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Abstract We study tunneling and mixing time for a non-reversible probabilistic cellular
automaton. With a suitable choice of the parameters, we first show that the stationary dis-
tribution is close in total variation to a low temperature Ising model. Then we prove that
both the mixing time and the time to exit a metastable state grow polynomially in the size
of the system, while this growth is exponential in reversible dynamics. In this model, non-
reversibility, parallel updatings and a suitable choice of boundary conditions combine to
produce an efficient dynamical stability.

Keywords Tunneling · Mixing times · Probabilistic cellular automata

1 Introduction

In this paper we consider a discrete-time stochastic dynamics for a spin system at low temper-
ature, in which high mobility of parallel updating and asymmetry of the interaction combine
to produce efficient dynamical stability and fast convergence to equilibrium.

The control of the convergence to equilibrium of irreducible Markov Chains (MC) is
particularly interesting when the invariant measure is strongly polarized, for instance in MC
describing large scale ferromagnetic systems at low temperature. Indeed in the region of
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2 P. Dai Pra et al.

parameters where the system exhibits coexistence of more phases, the problem of the control
of the convergence to equilibrium of the MC describing the system becomes strictly related
to the problem of metastability, since the tunneling between different phases is necessary to
reach equilibrium. This tunneling time usually is exponentially divergent in the size of the
problem so that the convergence to equilibrium in these cases is exponentially slow. See [7]
for a beautiful review on this problem.

We briefly recall the well known Ising model in 2-d in order to explain in more detail the
problem.

Let L be a positive integer, and � := (Z/LZ)2 be the two dimensional discrete torus.
Consider the standard Ising model on � without external field with spin configurations
σ = (σx )x∈� ∈ S := {−1, 1}� and with Hamiltonian

H(σ ) = −
∑

(x,y)

Jσxσy (1)

where J > 0 and the sum is on neighboring sites in �. Denote by πG its Gibbs measure

πG(σ ) = e−H(σ )

ZG
, ZG =

∑

σ∈S
e−H(σ ). (2)

A popular discrete-time MC, reversible w.r.t. this Gibbs measure, is given by the following
algorithm: at each time t a point x ∈ � is chosen with uniform probability; all spins σy ,
y �= x are left unchanged, while σx is flipped with probability

exp
[−(H(σ x ) − H(σ ))+

]
,

where σ x is the configuration obtained by σ by flipping σx and, for a real number a, a+ :=
max(a, 0). Denote by P

t
σ the probability distribution of the process at time t starting from σ

at time 0, and by P the transition matrix (P1
σ (η))σ,η∈S .

Different quantities can be used to control the convergence to equilibrium of MC’s; the
most popular is the mixing time

Tmix := min
{

t > 0; d(t) ≤ 1

e

}
(3)

where d(t) is the maximal distance in total variation between the distribution at time t and
the invariant measure

d(t) = sup
σ

‖P
t
σ − πG‖T V .

For the Glauber dynamics defined above when the interaction constant J is so large that
the Gibbs measure πG is nearly concentrated on the configurations + 1 and −1, with all
spins +1 and all spins -1 respectively, it is possible to prove that Tmix diverges exponentially
in L . This result is due to the presence of a rather tight “bottleneck” in the state space. Indeed
starting for instance from −1, in order to relax to equilibrium the dynamics has to reach
a neighborhood of the opposite minimum +1, crossing the set of configurations with zero
magnetization which has a small Gibbs measure. In other words the system is trapped for a
very long time near the configuration −1, and only after many attempts to leave this trap, a +1
droplet is nucleated and grows up to reach the bottleneck, i.e., the set of configurations of zero
magnetization. This mechanism is typical in metastability and produces a large relaxation
time.

If the relaxation time is exponentially large, the MC given by the Glauber dynamics is
not an efficient way for sampling from the Gibbs measure πG for large systems. A possible
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Fast Mixing for the 2D Ising Model 3

way to bypass this problem is the following: for each size L of the system, we construct a
MC whose invariant measure π is close to πG , in the sense that ‖π − πG‖T V converges
to zero as L → +∞, and such that its mixing time grows polynomially in L . We call
this a asymptotically polynomial approximation scheme; this notion is weaker but closely
related to that of fully polynomial randomized approximation scheme (FPRAS) introduced
in theoretical computer science (see [5]).

