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Abstract Deformed logarithms and their inverse functions, the deformed exponentials,
are important tools in the theory of non-additive entropies and non-extensive statistical
mechanics. We formulate and prove counterparts of Golden–Thompson’s trace inequality
for q-exponentials with parameter q in the interval [1, 3].
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1 Introduction and Main Result

Tsallis [7] generalised in 1988 the standard Bolzmann–Gibbs entropy to a non-extensive
quantity Sq depending on a parameter q. In the quantum version it is given by

Sq(ρ) = 1 − Tr ρq

q − 1
q �= 1,

where ρ is a density matrix. It has the property that Sq(ρ) → S(ρ) for q → 1, where
S(ρ) = −Tr ρ log ρ is the von Neumann entropy. The Tsallis entropy may be written on a
similar form

Sq(ρ) = −Tr ρ logq(ρ),
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where the deformed logarithm logq is given by

logq x =
∫ x

1
tq−2 dt =

⎧⎪⎨
⎪⎩

xq−1 − 1

q − 1
q > 1

log x q = 1

for x > 0. The deformed logarithm is also denoted the q-logarithm. The inverse function
expq is called the q-exponential and is given by

expq(x) = (x(q − 1) + 1)1/(q−1) for x >
−1

q − 1
.

The q-logarithm and the q-exponential functions converge, respectively, to the logarithmic
and the exponential functions for q → 1.

The aim of this article is to generalise Golden–Thompson’s trace inequality [2,6] to
deformed exponentials. The main result is the following:

Theorem 1.1 Let A and B be positive definite matrices.

(i) If 1 ≤ q < 2 then

Tr expq(A + B) ≤ Tr expq(A)2−q(A(q − 1) + expq B
)
.

(ii) If 2 ≤ q ≤ 3 then

Tr expq(A + B) ≥ Tr expq(A)2−q(A(q − 1) + expq B
)
.

Notice that for q = 1 we recover Golden–Thomson’s trace inequality

Tr exp(A + B) ≤ Tr exp(A) exp(B).

This inequality is valid for arbitrary self-adjoint matrices A and B. However, it is sufficient
to know the inequality for positive definite matrices, since the general form follows by
multiplication with positive numbers.

2 Preliminaries

We collect a fewwell-known results that we are going to use in the proof of the main theorem.
Theq-logarithm is a bijection of the positive half-line onto the open interval (−(q−1)−1,∞),

and the q-exponential is consequently a bijection of the interval (−(q − 1)−1,∞) onto the
positive half-line. For q > 1 we may thus safely apply both the q-logarithm and the q-
exponential to positive definite operators. We also notice that

d

dx
logq(x) = xq−2 and

d

dx
expq(x) = expq(x)

2−q . (1)

The proof of the following lemma is rather easy and may be found in [4, Lemma 5].

Lemma 2.1 Let ϕ : D → Asa be a map defined in a convex cone D in a Banach space X
with values in the self-adjoint part of a C∗-algebra A. If ϕ is Fréchet differentiable, convex
and positively homogeneous then

dϕ(x)h ≤ ϕ(h).

for x, h ∈ D.
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Let H be any n × n matrix. The map

A → Tr
(
H∗ApH

)1/p
,

defined in positive definite n × n matrices, is concave for 0 < p ≤ 1 and convex for
1 ≤ p ≤ 2, cf. [1, Theorem 1.1]. By a slight modification of the construction given in
Remark 3.2 in the same reference, cf. also [3], we obtain that the mapping

(A1, . . . , Ak) → Tr
(
H∗
1 A

p
1 H1 + · · · + H∗

k Ak Hk
)1/p

, (2)

defined in k-tuples of positive definite n × n matrices, is concave for 0 < p ≤ 1 and convex
for 1 ≤ p ≤ 2; for arbitrary n × n matrices H1, . . . , Hk .

3 Deformed Trace Functions

Theorem 3.1 Let H1, . . . , Hk be matrices with H∗
1 H1 + · · · + H∗

k Hk = 1 and define the
function

ϕ(A1, . . . , Ak) = Tr expq

(
k∑

i=1

H∗
i logq(Ai )Hi

)
(3)

in k-tuples of positive definite matrices. Then ϕ is positively homogeneous of degree one. It
is concave for 1 ≤ q ≤ 2 and convex for 2 ≤ q ≤ 3.

Proof For q > 1 we obtain

ϕ(A1, . . . , Ak) = Tr expq

(
k∑

i=1

H∗
i logq(Ai )Hi

)

= Tr

(
1 + (q − 1)

k∑
i=1

H∗
i logq(Ai )Hi

)1/(q−1)

= Tr

(
1 + (q − 1)

k∑
i=1

H∗
i
Aq−1
i − 1

q − 1
Hi

)1/(q−1)

= Tr

(
1 +

k∑
i=1

H∗
i (Aq−1

i − 1)Hi

)1/(q−1)

= Tr
(
H∗
1 A

q−1
1 H1 + · · · + H∗

k A
q−1
k Hk

)1/(q−1)
.

From this identity it follows that ϕ is positively homogeneous of degree one. The concavity
for 1 < q ≤ 2 and the convexity for 2 ≤ q ≤ 3 now follows from (2). The statement for
q = 1 follows by letting q tend to one. 	

Corollary 3.2 Let L be a positive definite matrix, and let H1, . . . , Hk be matrices such that
H∗
1 H1 + · · · + H∗

k Hk ≤ 1. Then the function

ϕ(A1, . . . , Ak) = Tr expq
(
L + H∗

1 logq(A1)H1 + · · · + H∗
k logq(Ak)Hk

)
,

defined in k-tuples of positive definite matrices, is concave for 1 ≤ q ≤ 2 and convex for
2 ≤ q ≤ 3.

