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Abstract We study the BS model, which is a one-dimensional lattice field theory taking
real values. Its dynamics is governed by coupled differential equations plus random nearest
neighbor exchanges. The BS model has two locally conserved fields. The peak structure of
their steady state space–time correlations is determined through numerical simulations and
compared with nonlinear fluctuating hydrodynamics, which predicts a traveling peak with
KPZ scaling function and a standing peak with a scaling function given by the maximally
asymmetric Lévy distribution with parameter α = 5/3. As a by-product, we completely
classify the universality classes for two coupled stochastic Burgers equations with arbitrary
coupling coefficients.

Keywords KPZ equation · Mode-coupling theory · Thermal transport in one dimensional
systems

1 Introduction

As recognized for some time [1–6], one-dimensional systems generically have anomalous
transport properties. They can be observed through the super-diffusive spreading of small
perturbations in a homogeneous steady state. An alternative, equally popular route is to
consider a systemof finite length, L , and to impose a fixed difference in the value of conserved
fields at the two boundary points. For regular transport the resulting steady state current
behaves as L−1, while anomaly means an enhanced current of order L−1+α̃ with some
α̃ > 0.
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Recently it has been proposed that such anomalous transport could be understood through
a nonlinear extension of fluctuating hydrodynamics [7]. This method presupposes the avail-
ability of locally conserved fields, say n in total number, where n = 1, 2, 3 mostly. The
dynamics can be quite general, classical, quantum, stochastic, under the restriction of being
translation invariant and having sufficiently local interactions. The basic construction is eas-
ily explained: One first has to identify all locally conserved fields, n of them. Integrable
systems are thereby ruled out because their number of conserved fields is proportional to
system size. The dynamics admits then an n-parameter family of translation invariant steady
states. For them one has to compute the steady state average currents, which thus are func-
tions of the steady state average of the conserved fields. In order to have anomalous behavior
these macroscopic current functions have to be nonlinear. There are models in which the cur-
rents are identically zero (or linear), which is then a strong indication for regular, diffusive
transport.

Even if the current functions are nonlinear, there are still several distinct universality
classes. To systematically explore their structure is one goal of our contribution. While one
could consider the general case of n conserved fields, it seems to us more instructive to stick
to the simplest case of n = 2, which already exhibits the main mechanisms at work. The
one-component case has been studied in great detail under the heading of one-dimensional
Kardar–Parisi–Zhang (KPZ) equation [8], see also the recent reviews [9–12]. We will make
use of these results, but our focus is on the novel features arising for n = 2.

In the following we will consider only the spreading of small perturbations, which is
identical to investigating the steady state space–time correlations of the conserved fields.
(The issue of steady states with open boundaries remains as a challenge for the future.)
We will work out their scaling behavior on the basis of nonlinear fluctuating hydrodynamics,
partially exact, partially approximate, and provide a complete classification of the universality
classes for n = 2.

Such results are of interest only when compared with microscopic models which are
accessible through numerical simulations. This still leaves a very wide choice, but there are
constraints. Firstly it is convenient to have a lattice type model. In addition, the steady states
should be explicit. In the most favorable cases the steady states are of product form, for
which static averages are then easily obtained. As an aside, thereby one can also compute
explicitly the non-universal coefficients, making our predictions more pointed. Of course,
we also would like the microscopic model to have features which have not been observed
before. Our choice here is a one-dimensional lattice field theory taking real values. The
dynamics is given by a system of coupled differential equations and admits two locally
conserved quantities. To have good space–time mixing, and to avoid spurious conserva-
tion laws, we add a simple stochastic exchange term. Our model has been first introduced
in [13]. Its novel feature is the two peak structure for the steady state correlation func-
tions, one of them travels with a strictly negative velocity and has KPZ scaling, while
the other one is standing still and has a scaling function given by the Lévy distribution
with parameter α = 5/3 and maximal asymmetry b = 1. Numerical simulations are
performed for two different potentials, the exponential potential and an asymmetric FPU
potential.

To provide a brief outline, in Sect. 2 we discuss the universality classes for a generic two-
component system in the framework of nonlinear fluctuating hydrodynamics. The micro-
scopic model is introduced in Sect. 3, while the results of the respective numerical solutions
are reported in Sect. 4. Extra material, requiring more lengthy computations, is shifted to
Appendices.
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2 Two-Component Stochastic Burgers Equation

Stochastic Burgers equations are a convenientway to formulate systems of hyperbolic conser-
vation laws including noise. The nonlinearity of the systematic currents are kept to quadratic
order. A linear dissipative term is also included. All other degrees of freedom are subsumed as
fluctuating currents, for simplicity modeled as space–time white noise. The resulting system
of stochastic conservation laws is somewhat singular [14], but extremely useful in classify-
ing the various universality classes. Applications concern suitably discrete versions. In our
contribution we restrict ourselves to the case of two components, which already illustrates
well the main features of systems with an arbitrary number of components.

2.1 One-Component Systems

Let us first briefly recall the case of a single component, u1(x, t), which by assumption is
governed by the stochastic Burgers equation

∂t u1 + ∂x

(
cu1 + G1

11u
2
1 − D∂xu1 + √

2Dξ1

)
= 0, (2.1)

where D > 0 is the viscosity, c ∈ R the velocity of propagation, G1
11 ∈ R the strength of the

nonlinearity, and ξ1 a space–time white noise of unit strength. (We use redundant notation, as
u1, G1

11 to be in accord with the case of two components). We are interested in the stationary
process governed by (2.1). As proved in [15], spatial white noise with mean zero and unit
variance is an invariant measure for (2.1). The most basic object of real interest is then the
stationary space–time covariance 〈u1(x, t)u1(0, 0)〉, where 〈·〉 refers to the expectation with
respect to the stationary process. Recently an exact solution has been accomplished [16],
which turns out to validate prior non-rigorous replica computations [17]. For large x, t the
exact solution behaves as

〈
u1(x, t)u1(0, 0)

〉 � (λBt)
−2/3 fKPZ

(
(λBt)

−2/3(x − ct)
)
, (2.2)

whereλB = 2
√
2|G1

11|. The universal scaling function fKPZ is tabulated in [18], there denoted
by f , and has the following properties: fKPZ � 0, fKPZ(x) = fKPZ(−x),

∫

R

fKPZ(x) dx = 1,
∫

R

fKPZ(x) x2 dx = 0.510523 . . . .

In fact, fKPZ looks roughly like a Gaussian distribution but with faster decaying tails as
exp(−0.295|x |3), see [19]. The fKPZ scaling behavior for the stationary two-point function
has been proved also for the PNGmodel [19], the TASEP [20], and the semi-discrete directed
polymer model both at zero and positive temperature [16] and is expected to be valid for the
entire KPZ universality class.

