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Abstract In the present paper, we consider a family of continuous time symmetric random
walks indexed by k ∈ N, {Xk(t), t ≥ 0}. For each k ∈ N the matching random walk take
values in the finite set of states �k = 1

k (Z/kZ); notice that �k is a subset of S
1, where

S
1 is the unitary circle. The infinitesimal generator of such chain is denoted by Lk . The

stationary probability for such process converges to the uniform distribution on the circle,
when k → ∞. Here we want to study other natural measures, obtained via a limit on k → ∞,
that are concentrated on some points of S

1. We will disturb this process by a potential and
study for each k the perturbed stationary measures of this new process when k → ∞. We
disturb the system considering a fixed C2 potential V : S

1 → R and we will denote by
Vk the restriction of V to �k . Then, we define a non-stochastic semigroup generated by the
matrix k Lk + k Vk , where k Lk is the infinifesimal generator of {Xk(t), t ≥ 0}. From
the continuous time Perron’s Theorem one can normalized such semigroup, and, then we get
another stochastic semigroup which generates a continuous time Markov Chain taking values
on �k . This new chain is called the continuous time Gibbs state associated to the potential
k Vk , see (Lopes et al. in J Stat Phys 152:894–933, 2013). The stationary probability vector
for such Markov Chain is denoted by πk,V . We assume that the maximum of V is attained in
a unique point x0 of S

1, and from this will follow that πk,V → δx0 . Thus, here, our main goal
is to analyze the large deviation principle for the family πk,V , when k → ∞. The deviation
function I V , which is defined on S

1, will be obtained from a procedure based on fixed points
of the Lax–Oleinik operator and Aubry–Mather theory. In order to obtain the associated
Lax–Oleinik operator we use the Varadhan’s Lemma for the process {Xk(t), t ≥ 0}. For a
careful analysis of the problem we present full details of the proof of the Large Deviation
Principle, in the Skorohod space, for such family of Markov Chains, when k → ∞. Finally,
we compute the entropy of the invariant probabilities on the Skorohod space associated to
the Markov Chains we analyze.
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1 Introduction

We will study a family of continuous time Markov Chains indexed by k ∈ N, for each k ∈ N

the corresponding Markov Chain take values in the finite set of states �k = 1
k (Z/kZ). Let S

1

be the unitary circle which can be identified with the interval [0, 1). In this way we identify
�k with {0, 1/k, 2/k, . . . , (k − 1)/k} in order to simplify the notation. We will analyse
below a limit procedure on k → ∞ and this is the reason why we will consider that the
values of the states of the chain are in the unitary circle. The continuous time Markov Chain
with index k has the following behaviour: if the particle is at j/k it waits an exponential time
of parameter 2 and then jumps either to ( j − 1)/k or to ( j + 1)/k with probability 1/2. In
order to simplify the notation, we omit the indication that the the sum j + 1 is mod k and the
same for the subtraction j − 1; we will do this without other comments in the rest of the text.
The skeleton of this continuous time Markov Chain has matrix of transitions Pk = (pi, j )i, j

such that the element p j, j+1 describes the probability of transition of i/k to j/k, which is
pi,i+1 = pi,i−1 = 1/2 and pi, j = 0, for all j �= i . The infinitesimal generator is the matrix
Lk = 2(Pk − Ik), where Ik is the identity matrix, in words Lk is a matrix that is equal to −2
in the diagonal Li, j = 1 above and below the diagonal, and the rest is zero. Notice that Lk

is symmetric matrix. For instance, take k = 4,

L4 =

⎛
⎜⎜⎝

−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

⎞
⎟⎟⎠ .

We can write this infinitesimal generator as an operator acting on functions f : �k → R as

(Lk f )( j
k ) =

[
f
(

j+1
k

)
− f

(
j
k

)]
+
[

f
(

j−1
k

)
− f

(
j
k

)]
. (1)

Notice that this expression describes the infinitesimal generator of continuous time random
walk. For each k ∈ N, we denote Pk(t) = et Lk the semigroup associated to this infinitesimal
generator. We also denote byπk the uniform probability on�k . This is the invariant probability
for the above defined continuous Markov Chain. The probabilityπk converges to the Lebesgue
measure on S

1, as k → ∞.
Fix T > 0 and x0 ∈ S

1, let Pk be probability on the Skorohod space D[0, T ], the space of
càdlàg trajectories taking values on S

1, which are induced by the infinitesimal generator kLk

and the initial probability δxk (x0), which is the Delta of Dirac at xk(x0) := �kx0�/k ∈ �k ,
where xk(x0) is the closest point to x0 on the left of x0 in the set �k . Denote by Ek the
expectation with respect to Pk and by {Xk(t)}t∈[0,T ] the continuous time Markov chain with
the infinitesimal generator kLk . One of our goals is described in the Sect. 2 which is to
establish a Large Deviation Principle for {Pk}k in D[0, T ]. This will be used later on the
Sect. 3.1 to define the Lax–Oleinik semigroup. One can ask: why we use this time scale?
Since the continuous time symmetric random walk converges just when the time is re-scaled
with speed k2, then taking speed k the symmetric random walk converges to a constant
trajectory. Here the setting follows similar ideas as the ones in the papers [1,2], where N.
Anantharaman used the Shilder’s Theorem. The Shilder’s Theorem says that for {Bt }t (the
standard Brownian Motion) the sequence {√εBt }t , which converges to a trajectory constant
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Large Deviations via Aubry–Mather Theory 799

equal to zero, when ε → 0, has rate of convergence equal to I (γ ) = ∫ T
0

(γ ′(s))2
2 ds, if

γ : [0, T ] → R is absolutely continuous, and I (γ ) = ∞, otherwise.
We proved that the sequence of measures {Pk}k satisfy the large deviation principle with

rate function IT : D[0, T ] → R such that

IT (γ ) =
∫ T

0

{
γ ′(s) log

(
γ ′(s)+√

(γ ′(s))2 + 4

2

)
−
√
(γ ′(s))2 + 4 + 2

}
ds,

if γ ∈ AC[0, T ] and IT (γ ) = ∞, otherwise.
Finally, in Sect. 3, we consider this system disturbed by a C2 potential V : S

1 → R. The
restriction of V to �k is denoted by Vk . From the continuous time Perron’s Theorem we
get an eigenvalue and an eigenfunction for the operator k Lk + k Vk . Then, normalizing the
semigroup associated to k Lk + k Vk via the eigenvalue and eigenfunction of this operator,
we obtain a new continuous time Markov Chain, which is called the Gibbs Markov Chain
associated to k Vk (see [4,19]). Denote by πk,V the initial stationary vector of this family
of continuous time Markov Chains indexed by k and which takes values on �k ⊂ S

1. We
investigate the large deviation properties of this family of stationary vectors which are prob-
abilities on S

1, when k → ∞. More explicitly, roughly speaking, the deviation function I V

should satisfy the property: given an interval [a, b]
lim

k→∞
1
k log πk,V [a, b] = − inf

x∈[a,b] I V (x).

If V : S
1 → R attains the maximal value in just one point x0, then, πk,V weakly converge,

as k → ∞, to the delta Dirac in x0.We will use results of Aubry–Mather theory (see [6,8,10]
or [11]) in order to exhibit the deviation function I V , when k → ∞.

It will be natural to consider the Lagrangian defined on S1 given by

L(x, v) = −V (x)+ v log((v +
√
v2 + 4)/2)−

√
v2 + 4 + 2,

which is convex and superlinear. It is easy to get the explicit expression of the associated
Hamiltonian,

As we will see the deviation function is obtained from certain weak KAM solutions of
the associated Hamilton-Jacobi equation (see Sect. 4 and 7 in [11]). In the one-dimensional
case S

1 the weak KAM solution can be in some cases explicitly obtained (for instance when
V as a unique point of maximum). From the conservation of energy (see [7]), in this case,
one can get a solution (periodic) with just one point of lack of differentiability.

It follows from the continuous time Perron’s Theorem that the probability vector πk,V

depends for each k on a left eigenvalue and on a right eigenvalue. In this way, in the limit
procedure, this will require in our reasoning the use of the positive time and negative time
Lax–Oleinik operators (see [11]).

From a theoretical perspective, following our reasoning, one can think that we are looking
for the maximum of a function V : S

1 → R via an stochastic procedure based on continuous
time Markov Chains taking values on the finite lattice �k , k ∈ N, which is a discretization of
the circle S

1. Maybe this can be explored as an alternative approach to Metropolis algorithm,
which is base in frozen arguments. In our setting the deviation function I V gives bounds for
the decay of the probability that the stochastic procedure corresponding to a certain k does
not localize the maximal value.

Moreover, in the Sect. 4 we compute explicitly the entropy of the Gibbs state on the
Skorohod space associated to the potential k Vk . In this moment we need to generalize a
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800 A. O. Lopes, A. Neumann

result which was obtained in [19]. After that, we take the limit on k → ∞, and we obtain
the entropy for the limit process which in this case is shown to be zero.

