatic difference in their time evolution despite the similar distributional tail behavior of
the corresponding diffusions. The multiscale case is not considered, and the constants in the
basic Lévy distributions underlying the two diffusions are taken to be 1. Computations have
been carried out for the following three types of odd, decreasing, and convex on the positive
half-line initial conditions:

(i) Riemann-type initial data:

u0(x) =
{
1, for x ≤ 0;
−1, for x > 0,

(ii) Piecewise linear (but continuous) data:

u0(x) = min(1,max(−10x,−1)),

(iii) Smooth, infinitely differentiable data:

u0(x) = (−2/π) arctan(x).

The plots in Figs. 2, 3, 4, 5, 6, and 7 compare the evolution of the initial profile u(0, x) =
u0(x) for theα-stable case (top pictures) and theα-Linnik case (bottompictures) for the above
three initial conditions. Two values of α are considered, α = 0.3 < 1 and α = 1.25 > 15.
The evolution is traced for the times T = 1, 5, 10,and 25. The red, dash-dot-dash lines
indicate the initial data and continuous, colored curves track the solutions at different time
instants. The complete numerical scheme is described in detail in Appendix.

5 The Matlab code, as well as the results of numerical computations for other values of α can be found on the
webpage of the second-named author: https://sites.google.com/a/case.edu/waw.
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Fig. 2 (Top) The solution of α-stable fractional equations (3.21), and (3.22), with the quadratic linearity
at times t = 1, 5, 10, 25 for a Riemann initial condition and α = 0.3. (Bottom) The solution of α-Linnik
fractional equations (3.21), and (3.24), with the quadratic linearity at times t = 1, 5, 10, 25 for a Riemann
initial condition and α = 0.3

For α = 0.3 < 1, (Figs. 2, 3, 4) all three initial conditions ((i)–(iii), lead to shock
creation at finite times both, in the α-stable and the α-Linnik case. In the α-stable case this
phenomenon has been established rigorously in Theorem 4.1. In the α-Linnik case we have
only a numerical results and the resulting plots.
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Fig. 3 (Top) The solution of α-stable fractional equations (3.21), and (3.22), with the quadratic linearity at
times t = 1, 5, 10, 25 for a continuous but nondifferentialble piecewise linear initial condition and α = 0.3.
(Bottom) The solution of α-Linnik fractional equations (3.21), and (3.24), with the quadratic linearity at times
t = 1, 5, 10, 25 for a continuous but nondifferentialble piecewise linear initial condition and α = 0.3

However, for large times, our numerical calculation show that in the α-stable case the
shocks dissolve by the time T = 10, and the solutions stabilize thereafter. In the α-Linnik
case the shocks seem to persist indefinitely (at least in the time interval we investigated), a
phenomenon, we believe has not been observed before. The situation is summarized in Fig. 8
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Fig. 4 (Top) The solution of α-stable fractional equations (3.21), and (3.22), with the quadratic linearity at
times t = 1, 5, 10, 25 for a smooth initial condition and α = 0.3. (Bottom) The solution of α-Linnik fractional
equations (3.21), and (3.24), with the quadratic linearity at times t = 1, 5, 10, 25 for a smooth initial condition
and α = 0.3

which shows the eventual decay to zero of the shock size in the α-stable case, while the shock
size in the α-Linnik case initially decreases but then, after T ≈ 6, it stabilizes at the positive
value of about 1.5.
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Fig. 5 (Top) The solution of α-stable fractional equations (3.21), and (3.22), with the quadratic linearity
at times t = 1, 5, 10, 25 for a Riemann initial condition and α = 1.25. (Bottom) The solution of α-Linnik
fractional equations (3.21), and (3.24), with the quadratic linearity at times t = 1, 5, 10, 25 for a Riemann
initial condition and α = 1.25