2.2 Classification of Two-Component Systems

Let us turn to the case of two components �u = (u1, u2). The coupling constants become
matrices and it is of advantage to stick to the most general form which reads

∂t uα + ∂x
(
cαuα + �u · Gα �u − ∂x (D�u)α + (√

2D�ξ)
α

) = 0, α = 1, 2, (2.3)

where cα is the propagation velocity of the α-th component, the symmetric matrices
Gα ∈ R

2×2 determine the strength of the nonlinearity, the diffusion matrix D ∈ R
2×2 is

symmetric positive, and �ξ is a vector of two independent mean zero Gaussian white noises
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with covariance 〈ξα(x, t)ξα′(x ′, t ′)〉 = δαα′δ(x − x ′)δ(t − t ′). Note that (2.3) is written
already in normal coordinates, which are defined by the linear drift part of the current being
diagonal, see [7] for more precision as well as (3.10). In (2.1) the term cu1 can be removed
by switching to a coordinate system moving with velocity c. Under the same transformation,
for a two-component system the relative velocity necessarily persists, which is the origin for
much richer properties.

As before, our interest is in the stationary process governed by (2.3), in particular its
covariance matrix 〈uα(x, t)uα′(0, 0)〉. No exact solutions are available and we have to work
with approximations. The first issue is already the invariant measure of (2.3). Only if G1

22 =
G2

12 and G
2
11 = G1

12, the invariant measure is known to be white noise in x with independent
components. Since G1

12, G
2
12 are subsub-leading couplings, one expects that the invariant

measure has exponential mixing in space for general couplings. Our choice of the noise
strength ensures unit strength for both components. The linear case, G1 = 0 = G2, is easily
solved. If c1 	= c2, then for large x, t , the covariance consists of two decoupled Gaussian
peaks, respectively centered at cαt and of width

√
Dααt . Note that possible cross terms of

D do not show up, since the peaks move with distinct velocities. To a certain extent, this
feature will still be valid, once the nonlinearity is included. Hence we will assume c1 	= c2
throughout. The case c1 = c2 has to be studied separately, see [21] for an early discussion.

Since the mode velocities differ, the linear drift term is dominant and one expects that in
general the two equations in (2.3) decouple for large x, t . However, if one of the leading non-
linear couplings,Gα

αα , vanishes, the argument becomes more subtle. To gain some insight we
turn directly to the mode-coupling approximation for (2.3). It is based on a suitable Gaussian
approximation together with the observation that the off-diagonal terms of the covariance
are very small, see [7, Appendix C]. More precisely,

〈
uα(x, t)uα′(0, 0)

〉 � δαα′ fα(x, t), (2.4)

where initially fα(x, 0) = δ(x), and the functions fα satisfy the memory equation

∂t fα(x, t) = (−cα∂x + Dα∂2x
)
fα(x, t)+

∫ t

0

∫

R

fα(x− y, t−s)∂2y Mαα(y, s) dy ds, (2.5)

α = 1, 2, where we have introduced Dαα = Dα and the memory kernel

Mαα(x, t) = 2
∑

α′,α′′=1,2

(
Gα

α′α′′
)2

fα′(x, t) fα′′(x, t).

If α′ 	= α′′, the product fα′(x, t) fα′′(x, t) is very small everywhere and hence can safely be
neglected. Thereby the memory kernel simplifies to

Mαα(x, t) = 2
∑

α′=1,2

(
Gα

α′α′
)2

fα′(x, t)2. (2.6)

To obtain the asymptotic behavior, onemakes an educated scaling ansatz for fα , the precise
computation being shifted to Appendix 1. Particular cases were already presented in [7]. The
universality classes are labeled according to whether the leading coefficient Gα

αα vanishes or
not. Each class still subdivides according to the sub-leading terms Gα

α′α′ . In our tables “1”
indicates any value different from 0, “KPZ” labels the scaling reported in (2.2), “diff” means
a Gaussian peak with width proportional to

√
t , and “α-Lévy” indicates a scaling function

given by a maximally asymmetric α-stable law with exponent α, see (3.12) and Appendix
1.3 for more details.
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Fluctuating Hydrodynamics for Two Fields 865

G1
11 = 1, G2

22 = 1 G1
22 G2

11 Peak 1 Peak 2

0,1 0,1 KPZ KPZ

In fact, the KPZ scaling function is not a solution of the fixed point equation derived from
the mode-coupling equations (2.5)–(2.6), but it turns out to be very close to this solution, see
the discussion in [22].

G1
11 = 1, G2

22 = 0 G1
22 G2

11 Peak 1 Peak 2

0,1 1 KPZ 5
3 -Lévy

1 0 mod. KPZ Diff
0 0 KPZ Diff

As explained in more detail in Appendices 1 and 2 , ifG2
11 	= 0, then the KPZ peak 1 feeds

into mode 2 to generate a peak 2 with 5
3 -Lévy asymptotics, while the reverse process yields

only a subdominant contribution to peak 1. On the other hand, if G2
11 = 0 but G1

22 	= 0, then
on the level of mode-coupling the diffusive peak 2 generates a feed back on mode 1 which
has also a dynamical exponent z = 3/2. In principle this should lead to a modified KPZ
scaling function for peak 1. If actually correct, the decoupling hypothesis would have to be
slightly modified.

G1
11 = 0, G2

22 = 0 G1
22 G2

11 Peak 1 Peak 2

1 1 Gold-Lévy Gold-Lévy
1 0 3

2 -Lévy Diff
0 1 Diff 3

2 -Lévy
0 0 Diff Diff

The case gold-Lévy is discussed in Appendix 1. If one peak is diffusive, it feeds back to
the other peak, which then becomes 3

2 -Lévy.
The maximal asymmetry of the Lévy distributions follows from the mode-coupling equa-

tions. But there is also a more qualitative argument. Physically one expects to have exponen-
tially small correlations away from the sound cone [c1t, c2t]. If the Lévy distribution would
not be maximally asymmetric, then it would exhibit both-sided power law tails which neces-
sarily have slow decay outside the sound cone. Only for the maximal asymmetric distribution
there is rapid decay to the outside and slow decay to the inside of the sound cone (see the
discussion in Appendix 1.3). In fact, in accordance with the general principle, in numerical
simulations one always observes the Lévy tail to be cut off at the other peak.

While we explained the asymptotic behavior of two coupled Burgers equation, one still
has to relate them to a microscopic type model. In principle the theory should be applicable to
any system with local interactions, either classical or quantum Hamiltonian, or classical with
stochastic dynamics. Of course the model must have exactly two conservation laws and the
dynamics should be sufficiently chaotic so to have good space–time mixing properties. In all
examples investigated in more detail the steady state can be written in product form. This has
the advantage that the Euler currents and cα are known explicitly. After transformation to nor-
mal modes, the universality class for the model under consideration can be easily determined.
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In fact, beyond the specific predictions, one strength of the theory is to capture exceptional
classes which would be hard to guess from a mere inspection of the equations of motion.

Below we report on numerical solutions of a one-dimensional lattice theory, for which the
field takes real values and is governed by a deterministic differential equation plus random
exchanges.Wewill present two examples forKPZplus 5

3 -Lévy peak, corresponding to second
table, row 1. The same model with a harmonic interaction belongs to the class diffusive plus
3
2 -Lévy peak (see Appendix 3.3). In this case a complete mathematical proof is available
[23], which validates the prediction from mode-coupling. Also stochastic lattice gas models
with two species of particles have been investigated. In [24] both peaks are KPZ. The two-
lane model [25] has more parameters. Generically the two peaks are KPZ, but also the
universality class studied here can be realized. In the very recent contribution [26] even more
classes, including gold-Lévy, are obtained. Finally we should mention the discrete non-linear
Schrödinger equation on a one-dimensional lattice with repulsive on-site interactions [27–
29]. At low temperatures the model has the usual three conservation laws to a very good
approximation. However the heat mode has a very small amplitude and one is reduced to an
effective two-component system governing superfluid density and momentum. In this case
both peaks are predicted to be KPZ, which is well confirmed through numerical simulations.