In [15] it is also consider the use of Aubry–Mather Theory in the study of Large deviation
properties.

2 Large Deviations on the Skorohod Space for the Unperturbed System

The goal of this section is to prove the Large Deviation Principle for the sequence of measures
{Pk}k on D[0, T ], defined in Sect. 1. We recall that Pk is induced by the continuous time
random walk, which has infinitesimal generator kLk , see (1), and the initial measure δxk (x0),
which is the Delta of Dirac at xk(x0) = �kx0�/k ∈ �k .

Theorem 1 The sequence of probabilities {Pk}k satisfies:

Upper Bound: For all C ⊂ D[0, T ] closet set,

lim
k→∞

1

k
log Pk

[
Xk ∈ C

]
≤ − inf

γ∈C
IT (γ ).

Lower Bound: For all O ⊂ D[0, T ] open set,

lim
k→∞

1

k
log Pk

[
Xk ∈ O

]
≥ − inf

γ∈O
IT (γ ).

The rate function IT : D[0, T ] → R is

IT (γ ) =
∫ T

0

{
γ ′(s) log

(γ ′(s)+√
(γ ′(s))2 + 4

2

)
−
√
(γ ′(s))2 + 4 + 2

}
ds, (2)

if γ ∈ AC[0, T ] and IT (γ ) = ∞, otherwise.

The set AC[0, T ] is the set of all absolutely continuous functions γ : [0, T ] → S
1. Saying

that a function γ : [0, T ] → S
1 is absolutely continuous means that for all ε > 0 there is

δ > 0, such that, for all family of intervals {(si , ti )}n
i=1 on [0, T ], with

n∑
i=1

ti − si < δ, we

have
n∑

i=1
γ (ti )− γ (si ) < ε.

Proof This proof is divided in two parts: upper bound and lower bound. The proof of the
upper bound is on Sects. 2.2 and 2.3. And, the proof of the lower bound is Sect. 2.4. In the
Sect. 2.1, we prove some useful tools for this proof, like the one related to the perturbation
of the system and also the computation of the Lengendre transform. 
�
2.1 Useful Tools

In this subsection we will prove some important results for the upper bound and for the lower
bound. More specifically, we will study a typical perturbation of the original system and
also the Radon-Nikodym derivative of this process. Moreover, we will compute the Fenchel-
Legendre transform for a function H that appears in a natural way in the Radon-Nikodym
derivative.

For a time partition 0 = t0 < t1 < t2 < · · · < tn = T and for λi : [ti−1, ti ] → R a
linear function with linear coefficient λi , for i ∈ {1, . . . , n}, consider a polygonal function
λ : [0, T ] → R as λ(s) = λi (s) in [ti−1, ti ], for all i ∈ {1, . . . , n}.
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Large Deviations via Aubry–Mather Theory 801

For each k ∈ N and for the polygonal function λ : [0, T ] → R, defined above, consider
the martingale

Mk
t = exp

{
k
[
λ(t)Xk(t)− λ(0)Xk(0)− 1

k

∫ t

0
e−kλ(s)Xk (s)(∂s + kLk)e

kλ(s)Xk (s)ds
]}
,

(3)

notice that Mk
t is positive and Ek[Mk

t ] = 1, for all t ≥ 0, see Appendix 1.7 of [17]. Making
a simple calculation, the part of the expression inside the integral can rewritten as

e−kλ(s)Xk (s)kLkekλ(s)Xk (s) = e−kλ(s)Xk (s)k
{

ekλ(s)(Xk (s)+1/k) − ekλ(s)Xk (s)

+ ekλ(s)(Xk (s)−1/k) − ekλ(s)Xk (s)

= e−kλ(s)Xk (s)k ekλ(s)Xk (s)
{

eλ(s) − 1 + e−λ(s) − 1
}

= k
{

eλ(s) + e−λ(s) − 2
}

= k H(λ(s)),

where H(λ) := eλ+e−λ−2. Since λ is a polygonal function, the other part of the expression
inside the integral is equal to

e−kλ(s)Xk (s)∂s ekλ(s)Xk (s) = e−kλ(s)Xk (s) ekλ(s)Xk (s)kλ′(s)Xk(s)

= kλ′(s) Xk(s) = k
n−1∑
i=0

λi+11[ti ,ti+1](s) Xk(s).

Using telescopic sum, we have

λ(T )Xk(T )− λ(0)Xk(0) =
n−1∑
i=0

[
λi+1(ti+1)Xk(ti+1)− λi (ti )Xk(ti )

]

=
n−1∑
i=0

[
λi+1(ti+1)Xk(ti+1)− λi+1(ti )Xk(ti )

]
.

The last equality follows from the fact that λ is a polygonal function (λi (ti ) = λi+1(ti )).
Thus, the martingale Mk

T becomes

Mk
T = exp

{
k

n−1∑
i=0

[
λi+1(ti+1)Xk(ti+1)− λi+1(ti )Xk(ti )

−
∫ ti+1

ti
[ λi+1 Xk(s)+ H(λi+1(s)) ] ds

]}
. (4)

Remark 2 If λ : [0, T ] → R is an absolutely continuous function, the expression for the
martingale Mk

T can be rewritten as

Mk
T = exp

{
k
[
λ(T )Xk(T )− λ(0)Xk(0)−

∫ T

0
[ λ′(s) Xk(s)+ H(λ(s)) ] ds

]}
.

Define a measure on D[0, T ] as

P
λ
k [A] = Ek[1A(Xk)Mk

T ],
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802 A. O. Lopes, A. Neumann

for all set A in D[0, T ]. For us 1A is the indicator function of the set A, it means that 1A(x) = 1
if x ∈ A or 1A(x) = 0 if x /∈ A.

One can observe that this measure is associated to a non-homogeneous in time process,
which have infinitesimal generator acting on functions f : �k → R as

(Lλ(t)k f )( j
k ) = eλ(t)

[
f
(

j+1
k

)
− f

(
j
k

)]
+ e−λ(t) [ f

(
j−1
k

)
− f

(
j
k

)]
.

By Proposition 7.3 on Appendix 1.7 of [17], Mk
T is a Radon-Nikodym derivative

dP
λ
k

dPk
.

To finish this section, we will analyse the properties of the function H , which appeared
in the definition of the martingale Mk

T .

Lemma 3 Consider the function

H(λ) = eλ + e−λ − 2

the Fenchel-Legendre transform of H is

L(v) = sup
λ

{
λv − H(λ)

} = v log
(

1
2

(
v +

√
(v)2 + 4

))
−
√
(v)2 + 4 + 2 . (5)

Moreover, the supremum above is attain on λv = log
(

1
2

(
v +√

(v)2 + 4
))

.

Proof Maximizing λv − (eλ + e−λ − 2) on λ, we obtain the expression on (5). 
�

Then, we can rewrite the rate functional IT : D[0, T ] → R, defined in (2), as

IT (γ ) =
{∫ T

0 L(γ ′(s)) ds, i f γ ∈ AC[0, T ],
∞, otherwise.

(6)

2.2 Upper Bound for Compact Sets

Let C be an open set of D[0, T ]. For all λ : [0, T ] → R polygonal function as in Sect. 2.1,
we have

Pk [Xk ∈ C] = E
λ
k

[
1C(Xλk )

dPk

dP
λ
k

]
= E

λ
k

[
1C(Xλk )(M

k
T )

−1
]

= E
λ
k

[
1C(Xλk ) exp

{
−k

n∑
i=1

( λi+1(ti+1)Xk(ti+1)− λi+1(ti )Xk(ti )

−
∫ ti+1

ti
[ λi+1 Xk(s)+ H(λi+1(s)) ] ds

)}]

≤ sup
γ∈C

exp

{
−k

n∑
i=1

( λi+1(ti+1)γ (ti+1)− λi+1(ti )γ (ti )

−
∫ ti+1

ti
[ λi+1 γ (s)+ H(λi+1(s)) ] ds

)}

= exp

{
−k inf

γ∈C

n−1∑
i=0

J i+1
λi+1

(γ )

}
,
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Large Deviations via Aubry–Mather Theory 803

for all λi+1 : [ti , ti+1] → R linear function, where J i+1
λi+1

(γ ) is equal to

λi+1(ti+1)γ (ti+1)− λi+1(ti )γ (ti )−
∫ ti+1

ti
[ λ′

i+1(s) γ (s)+ H(λi+1(s)) ] ds.

Then, for all C open set on D[0, T ], minimizing over the time-partition and over functions
λ1, . . . , λn , we have

limk→∞ 1
k log Pk

[
Xk ∈ C

]
≤ − sup{ti }i

supλ1
· · · supλn

infγ∈C
n−1∑
i=0

J i+1
λi+1

(γ ).