Moreover, the shocks in the α-stable case stay put at x = 0 until they dissolve. But,
surprisingly, in the α-Linnik case, the shocks, initially located at x = 0, begin to recede to
the left (towards the negative x’s).
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Fig. 6 (Top) The solution of α-stable fractional equations (3.21), and (3.22), with the quadratic linearity at
times t = 1, 5, 10, 25 for a continuous but nondifferentialble piecewise linear initial condition and α = 1.25.
(Bottom) The solution of α-Linnik fractional equations (3.21), and (3.24), with the quadratic linearity at times
t = 1, 5, 10, 25 for a continuous but nondifferentialble piecewise linear initial condition and α = 1.25

For α = 1.25, (Figs. 5, 6, 7, and 5.8) , the α-stable diffusion is strong enough to obliterate
the initial shock instantaneously and the solutions (as established in Sect. 3) are smooth for all
t > 0, regardless of the level of smoothness of the initial conditions. Not so, for the α-Linnik
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Fig. 7 (Top) The solution of α-stable fractional equations (3.21), and (3.22), with the quadratic linearity at
times t = 1, 5, 10, 25 for a smooth initial condition andα = 1.25. (Bottom) The solution ofα-Linnik fractional
equations (3.21), and (3.24), with the quadratic linearity at times t = 1, 5, 10, 25 for a smooth initial condition
and α = 1.25

driving diffusion. Not only the shocks are created in finite time and they persist , with the
shock size stabilizing at the positive value after T ≈ 6 (like in the case α = 0.3 < 1), but
a new phonomenon appears, on the negative x-axis the solutions are no longer decraasing.
However, the shock no longer recedes to the left, which was the case for α = 0.3 < 1.
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Fig. 8 Shock size dependence
on time for α-stable (fractal)
conservation law, and α-Linnik
conservation laws with
α = 0.3 < 1 (left, and center)
and for α-Linnik conservation
laws with α = 1.25 (right). In the
0.3-stable case (top) the shock
appears at about T ≈ 1, and
dissolves completely by the time
T ≈ 6. For the 0.3-Linnik
conservation law (middle), the
shock is again created in finite
time and its size initially
decreases but it stabilizes at
T ≈ 6. For the 1.25-Linnik
conservation law (bottom), the
shock is again created in finite
time and its size initially
decreases, but it stabilizes at
T ≈ 5. The summary plot was
created for smooth initial data
(iii). In the 1.25-stable case there
are no shocks even for the
Riemann initial data
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6 Conclusions, Conjectures and Future Work

The paper introduces a new type of the conservation laws driven by what we call α-Linnik
diffusions and conducts a systematic comparison of their solutions with the solutions of better
understood α-stable diffusions. Both are special cases of general Lévy diffusion, also known
in the physical literature as anomalous diffusions.

After preliminary materials in Sects. 1 and 2, in Sect. 3 we described similar asymptotic
large-time behavior for both α-stable (fractal) and α-Linnik conservation laws, and in Sect. 4
we summarized known facts about shock creation for α-stable conservation laws.

Surprisingly, the shock behavior for α-Linnik conservation laws is dramatically different
than for α-stable laws, and the new phenomena appear. Our investigations here are numerical,
and given that the tail behavior of the two types of distributions is similar, the temptation is
to explain the differences by the strikingly different behavior of the α-stable and α-Linnik
distributions at the origin. Whereas the first class is smooth at x = 0, the second has a
singularity at the same point.

We do not have rigorous proofs of these facts at this point and resolving these issues is part
of our future plans. In this context we would like to pose the following formal conjectures
(for the type of initial data discussed in Sect. 5) :

Conjecture 1 For an α-stable (fractional) conservation laws with α < 1, there exists tc > 0
(obviously greater than the time t0 of shock creation in Theorem 4.1) such that the solution
becomes continuous (and smooth) for all t > tc.

Conjecture 2 For a solution of the α-Linnik conservation law with α < 1,there exists a
time t0 such that, at t > t0, the shock is created and its size begins decreasing, but at another
time ts > t0 the size of the shock stops decreasing and the shock begins to move to the left.