3 The BS Model with Random Exchanges

We consider the model as proposed and studied in [13], called ‘BS’ for short. Originally
the model was motivated by anharmonic chains, for which stochastic collisions are added
so to improve space–time mixing properties. One considers a real-valued field, denoted by
ηi ∈ R, i ∈ Z. To define the model we first take a finite volume with 0 � i � N − 1.
We call η = (η0, . . . , ηN−1) the displacement field, also ‘volume’ and ‘height’ have been
proposed. The dynamics of the BS model consists of a deterministic part, which describes
forces exerted by neighboring displacements and a stochastic part in which neighboring
displacements are exchanged at random. The deterministic part is governed by the first order
differential equations

d

dt
ηi = V ′(ηi+1) − V ′(ηi−1) (3.1)

and has the corresponding generator

AN =
N−1∑
i=0

(
V ′(ηi+1) − V ′(ηi−1)

)
∂ηi .

Periodic boundary conditions are imposed as ηi+N = ηi . Note that the vector field on
the left of (3.1) is divergence free and hence the Lebesgue measure is preserved under the
time evolution. The potential V is bounded from below with at least a one-sided growth to
infinity as |ηi | → ∞. In addition, at independent random times distributed according to an
exponential law with parameter γ , neighboring displacements are exchanged. The generator
for the random part is γSN with

SN f (η)=
N−1∑
i=0

(
f
(
ηi,i+1

)
− f (η)

)
, ηi,i+1=(η0, . . . , ηi−1, ηi+1, ηi , ηi+2, . . . , ηN−1) .
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Fluctuating Hydrodynamics for Two Fields 867

Clearly the displacement field is locally conserved. Note that under the deterministic part

d

dt
V (ηi ) = V ′(ηi+1)V

′(ηi ) − V ′(ηi )V ′(ηi−1). (3.2)

Thus, including random exchanges, also V (ηi ) is locally conserved. This field is called the
(potential) energy field. As a consequence, the BS model has a two-parameter family of
invariant measures. The parameter dual to V (ηi ) is called inverse temperature, denoted by
β > 0, and the parameter dual to ηi is called tension, denoted by τ ∈ R. Hence the invariant
measures are written as

μτ,β (dη0 . . . dηN−1) =
N−1∏
i=0

Z−1
τ,β e−β(V (ηi )+τηi ) dηi . (3.3)

If the potential increases too slowly as ηi → ±∞, the range of admissible values of τ may
have to be restricted in order for the density e−β(V (η)+τη) to be integrable. (We use η ∈ R as
standing for one of the ηi ’s.) Averages with respect to μτ,β are denoted by 〈·〉τ,β .

At finite volume the micro-canonical measures are time-invariant, but they could be not
ergodic. Such possible pathology disappears in the infinite volume limit. In [13] it is estab-
lished that the infinite volume dynamics is ergodic: A probability measure for the infinite
system, which (i) is stationary in time, (ii) is translation-invariant, and (iii) has a finite relative
entropy per unit length with respect to the infinite dimensional analogue of μ0,1, is neces-
sarily a convex combinations of canonical measures. Hence, in the infinite volume limit,
displacement and energy are the only conserved fields.

The local conservation of displacement and energy implies the existence of local displace-
ment and energy currents. They have a deterministic and random part with the former given
by

d

dt

(
ηi

V (ηi )

)
= J i−1,i − J i,i+1, J i,i+1 =

(
j i,i+1
h
j i,i+1
e

)
= −

(
V ′(ηi ) + V ′(ηi+1)

V ′(ηi )V ′(ηi+1)

)
. (3.4)

To apply the theory from Sect. 2, we first have to obtain the macroscopic Euler equations.
In the continuum limit, studied in [13], the displacement field becomes h(x, t) and the energy
field e(x, t). The currents of the Euler equations are determined by averaging the currents in
a local equilibrium state. On that scale random exchanges make no contribution yet and it
suffices to compute the average of the currents in (3.4) with respect to μτ,β . Since

〈
V ′(ηi )

〉
τ,β

= −τ,
〈
V ′(ηi )V ′(ηi+1)

〉
τ,β

= τ 2,

the Euler currents for the conserved fields h, e are respectively jh = 2τ and je = −τ 2, where
the tension τ is considered as a function of the average displacement and energy as defined
through the implicit relation

hτ,β = 〈ηi 〉τ,β , eτ,β = 〈V (ηi )〉τ,β . (3.5)

In the hydrodynamic limit the system of conservation laws then reads

∂t

(
h(x, t)
e(x, t)

)
+ ∂x

(
2τ(h(x, t), e(x, t))

−τ(h(x, t), e(x, t))2

)
= 0. (3.6)

The linearization of this system around a uniform background profile (h0, e0), obtained by
writing h(x, t) = h0 + h̃(x, t) and e(x, t) = e0 + ẽ(x, t), yields

∂t

(
h̃(x, t)
ẽ(x, t)

)
+ A(h0, e0)∂x

(
h̃(x, t)
ẽ(x, t)

)
= 0, (3.7)
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868 H. Spohn, G. Stoltz

where

A = 2

(
∂hτ ∂eτ

−τ∂hτ −τ∂eτ

)
. (3.8)

In (3.8) the dependence of A on h0, e0 has already been suppressed. In the sequel we will
regard τ, β as given and thereby via (3.5) also the value of the background fields h0, e0.

We now follow the strategy in [7] in order to study the space–time correlation matrix
S(i, t) ∈ R

2×2 of the conserved fields whose entries read

Sαα′(i, t) = 〈
gα(ηi,t )gα′(η0,0)

〉
τ,β

− 〈
gα(ηi,t )

〉
τ,β

〈
gα′(η0,0)

〉
τ,β

.

Here g1(η) = η and g2(η) = V (η) and, in slight abuse, 〈·〉τ,β refers to average in the
stationary process with starting measure μτ,β . For the said purpose we expand the Euler
equations (3.6) to second order in the currents and add dissipation plus noise. The resulting
Langevin equations have a structure similar to (2.3), but with the linear drift term not yet
diagonal. The latter feature is accomplished through the transformation matrix R defined by
the properties

RAR−1 = diag(c, 0), RS(0, 0)RT = 1,

where it is already anticipated that A has the eigenvalues 0 and

c = 2(∂h − τ∂e)τ < 0, (3.9)

see (8.1). We use the convention that the left moving mode has label 1, while the standing
mode has label 2. In analogy to anharmonic chains, mode 1 is called sound mode and mode 2
heatmode.After this transformation the equations of nonlinear fluctuating hydrodynamics are
exactly of the form of two coupled Burgers equations as in (2.3). The transformationmatrix R
and the nonlinear coupling matrices Gα are tabulated in (8.2) and Appendix 3.2 respectively.
Because of the particular form of the Euler currents, one has G2

22 = 0, G2
12 = G2

21 = 0
always, while G2

11 < 0. Thus the heat peak is non-KPZ, but coupled to the sound peak.
According to our classification, this leaves only the two cases: (i) G1

11 	= 0 implying KPZ
for mode 1 and 5

3 -Lévy for mode 2, (ii) G1
11 = 0 implying diffusive for mode 1 and 3

2 -Lévy
for mode 2.