Since J i+1
λi+1

(γ ) is continuous on γ , using Lemma 3.3 (Minimax Lemma) in Appendix 2 of
[17], we can interchanged the supremum and infimum above. And, then, we obtain, for all
K compact set

lim
k→∞

1

k
log Pk

[
Xk ∈ K

]
≤ − inf

γ∈K
sup
{ti }i

I{ti }(γ ), (7)

where I{ti }(γ ) = supλ1
· · · supλn

n−1∑
i=0

J i+1
λi+1

(γ ). Define I (γ ) = sup{ti }i
I{ti }(γ ). Notice that

sup
λ1

· · · sup
λn

n−1∑
i=0

J i+1
λi+1

(γ ) = sup
λ1

J 1
λ1
(γ )+ · · · + sup

λn

J n
λn
(γ )

≥ sup
λ∈R

J 1
λ (γ )+ · · · + sup

λ∈R

J n
λ (γ ) =

n−1∑
i=0

sup
λ∈R

J i
λ(γ ).

If γ ∈ AC[0, T ], then

J i
λ(γ ) = (ti+1 − ti )

{
λ

1

ti+1 − ti

∫ ti+1

ti
γ ′(s) ds − H(λ)

}
.

Thus,

I{ti }i (γ ) ≥
n−1∑
i=0

(ti+1 − ti ) sup
λ∈R

{
λ

1

ti+1 − ti

∫ ti+1

ti
γ ′(s) ds − H(λ)

}

=
n−1∑
i=0

(ti+1 − ti ) L

(
1

ti+1 − ti

∫ ti+1

ti
γ ′(s) ds

)
.

The last equality is true, because L(v) = supλ∈R
{vλ − H(λ)}, see (6). Putting it on the

definition of I (γ ), we have

I (γ ) = sup
{ti }i

I{ti }i (γ )

≥ sup
{ti }i

n−1∑
i=0

(ti+1 − ti ) L

(
1

ti+1 − ti

∫ ti+1

ti
γ ′(s) ds

)

≥
∫ T

0
L(γ ′(s)) ds = IT (γ ), (8)

as on (2) or on (6).
Now, consider the case whereγ /∈ AC[0, T ], then there is ε > 0 such that for all δ > 0 there

is a family of intervals {(si , ti )}n
i=1 on [0, T ], with

n∑
i=1

ti − si < δ, but
n∑

i=1
γ (ti )− γ (si ) > ε.
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804 A. O. Lopes, A. Neumann

Thus, taking the time-partition of [0, T ] as t ′0 = 0 < t ′1 < · · · < t ′2n < t ′2n+1 = T , over the
points si , ti , we get

2n∑
j=1

J j
λ (γ ) = λ

2n∑
j=1

γ (t ′j )− γ (t ′j−1) − H(λ)
2n∑
j=1

t ′j − t ′j−1

= λ

n∑
i=1

γ (ti )− γ (si ) − H(λ)
n∑

i=1

ti − si

≥ λε − H(λ)δ.

Then,

I (γ ) ≥ λε − H(λ)δ,

for all δ > 0 and for all λ ∈ R. Thus, I (γ ) ≥ λε, for all λ ∈ R. Remember that ε is fixed
and we take λ → ∞. Therefore, I (γ ) = ∞, for γ /∈ AC[0, T ]. Then, I (γ ) = IT (γ ) as on
(2) or on (6).

In conclusion, we have obtained, by inequalities (7), (8) and definition of I (γ ), that

lim
k→∞

1

k
log Pk

[
Xk ∈ K

]
≤ − inf

γ∈K
IT (γ ),

where IT was defined on (2) or on (6).

2.3 Upper Bound for Closed Sets

To extend the upper bound for closed sets we need to use a standard argument, which is to
prove that the sequence of measures {Pk}k is exponentially tight, see Proposition 4.3.2 on
[20] or on Sect. 1.2 of [21]. By exponentially tight we understood that there is a sequence of
compact sets {K j } j in D[0, T ] such that

lim
k→∞

1

k
log Pk

[
Xk ∈ K j

]
≤ − j,

for all j ∈ N.
Then this section is concerned about exponential tightness. First of all, as in Sect. 4.3 on

[20] or in Sect. 10.4 on [17], we also claim that the exponential tightness is just a consequence
of the lemma below,

Lemma 4 For every ε > 0,

lim
δ↓0

lim
k→∞

1

k
log Pk

[
sup

|t−s|≤δ
|Xk(t)− Xk(s)| > ε

]
= ∞ .

Proof Firstly, notice that
{

sup
|t−s|≤δ

|γ (t)− γ (s)| > ε

}
⊂

�T δ−1�⋃
k=0

{
sup

kδ≤t<(k+1)δ
|γ (t)− γ (kδ)| > ε

4

}
.

We have here ε
4 instead of ε

3 due to the presence of jumps. Using the useful fact, for any
sequence of real numbers aN , bN , we have

lim
N→∞

1
N log(aN + bN ) = max

{
lim

N→∞
1
N log(aN ), lim

N→∞
1
N log(bN )

}
, (9)
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in order to prove this lemma, it is enough to show that

lim
δ↓0

lim
k→∞

1
k log Pk

[
sup

t0≤t≤t0+δ
|Xk(t)− Xk(t0)| > ε

]
= ∞ , (10)

for every ε > 0 and for all t0 ≥ 0. Let be Mk
t the martingale defined in (3) with the function

λ constant, using the expression (4) for Mk
t and the fact that λ is constant, we have that

Mk
t = exp

{
k
[
cλ (Xk(t)− Xk(0)) − t H(cλ)

]}

is a positive martingale equal to 1 at time 0. The constant c above will be chosen a posteriori
as enough large. In order to obtain (10) is sufficient to get the limits

lim
δ↓0

lim
k→∞

1
k log Pk

[
sup

t0≤t≤t0+δ

∣∣∣ 1
k log

(
Mk

t

Mk
t0

)∣∣∣ > cλ ε
]

= −∞ (11)

and

lim
δ↓0

lim
k→∞

1
k log Pk

[
sup

t0≤t≤t0+δ

∣∣∣(t − t0) H(cλ)
∣∣∣ > cλε

]
= −∞ . (12)

The second probability is considered for a deterministic set, and by boundedness, we conclude
that for δ enough small the probability in (12) vanishes.

On the other hand, to prove (11), we observe that we can neglect the absolute value, since

Pk

[
sup

t0≤t≤t0+δ

∣∣∣ 1
k log

(
Mk

t

Mk
t0

)∣∣∣ > cλ ε
]

≤ Pk

[
sup

t0≤t≤t0+δ
1
k log

(
Mk

t

Mk
t0

)
> cλ ε

]

+ Pk

[
sup

t0≤t≤t0+δ
1
k log

(
Mk

t

Mk
t0

)
< −cλ ε

]
(13)

and using again (9). Because {Mk
t /Mk

t0 ; t ≥ t0} is a mean one positive martingale, we can
apply Doob’s Inequality, which yields

Pk

[
sup

t0≤t≤t0+δ
1
k log

(
Mk

t

Mk
t0

)
> cλ ε

]
= Pk

[
sup

t0≤t≤t0+δ

(
Mk

t

Mk
t0

)
> ecλ ε k

]
≤ 1

ecλεk
.

Passing the log function and dividing by k, we get

lim
δ↓0

lim
k→∞

1
k log Pk

[
sup

t0≤t≤t0+δ
1
k log

(
Mk

t

Mk
t0

)
> λε

]
≤ −cλ ε, (14)

for all c > 0. To treat of the second term on (13), we just need to observe that {Mk
t0/Mk

t ; t ≥
t0} is also a martingale and rewriting

Pk

[
sup

t0≤t≤t0+δ
1
k log

(
Mk

t

Mk
t0

)
< −cλ ε

]

as

Pk

[
sup

t0≤t≤t0+δ
1
k log

(Mk
t0

Mk
t

)
> cλ ε

]
.

Then, we get the same bound for this probability as in (14), it finishes the proof. 
�
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2.4 Lower Bound

Let γ : [0, T ] → S
1 be a function such that γ (0) = x0 and for a δ > 0, in the following

B∞(γ, δ) =
{

f : [0, T ] → S
1 : sup

0≤t≤T
| f (t)− γ (t)| < δ

}
.

Let O be a open set of D[0, T ]. For all γ ∈ O, our goal is prove that

lim
k→∞

1

k
log Pk[Xk ∈ O] ≥ −IT (γ ). (15)

For that, we can suppose γ ∈ AC[0, T ], because if γ /∈ AC[0, T ], then IT (γ ) = in f t y and
(15) is trivial. Since γ ∈ O, there is a δ > 0 such that

Pk

[
Xk ∈ O

]
≥ Pk

[
Xk ∈ B∞(γ, δ)

]
.

We need consider the measure P
λ
k with λ : [0, T ] → R, the function λ(s) = λγ (s) =

log
(

1
2

(
γ ′(s)+√(γ ′(s))2 + 4

))
, which we obtain in the Lemma 3, as a function that attains

the supremum supλ[λ γ ′(s)− H(λ)] for each s. Thus,

Pk

[
Xk ∈ B∞(γ, δ)

]
= E

λ
k

[
1B∞(γ,δ)(X

λ
k )

dPk

dP
λ
k

]
= E

λ
k

[
1B∞(γ,δ)(X

λ
k )(M

k
T )

−1
]

= E
λ
k

[
1B∞(γ,δ)(X

λ
k ) exp

{
k

[
λ(T )Xk(T )− λ(0)Xk(0)

−
∫ T

0
[ λ′(s) Xk(s)+ H(λ(s)) ] ds

]}]
.