Estimating the critical times t0, and ts , as well as the speed of the shock movement to the
left for t > ts would also constitute a worthwhile future project.

Conjecture 3 For a solution of the α-Linnik conservation law with α > 1,there exists a
time t0 such that, at t > t0, the shock is created and its size begins decreasing, but at another
time ts > t0 the size of the shock stops decreasing.

Another important future project is to study the “anomalous turbulence” problem in the
spirit of [39] (or, [21]), that is the behavior of solutions of stable and Linnik conservation
laws when the initial data are random fields.

Acknowledgments The authors are grateful to the anonymous reviewers whose thorough reading and exten-
sive comments helped improve the final version of this paper. One of the referees also suggested some very
interesting possible avenues of further research in the area that are certainly worth pursuing. The authors
are grateful to René Schilling of Technische Universitaet Dresden for careful reading of the manuscript and
comments that led to significant improvements of the article.

Appendix: A Numerical Method for Stable and Linnik Conservation Laws

In this section, we present the details of the numerical method used to produce results of
Sect. 6, adapting to the Linnik case the methodology developed in [12].

Let δt > 0 , and δx > 0 be the time and space steps. The scheme consists in computing
approximate values un

i of the solution to (4.1) on the lattice [nδt, (n+1)δt)×[iδx, (i+1)δx) ,
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n ∈ N, and i ∈ Z,

u0
i = 1

δx

∫ (i+1)δx

iδx
uo(x)dx, (6.1)

δt

δx

(
un+1

i − un
i

)
+ F

(
un

i , un
i+1

) − F
(
un

i−1, un
i

) + δxLδx [un+1]i = 0, (6.2)

where F is a numerical Burgers flux corresponding to the continuous flux f , and Lδx is a
discretization of the non-local termL,whereLδx is the discretization ofL, and the numerical
flux is defined as follows:

F(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

min
a≤u≤b

u2

2
, if a ≤ b;

max
b≤u≤a

u2

2
, if a > b.

The assumptions on Lδx are as follows:

(i) l∞(Z) � ν → Lδx [ν] ∈ l∞(Z) is linear;

(ii) ∀ν ∈ l∞(Z), if (ik)k∈N is a sequence in Z such that limk→∞ νik = sup j∈Z ν j ,

then lim infk→∞ Lδx [ν]ik ≥ 0;

(iii) If τ : l∞(Z) → l∞(Z) is the left translation τ(ν)i = νi+1, then τLδx = Lδxτ ;

(iv) ∃Aδx > 0 such that, for all ν ∈ l∞(Z), Lδx [ν]0 only depends on
(
ν j

)
| j |≤Aδx .

Adetailed description of the implementation of the numerical algorithm is provided below.
For a chosen space step δx > 0, formula (4.2) makes it easy to write a discretiza-

tion of L : we approximate each integral using the basic quadratic rule on the mesh
([ jδx, ( j + 1)δx)) j∈Z , and we use the finite difference approximation of the derivative.
However, such an approximation would use all of (ν j ) j∈Z in order to compute Lδx [ν]i ; in
practical applications, the considered functions are usually constant near −∞ and +∞.

We take this into account when discretizating L and use the mesh ([ jδx, ( j + 1)δx)) j∈Z
only up to |z| = Jδxδx (for some integer Jδx such that Jδxδx → ∞ as δx → 0 ),
approximating the remaining parts with two unbounded space steps (−∞,−Jδxδx] and
[Jδxδx,+∞). This leads to the scheme,

Lδx [ν]i = −c(α)
∑

0<| j |<r/δx

δx

(

νi+ j − νi − νi+1 − νi−1

2δx

)

�
′
( jδx)

−c(α)
∑

r/δx<| j |≤Jδx

δx
(
νi+ j − νi

)
�

′
( jδx)