The case (ii) is exceptional, a more explicit condition being

(∂h − τ∂e)
2τ = 0,

see (8.4). One example is the harmonic potential V (η) = η2 discussed in [23], for which
G1

11 = 0 identically. In general, there could be special values of τ, β at which G1
11 = 0.

The matrix S(i, t) is transformed to normal modes as S�(i, t) = RS(i, t)RT. On suffi-
ciently large scales S�(i, t) should be determined through the stationary covariance of the
coupledBurgers equations (2.3) andwe can use directly the results fromSect. 2 andAppendix
1. They assert that RS(i, t)RT is approximately diagonal,

S�(i, t) = RS(i, t)RT � δαα′ fα(N−1i, t), mod N . (3.10)

The sound peak scales asymptotically as

f1(x, t) � (λ1t)
−2/3 fKPZ

(
(λ1t)

−2/3(x − ct)
)
, λ1 = 2

√
2

∣∣G1
11

∣∣ , (3.11)

and the heat peak as

f2(x, t) � (λ2t)
−3/5 fLévy,5/3,1

(
(λ2t)

−3/5x
)
, λ2 = ah c

−1/3 (
G2

11

)2
λ

−2/3
1 , (3.12)
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with the constant1

ah = √
3�

( 1
3

) ∫

R

( fKPZ)2 � 1.81.

Here fLévy,5/3,1 denotes the maximally asymmetric Lévy distribution with parameters α =
5/3 and asymmetry b = 1, see Appendix 1.3 for the definition.

4 Numerical Simulations for the BS Model

To assess the validity of (3.11)–(3.12), we perform numerical simulations obtained by inte-
grating the dynamics (3.1) and adding random exchanges when starting from initial condi-
tions distributed according to the canonical measure (3.3). This is done for two potentials:
the FPU-α potential (simply abbreviated as FPU in the sequel)

V (η) = 1

2
η2 + a

3
η3 + 1

4
η4, (4.1)

with a = 2 (as in [22]), and the Kac-Van Moerbeke potential (abbreviated as KvM in the
sequel)

V (η) = e−κη + κη − 1

κ2 , (4.2)

with κ = 1. Note that τ > −1/κ is necessary to ensure the normalization of the canonical
measures in this case. The KvM potential is special since it makes the system integrable in
the absence of stochastic exchanges, i.e. when γ = 0, see [30]. In fact, the corresponding
system is related by a simple transformation to the famous Toda lattice [31], which is a chain
of oscillators coupled through the potential (4.2) to nearest neighbors and evolving according
to Hamiltonian dynamics.

In Sect. 4.1 we explain how the correlators are computed and fitted to the respective
scaling functions. In Sect. 4.2 we quantify the agreement between the numerically computed
correlators and the theoretical predictions.

4.1 Numerical Computation of the Correlation Functions

4.1.1 Generation of Initial Conditions

Initial conditions are sampled according to the canonical measure (3.3). Since this measure is
of product form, one can sample independently the initial values (ηi,0)i=0,...,N−1 for each site
according to the measure Z−1

τ,β e−β(V (η)+τη) dη. One way to do so is to start from ηiniti = 0
and to evolve according to the SDE

dηiniti,t = −(
V ′(ηiniti,t ) + τ

)
dt +

√
2

β
dW init

i,t .

1 Anharmonic chains evolving according to Hamiltonian dynamics have three conservation laws and cor-
respondingly one heat mode and two reflection symmetric sound modes. The heat mode is the symmetric
5
3 -Lévy function and the prefactor is 2ah (compare for instance with [32, Eq. (50)]).
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In practice this is done by a discretization through an Euler-Maruyama scheme, using a time
step �tthm,

ηiniti,n+1 = ηiniti,n − �tthm
(
V ′(ηiniti,n ) + τ

)
+

√
2�tthm

β
G init

i,n ,

where G init
i,n are independent and identically distributed (i.i.d.) standard Gaussian random

variables. We use �tthm = 0.005, and integrate over Nthm = 1000 steps. We finally set
ηi,0 = ηiniti,Nthm

. To check the sampling of the initial conditions, we compared the reference

distribution Z−1
τ,β e−β(V (η)+τη) and the histogram of the displacements (ηiniti,Nthm

)0�i�N−1.

4.1.2 Numerical Integration of the Dynamics

The dynamics (3.1) is integrated with a timestep�t > 0 using the algorithm presented in [13,
Sect. 6.3.1], adapted here to the periodic setting. In a nutshell, the numerical method first
integrates the deterministic part of the dynamics over a time increment �t with a splitting
strategy where even and odd sites are evolved separately over time increments �t , in accor-
dance with the hidden Hamiltonian structure of the deterministic part of the dynamics. Next
one has to include the random exchanges: independent exponential clocks are attached to
each pair (ηi , ηi+1), and the current clock times are decreased by�t at each time step. When
a clock time becomes negative, the corresponding neighboring displacements are exchanged,
and a new exponential time of mean 1/γ is sampled.

We produce K samples of initial conditions of the system (starting from independent
initial conditions ηki,0), and denote by (ηki,n)0�i�N−1 an approximation of the state of the
kth sample at time n�t . The time step is set to �t = 0.005, a value sufficiently small to
ensure relative energy variations of order 10−3 or less over very long times for stochastic
rates in the range 0 � γ � 1 and for the system sizes up to N = 8000. Note that the
splitting algorithm respects the underlying symplectic structure of the differential equation
part, while the exchange does not. As a consequence the near energy conservation observed
for the deterministic dynamics is degraded by the exchange noise, although no systematic
drift is observed.

4.1.3 Computation of the Correlators

The correlation matrices are computed at times n�t . To this end, we first evaluate the empir-
ical average over the replicas of the displacements and energies at each site i ,

hi,n = 1

K

K∑
k=1

ηki,n, ei,n = 1

K

K∑
k=1

V
(
ηki,n

)
,

and then compute the entries of the correlation matrix by the following space- and sample-
average,

[
CN ,K (i, n)

]
α,α′ = 1

NK

K∑
k=1

N−1∑
i=0

ukα,i+ j,nu
k
α′, j,0,

with

uk1,i,m = ηki,m − hi,m, uk2,i,m = V
(
ηki,m

)
− ei,m .
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The numerical results reported below are obtained using K = 105 samples and chains of
lengths N = 2000–8000. We checked that

CN ,K (i, 0) � δi0 C, C =
( 〈η; η〉τ,β 〈η; V (η)〉τ,β

〈η; V (η)〉τ,β 〈V (η); V (η)〉τ,β
)

,

where 〈A; B〉τ,β = 〈A(η0)B(η0)〉τ,β −〈A(η0)〉τ,β 〈B(η0)〉τ,β . We also checked that the sum
rules hold, up to very small errors related to the only approximate conservation of the energies
and to the finiteness of the number of samples K ,

N−1∑
i=0

CN ,K (i, n) =
N−1∑
i=0

CN ,K (i, 0).