The last equality follows from Remark 2. Define the measure P
λ,γ

k,δ as

E
λ,γ

k,δ

[
f (Xλk )

]
=

E
λ
k

[
1B∞(γ,δ)(X

λ
k ) f (Xλk )

]

P
λ
k [Xλk ∈ B∞(γ, δ)]

, (16)

for all bounded function f : D[0, T ] → R. Then,

Pk
[
Xk ∈ B∞(γ, δ)

] =E
λ,γ

k,δ

[
exp

{
−k

[
λ(T ) Xλk (T )−λ(0) Xλk (0))−

∫ T

0
λ′(s) Xk(s) ds

]}]

· ek
∫ T

0 H(λ(s)) ds
P
λ
k

[
Xλk ∈ B∞(γ, δ)

]
.

Then, using Jensen’s inequality

1

k
log Pk

[
Xk ∈ O

]
≥ − E

λ,γ

k,δ

[
λ(T ) Xλk (T )− λ(0) Xλk (0)) −

∫ T

0
λ′(s) Xk(s) ds

]

+
∫ T

0
H(λ(s)) ds + 1

k
log P

λ
k

[
Xλk ∈ B∞(γ, δ)

]

≥ − C(λ)Eλ,γk,δ

[
|Xλk (T )− γ (T )| + |Xλk (0))− γ (0)| +

∫ T

0
|Xk(s)− γ (s)| ds

]

−
(
λ(T ) γ (T )− λ(0) γ (0)) −

∫ T

0
[λ′(s) γ (s)+ H(λ(s))] ds

)

+1

k
log P

λ
k

[
Xλk ∈ B∞(γ, δ)

]
.
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Since γ : [0, T ] → R is an absolutely continuous function, we can write

λ(T ) γ (T )− λ(0) γ (0)) −
∫ T

0
[λ′(s) γ (s)+ H(λ(s))] ds =

∫ T

0
[λ(s) γ ′(s)+ H(λ(s))] ds.

Since λ(s) = λγ (s) = log
(

1
2

(
γ ′(s)+√

(γ ′(s))2 + 4
))

, by Lemma 3, we obtain

∫ T

0
[λ(s) γ ′(s)+ H(λ(s))] ds =

∫ T

0
sup
λ

[λ γ ′(s)− H(λ)] ds =
∫ T

0
L(γ ′(s)) ds,

and, by (6), the last expression is equal to IT (γ ). Thus,

1

k
log Pk

[
Xk ∈ O

]
≥ −IT ( γ )+ 1

k
log

3

4
− C(λ)δ. (17)

The last inequality follows from the above and the Lemmas 5 and 6 below.

Lemma 5 With respect the measure defined on (16), there exists a constant C > 0 such that

−E
λ,γ

k,δ

[
|Xλk (T )− γ (T )| + |Xλk (0))− γ (0)| +

∫ T

0
|Xk(s)− γ (s)| ds

]
≥ −Cδ.

Lemma 6 There is a k0 = k0(γ, δ) such that P
λ
k [Xλk ∈ B∞(γ, δ)] > 3

4 , for all k ≥ k0.

The proofs of Lemmas 5 and 6 are in the end of this subsection.

Continuing with the analysis of (17), we mention that, since, for all γ ∈ O, there exists
δ = δ(γ ), such that B∞(γ, δ) ⊂ O, then for all ε < δ, we have

lim
k→∞

1

k
log Pk

[
Xk ∈ O

]
≥ −IT (γ )− λε.

Thus, for all γ ∈ O, we have (15). Therefore,

lim
k→∞

1

k
log Pk

[
Xk ∈ O

]
≥ − inf

γ∈O
IT (γ ).

We present, now, the proofs of the Lemmas 5 and 6.

Proof of Lemma 5 Recalling the definition of the probability measure P
λ,γ

k,δ , we can write

−E
λ,γ

k,δ

[
|Xλk (T )− γ (T )| + |Xλk (0))− γ (0)| +

∫ T

0
|Xk(s)− γ (s)| ds

]

= −
E
λ
k

[
1B∞(γ,δ)

(
|Xλk (T )− γ (T )| + |Xλk (0))− γ (0)| +∫ T

0 |Xk(s)− γ (s)| ds
)]

P
λ
k [Xλk ∈ B∞(γ, δ)]

≥ −(2 + T ) δ
P
λ
k

[
Xλk ∈ B∞(γ, δ)

]

P
λ
k [Xλk ∈ B∞(γ, δ)]

= − (2 + T ) δ.


�
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808 A. O. Lopes, A. Neumann

Proof of Lemma 6 Consider the martingale

Mk
t = Xλk (t)− Xλk (0)−

∫ t

0
kLλk Xλk (s) ds

= Xλk (t)− �kx0�
k −

∫ t

0

(
eλ(s) − e−λ(s)) ds,

remember that Pk has initial measure δxk (x0), where xk(x0) = �kx0�
k . Notice that, by the

choose of λ(s) as log
(

1
2

(
γ ′(s)+√

(γ ′(s))2 + 4
))

and hypothesis over γ , we have that

∫ t

0

(
eλ(s) − e−λ(s)) ds =

∫ t

0
γ ′(s) ds = γ (t)− γ (0) = γ (t)− x0.

Then, Xλk (t) − γ (t) = Mk
t + rk , where rk = �kx0�

k − x0. Using the Doob’s martingale
inequality,

P
λ
k

[
sup

0≤t≤T
|Xλk (t)− γ (t)| > δ

]
≤ P

λ
k

[
sup

0≤t≤T
|Mk

t | > δ/2

]
+ P

λ
k

[
|rk | > δ/2

]

≤ 4

δ2 E
λ
k

[(
Mk

T

)2]+ 1

8
, (18)

for k large enough. Using the fact that

E
λ
k

[(
Mk

T

)2] = E
λ
k

[ ∫ T

0
[ kLλk (X

λ
k (s))

2 − 2Xλk (s)kLλk (X
λ
k (s)) ] ds

]
.

And, making same more calculations, we get that the expectation above is bounded from
above by

E
λ
k

[
k
∫ T

0
eλ(s)

(
(Xλk (s)+ 1

k )− Xλk (s))
)2

ds

]
+ E

λ
k

[
k
∫ T

0
e−λ(s)((Xλk (s)− 1

k )− (Xλk (s))
)2

ds

]

=
∫ T

0

eλ(s) + e−λ(s)

k
ds ≤ C(λ, T )

1

k
.

Then there is k0, such that, P
λ
k [sup0≤t≤T |Xλk (t)− γ (t)| > δ] < 1/4, for all k > k0.


�
This is the end of the first part of the paper where we investigate the deviation function

on the Skorohod space when k → ∞ for the trajectories of the unperturbed system.

3 Disturbing the System by a Potential V

Now, we introduce a fixed differentiable C2 function V : S
1 → R.We want to analyse large

deviation properties associated to the disturbed system by the potential V . Several of the
properties we consider just assume that V is Lipschitz, but we need some more regularity
for Aubry–Mather theory. Given V : S

1 → R we denote by Vk the restriction of V to �k .
It is known that if kLk is a k by k line sum zero matrix with strictly negative elements in
the diagonal and non-negative elements outside the diagonal, then for any t > 0, we have
that et kLk is stochastic. The infinitesimal generator kLk generates a continuous time Markov
Chain with values on �k = {0, 1/k, 2/k, . . . , k−1

k } ⊂ S
1. We are going to disturb this
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Large Deviations via Aubry–Mather Theory 809

stochastic semigroup by a potential k Vk : �k → R and we will derive another continuous
Markov Chain (see [4,19]) with values on �k . This will be described below. We will identify
the function k Vk with the k by k diagonal matrix, also denoted by k Vk , with elements
k Vk( j/k), j = 0, 1, 2 . . . , k − 1, in the diagonal.

The continuous time Perron’s Theorem (see [23, p. 111]) claims the following: given the
matrix k Lk as above and the k Vk diagonal matrix, then there exists

(a) a unique positive function uVk = uk : {0, 1/k, 2/k, . . . , (k − 1)/k} → R,
(b) a unique probability vector μVk = μk over the set {0, 1/k, 2/k, . . . , (k − 1)/k}, such

that
k∑

j=1

u j
k μ

j
k = 1,

where uk = (u1
k, . . . , uk

k), μk = (μ1
k, . . . , μ

k
k)

(c) a real value λ(Vk) = λk ,

such that

(i) for any v ∈ R
n , if we denote Pt

k,V = et (k Lk+k Vk ), then

lim
t→∞ e−tλ(k)Pt

k,V (v) =
k∑

j=1

v j μ
j
k u j

k ,

(ii) for any positive s

e−sλ(k)Ps
k,V (uk) = uk .