In this paper we present two independent results; their combination provide an asymptot-
ically polynomial approximation scheme for the 2d Ising model.

More precisely we introduce a modification of the above MC in which:

• all spins are simultaneously updated;
• the updating of the spin σx only depends on the spin values at the previous time of its

South and West nearest neighbors; this makes the dynamics non reversible.

This dynamics is a probabilistic cellular automaton (PCA) for which the invariant measure
πPC A can be found without a detailed balance condition, but using the notion of weak balance
condition discussed in Ref. [6] also known in the literature as dynamical reversibility (see
for instance [1]). By using the ideas developed in Ref. [3] we can control the total variation
distance between the Gibbs measure πG and πPC A. This is the content of Theorem 2.3.

In the second theorem we study the convergence to equilibrium of this parallel dynamics.
The key step is an estimate on the tunneling time between −1 and 1. This estimate is obtained
by using some of the basic ideas developed in the context of metastability. The main point is
concerned with the separation of time scales. The general idea is the following: the energy
landscape determines a sequence S = S0 ⊃ S1 ⊃ · · · ⊃ Sn = {−1, 1} of nested subsets of
S is such a way that for k ≥ 1 a time scale Tk is associated to each Sk in the following sense:
the dynamics need a time of order Tk to leave Sk , but a much smaller time to return in Sk

after having left it; moreover, Tk is much smaller than Tk+1. This allows to define an effective
renormalized dynamics on Sk which evolves at time-scale Tk , and which consists of the
successive returns in Sk . See for instance [2,9,10] for more details on such a renormalisation
procedure. Iterating this strategy on larger and larger time scales t0 < t1 < · · · < tn one
arrives to the situation in which Sn is given just by the absolute minima of the energy. In this
case the corresponding renormalized process is a very elementary two states process with a
tunneling time τ(−1,+1) given by an exponential random variable with mean given by the
inverse of the transition probability (−1,+1) of the renormalized chain on Sn .

We do not completely develop this analysis for our PCA dynamics, but we will use the
main ideas of separation of time scales and corresponding reduction of the state space in order
to control the mean tunneling time, and, with this, the mixing time of the PCA. Exploiting
the complete asymmetry of the interaction (only SW), the simultaneous updating and the
periodic boundary conditions, we observe that configurations with the same spin on a NW-
SE diagonal are stable on the time scale of order 1, just moving in the NE direction. Playing
on the difference of time scales involved in the process, we can tune the parameters of the
dynamics in order to describe the evolution between diagonal configurations in terms of a 1d
nearly symmetric Random Walk, producing a tunneling time which is polynomial in the size
of �. Cellular automata with completely oriented interaction are extensively studied since
the pioneering paper by Toom [11]. However in this paper we are mainly interested in the
study of the relations between PCA and statistical mechanics and, most of all, n the study of
the rate of relaxation to equilibrium of an irreversible PCA. The latter is, to our knowledge,
a largely unexplored subject.

In Sect. 2 we define the model in details, and state our main results. Section 3 is devoted
to the analysis of the invariant measure of the PCA, and its relations with the Ising model.
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4 P. Dai Pra et al.

Some fundamental facts on time scale separation for the PCA is presented in Sect. 4, while
Sect. 5 contains the key estimate on the tunneling time.

2 The Model and the Results

2.1 The Model

On the same space of configurations S := {−1, 1} discussed in the Introduction for the
Ising model we want to construct a Markov chain given in terms of a completely asymmetric
interaction as follows. For x = (i, j) ∈ � = (Z/LZ)2, we introduce the following notation
for its nearest neighbors:

xu := (i, j + 1) xr := (i + 1, j) xd := (i, j − 1) xl := (i − 1, j) (4)

where sums and difference has to be meant mod. L . Given a spin configuration σ

= (σx )x∈� ∈ S, for typographical reasons we write σ u
x for σxu , and similarly for the other

nearest neighbors of x . Consider the discrete-time Markov chain on S, whose transition
matrix is given by

P(σ, τ ) := e−H(σ,τ )

∑
σ ′∈S e−H(σ,σ ′) , (5)

where H(σ, τ ) is the following asymmetric Hamiltonian, defined on pairs of configurations:

H(σ, τ ) := −
∑

x∈�

[
Jσx (τ

u
x + τ r

x ) + qσxτx
]

= −
∑

x∈�

[
Jτx (σ

d
x + σ l

x ) + qσxτx

]
(6)

and J, q > 0 are given parameters. In what follows we set

Zσ :=
∑

σ ′∈S
e−H(σ,σ ′). (7)

Some basic facts on this Markov chain are grouped in the next Proposition (see [6] for more
details) motivating the name Probabilistic Cellular Automata (PCA) for this dynamics.