After a normal mode transformation as in (3.10), based on the matrix R defined in (8.2), the
correlation matrix is almost diagonal,

C�
N ,K (i, n) = RCN ,K (i, n)RT �

(
f num1 (i, n) 0

0 f num2 (i, n)

)
.

4.1.4 Computation of the Scaling Factors

In order to check quantitatively the agreement between the numerically computed correla-
tion functions f numα and the theoretically predicted values (3.11)–(3.12), following [32], we
optimize the parameters in the ansatz (3.11)–(3.12) such as to minimize the L1 distance,

inf
xn∈R
�n>0

{
N−1∑
i=0

∣∣ f numα (i, n) − (�n)
−1 f mc

α

(
(�n)

−1(i − xn)
)∣∣

}
. (4.3)

Here, f mc
α denotes the theoretical scaling function, namely KPZ for mode 1 and maximally

asymmetric 5
3 -Lévy for peak 2. In fact, in order to have amore stableminimization procedure,

we use the prior knowledge on how xn,�n should scale and write

xn = ctheorn�t + x̃n, �n = �̃n (n�t)δtheor . (4.4)

The value ctheor is the theoretical peak velocity, to say, 0 for the heat peak and (3.9) for the
sound peak, and δtheor the theoretically predicted scaling exponent, 3/5 for the heat mode and
2/3 for the sound peak.

The optimization in (4.3) is now performed over x̃n and �̃n at the various times n�t
at which the correlation matrix is computed. In practice, the sum in (4.3) is not performed
over all indices i but restricted to the indices i which are close to the center of the peak
under investigation, since far away from the peak center the correlation is almost zero and
the dominance of statistical noise makes those values irrelevant. The center of the peak
at time index n is defined as the index incenter for which f numα (i, n), as a function of i , is
maximal. A cut-off range Rcut > 0 is then introduced to limit the sum in (4.3) to indices
incenter − Rcuttδtheor � i � incenter + Rcuttδtheor .

The values x̃n, �̃n maybe drifting in timewhen the expected scaling (4.4) is not completely
exact. It may happen for instance that, due to errors related to the use of finite stepsizes �t ,
the actual velocity is not exactly equal to ctheor. We therefore fit x̃n, �̃n as

x̃n = ccrt n�t + x0, �̃n = �̃0 (n�t)δcrt , (4.5)

these fits being performed using a standard least-square minimization for x̃n and a least-
square minimization based on log �̃n to find the correction to the scaling exponent. The
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Fig. 1 Evolution of the heat peak (centered at x = 0) and the sound peak, traveling to the left, for the KvM
potential (4.2). Note that the heat peak is not symmetric, the rapid decay being away from the sound peak

actual velocity observed in the numerical experiments is then cnum = ctheor + ccrt and the
actual scaling exponent is δnum = δtheor + δcrt . Once the corrected scaling exponent is
determined, the scaling factor is obtained as

λnum = �̃
1/δnum
0 . (4.6)

We have checked that the final outputs, in particular the actual scaling exponent δnum and the
associated scaling factor λnum are insensitive to the choice of the surrogate scaling exponent
δtheor. This procedure also allows to check how fast the “instantaneous” estimates of the
scaling factor, defined as

λn = (
�̃n(n�t)−δcrt

)1/δnum
, (4.7)

stabilize around the average value λnum given by (4.6), see Figs. 3, 4, 6, and 7, left.

4.2 Comparison with Theoretical Predictions

The numerical results reported here have been obtained at the fairly low temperature of
β−1 = 1

2 , with a tension τ = 1, using a noise intensity γ = 1, and the value Rcut = 9 for
the sound peak and Rcut = 11 for the heat peak to compute the L1 error in the minimization
procedure (4.3). A plot summarizing the evolution of the sound and heat peaks is presented
in Fig. 1. In all cases, the value x0 in (4.5) is very small and is henceforth set to 0.

In the pictures, we call “rescaled peak” the plots for which the renormalized numerical
correlation functions (λnumn�t)δnum f numα (i, n) are plotted, at a given time index n, as a
function of the renormalized spatial variable (i − cnumn�t)/(λnumn�t)δnum .

4.2.1 FPU Potential

The rescaled sound andheat peaks for theFPUpotential are presented inFig. 2. The agreement
with the predicted scaling functions is qualitatively excellent. On a quantitative level, the
numerical parameters obtained by the minimization procedure are:
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Fig. 2 (FPU potential) Comparison of rescaled sound and heat peaks. The first line corresponds to the sound
peak, the second one to the heat peak. The reference for the heat peak is the Lévy stable distribution with
parameter α = 5/3 and maximal asymmetry. Logarithmic plots are provided in the right column

• for sound peaks, exponent δnum = 2/3, fixed to its theoretical value since δnum turns
out to be extremely close to 2/3, velocity cnum = −5.24, compared to the theoretical
value ctheor = −5.28, and scaling factor λ1 � 6.36. The scaling factor is in excellent
agreement with the theoretical value λ1 = 2

√
2|G1

11| = 6.32 predicted by (3.11).
• for heat peaks, the reference being the maximally asymmetric Lévy distribution with

α = 5/3: velocity cnum = 0, exponent δnum = 0.605, very close to the theoretical value
3/5, scaling factor λ2 � 3.70. The scaling factor is in very good agreement with the
theoretical value 3.46 predicted by (3.12). A slightly better agreement between the scaling
functions could be obtained by decreasing a little bit the parameter of theLévy distribution
from 5/3 to values around to 1.64 in order to have a sharper decrease on the right.

The evolution of the non-universal scaling factors as a function of the time index is reported
in Figs. 3 and 4, together with the L1 error. Note that the error very quickly decreases at the
beginning of the simulation but, after reaching an absolute minimum, slowly increases again
due to the increase of the statistical noise. The initial decrease is faster for the sound peak,
which attains its asymptotic shape more rapidly. Also, the scaling factor settles down slightly
faster for the sound peak.

4.2.2 KVM Potential

The rescaled sound and heat peaks for the KvM potential are presented in Fig. 5. The agree-
ment with the predicted scaling function is again qualitatively excellent. On a quantitative
level, the numerical parameters obtained by the minimization procedure are:
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Fig. 3 (FPU potential, sound peak) Left Optimal value of the scaling parameter for a given time, as given
by (4.7). Right L1 error (4.3) for the optimal value of the parameters
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Fig. 4 (FPU potential, heat peak) Left Optimal value of the scaling parameter for a given time, as given
by (4.7). Right L1 error (4.3) for the optimal value of the parameters

• for sound peaks, exponent δnum = 2/3, fixed to its theoretical value since δnum turns out
to be extremely close to 2/3, velocity cnum = −3.996, compared to the theoretical value
ctheor = −4, and scaling factor λs � 2.81. The scaling factor is in excellent agreement
with the theoretical value λ1 = 2

√
2|G1

11| = 2.83 predicted by (3.11).
• for heat peaks, we consider as a reference the maximally asymmetric Lévy distribution

withα = 1.57 instead of 5/3 since this value of theα parameter allows to further decrease
the error (4.3). We find a velocity cnum � 0, an exponent δnum = 0.633, somewhat away
from the theoretically predicted value 3/5, and a scaling factor λ2 � 2.51. The latter
value is quite off the theoretical value 4.21 predicted by (3.12).