From (ii) follows that

(k Lk + k Vk)(uk) = λ(k)uk .

The semigroup et (k Lk+k Vk−λ(k)) defines a continuous time Markov chain with values on
�k , where the vector πk,V = (π1

k,V , . . . , π
k
k,V ), such that π j

k,V = u j
k μ

j
k , j = 1, 2, . . . , k,

is stationary. Notice that πk = πk,V , when V = 0. Remember that the Vk was obtained by
discretization of the initial V : S

1 → R.

Example 7 When k = 4 and V4 is defined by the values V j
4 , j = 1, 2, 3, 4, then, we have

first to find the left eigenvector uV4 for the eigenvalue λ(V4), that is to solve the equation

uV4 (4L4 + 4V4) = uV4 4

⎛
⎜⎜⎝

−2 + V 1
4 1 0 1

1 −2 + V 2
4 1 0

0 1 −2 + V 3
4 1

1 0 1 −2 + V 4
4

⎞
⎟⎟⎠ = λ(V4) uV4 .

SupposeμV4 is the right normalized eigenvector. In this way we can get by the last theorem
a stationary vector π4,V for stationary Gibbs probability associated to the potential V4 We
point out that by numeric methods one can get good approximations of the solution of the
above problem.

From the end of Sect. 5 in [23], we have that

λk = sup
ψ∈L2, ||ψ ||2=1

{∫
�k

ψ(x) [(kLk + kVk)(ψ) ](x) dπk(x)

}
,
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810 A. O. Lopes, A. Neumann

where ψ : �k → R,

||ψ ||2 =
√√√√1

k

k−1∑
j=0

ψ(
j
k )

2,

and πk is uniform in �k . Notice that for any ψ , we have

∫
�k

ψ(x) (kLk)(ψ)(x) dπk(x) = −
k−1∑
j=0

(ψ(
j+1
k )− ψ(

j
k ))

2.

Moreover,

∫
�k

ψ(x) [(kLk +k Vk)(ψ) ](x) dπk(x)=
k−1∑
j=0

[
−
(
ψ
(

j+1
k

)
−ψ

(
j
k

))2 + ψ
(

j
k

)2
V
(

j
k

)]
.

In this way

1
k λk = sup

ψ∈L2, ||ψ ||2=1

{
1

k

∫
�k

ψ(x) [(kLk + kVk)(ψ) ](x) dπk(x)

}

= sup
ψ∈L2, ||ψ ||2=1

⎧⎨
⎩−1

k

k−1∑
j=0

(ψ(
j+1
k )− ψ(

j
k ))

2 + 1

k

k−1∑
j=0

ψ(
j
k )

2Vk(
j
k )

⎫⎬
⎭ .

Observe that for any ψ ∈ L
2, with ||ψ ||2 = 1, the expression inside the braces is bounded

from above by

1

k

k−1∑
j=0

ψ(
j
k )

2Vk(
j
k ) ≤ sup

x∈S1
V (x).

Notice that for each k fixed, the vector ψk = ψ that attains the maximal value λk is such that

ψ i
k =

√
ui

k,V , with i ∈ {0, . . . , (k − 1)},

sup
ψ∈L2, ||ψ ||2=1

{1

k

∫
�k

ψ(x) [(kLk + kVk)(ψ) ](x) dπk(x)
}

= −
∫
�k

ψk(x) [(kLk + k Vk)(ψk) ](x) dπk(x) = 1
k λk .

When k is large the above ψk have the tendency to become more and more sharp close to the
maximum of Vk . Then, we have that

sup
ψ∈L2, ||ψ ||2=1

{
1
k

∫
�k

ψ(x) [(kLk + kVk)(ψ) ](x) dπk(x)
}

converges to

sup
ψ∈L2(dx), ||ψ ||2=1

{ ∫
S1
ψ(x) V (x) ψ(x) dx

}
= sup{V (x) | x ∈ S

1 },

when k increases to ∞.
Summarizing, we get the proposition below:
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Proposition 8

lim
k→∞

1
k λk = sup

ψ∈L2(dx), ||ψ ||2=1

{ ∫
S1
ψ(x) V (x) ψ(x) dx

}

= sup{V (x) | x ∈ S
1 } = − inf

μ

{ ∫
L(x, v) dμ(x, v)

}
,

where the last infimum is taken over all measures μ such that μ is invariant probability for
the Euler-Lagrange flow of L(x, v).

The last equality follows from Aubry–Mather theory (see [8,10]). Notice that this
Lagrangian is convex and superlinear.

3.1 Lax–Oleinik Semigroup

By Feynman–Kac, see [17], we have that the semigroup associated to the infinitesimal gen-
erator k Lk + kVk has the following expression

Pt
k,V ( f )(x) = Ek

[
e
∫ t

0 kVk (Xk (s)) ds f (Xk(t))
]
,

for all bounded mensurable function f : S
1 → R and all t ≥ 0.

Now, consider

PT
k,V (e

ku)(x) = Ek
[
ek [∫ T

0 Vk (Xk (s)) ds + u(Xk (T )) ]],
for a fixed Lipschitz function u : S

1 → R. Now, we want to use the results of Sect. 2 together
with the Varadhan’s Lemma, which is

Lemma 9 (Varadhan’s Lemma (see [9])) Let E be a regular topological space; let (Zt )t>0

be a family of random variables taking values in E; let με be the law (probability measure)
of Zt . Suppose that {με}ε>0 satisfies the large deviation principle with good rate function
I : E → [0,+∞]. Let φ : E → R be any continuous function. Suppose that at least one of
the following two conditions holds true: either the tail condition

lim
M→∞ lim

ε→0
ε log E

[
exp

(
φ(Zε)/ε

)
1
(
φ(Zε) ≥ M

)] = −∞,

where 1(A) denotes the indicator function of the event A; or, for some γ > 1, the moment
condition

lim
ε→0

ε log E
[

exp
(
γφ(Zε)/ε

)]
< +∞.

Then,

lim
ε→0

ε log E
[

exp
(
φ(Zε)/ε

)] = sup
x∈E

(
φ(x)− I (x)

)
.

We will consider here the above ε as 1
k . By Theorem 1 and Varadhan’s Lemma, for each

Lipschitz function u : S
1 → R, we have

lim
k→∞

1
k log PT

k,V (e
ku)(x) = lim

k→∞
1
k log Ek

[
ek [∫ T

0 Vk (Xk (s)) ds + u(Xk (T )) ]]

= sup
γ∈D[0,T ]

{ ∫ T

0
V (γ (s)) ds + u(γ (T ))− IT (γ )

}
(19)
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When γ /∈ AC[0, T ], IT (γ ) = ∞ and if γ ∈ AC[0, T ], IT (γ ) = ∫ T
0 L(γ ′(s)) ds. Thus,

lim
k→∞

1
k log PT

k,V (e
ku)(x) = sup

γ∈AC[0,T ]

{
u(γ (T )) −

∫ T

0

[
L(γ ′(s))− V (γ (s))

]
ds

}
.

For a fixed T > 0, define the operator TT acting on Lipschitz functions u : S
1 → R by

the expression TT (u)(x) = limk→∞ 1
k log PT

k,V (e
ku)(x), then, we just show that

TT (u)(x) = sup
γ∈AC[0,T ]

{
u(γ (T )) −

∫ T

0

[
L(γ ′(s))− V (γ (s))

]
ds

}
.

This family of operators parametrized by T > 0 and acting on function u : S
1 → R is called

the Lax–Oleinik semigroup.

3.2 The Aubry–Mather Theory

We will use now Aubry–Mather theory (see [8,10]) to obtain a fixed point u for such operator.
This will be necessary later in next section. We will elaborate on that. Consider Mather
measures, see [8,10], on the circle S

1 for the Lagrangian

LV (x, v) = −V (x)+ v log((v +
√
v2 + 4)/2)−

√
v2 + 4 + 2, (20)

x ∈ S
1, v ∈ Tx S

1, when V : S
1 → R is a C2 function. This will be Delta Dirac on any

of the points of S
1, where V has maximum (or convex combinations of them). In order to

avoid technical problems we will assume that this point x0 where the maximum is attained
is unique. This is generic among C2 potentials V .

This Lagrangian appeared in a natural way, when we analysed the asymptotic deviation
depending on k → ∞ for the discrete state space continuous time Markov Chains indexed
by k, {Xk(t), t ≥ 0}, described above in Sect. 2. We denote by H(x, p) the associated
Hamiltonian obtained via Legendre transform.

Suppose u+ is a fixed point for the positive Lax–Oleinik semigroup and u− is a fixed point
for the negative Lax–Oleinik semigroup (see next section for precise definitions). We will
show that function I V = u+ + u− defined on S

1 is the deviation function for πk,V , when
k → ∞.

