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Abstract Deformed logarithms and their inverse functions, the deformed exponentials,
are important tools in the theory of non-additive entropies and non-extensive statistical
mechanics. We formulate and prove counterparts of Golden—Thompson’s trace inequality
for g-exponentials with parameter ¢ in the interval [1, 3].
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1 Introduction and Main Result

Tsallis [7] generalised in 1988 the standard Bolzmann—Gibbs entropy to a non-extensive
quantity S, depending on a parameter g. In the quantum version it is given by

1 —Tr p?

Sq(p) = ﬁ q #1,

where p is a density matrix. It has the property that S,(p) — S(p) for ¢ — 1, where
S(p) = —Tr plog p is the von Neumann entropy. The Tsallis entropy may be written on a
similar form

Sq(p) = =Tr plog,(p),
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where the deformed logarithm log, is given by

xd71 -1
* _— > 1
logqx=/ 1172 dr = q—1 a
1
log x qg=1

for x > 0. The deformed logarithm is also denoted the g-logarithm. The inverse function
exp, is called the g-exponential and is given by

-1
exp, (x) = (x(g — )+ D@D for x > —-
q—
The g-logarithm and the g-exponential functions converge, respectively, to the logarithmic
and the exponential functions for ¢ — 1.
The aim of this article is to generalise Golden-Thompson’s trace inequality [2,6] to
deformed exponentials. The main result is the following:

Theorem 1.1 Let A and B be positive definite matrices.
1) If1 <q < 2then
Tr exp, (A + B) < Tr exp, (A)* (A(q — 1) +exp, B).
(i) If2 < g <3 then
Tr exp, (A + B) > Tr exp,(A)* 4 (A(q — 1) + exp, B).
Notice that for ¢ = 1 we recover Golden—Thomson’s trace inequality
Tr exp(A + B) < Tr exp(A) exp(B).

This inequality is valid for arbitrary self-adjoint matrices A and B. However, it is sufficient
to know the inequality for positive definite matrices, since the general form follows by
multiplication with positive numbers.

2 Preliminaries

We collect a few well-known results that we are going to use in the proof of the main theorem.
The g-logarithm is a bijection of the positive half-line onto the open interval (—(g—1)~", 00),
and the g-exponential is consequently a bijection of the interval (—(g — 1)~!, 0o) onto the
positive half-line. For ¢ > 1 we may thus safely apply both the g-logarithm and the g-
exponential to positive definite operators. We also notice that

d d
o log, (x) = x47%  and T SXPg (x) = exp, (x)>79, (1)

The proof of the following lemma is rather easy and may be found in [4, Lemma 5].

Lemma 2.1 Let ¢: D — Ay be a map defined in a convex cone D in a Banach space X
with values in the self-adjoint part of a C*-algebra A. If ¢ is Fréchet differentiable, convex
and positively homogeneous then

de(x)h < @(h).
forx,h € D.
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Let H be any n x n matrix. The map
A Tr (H*APH)'"

defined in positive definite » x n matrices, is concave for 0 < p < 1 and convex for
1 < p < 2, cf. [1, Theorem 1.1]. By a slight modification of the construction given in
Remark 3.2 in the same reference, cf. also [3], we obtain that the mapping

(Ar, ..., A — Tr (HfAVH + -+ H,j‘Aka)””, @

defined in k-tuples of positive definite n x n matrices, is concave for 0 < p < 1 and convex
for 1 < p < 2; for arbitrary n x n matrices Hy, ..., Hg.

3 Deformed Trace Functions

Theorem 3.1 Let Hy, ..., Hy be matrices with H{H\ + --- + HHy = 1 and define the
function

k
(A1, ..., Ar) = Tr exp, (Z H; log, (A»Hi) 3)
i=1

in k-tuples of positive definite matrices. Then ¢ is positively homogeneous of degree one. It
is concave for 1 < q < 2 and convex for?2 < g < 3.

Proof For g > 1 we obtain

k
@(A1, ..., Ap) = Tr exp, (Z H log, (A,-)Hi)

i=1

k 1/(g—1)
:n(y+@—nzyﬁm%mgm)

i=1

k —1 1/(g—1)
q

LAl —1

=Tr(1+(q—1)§ e Hi)

i=1

k 1/(g=1)
:n(1+§yﬁm?*—nm)

i=1
_ _ 1/(g—1
=Tr (HfA{™ Hy+ oo+ HE AL H) .
From this identity it follows that ¢ is positively homogeneous of degree one. The concavity
for 1 < g < 2 and the convexity for 2 < g < 3 now follows from (2). The statement for

g = 1 follows by letting ¢ tend to one. O
Corollary 3.2 Let L be a positive definite matrix, and let Hy, . .., Hy be matrices such that
H{H| + ---+ HHy < 1. Then the function