Proposition 2.1 (1) P(σ, τ ) is of the following product form:

P(σ, τ ) =
∏

x∈�

px (τx |σ)

where

px (τx |σ) := exp
{
τx
[
J (σ d

x + σ l
x ) + qσx

]}

2 cosh(J (σ d
x + σ l

x ) + qσx )
.

(2) H(σ, τ ) �= H(τ, σ ) but the following weak symmetry condition holds
∑

τ∈S
e−H(σ,τ ) =

∑

τ∈S
e−H(τ,σ ).
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Fast Mixing for the 2D Ising Model 5

(3) The Markov chain is irreversible with a unique stationary distribution πPC A given by

πPC A(σ ) := Zσ

Z PC A
,

with Z PC A := ∑
σ Zσ .

Proof The statement in (1) amounts to a straightforward computation; in particular, it implies
irreducibility of the chain, which therefore has a unique stationary distribution. The statement
in (3) thus follows readily from (2), that is the only nontrivial point to show. Note that

∑

τ∈S
e−H(σ,τ ) = 2|�| ∏

x∈� cosh(J (σ d
x + σ l

x ) + qσx ))

∑

τ∈S
e−H(τ,σ ) = 2|�| ∏

x∈� cosh(J (σ u
x + σ r

x ) + qσx )). (8)

Denote by �∗ := {{x, y} : ξ, y ∈ �, |x − y| = 1} the set of bonds in �. Note that
|�∗| = 2L2. For σ ∈ S, we let

γ (σ ) := {{x, y} ∈ �∗ : σx �= σy} (9)

be the Peierls contour associated to σ . The following identities are immediately checked:

cosh(J (σ d
x + σ l

x ) + qσx )) =
⎧
⎨

⎩

cosh(2J + q) if {x, xd} �∈ γ (σ ), {x, xl} �∈ γ (σ )

cosh(2J − q) if {x, xd} ∈ γ (σ ), {x, xl} ∈ γ (σ )

cosh(q) otherwise.

So, if we let

ndl = ndl(σ ) :=
∣∣∣{x ∈ � : {x, xd} ∈ γ (σ ), {x, xl} ∈ γ (σ )}

∣∣∣ ,

using (8) we obtain
∑

τ∈S
e−H(σ,τ ) = 2L2 [cosh(2J − q)]ndl [cosh(q)]|γ (σ )|−2ndl [cosh(2J + q)]L2−|γ (σ )|+ndl .

(10)

With the same argument, defining

nur = nur (σ ) := ∣∣{x ∈ � : {x, xu} ∈ γ (σ ), {x, xr } ∈ γ (σ )}∣∣ , (11)

we obtain
∑

τ∈S
e−H(τ,σ ) = 2L2 [cosh(2J − q)]nur [cosh(q)]|γ (σ )|−2nur [cosh(2J + q)]L2−|γ (σ )|+nur .

(12)

The conclusion now follows from the observation that, for every σ ∈ S, the identity ndl(σ ) =
nur (σ ) holds. This can be shown, for instance, by induction on n+(σ ), where n+(σ ) denotes
the number of spins equal to+1 inσ . If n+(σ ) = 0 the statement is obvious. For n+(σ ) = n >

0, let x ∈ � be such that σx = +1, and let σ x the configuration obtained from σ by flipping
the spin at x . By considering all possible spin configuration in the 3 × 3 square centered at
x , one checks that ndl(σ

x ) − nur (σ
x ) = ndl(σ ) − nur (σ ). Since n+(σ x ) = n+(σ ) − 1, the

proof is completed. �
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2.2 The Results

We are interested in the limit L → ∞ and in the low temperature (J large) regime defined
as follows.

Definition 2.2 The low temperature regime with parameters k and c corresponds to the
following choice

J = J (L) = k log L q = q(L) = c
log L

L
(13)

We state here our two main results. The first concerns the relation between the two considered
models, controlling the distance in total variation between the Gibbs measure of the symmetric
standard Ising model and the stationary distribution of the asymmetric PCA. The numerical
constants appearing in the statements of the theorems are not optimized.