Fixed functions u for the Lax–Oleinik operator are weak KAM solutions of the Hamilton-
Jacobi equation for the corresponding Hamiltonian H (see [11, Sects. 4, 7 ]).

The so called critical value in Aubry–Mather theory is

c(L) = − inf
μ

∫
LV (x, v)dμ(x, v) = sup{V (x) | x ∈ S

1},
where the infimum above is taken over all measures μ such that μ is invariant probability for
the Euler–Lagrange flow LV . Notice that

lim
k→∞

1

k
λk = c(L). (21)

This will play an important role in what follows. A Mather measure is any μ which attains
the above infimum value. This minimizing probability is defined on the tangent bundle of S

1

but as it is a graph (see [8]) it can be seen as a probability on S
1. This will be our point of

view.
In the case that the potential V has a unique point x0 of maximum on S

1, we have that
c(L) = V (x0). The Mather measure in this case is a Delta Dirac on the point x0.
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Suppose there exist two points x1 and x2 in S
1, where the supremum of the potential V

is attained. For the above defined lagrangian L the static points are (x1, 0) and (x2, 0) (see
[8,11] for definitions and general references on Mather Theory). This case requires a more
complex analysis, because it requires some hypothesis in order to know which of the points
x0 or x1 the larger part of the mass of πk,V will select. We will not analyse such problem here.
In this case the critical value is c(L) = − LV (x1, 0) = V (x1) = − LV (x2, 0) = V (x2).

In appendix of [1] and also in [2] the N. Anantharaman shows, for t fixed, an interest-
ing result relating the time re-scaling of the Brownian motion B(εt), k → ∞, and Large
Deviations. The large deviation is obtained via Aubry–Mather theory. The convex part of
the Mechanical Lagrangian in this case is 1

2 |v|2. When there are two points x1 and x2 of
maximum for V the same problem as we mention before happens in this other setting: when
ε → 0, which is the selected Mather measure? In this setting partial answers to this problem
is obtained in [3].

In the present paper we want to obtain similar results for t fixed, but for the re-scaled
semigroup Pk(ks) = eskLk , s ≥ 0, obtained from the speed up by k the time of the continuous
time symmetric random walk (with the compactness assumption) as described above.

In other words we are considering that the unitary circle (the interval [0, 1)) is
being approximated by a discretization by k equally spaced points, namely, �k =
{0, 1/k, 2/k, . . . , (k − 1)/k}.

Let Xt,x be the set of absolutely continuous paths γ : [0, t) → [0, 1], such that γ (0) = x .
Consider the positive Lax–Oleinik operator acting on continuous function u on the circle:

for all t > 0

(T +
t (u)) (x) = sup

γ∈Xt,x

{
u(γ (t))−

∫ t

0

[
(γ̇ (s) log

(
(γ̇ (s)+√

γ̇ 2(s)+ 4

2

)

−
√
γ̇ 2(s)+ 4 + 2 − V (γ (s))

]
ds

}
.

It is well known (see [8,10]) that there exists a Lipschitz function u+ and a constant c = c(L)
such that for all t > 0

T +
t (u+) = u+ + c t.

We say that u+ is a (+)-solution of the Lax–Oleinik equation. This function u+ is not always
unique. If we add a constant to u+ get another fixed point. To say that the fixed point u+ is
unique means to say that is unique up to an additive constant. If there exist just one Mather
probability then u+ is unique (in this sense). In the case when there exist two points x1 and
x2 in S

1 where the supremum of the potential V is attained the fixed point u+ may not be
unique.

Now we define, the negative Lax–Oleinik operator: for all t > 0 and for all continuous
function u on the circle, we have

(T −
t (u)) (x) = sup

γ∈Xt,x

{
u(γ (0))+

∫ t

0

[
(γ̇ (s) log

(
(γ̇ (s)+√

γ̇ 2(s)+ 4

2

)

−
√
γ̇ 2(s)+ 4 + 2 − V (γ (s))

]
ds

}
.

Note on this new definition the difference from + to −. The space of curves we consider now
is also different. It is also known that there exists a Lipschitz function u− such that for the
same constant c as above, we have for all t > 0
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814 A. O. Lopes, A. Neumann

T −
t (u−) = u− − c t.

We say that u− is a (−)-solution of the Lax–Oleinik equation.
The u+ solution will help to estimate the asymptotic of the left eigenvalue and the u−

solution will help to estimate the asymptotic of the right eigenvalue of k Lk + kVk .
We point out that for t fixed the above operator is a weak contraction. Via the discounted

method is possible to approximate the scheme used to obtain u by a procedure which takes
advantage of another transformation which is a contraction in a complete metric space (see
[12]). This is more practical for numerical applications of the theory. Another approximation
scheme is given by the entropy penalized method (see [13,14]).

For k ∈ N fixed the operator k Lk is symmetric when acting on L2 functions defined on
the set �k ⊂ S

1. The stationary probability of the associated Markov Chain is the uniform
measure πk (each point has mass 1/k). When k goes to infinity πk converges to the Lebesgue
measure on S

1. When the system is disturbed by k Vk we get new stationary probabilities
πk,V with support on �k and we want to use results of Aubry–Mather theory to estimate the
large deviation properties of this family of probabilities on S

1, when k → ∞.

As we saw before, any weak limit of subsequence of probabilities πk,V on S
1 = [0, 1) is

supported in the points which attains the maximal value of V : [0, 1) → R. Notice that, the
supremum of

sup
ψ∈L2(d x), ||ψ ||2=1

{∫
V (x) (ψ(x))2 d x

}
= sup{V (x) | x ∈ S

1 },

is not attained on L
2(d x). Considering a more general problem on the set M(S1), the set of

probabilities on S
1, we have

sup
ν∈M(S1)

{∫
V (x) dν(x)

}
= sup{V (x) | x ∈ S

1 },

and the supremum is attained, for example, in a delta Dirac on a point x0, where the supremum
of V is attained. Any measure ν which realizes the supremum on M(S1) has support in the
set of points which attains the maximal value of V . In this way the lagrangian L described
before appears in a natural way.

3.3 Large Deviations for the Stationary Measures πk,V .

We start this subsection with same definitions. For each k and x ∈ S
1 we denote xk(x) the

closest element to x on the left of x in the set �k , in fact xk(x) = �kx�
k . Given k and a function

ϕk defined on �k , we consider the extension gk of ϕk to S
1. This is a piecewise constant

function such that in the interval [ j/k, ( j + 1)/k) is equal to ϕk( j/k). Finally, we call hk

the continuous function obtained from gk in the following way: hk is equal gk outside the
intervals of the form [ j

k − 1
k2 ,

j+1
k − 1

k2 ], j = 1, 2, . . . , k, and, interpolates linearly gk on
these small intervals.

When we apply the above to ϕk = uk the resulting hk is denoted by zk = zV
k , and when

we do the same for ϕk = μk , the resulting hk is called pV
μk

. In order to control the asymptotic

with k of πk,V = uk μk we have to control the asymptotic of zV
k . We claim that (1/k) log zk

is an equicontinuous family of transformations, where zk is the “extended continuous” to
[0, 1]. And, we consider now limits of a convergent subsequences of zk = zV

k .

Lemma 10 Suppose that u is a limit point of a convergent subsequence (1/k j ) log zk j ,
j → ∞, of (1/k) log zk . Then, u is a (+)-solution of the Lax–Oleinik equation.
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Large Deviations via Aubry–Mather Theory 815

Proof We assume that zk j ∼ eu k j . In more precise terms, for any x , we have zk(xk(x)) ∼
eu(x) k . Therefore, for t positive and x fixed, from (21), we have

c(L) t + u(x) = lim
j→∞

1

k j
log(eλ(k j ) t zk j (x)).

By definitions in the begin of this subsection, we have that the expression above becomes

lim
j→∞

1

k j
log

[
(Pt

k j ,V zk j )(xk j (x))
]
.

Using again that zk(xk(x)) ∼ eu(x) k , we have

lim
j→∞

1

k j
log

[
(Pt

k j ,V ek j u)(xk j (x))
] = (T +

t (u)) (x).

Therefore, u is a (+)-solution of the Lax–Oleinik equation above. 
�
We point out that from the classical Aubry–Mather theory, it follows that the fixed point u

for the Lax–Oleinik Operator is unique up to an additive constant in the case the point of max-
imum for V is unique. It follows in this case that any convergent subsequence (1/k j ) log zV

k j
,

j → ∞, will converge to a unique u+. We point out that the normalization we assume forμk

and uk (which determine zk) will produce a u+ without the ambiguity of an additive constant.
In the general case (more than one point of maximum for the potential V ) the problem of

convergence of (1/k) log zV
k , k → ∞, is complex and is related to what is called selection

of subaction. This kind of problem in other settings is analysed in [3,5].
One can show in a similar way that:

Lemma 11 Suppose that u∗ is a limit point of a convergent subsequence (1/k j ) log pV
k j

,

j → ∞, of (1/k) log pV
k . Then, u∗ is a (−)-solution of the Lax–Oleinik equation.