123



Golden–Thompson’s Inequality for Deformed Exponentials 1303

Proof Wemay without loss of generality assume H∗
1 H1 +· · ·+ H∗

k Hk < 1 and put Hk+1 =(
1 − (H∗

1 H1 + · · · + H∗
k Hk)

)1/2
. We then have

H∗
1 H1 + · · · + H∗

k Hk + H∗
k+1Hk+1 = 1

and may use the preceding theorem to conclude that the function

(A1, . . . , Ak+1) → Tr expq
(
H∗
1 logq(A1)H1 + · · · + H∗

k+1 logq(Ak+1)Hk+1
)

of k + 1 variables is concave for 1 ≤ q ≤ 2 and convex for 2 ≤ q ≤ 3. Since Hk+1 is
invertible we may choose

Ak+1 = expq
(
H−1
k+1LH

−1
k+1

)

which makes sense since H−1
k+1LH

−1
k+1 is positive definite. Concavity for 1 ≤ q ≤ 2 and

convexity for 2 ≤ q ≤ 3 in the first k variables of the above function then yields the result. 	

Setting q = 1 we recover in particular [5, Theorem 3].

Corollary 3.3 Let H1, . . . , Hk be matrices with H∗
1 H1 + · · · + H∗

k Hk ≤ 1, and let L be
self-adjoint. The trace function

(A1, . . . , Ak) → Tr exp
(
L + H∗

1 log(A1)H1 + · · · + H∗
k log(Ak)Hk

)
is concave in positive definite matrices.

Corollary 3.4 The trace function ϕ defined in (3) satisfies

ϕ(B1, . . . , Bk) ≤ Tr expq

(
k∑

i=1

H∗
i logq(Ai )Hi

)2−q k∑
j=1

H∗
j (dlogq(A j )Bj )Hj

for 1 ≤ q ≤ 2 and

ϕ(B1, . . . , Bk) ≥ Tr expq

(
k∑

i=1

H∗
i logq(Ai )Hi

)2−q k∑
j=1

H∗
j (dlogq(A j )Bj )Hj

for 2 ≤ q ≤ 3, where A1, . . . , Ak and B1, . . . , Bk are positive definite matrices.

Proof For 1 ≤ q ≤ 2 we obtain

dϕ(A1, . . . , Ak)(B1, . . . , Bk) ≥ ϕ(B1, . . . , Bk)

by Lemma 2.1. By the chain rule for Fréchet differentiable mappings between Banach spaces
we therefore obtain

ϕ(B1, . . . , Bk) ≤
k∑
j=1

d jϕ(A1, . . . , Ak)Bj

=
k∑
j=1

Tr dexpq

(
k∑

i=1

H∗
i logq(Ai )Hi

)
H∗

j (dlogq(A j )Bj )Hj

=
k∑
j=1

Tr expq

(
k∑

i=1

H∗
i logq(Ai )Hi

)2−q

H∗
j (dlogq(A j )Bj )Hj

where we used the identity Tr d f (A)B = Tr f ′(A)B valid for differentiable functions. This
proves the first assertion. The result for 2 ≤ q ≤ 3 follows similarly. 	
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4 Proof of the Main Theorem

In order to prove Theorem 1.1 i we set k = 2 in Corollary 3.4 and obtain

ϕ(B1, B2) ≤ Tr expq(X)2−q (
H∗
1 (dlogq(A1)B1)H1 + H∗

2 (dlogq(A2)B2)H2
)

for 1 ≤ q ≤ 2 and positive definite matrices A1, A2 and B1, B2 where

X = H∗
1 logq(A1)H1 + H∗

2 logq(A2)H2 .

If we set A1 = B1 and A2 = 1 the inequality reduces to

ϕ(B1, B2) ≤ Tr expq(H
∗
1 logq(B1)H1)

2−q
(
H∗
1 B

q−1
1 H1 + H∗

2 B2H2

)
.

We now set H1 = ε1/2 for 0 < ε < 1, and to fixed positive definite matrices L1 and L2 we
choose B1 and B2 such that

L1 = H∗
1 logq(B1)H1 = ε logq(B1)

L2 = H∗
2 logq(B2)H2 = (1 − ε) logq(B2).

It follows that

B1 = expq
(
ε−1L1

)
and B2 = expq

(
(1 − ε)−1L2

)
.

Inserting in the inequality we obtain

Tr expq(L1 + L2) ≤ Tr expq(L1)
2−q (

ε expq(ε
−1L1)

q−1 + (1 − ε) expq((1 − ε)−1L2)
)

= Tr expq(L1)
2−q (

L1(q − 1) + ε + (1 − ε) expq((1 − ε)−1L2)
)
.

This expression decouble L1 and L2 and reduces the minimisation problem over ε to the
commutative case. We furthermore realise that minimum is obtained by letting ε tend to zero
and that

lim
ε→0

(1 − ε) expq
(
(1 − ε)−1L2

) = expq(L2).

We finally replace L1 and L2 with A and B. This proves the first statement in Theorem 1.1.
The proof of the second statement is virtually identical to the proof of the first. Since now

2 ≤ q ≤ 3 the second inequality in Corollary 3.4 applies. Setting k = 2 and applying the
same substitutions as in the proof of the first statement we arrive at the inequality

Tr expq(L1 + L2) ≥ Tr expq(L1)
2−q

(
L1(q − 1) + ε + (1 − ε) expq((1 − ε)−1L2)

)
.

Since 2 ≤ q ≤ 3 the function

ε → ε + (1 − ε) expq
(
(1 − ε)−1L2

)
is now decreasing, and we thusmaximise the right hand side in the above inequality by letting
ε tend to zero. This proves the second statement in Theorem 1.1.
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