−c(α)
∑

j<−Jδx

δx
(
νi−Jδx −1 − νi

)
�

′
( jδx)

−c(α)
∑

j>Jδx

δx
(
νi+Jδx +1 − νi

)
�

′
( jδx) (6.3)

where

�
′
( jδx) = α

2| jδx |E exp

(

−
∣
∣
∣
∣

jδx

X

∣
∣
∣
∣

α)

,
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and X has a α-stable distribution.
Additionally,we can estimate the approximate value of

∑
j>Jδx

�
′
( jδx)using the formula

(2.22) for the Lévy measure of α-Linnik distribution,
∫ ∞

Jδx

∫ ∞

0
fα

(
jδx

w1/α

)

.
e−w

w1+1/α dwd j

=
∫ ∞

0

∫ ∞

Jδx

fα

(
jδx

w1/α

)

d j.
e−w

w1+1/λ dw

∼
∫ ∞

0

∫ ∞

Jδx

(
w1/α

δx

)

fα

(
jδx

w1/α

)

d

(
jδx

w1/α

)
e−w

w1+1/α dw

=
∫ ∞

0

(
w1/λ

δx

)

.

⎛

⎜
⎝

kα(
jδx

w1/α

)α

⎞

⎟
⎠ .

e−w

w1+1/α dw

=
∫ ∞

0

kα

δxα+1 Jα
δx

e−wdx

= kα

δxα+1 Jα
δx

,

where kα = sin( πα
2 )�(α)/π. Therefore, the approximate value of Lδx [ν]i is given by the

following formula,

Lδx [ν]i = −c(α)
∑

0<| j |<r/δx

δx
(
νi+ j − νi

) α

2| jδx |E exp

(

−
∣
∣
∣
∣

jδx

X

∣
∣
∣
∣

α)

−c(α)
(
νi−Jδx −1 − νi

) kα

(δx Jδx )α
− c(α)

(
νi+Jδx +1 − νi

) kα

(δx Jδx )α

Finally, we have

Lδx [ν]i = −c(α)
∑

0<| j |<r/δx

δx
(
νi+ j − νi

) α

2| jδx |E exp

(

−
∣
∣
∣
∣

jδx

X

∣
∣
∣
∣

α)

.

−c(α)
(
νi−Jδx −1 − νi

) sin( πα
2 )�(α)

π(δx Jδx )α
− c(α)

(
νi+Jδx +1 − νi

) sin( πα
2 )�(α)

π(δx Jδx )α
.

(6.4)

The step-by-step numerical algorithm for computation of the solution of the Linnik con-
servation law is as follows:

Step 1: Define ν, W, Lδx and Gδx , by the following formulae:

(i)

ν = (
hn

i 1Z\[−m,m](i)
)
|i |∈Z .

For example, for m = 2,

νT = [
. . . hn−4, hn−3, 0, 0, 0, 0, 0, hn

3, hn
4, . . .

]

so that ν2 = 0, ν−4 = hn−4 , etc.
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(ii)

W =
(

U n+1
i

)

|i |≤m
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

U n+1−m
...

U n+1
0
...

U n+1
m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2m+1)×1

(iii)

Lδx [ν]i = −c(α)
∑

0<| j |≤Jδx

δx(νi+ j − νi )�
′
( jδx)

−c(α)(νi−Jδx −1 − νi )
sin( πα

2 )�(α)

π(δx Jδx )α

−c(α)(νi+Jδx +1 − νi )
sin( πα

2 )�(α)

π(δx Jδx )α

= −c(α)
∑

0<| j |≤Jδx

δx(hn
i+ j −hn

i )�
′
( jδx)−c(α)(hn

i−Jδx −1 − hn
i )
sin( πα

2 )�(α)

π(δx Jδx )α

−c(α)(hn
i+Jδx +1 − hn

i )
sin( πα

2 )�(α)

π(δx Jδx )α

= c1
∑

0<| j |≤Jδx

(hn
i+ j − hn

i )�
′
( jδx) + c2

(
hn

i−Jδx −1 − hn
i

)

+ c2
(

hn
i+Jδx +1 − hn

i

)
,

where c1 = −c(α) , and c2 = −c(α) sin( πα
2 )�(α)/(π(δx Jδx )

α).