In the case the point of maximum for V is unique one can show that any convergent
subsequence (1/k j ) log pV

k j
, j → ∞, will converge to a unique u∗.

Now, we will show that (1/k) log zV
k , k ∈ N, is a equicontinuous family.

Consider now any points x0, x1 ∈ [0, 1), a fixed positive t ∈ R, then define Xt,x0,x1 =
{γ (s) ∈ AC[0, t] | γ (0) = x0, γ (t) = x1}.

For any x0, x1 ∈ [0, 1) and a fixed positive t ∈ R consider the continuous functional
φt,x0,x1,V : D[0, t] → R, given by

φt,x0,x1,V (γ ) =
∫ t

0
(V (γ (s))− c(L)) ds =

∫ t

0
V (γ (s)) ds − c(L) t, (22)

if γ ∈ Xt,x0,x1 and φt,x0,x1,V (γ ) = −∞, otherwise. Recall that xk(a) = �ak�
k , for a ∈ [0, 1].

For a fixed k, when we write φt,xk (x0),xk (x1),V (γ ) we mean

φt,xk (x0),xk (x1),V (γ ) =
∫ t

0
(V (xk(γ (s)))− c(L)) ds,

if γ ∈ Xt,x0,x1 and φt,x0,x1,V (γ ) = −∞, otherwise. Denote by


t (x0, x1) = inf

{∫ t

0
L(γ (s), γ ′(s)) ds + c(L) t | γ ∈ Xt,x0,x1

}
.

From [8, Sects. 3, 4] it is known that 
t (x0, x1) is Lipschitz in S
1 × S

1.
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816 A. O. Lopes, A. Neumann

Given x and k, we denote by i(x, k) the natural number such that xk(x) = i(x,k)
k . An

important piece of information in our reasoning is

lim
k→∞

1
k log(et ( k Lk+k Vk − λ(k)))i(x0,k) i(x1,k)

= lim
k→∞

1

k
log E

k
Xk (0)= i(x0,k)

k ,Xk (t)= i(x1,k)
k

[ek φt,xk (x0),xk (x1),V (.)]

= sup
γ∈Xt,x0,x1

{φt,x0,x1,V (γ )− It (γ )}.

The last equality follows from Varadhan’s Integral Lemma and the definition of functional
φt,x0,x1,V , see (22).

Using the definition of φt,x0,x1,V and of It , see (2), we get

sup
γ∈Xt,x0 ,x1

{φt,x0,x1,V (γ )− It (γ )} = sup
γ∈Xt,x0 ,x1

{∫ t

0
V (γ (s))ds − c(L) t

−
∫ t

0

[
γ̇ (s) log

(
γ̇ (s)+√

γ̇ 2(s)+ 4

2

)
−
√
γ̇ 2(s)+ 4 + 2

]
ds

}

= sup
γ∈Xt,x0 ,x1

{
−
∫ t

0
LV (γ (s), γ ′(s)) ds − c(L) t

}

= − inf
γ∈Xt,x0 ,x1

{∫ t

0
LV (γ (s), γ ′(s)) ds + c(L) t

}
= −
t (x0, x1).

The convergence is uniform on k, for any x0, x1. And, the definition of LV is on (20).

Lemma 12 The family 1
k log zV

k is equicontinuous in k ∈ N. Therefore, there exists a subse-

quence of 1
k log zV

k converging to a certain Lipschitz function u. In the case the maximum of
V is attained in a unique point, then u is unique up to an additive constant.

Proof Given x and y, and a positive fixed t we have

1
k log zk(xk(x))− 1

k log zk(xk(y)) = 1
k log

k−1∑
j=0

(et ( k Lk+kVk ))i(x,k) j z j

k−1∑
j=0

(et ( k Lk+kVk ))i(y,k) j z j

≤ 1
k log

(
sup

j={0,1,2,...k−1}

{
(et ( k Lk+kVk ))i(x,k) j

(et ( k Lk+kVk ))i(y,k) j

})

For each k the above supremum is attained at a certain jk . Consider a convergent subse-
quence jk

k to a certain z, where k → ∞. That is, there exists z such that i(z, k) = jk for all
k.

Therefore, for each k and t fixed

1
k log zk(xk(x))− 1

k log zk(xk(y)) ≤ 1
k log

(et ( k Lk+kVk ))i(x,k) jk

(et ( k Lk+kVk ))i(y,k) jk

= 1
k log

(et ( k Lk+kVk ))i(x,k) i(z,k)

(et ( k Lk+kVk ))i(y,k) i(z,k)
.
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Taking k large, we have, for t fixed that

1
k log zk(x)− 1

k log zk(y) ≤ 
t (y, z)−
t (x, z).

The Peierls barrier is defined as

h(y, x) = lim
t→∞


t (y, x).

Taking a subsequence tr → ∞ such h(y, z) = limr→∞
tr (x, z), one can easily shows that
for large k

1
k log zk(x)− 1

k log zk(y) ≤ h(y, z)− h(x, z).

The Peierls barrier satisfies h(y, z) − h(x, z) ≤ 
(y, x) ≤ A |x − y|, where A is constant
and
 is the Mañe potential (see [8, 3–7.1, Item 1]). Therefore, the family is equicontinuous.
For each k fixed there is always a value zk(x) above 1 and one below 1.

The conclusion is that there exists a subsequence of 1
k log zk converging to a certain u.

The uniqueness of the limit follows from the uniqueness of u

�

A similar result is true for the family 1
k log pV

μk
, remember that pV

μk
is obtained through

of μk . Taking a convergent subsequence, we denote by u∗ the limit. This subsequence can
be considered as a subsequence of the one we already got convergence for 1

k log zV
k . In this

case we got an u = u : S
1 → R and a u∗ : S

1 → R, which are limits of the corresponding
subsequences.

Now we want to analyse large deviations of the measure πk,V .

Theorem 13 A large deviation principle for the sequence of measures {πk,V }k is true and
the deviation rate function I V is I V (x) = u(x) + u∗(x). In other words, given an interval
F = [c, d],

lim
k→∞

1

k
logπk,V [ F ] = − inf{I (x) | x ∈ F}.

Proof Suppose the maximum of V is unique. Then, we get zk(xk(x)) ∼ eu+(x) k and
pV
μk
(xk(x)) ∼ eu−(x) k What is the explicit expression for I V ? Remember that u+ satis-

fies T +
t (u+) = u+ + c t and u− satisfies T +

t (u−) = u− + c t . Here, u is one of the u+
and u∗ is one of the u−. As we said before they were determined by the normalization. The
functions u+ and u− are weak KAM solutions.

We denote I V (x) = u(x) + u∗(x). The function I V is continuous (not necessarily dif-
ferentiable in all S

1) and well defined. Notice that πk,V ( j/k) = (zV
k ) j (pV

μk
) j . We have to

estimate

πk,V [ F ] =
∑

j/k∈F

pmuk ( j/k)zk( j/k) ∼
∑

j/k∈F

ek(u−(xk ( j/k))+u+(xk ( j/k)).

Then, from Laplace method it follows that I V (x) is the deviation function. 
�
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818 A. O. Lopes, A. Neumann

4 Entropy of V

4.1 Review of the Basic Properties of the Entropy for Continuous Time Gibbs States

In [19] it is consider the Thermodynamic Formalism for continuous time Markov Chains
taking values in the Bernoulli space. The authors consider a certain a priori potential

A : {1, 2, . . . , k}N → R

and an associated discrete Ruelle operator LA.
Via the infinitesimal generator L = LA − I is defined an a priori probability over the

Skorohod space
In [19] it is consider a potential V : {1, 2, . . . , k}N → R and the continuous time Gibbs

state associated to V . This generalizes what is know for the discrete time setting of Thermo-
dynamic Formalism (see [22]). In this formalism the properties of the Ruelle operator LA are
used to assure the existence of eigenfunctions, eigenprobabilities, etc... The eigenfunction
is used to normalize the continuous time semigroup operator in order to get an stochastic
semigroup (and a new continuous time Markov chain which is called Gibbs state for V ).
The main technical difficulties arise from the fact that the state space of this continuous time
Markov Chain is not finite (not even countable). [16] is a nice reference for the general setting
of Large Deviations in continuous time.

By the other hand, in [4] the authors considered continuous time Gibbs states in a much
more simple situation where the state space is finite. They consider an infinitesimal generator
which is a k by k matrix L and a potential V of the form V : {1, 2, . . . , k} → R. This is more
close to the setting we consider here with k fixed.

In the present setting, and according to the notation of last section, the semigroup
et (k Lk+k Vk−λ(k)), t > 0, defines what we call the continuous time Markov chain associated
to k Vk . The vector πk,V = (π1

k,V , . . . , π
k
k,V ), such that π j

k,V = u j
k μ

j
k , j = 1, 2, . . . , k, is

stationary for such Markov Chain.
Notice that the semigroup et (k Lk+k Vk ), t > 0, is not stochastic and the procedure of

getting an stochastic semigroup from this requires a normalization via the eigenfunction and
eigenvalue.