@(A1, ..., Ap) = Tr exp, (L + Hf log,(ADH) + -+~ + Hy logq(Ak)Hk) ,

defined in k-tuples of positive definite matrices, is concave for 1 < g < 2 and convex for
2<q<3.
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Proof We may without loss of generality assume H{"Hy +-- -+ HH; < 1 and put Hyy1 =
(1 = (H{Hy + -~ + Hf Hp)) "> . We then have
H{Hi +---4+ HH, + H{ {Hiy1 =1
and may use the preceding theorem to conclude that the function
(A1, ..., Agy1) = Tr exp, (H{ log, (A Hy + -+ Hf log, (Agy1) Hit1)

of k + 1 variables is concave for I < g < 2 and convex for 2 < ¢ < 3. Since Hj4 is
invertible we may choose

A =exp, (M LHGY)
which makes sense since H, _~_11LH,:+11 is positive definite. Concavity for 1 < g < 2 and
convexity for 2 < g < 3 in the first k variables of the above function then yields the result. O

Setting ¢ = 1 we recover in particular [5, Theorem 3].

Corollary 3.3 Let Hy, ..., Hy be matrices with H Hy + --- + HHy < 1, and let L be
self-adjoint. The trace function

(A1, ..., Ay) = Tr exp (L + H{ log(A1)Hy + - - - + H}} log(Ay) H)
is concave in positive definite matrices.

Corollary 3.4 The trace function ¢ defined in (3) satisfies

k =4
@(By..... By) < Tr exp, (Z H logq(Ai)I-b) > H;(dlog,(A)B))H,
i=1 j=1

forl1 <g <2and

k =4
¢(Bi..... By) = Tr exp, (Z H logq(Ai)I-b) > H;(dlog,(A)B))H,
i=1 j=1

for2 < g <3, where Ay, ..., Ar and By, ..., By are positive definite matrices.

Proof For 1 < g < 2 we obtain

dp(Ar, ..., A)(B1, ..., Br) > ¢(Bi, ..., By)

by Lemma 2.1. By the chain rule for Fréchet differentiable mappings between Banach spaces
we therefore obtain

k
¢(B1, ..., B) < > djg(Al, ..., A)B;
j=1

k k
= ZTr dexp, (Z H} logq(Ai)Hi)H;‘(dlogq(Aj)Bj)Hj
j=1 i=1
k k 2
= ZTr exp, (Z H logq(Ai)H,') H;(dlog,(Aj)Bj)H;
j=1

i=1

where we used the identity Tr df (A)B = Tr f’(A) B valid for differentiable functions. This
proves the first assertion. The result for 2 < ¢ < 3 follows similarly. O
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4 Proof of the Main Theorem

In order to prove Theorem 1.1 i we set k = 2 in Corollary 3.4 and obtain
@(B1, By) < Tr exp,(X)* ™ (Hj (dlog, (A1)B1)Hi + H (dlog, (A2) By) Ha)
for 1 < ¢ < 2 and positive definite matrices Ay, A and Bj, By where
X =H{ logq(Al)Hl + Hj logq(Az)Hz.
If we set A1 = By and A, = 1 the inequality reduces to
(B, By) < Tr exp, (Hi log,(B)H1)>™ (Hl*BiFlHl + Hz*Bsz) .
We now set H; = ¢'/2 for0 < ¢ < 1, and to fixed positive definite matrices L and L, we
choose By and B> such that
Ly = Hf log,(B1)H; = ¢log,(B)
Ly = Hj log, (B) Hy = (1 — &) log, (B2).
It follows that
B = exp, (s_lLl) and B; = exp, ((1 — 6‘)_1L2) .
Inserting in the inequality we obtain
Tr exp, (L1 + La) < Tr exp,(L1)*™% (sexp, (e 7' L)™' + (1 — &) exp, (1 — &) "' L))
=Tr exp, (L1)> ™ (Li(g — 1) + &+ (1 — &) exp, (1 —&) "' L2)).

This expression decouble L and L, and reduces the minimisation problem over ¢ to the
commutative case. We furthermore realise that minimum is obtained by letting ¢ tend to zero
and that

lim (1 = &) exp, ((1 = &)~ Ly) = exp,(L2).

We finally replace L and L, with A and B. This proves the first statement in Theorem 1.1.

The proof of the second statement is virtually identical to the proof of the first. Since now
2 < g < 3 the second inequality in Corollary 3.4 applies. Setting k = 2 and applying the
same substitutions as in the proof of the first statement we arrive at the inequality

Tr exp, (L1 + L2) = Tr exp, (L1)* ™4 (Li(g — 1) + e+ (1 — &) exp, (1 — &)~ 'L2)) .
Since 2 < g < 3 the function
e—>e+(1—¢) exp, ((1 — 8)_1L2)

is now decreasing, and we thus maximise the right hand side in the above inequality by letting
¢ tend to zero. This proves the second statement in Theorem 1.1.
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