The evolution of the scaling factors as a function of the time index is reported in Figs. 6 and 7,
together with the L1 error. The behavior and orders of magnitude of the error are similar to
what is observed with the FPU potential. We again see in this example that the convergence
to the limiting regime for the sound peak is slightly faster than for the heat peak.

5 Conclusions

Comparable simulations have been carried out for a two-component stochastic lattice gas
[24] and for Hamiltonian anharmonic chains with hard core collisions [32], resp. with an
asymmetric FPU potential [33,34]. The latter two models have three conserved fields. The
lattice gas has twoKPZ peaks with distinct velocities. The agreement with KPZ is of a similar
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Fig. 5 (KvM potential) Comparison of rescaled sound and heat peaks. The first line corresponds to the sound
peak, the second one to the heat peak. The reference for the heat peak is a maximally asymmetric Lévy
distribution with parameter α = 1.57 instead of 1.67. Logarithmic plots are provided in the right column
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quality as obtained here, including the values for the non-universal coefficients. Possibly the
G-matrices of these two models favor small finite time corrections. For the anharmonic
chains the agreement is less perfect. For hard-core collisions the predicted shape of the peaks
is achieved with an L1 error of the order of 3 %, but the non-universal coefficients deviate
considerably from their predicted values. Such deviations are even more pronounced for the
FPU chains. For instance, at the largest time and size available, the sound peaks still show a
slight asymmetry.

It is remarkable that the space–time correlation functions obtained from numerical simu-
lations of the BS model are in such a good agreement with the ones of nonlinear fluctuating
hydrodynamics.
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KPZ scaling is based on decoupling and is expected to be exact for sufficiently long
times. On the other hand, the Lévy distribution is based on mode-coupling, which is an
approximation. As also observed in other models, for our simulations the fit to the maximally
asymmetric 5

3 -Lévy distribution is so precise that one is tempted to conjecture it to be the
true long time scaling function.
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Appendix 1: Scaling Functions for Two Cross-Coupled Modes

We study the asymptotic behavior of two cross-coupled Burgers equations of the form

∂t uσ + ∂x
(
σcuσ + λ(u−σ )2 − D∂xuσ + √

2Dξσ

) = 0, σ = ±1, (6.1)

for velocity c > 0, diffusion constant D > 0, and strength of nonlinearity λ > 0. This is the
case “gold-Lévy” from third table, row 1, in Sect. 2 (with the simplification that the strength
of the nonlinearity is assumed to be the same for both modes). Note that, compared to (2.3)
the index of the modes is±1 instead of 1, 2 and the frame of reference is such that the modes
have opposite velocities.

In the diagonal approximation, compare with (2.5)–(2.6), the respective mode-coupling
equations read

∂t fσ (x, t) = (−σc∂x + D∂2x
)
fσ (x, t) + 2λ2

∫ t

0

∫

R

fσ (x − y, t − s)∂2y
(
f−σ (y, s)2

)
dy ds.

(6.2)
Initially fσ (x, 0) = δ(x) and the normalization is preserved,

∫

R

fσ (x, t) dx = 1. (6.3)

Furthermore, by symmetry of the equations,

fσ (x, t) = f−σ (−x, t). (6.4)
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Our goal is to find the long-time self-similar solution to (6.2). We will establish that the
appropriate space–time scaling is x/t1/γ with γ the golden mean,

γ = 1 + √
5

2
� 1.618. (6.5)

The scaling function turns out to be themaximally asymmetric γ -Lévy distribution, see (6.14)
and Appendix 1.3 for a discussion of its tail properties.

Appendix 1.1: Equation for the Scaling Functions

We use the same Fourier transform conventions as in [7],

ĝ(k) =
∫

R

g(x) e−2iπkx dx .

Taking the spatial Fourier transform of (6.2) leads to

∂t f̂σ (k, t) = − (
2iπσck + (2πk)2D

)
f̂σ (k, t)

−2(2πk)2λ2
∫ t

0
f̂σ (k, t − s)

( ∫

R

f̂−σ (k − q, s) f̂−σ (q, s) dq
)
ds.

(6.6)

We assume that, relative to σct , fσ is a self-similar solution with still to be determined
space–time scale. Recall that if a function f is self-similar,

f (x, t) = t−a F(t−a(x ∓ ct)),

then f̂ (k, t) = e∓2iπkct F̂(kta). We therefore make the following scaling ansatz

f̂1(k, t) = e−2iπkct h(kγ t), f̂−1(k, t) = e2iπkct g(ktβ), (6.7)

which is expected to be valid asymptotically only, as made precise in (6.10).
We consider the forcing exerted by f−1 on f1, which amounts to regarding the function g

as the input and h as the output. Let us first state some properties of the functions g, h. Since
fσ is real-valued, h(−w) = h(w) and g(−w) = g(w). We therefore restrict ourselves to
k > 0 in the sequel. Plugging the ansatz (6.7) into (6.6), the equation for f̂1 turns into

kγ h′(kγ t) = − (2πk)2Dh(kγ t)

− 2(2πk)2λ2
∫ t

0
h
(
kγ (t − s)

) ∫

R

g
(
(k − q)sβ

)
g
(
qsβ

)
e4iπcks dq ds,

so that, introducing the new variables w = kγ t and u = qsβ ,

h′(w) = −4π2D k2−γ h(w)

−8π2λ2 k2−γ

∫ k−γ w

0
e4iπckss−β h

(
w − kγ s

) ( ∫

R

g
(
ksβ − u

)
g (u) du

)
ds.

Here t has been eliminated and we study the limit k → 0. We rescale the time integration
variable as s = k−aθ and obtain

h′(w) = −4π2D k2−γ h(w) − 8π2λ2 k2−γ+a(β−1)

∫ ka−γ w

0
e4iπck

1−aθ θ−β h
(
w − kγ−aθ

) ( ∫

R

g
(
k1−aβθβ − u

)
g (u) du

)
dθ.

The choice a = 1 is the only one leading to a non-trivial limit in the integral over θ as k → 0.
Indeed, for a < 1, the exponential factor converges to 1 and the integrand is proportional to
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θ−β which is not integrable over R+, while for a > 1 the integral converges to 0, since the
exponential factor oscillates more and more. Setting

γ = 1 + β, 0 < β < 1, (6.8)

one arrives at

h′(w) = −4π2D k2−γ h(w)

−8π2λ2
∫ k1−γ w

0
e4iπcθ θ−β h

(
w − kβθ

) ( ∫

R

g
(
k1−βθβ − u

)
g (u) du

)
dθ.

In the limit k → 0,

h′(w) = −h(w)(4πλ)2
( ∫ ∞

0
|g(u)|2du

)( ∫ ∞

0
e4iπcθ θ−β dθ

)
, (6.9)

which determines h once the values of the integrals on the right-hand side are known. We
can now give a precise meaning to the limiting procedure, namely

lim
k→0

e2iπck
1−γ w f̂1

(
k, k−γ w

) = h(w), (6.10)

where h is the solution of (6.9).