If one consider a potential A : {1, 2, . . . , k}N → R which depends on the two first
coordinates and a potential V : {1, 2, . . . , k}N → R which depends on the first coordinate
one can see that ”basically” the results of [19] are an extension of the ones in [4].

In Sect. 4 in [19] it is consider a potential V : {1, 2, . . . , k}N → R and introduced for the
associated Gibbs continuous time Markov Chain, for each T > 0, the concept of entropy HT .
Finally, one can take the limit on T in order to obtain an entropy H for the continuous time
Gibbs state associated to such V . We would like here to compute for each k the expression
of the entropy H(k) of the Gibbs state for kVk . Later we want to estimate the limit H(k),
when k → ∞.

Notice that for fixed k our setting here is a particular case (much more simpler) that the one
where the continuous time Markov Chain has the state space {1, 2, . . . , k}N. However, the
matrix Lk we consider here assume some zero values and this was not explicitly considered
in [19]. This will be no big problem because the use of the discrete time Ruelle operator
in [19] was mainly for showing the existence of eigenfunctions and eigenvalues. Here the
existence of eigenfunctions and eigenvalues follows from trivial arguments due to the fact
that the operators are defined in finite dimensional vector spaces.

A different approach to entropy on the continuous time Gibbs setting (not using the Ruelle
operator) is presented in [18]. We point out that [4] does not consider the concept of entropy.
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Large Deviations via Aubry–Mather Theory 819

We will show below that for the purpose of computation of the entropy for the present setting
the reasoning of [19] can be described in more general terms without mention the Ruelle
operator LA.

No we will briefly describe for the reader the computation of entropy in [19]. Given a
certain a priori Lipschitz potential

Ak : {1, 2, . . . , k}N → R

consider the associated discrete Ruelle operator LAk .
Via the infinitesimal generator L̃k = LAk − I , for each k, we define an a priori probability

Markov Chain. Consider now a potential Ṽk : {1, 2, . . . , k}N → R and the associated Gibbs
continuous time Markov Chain. We denote by μk the stationary vector for such chain. We
denote by Pμk the probability over the Skorohod space D obtained from initial probabilityμk

and the a priori Markov Chain (which will define a Markov Process which is not stationary).

We also consider P̃ Ṽk
μk the probability on D induced by the continuous time Gibbs state

associated to V and the initial measure μk .
According to [19, Sect. 4], for a fixed T ≥ 0, the relative entropy is

HT (P̃
Ṽk
μk |Pμk ) = −

∫
D

log

(dP̃ Ṽk
μk

dPμk

∣∣∣FT

)
(ω) dP̃ Ṽk

μk (ω) . (23)

In the above μk is a probability fixed on the state space and FT is the usual sigma algebra
up to time T . Moreover, D is the Skorohod space.

The entropy of the stationary Gibbs state P̃ Ṽk
μk is

H(P̃ Ṽk
μk |Pμk ) = lim

T →∞
1

T
HT (P̃

Ṽk
μk |Pμk ).

The main issue here is to apply the above to k Vk and not Ṽk . In order to compute the
entropy in our setting we have to show that the expression above can be generalized and
described not mentioning the a priori potential A. This will be explained in the next section.

4.2 Gibbs State in a General Setting

The goal of this subsection is improve the results of the Sects. 3 and 4 of the paper [19]. In
order to do this we will consider a continuous time Markov Chain {Xt , t ≥ 0} with state
space E and with infinitesimal generator given by

L( f )(x) =
∑
y∈E

p(x, y)
[

f (y)− f (x)
]
,

where p(x, y) is the rate jump from x to y. Notice that maybe
∑
y∈E

p(x, y) �= 1. For example,

if the state space E is {1, . . . , k}N and L = LA − I , as in [19], we have that p(x, y) =
1σ(y)=x eA(y), or if L = LV , also in [19], p(x, y) is equal to γV (x)1σ(y)=x eBV (y).

As we will see by considering this general p one can get more general results.

Proposition 14 Suppose L is an infinitesimal generator as above and V : E → R is a
function such that there exists an associated eigenfunction FV : E → (0,∞) and eigen-
value λV for L + V . That is, we have that (L + V )FV = λV FV . Then, by a procedure of
normalization, we can get a new continuous time Markov Chain, called the continuous time
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Gibbs state for V, which is the process {Y V
T , T ≥ 0}, having the infinitesimal generator

acting on bounded mensurable functions f : E → R given by

LV ( f )(x) =
∑
y∈E

p(x, y)FV (y)

FV (x)

[
f (y)− f (x)

]
. (24)

Proof To obtain this infinitesimal generator we can follow without any change from the
beginning of the proof of the Proposition 7 in Sect. 3 of [19] until we get the equality (11).
After the equation (11) we use the fact that p(x, y) is equal to 1σ(y)=x eA(y). Then, in the
present setting we just have to start from the equation (11). Notice that the infinitesimal
generator LV ( f )(x) can be written as

L(FV f )(x)

FV (x)
+ (V (x)− λV ) f (x) =

∑
y∈E

p(x, y)

FV (x)
[FV (y) f (y)− FV (x) f (x)] + (V (x)− λV ) f (x)

=
∑
y∈E

p(x, y)FV (y)

FV (x)
f (y)+

⎛
⎝
⎡
⎣∑

y∈E

p(x, y)

⎤
⎦+ V (x)− λV

⎞
⎠ f (x) .

Using the fact that FV and λV are, respectively, the eigenfunction and eigenvalue, we get that
the expression (24) defines and infinitesimal generator for a continuous time Markov Chain


�
Now, rewriting (24) as

LV ( f )(x) =
∑
y∈E

p(x, y) elog FV (y)−log FV (x)
[

f (y)− f (x)
]
,

we can see that the process {Y V
T , T ≥ 0} is a perturbation of the original process {Xt , t ≥ 0}.

This perturbation is given by the function log FV , where FV is the eigenfunction of L + V ,
in the sense of the Appendix 1.7 of [17, p. 337].

Now we will introduce a natural concept of entropy for this more general setting describe
by the general function p.

Denote by Pμ the probability on the Skorohod space D := D([0, T ], E) induced by
{Xt , t ≥ 0} and the initial measure μ. And, denote by P

V
μ the probability on D induced by

{Y V
T , T ≥ 0} and the initial measure μ. By [17, p. 336], the Radon–Nikodym derivative

dP
V
μ

dPμ

is

exp
{

log FV (XT )− log FV (X0)−
∫ T

0

L(FV )(Xs)

FV (Xs)
ds
}

= exp
{

log
FV (XT )

FV (X0)
+
∫ T

0
(V (Xs)− λV ) ds

}

= FV (XT )

FV (X0)
exp

{ ∫ T

0
(V (Xs)− λV ) ds

}
.

Thus, we obtain the expression:

log
(dP

V
μ

dPμ

)
=
∫ T

0
(V (Xs)− λV ) ds + log FV (XT )− log FV (X0).

which is more sharp that the expression (17) on page 13 of [19]. To compare them, we take
on (17) γ̃ = 1 − V + λV , then we obtain the first term. To obtain the second one, we need
to observe that the second term in (17), in [19], can be written as a telescopic sum.

123



Large Deviations via Aubry–Mather Theory 821

Now for a fixed k we will explain how to get the value of the entropy of the corresponding
Gibbs state for k Vk : �k → R.

In the general setting of last theorem consider E = �k = {0, 1/k, 2/k, . . . , (k − 1)/k},
and, for i/k, j/k ∈ �k , we have

(a) p(i/k, j/k) = k, if j = i + 1 or j = i − 1,
(b) p(i/k, j/k) = 0, in the other cases.

The existence of eigenfunction Fk and eigenvalue λk for kLk +kVk follows from the continu-
ous time Perron’s Theorem described before. The associated continuous time Gibbs Markov
Chain has a initial stationary vector which will be denoted by πk .

Now we have to integrate concerning P
kVk
πk,V for T fixed the function

∫ T

0
(k Vk(Xs)− λk) ds + log Fk(XT )− log Fk(X0).

As the probability that we considered on the Skorohod space is stationary and ergodic this
integration results in

∫
kVkdπk,V − λk .

Thus, the entropy H(PkVk
πk,V |Pπk,V ) = ∫

kVkdπk,V − λk . We point out that for a fixed k this
number is computable from the linear problem associated to the continuous time Perron’s
operator. Now in order to find the limit entropy associated to V we need to take the limit on
k of the above expression.

Here, we assume that the Mather measure is a Dirac Delta probability on x0. Remember
that limk→∞ 1

k λ(k) = c(L) = V (x0). Moreover, πk,V → δx0 , when k → ∞. Therefore,

H(V ) = lim
k→∞

1

k
H(PkVk

πk,V
|Pπk,V ) = lim

k→∞

∫
Vk dπk,V − lim

k→∞
1

k
λk = V (x0)− c(L) = 0.

The limit entropy in this case is zero.
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