Theorem 2.3 In the low temperature regime with parameter k and c, there is a constant
C > 0 such that

‖πPC A − πG‖T V ≤ C

(
1

L
c
2 −1

+ 1

L2k−2

)
. (14)

The second result is the control of the convergence to equilibrium of the PCA proving that
the mixing time of the parallel dynamics is polynomial in L .

Theorem 2.4 In the low temperature regime with parameter k and c such that c > 1
2 and

k − 4c > 4, we have

lim
L→∞ dPC A(L8k) = 0

where

dPC A(t) = sup
σ

||Pt (σ, .) − πPC A(.)||T V

Theorems 2.3 and 2.4 imply that the Markov chain defined in Ref. (5) provides a asymp-
totically polynomial approximation scheme for the Ising model on the 2d torus.

Remark 2.5 There is another example, see [8], of rapid mixing of a Markov chain having as
stationary measure the Gibbs measure of the low temperature Ising model. This example is
the Swendsen-Wang dynamics. As in our case, such dynamics is fast because it allows the
possibility to update in a single step of the Markov chain a large amount of spins. However,
as far as we know, this is the first case in literature of a fast irreversible dynamics based on the
idea of the PCA. In particular it seems that the ingredient of the irreversibility combined with
parallelism is quite crucial in order to obtain the fast mixing. Indeed the dynamical stability
of the NW-SE diagonals, mentioned in the introduction (see also Sect. 4), is based exactly
on the combination of parallelism and complete asymmetry of the interaction. The interest
of these results is also due to the fact that irreversible Markov chains are a good model for
the study of stationary measure of non equilibrium statistical mechanical systems.

Remark 2.6 The results listed above are quite delicate. As mentioned in the introduction,
the periodic boundary conditions play a crucial role in the proof of our results. Moreover,
the choice of the parameters’ scaling (namely our low temperature regime, see 2.2) is also
crucial in our arguments. In particular, our estimates on the mixing time (Theorem 2.4 below)
are based of a separation of time scales which requires this choice. It would be desirable to
have estimates on the mixing time for J large but independent of L; such estimates are, for
the time being, out of reach. It would be reasonable to conjecture that also in this case the
mixing time grows polynomially in the size of the system.
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Fast Mixing for the 2D Ising Model 7

3 The Relation Between Ising Gibbs Measure and PCA Stationary Measure at Low
Temperature

We prove in this section Theorem 2.3.
We use the representation introduced in Ref. [3]. Note first of all that

Zσ =
∑

τ

e−∑
x [J (σ d

x +σ l
x )+qσx ]τx

= eq|�| ∑

I⊂�

e
∑

(x,y) Jσx σy−2
∑

x∈I J (σx σ u
x +σx σ r

x )−2q|I |

= eq|�|wG(σ )
∏

x∈�

(1 + δφx ) (15)

where we have used δ = e−2q ,

wG(σ ) = e−H(σ ),

and

φx = e−2J (σx σ u
x +σx σ r

x ).

We will call

f (σ ) =
∏

x∈�

(1 + δφx ). (16)

It easily follows that

π PC A(σ ) = πG(σ )
f

πG( f )
(17)

We have then

‖πPC A − πG‖T V = πG

[∣∣∣∣
f

πG( f )
− 1

∣∣∣∣

]
(18)

Write now the Gibbs measure in terms of Peierls contours (see 9):

πG(σ ) = e−2Jl(σ )

ZG

where l(σ ) := |γ (σ )| is the total length of the Peierls contours of the configuration σ .
Let 1 be the configuration with σx = 1 for all x .
Normalizing the value of f (σ ) with the value f (1), which is a constant ineffective in the

evaluation of (18), the expression of f (σ ) can be written as (see also 11)

f (σ ) =
[

(1 + δe4J )

(1 + δe−4J )

]nur (σ ) [
(1 + δ)

(1 + δe−4J )

]l(σ )−2nur (σ )

. (19)

where we have simply observed that

σxσ
u
x + σxσ

r
x =

⎧
⎨

⎩

2 if (x, xu) ∈ γ (σ ), (x, xr ) ∈ γ (σ )

0 if (x, xu) �∈ γ (σ ), (x, xr ) �∈ γ (σ )

1 otherwise.