Appendix 1.2: Cross-Coupled Scaling Functions

The time integral in (6.9) can be computed analytically as (see [35, Sect. 6.33])
∫ ∞

0
e4iπcθ θ−β dθ = (4πc)−1+β

∫ ∞

0
eiss−β ds = a

(
1 + i

tan(πβ/2)

)
(6.11)

with

a = (4πc)−1+β π

2�(β) cos(πβ/2)
.

We repeat now the derivation in Appendix 1.1 considering h as input and g as the output. By
symmetry (6.4), one concludes that

h(kγ t) = g
(
(k1/β t)β

)
,

which forces h(w) = g(wβ) and

γ = 1

β
,

which, combined with (6.8), implies that γ equals the golden mean (6.5). The normalization
condition (6.3) implies h(0) = 1. Hence, noting that tan(πβ/2) = −1/ tan(πγ /2),

h(w) = exp
(−(4πλ)2a

(
1 − i tan(πγ /2)

)
Aw

)
, (6.12)

with

A =
∫ ∞

0
|g(u)|2du =

∫ ∞

0
|h(wγ )|2dw.

Inserting (6.12) in the latter expression, it follows that

A = (a(4πλ)2)−1/γ 2
Ã1/γ , Ã =

∫ ∞

0
e−2wγ

dw = 2−1/γ

γ
�

(
1

γ

)
. (6.13)
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Thereby we finally obtain the scaling function

fσ (k, t) = exp
(−2iπσkct − C |2πk|γ (

1 − iσ sgn(k) tan(πγ /2)
)
t
)
, (6.14)

with

C = 2−1/γ λ2/γ
(

1

γ sin(πγ /2)

)1/γ

c1−2/γ ,

which one recognizes as the Fourier transform of an α-stable law with α = γ and maximal
asymmetry b = σ , see Appendix 1.3. This expression reduces to the more general expression
derived in [26] in the casewhen the strengths of the nonlinearities for the cross-coupledmodes
are different.

For two components the Lévy distribution is necessarily maximally asymmetric. For three
modes, there is the possibility to sandwich the Lévy peak inbetween two sound peaks with a
rapid fall off, as KPZ or Gaussian. Then the Lévy distribution could be partially asymmetric
with the tails cut off at the location of the sound peaks. Such a situation is realized in all
anharmonic chains. For them the two sound peaks are mirror images relative to 0, and the
heat peak reflection symmetric, which implies that the Lévy distribution has to be symmetric,
b = 0. On a mathematical level, the only result available is the harmonic chain with random
velocity exchanges. In this case the sound peaks are Gaussian and the heat peak is Lévy with
parameters α = 3

2 and b = 0 [36].

Appendix 1.3: Lévy Distributions and Their Asymptotic Properties

The Lévy distributions are defined through their Fourier transform as

fLévy,α,b(x) = 1

2π

∫

R

ϕα,b(k) e
ikx dk, ϕα,b(k) = exp

( − |k|α[
1 − ib tan( 12πα)sgn(k)

])
.

(6.15)
There are two parameters:α controls the steepness, 0 < α < 2, and b controls the asymmetry,
|b| � 1. For |b| > 1 the Fourier integral no longer defines a non-negative function. At the
singular point α = 2 only b = 0 is admitted and the distribution is Gaussian. If |b| < 1, the
asymptotic decay of fLévy,α,b(x) is determined by α and is given by |x |−α−1 for |x | → ∞. At
|b| = 1 the two tails show different decay. The functions corresponding to b = 1 and b = −1
are mirror images, for b = 1 the slow decay being for x → −∞ and still as |x |−α−1. For
0 < α � 1, fLévy,α,1(x) = 0 for x > 0, while for 1 < α < 2 the decay becomes stretched
exponential as exp(−c0xα/(1−α)) with known constant c0. We refer to [37] for more details.
In our context only the maximal asymmetry b = ±1 with 1 < α < 2 is realized.

Appendix 2: Modified KPZ Scaling

In this section we study modified KPZ from second table, row 2 of Sect. 2, in which case
G1

11 	= 0 and mode 2 is diffusive, but has a non-trivial feed back to mode 1 since G1
22 	= 0.

More precisely, upon changing the frame of reference, we assume that

f2(x, t) = 1√
4πDt

e−(x+ct)2/4Dt ,
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c > 0, while f1 evolves according to

∂t f1 = D1∂
2
x f1 +2

(
G1

11

)2 ∫ t

0

∫

R

∂2x f1(x − y, t − s) f1(y, s)
2 dy ds

+2
(
G1

22

)2 ∫ t

0

∫

R

∂2x f1(x − y, t − s) f2(y, s)
2 dy ds,

compare with (2.5)–(2.6). Through Fourier transform in space one obtains

∂t f̂1(k, t) = −D1(2πk)
2 f̂1(k, t)

−2(2πk)2
(
G1

11

)2 ∫ t

0
f̂1(k, t − s)

( ∫

R

f̂1(k − q, s) f̂1(q, s) dq
)
ds

−2(2πk)2
(
G1

22

)2 ∫ t

0
f̂1(k, t − s)

( ∫

R

f̂2(k − q, s) f̂2(q, s) dq
)
ds.

As in Appendix 1.1, it suffices to consider k > 0. Following the scheme in [7, Sect. 4], we
make the ansatz

f1(k, t) = F
(
(λst)

2/3k
)

(7.1)

with λs = 2
√
2|G1

11|. Setting momentarily G1
22 = 0, and substituting u = (λst)2/3k, one

arrives at

2
3uF

′(u) = −π2u2
∫ 1

0
F

(
(1 − θ)2/3u

)( ∫

R

F
(
θ2/3(u − v)

)
F

(
θ2/3v

)
dv

)
dθ. (7.2)

Nextwe setmomentarilyG1
11 = 0. Thenwe are back to the problemdiscussed inAppendix

1.1 with β = 1/2, γ = 3/2 and input function f̂2(k, t) = e2iπkct g(kt1/2) with g(k) =
exp

( − D(2πk)2
)
. In the scaling limit the output function is h(k3/2t), which satisfies

h′(w) = −h(w)(4πG1
22)

2
( ∫ ∞

0
|g(u)|2du

)( ∫ ∞

0
e2iπcθ θ−1/2 dθ

)
.

Working out the integrals yields

h′(w) = −h(w)(4πG1
22)

2(4
√

πD)−1(1 + i)(2
√
c)−1.

Since w = k3/2t , one concludes h(w) = F
(
(λsw)2/3

)
. The linear equation h′(w) = ah(w)

translates into
2
3 F

′(u) = a(λs)
−1√uF(u). (7.3)

Combining (7.2) and (7.3) one arrives at the fixed point equation for the scaling function
F ,

2
3 F ′(u) = −π2u

∫ 1

0
F

(
(1 − θ)2/3u

) (∫

R

F
(
θ2/3(u − v)

)
F

(
θ2/3v

)
dv

)
dθ

−(4πG1
22)

2(4
√

πD)−1(1 + i)(2
√
c)−1(2

√
2|G1

11|)−1 √
uF(u).