(iv) The formula for the 1st column of the symmetric Toeplitz matrix Gδx is given below.
Recall that an (n × n) matrix A is said to be Toeplitz if it has the form

A = [a j−k]n
j,k=1 (6.5)

The entries along each diagonal of a Toeplitz matrix are constant. The 1st column of a
symmetric Toeplitz matrix Gδx is as follows:

G(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2c1
1500∑

j=1

�
′
( jδx) − 2c2

�
′
(1.δx)

�
′
(2.δx)

�
′
(3.δx)
...

�
′
(1500.δx)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1501×1
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and the 1st column of the symmetric, positive definite Toeplitz matrix
(
I + δtGδx

)

(
I + δtGδx) (1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − 2c1.δt
1500∑

j=1

�
′
( jδx) − 2c2.δt

δt.�
′
(1.δx)

δt.�
′
(2.δx)

δt.�
′
(3.δx)
...

δt.�
′
(1500.δx)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1501×1

Now, the complete symmetric Toeplitzmatrix now can be found because it is determined
by the first column.

(v) With the numerical Burgers flux defined at the beginning of this Appendix, we have:

F(a, b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a2/2, ifa, b > 0;
b2/2, ifa, b < 0;
0, ifa < 0, b > 0;
b2/2, if a > 0, b < 0, |a| < |b|;
a2/2, otherwise.

Step 2: Assume

u0
i =

{ −1, if i ≥ 0;
1, if i < 0.

and δt = 0.00167, m = 750.
Step 3: For each i , find h0

i , and use the equation

hn
i =

{
un

i + δt
δx F(un

i−1, un
i ) − δt

δx F(un
i , un

i+1), if 3001 ≤ i ≤ 4501;
un

i+1, otherwise.

Since u0
i are known for all i , we can calculate h0

i for all i.
If ν and W are defined as in Step 1, the above equation reduces to a square system of

size 2m + 1 on W :
W + δtGδx W = (

h0
i − δtgδx [ν]i

)
|i |≤750

Step 4: Find u1
i , for all i. A Toeplitz matrix A (see, Step 1) is said to be circulant if it has

the form

a−k = an−k, 1 ≤ k ≤ n − 1. (6.6)

Obviously, any circulant matrix is uniquely determined by its first column,

a = [a0, a1, a2, . . . , an−2, an−1]T .

Next, we employ the equation (6.5) to calculate u1
i , for all i , using the standard preconditioned

conjugate gradient method, where A is the symmetric positive definite matrix I + δtGδx ,
of dimension (1501 × 1501) (defined in Step 1), and x= W , is as defined in the Step 1.
Taking n = 0, we have
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x = (
U 1

i

)
|i |≤750 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

U 1−750
...

U 1
0
...

U 1
750

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

1501×1

The vector

b = (
h0

i − δtLδx [ν]i
)
|i |≤750 ,

defined by equation (6.5) has the dimension 1501× 1. Here, we know the values of h0
i for

all i , and the formula for Lδx [ν]i is defined in Step 1. For example,

Lδx [ν]−750 = c1
∑

0<| j |≤1500

(
h0−750+ j − h0−750

)
�

′
( jδx) + c2

(
h0−750−1500−1 − h0−750

)

+ c2
(
h0−750+1500+1 − h0−750

)

Step 5: Find h1
i , for all i. Since we already know u1

i , the values for h1
i , for all i , can be

calculated by going back to Step 3. Then we move forward to Step 4 to calculate u2
i for all i .

Finally we need repeat the procedure to calculate the values of ui , i = 1, . . . , n, for n = 300.
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