(7.4)

If G1
22 = 0, then (7.4) reduces to the fixed point equation for fKPZ in the mode-coupling

approximation. Now a term linear in F is added. Presumably this results in a one-parameter
family of scaling functions, depending on the prefactor of the linear term. Most likely such
a behavior persists for the true coupled Burgers equations.

123



Fluctuating Hydrodynamics for Two Fields 881

Appendix 3: Expressions for the Coupling Constants

We follow here the strategy presented in [7, Appendix A] to compute the various coefficients
appearing in the mode-coupling equations. Mode 1 corresponds to the sound mode, while
mode 2 represents the heat mode.

For three random variables A,B, C, we denote the third cumulant by

〈A;B; C〉τ,β = 〈A(η0)B(η0)C(η0)〉τ,β
−〈A(η0)B(η0)〉τ,β 〈C(η0)〉τ,β − 〈A(η0)C(η0)〉τ,β 〈B(η0)〉τ,β
−〈B(η0)C(η0)〉τ,β 〈A(η0)〉τ,β
+2 〈A(η0)〉τ,β 〈B(η0)〉τ,β 〈C(η0)〉τ,β .

Appendix 3.1: Matrix R and Sound Velocity

The right eigenvectors of the matrix A are proportional to

ψ1 = Z−1
1

(
1

−τ

)
, ψ2 = Z−1

2

(
∂eτ

−∂hτ

)
,

with, respectively, associated eigenvalues 0 and

c = 2(∂h − τ∂e)τ.

The corresponding left eigenvectors are proportional to

ψ̃1 = Z̃−1
1

(
∂hτ

∂eτ

)
. ψ̃2 = Z̃−1

2

(
τ

1

)
,

The coefficients Z̃1, Z̃2 are obtained from the diagonal conditions RCRT = 1, the R matrix
being constructed from the left eigenvectors. The coefficients Z1, Z2 are determined by the
condition RR−1 = 1, with the inverse R−1 constructed from the right eigenvectors. By some
computations one obtains

c = −2�−1〈V + τη; V + τη〉τ,β < 0, � = β
( 〈η; η〉τ,β 〈V ; V 〉τ,β −〈η; V 〉2τ,β

)
, (8.1)

as well as

Z̃1 =
√

− c

2β
, Z̃2 =

√
−�c

2
.

Moreover,

R =
(

∂hτ/Z̃1 ∂eτ/Z̃1

τ/Z̃2 1/Z̃2

)
, (8.2)

with
∂hτ = −�−1 〈V ; V + τη〉τ,β , ∂eτ = �−1 〈η; V + τη〉τ,β . (8.3)

Finally,

Z1 = c

2Z̃1
= −

√
−βc

2
, Z2 = − c

2Z̃2
=

√
− c

2�
.
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Appendix 3.2: Hessians and Coupling Matrices G

The Hessians of the currents jh = 2τ and je = −τ 2 are

Hh =
(

∂2h jh ∂h∂e jh
∂h∂e jh ∂2e jh

)
= 2

(
∂2h τ ∂h∂eτ

∂h∂eτ ∂2e τ

)
,

and

He =
(

∂2h je ∂h∂e je
∂h∂e je ∂2e je

)
= −τHh − 2Ĥe, Ĥe =

(
(∂hτ)2 ∂hτ∂eτ

∂hτ∂eτ (∂eτ)2

)
.

The second derivatives of τ with respect to h, e, which are required in order to evaluate the
Hessian matrices Hh, He, are obtained by inverting the following systems,

(
∂τh ∂τ e
∂βh ∂βe

) (
∂2h τ

∂h∂eτ

)
=

(
∂τ (∂hτ)

∂β(∂hτ)

)
,

(
∂τh ∂τ e
∂βh ∂βe

) (
∂h∂eτ

∂2e τ

)
=

(
∂τ (∂eτ)

∂β(∂eτ)

)
,

and using the expressions (8.3) for the partial derivatives ∂hτ, ∂eτ , as well as the rules

∂τ 〈A;B〉τ,β = −β 〈A;B; η〉τ,β , ∂β 〈A;B〉τ,β = −〈A;B; V + τη〉τ,β .

The elements of the G matrices are then computed as

G1
αα′ = 1

2

(
R11

(
ψT

α · Hhψα′
) + R12

(
ψT

α · Heψα′
))

,

G2
αα′ = 1

2

(
R21

(
ψT

α · Hhψα′
) + R22

(
ψT

α · Heψα′
))

.

Note that, since R21 = τ R22 and Ĥeψ2 = 0, the only non-zero coefficient of the heat
mode coupling matrix G2 is G2

11, which can be written more concisely as

G2
11 = −R22

(
ψT
1 · Ĥeψ1

) = −R22
(∂hτ − τ∂eτ)2

Z2
1

= −
( c
2

)2 1

Z̃2Z2
1

= − 1

β

√
− c

2�
< 0.

On the other hand, there seems to be no simplified expression for the sound mode coupling
matrix G1 and, a priori, all entries G1

αα′ are non-zero. A straightforward computation shows
that

G1
11 = c

2Z2
1 Z̃1

(∂h − τ∂e)
2 τ, (8.4)

which has no definite sign, in general.

Appendix 3.3: Specific Potentials

There are simplifications for the expression of the components of the matrix G1 for spe-
cific potentials such as the Kac-van Moerbeke potential (4.2). In the latter case, a simple
computation based on the identity V ′(η) = −κV (η) + η shows that

τ = κe − h,

so that c = −2(1 + κτ), Hh = 0,

He = −2

(
1 −κ

−κ κ2

)
, R = 1√

1 + κτ

(−√
β κ

√
β

τ/
√

� 1/
√

�

)
.

123



Fluctuating Hydrodynamics for Two Fields 883

In addition,

ψ1 =
√

1

β(1 + κτ)

(
1

−τ

)
, ψ2 =

√
�

1 + κτ

(
κ

1

)
,

so that Heψ2 = 0. The only non-zero coefficient of G1 therefore is G1
11, which reads

G1
11 = −κ

√
1 + κτ

β
.

Note that the harmonic potential V (η) = η2

2 is obtained from the KvM potential (4.2) in the
limit κ → 0. Hence also the coupling matrices are obtained in the same limit, implying that
G1 = 0 for the harmonic potential.

Appendix 3.4: Coupling Matrices for the Numerically Simulated Systems

Recall that we choose τ = 1 and β = 2 in both cases. For the FPU potential (4.1) with a = 2,
we obtain c = −5.28,

R =
(−0.401 1.90

2.55 2.55

)
, R−1 =

(−0.435 0.323
0.435 0.0683

)

and

G1 =
(−2.23 0.431
0.431 0.333

)
, G2 =

(−3.37 0
0 0

)
. (8.5)

For the KvM potential (4.2) with κ = 1, we obtain c = −4,

R =
( −1 1
2.72 2.72

)
, R−1 =

(−1/2 0.184
1/2 0.184

)

and

G1 =
(−1 0

0 0

)
, G2 =

(−2.719 0
0 0

)
. (8.6)
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