Note that with this normalization f (1) = 1 obviously holds.
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Let us first give an upper bound of πG( f ). We can write

πG( f ) = 1

ZG

∑

σ

[
e−4J (1 + δe4J )

(1 + δe−4J )

]nur (σ ) [
e−2J (1 + δ)

(1 + δe−4J )

]l(σ )−2nur (σ )

≤ 1

ZG

∑

σ

[
δ + e−4J

]nur (σ ) [
2e−2J

]l(σ )−2nur (σ )

.

To give estimates for this last sum, we use again Peierls contours. We say that a pair of
adjacent bonds (x, xu), (x, xr ) both belonging to γ (σ ) form a ur-elbow. Note that the only
closed paths in �∗ exclusively consisting of ur-elbows is necessarily union of complete
diagonals (actually of a even number of diagonals, for the contour to correspond to a spin
configuration). Any contour γ = γ (σ ) can be decomposed as γ = γD ∪ γN D , where
γD only contains complete diagonals, while γN D has no complete diagonal. Observe that
l(σ ) − 2nur (σ ) = 0 ⇐⇒ γN D(σ ) = ∅. Now, for any fixed m ≥ 0 we obtain an upper
bound for the contribution of all configurations σ such that l(σ ) − 2nur (σ ) = m. We can
write

A(m) :=
∑

σ :l(σ )−2nur (σ )=m

[
δ + e−4J

]nur (σ ) [
2e−2J

]l(σ )−2nur (σ )

= 2
∑

γ :|γ |−2nur (γ )=m

[
δ + e−4J

]nur (γ ) [
2e−2J

]m
,

where the factor 2 come from the fact that there are exactly two configurations for each
contour. Observe now that e−2J = 1/L2k while

δ + e−4J = e−2c log L
L + e−4k log L ≤ 1 − c

log L

L
+ 1

L4k
≤ 1 − c

2

log L

L
< 1,

for L sufficiently large. Thus, using the decomposition γ = γD ∪ γN D ,

A(m) ≤ 2
∑

γ :|γ |−2nur (γ )=m

(
1 − c

2

log L

L

)nur (γD) ( 2

L2k

)m

≤ 2

(
2

L2k

)m

Nm

∑

γ :γN D=∅

(
1 − c

2

log L

L

) |γ |
2

,

where

Nm := |{γ : γD = ∅, |γ | − 2nur (γ ) = m}| .
A very rough upper bound for Nm can be obtained as follows. We first place the m bonds not
belonging to a ur-elbow (we have at most (2L2)m different choices); call γ̃N D the resulting
set of bonds. We then place an arbitrary number of ur-elbows, with the constraint that the
endpoints of a connected sequence of NE elbows must coincide with two of the 2m endpoints
of γ̃N D . Moreover, for any endpoint x of γ̃N D there are at most two connected sequences of
ur-elbows which connect x to exactly one endpoint of γ̃N D . Thus, sequences of ur-elbows
can be placed in at most 42m different ways. This yields

Nn ≤ (
32L2)m

.
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Fast Mixing for the 2D Ising Model 9

To complete the upper bound for A(m), we need to estimate

∑

γ :γN D=∅

(
1 − c

2

log L

L

) |γ |
2

.

Since such diagonal contours are just union of complete diagonals, and each complete diag-
onal has length 2L , for L sufficiently large we have

∑

γ :γN D=∅

(
1 − c

2

log L

L

) |γ |
2 ≤

∑

l≥0

(
L

l

)(
1 − c

2

log L

L

)l L

=
[

1 +
(

1 − c

2

log L

L

)L
]L

≤ 1 + 2

L
c
2 −1

.

Thus we have

A(m) ≤ 2

(
1 − c

2

log L

L

) |γ |
2
(

64

L2k−2

)m

.

Summing up, using also the obvious fact that ZG = ∑
σ e−2Jl(σ ) > 2, we can choose C > 0

such that for L large enough:

πG( f ) ≤ 1

ZG

∑

m≥0

A(m) ≤
(

1 + 2

L
c
2 −1

)⎡

⎣
∑

m≥0

(
64

L2k−2

)m
⎤

⎦

≤ 1 + C

L
c
2 −1

+ C

L2k−2 . (20)

Comparing (19) with (20), and using the fact that δ � 1 (in particular δ ≥ 1
2 ) for large L ,

one realizes that f (σ ) > πG( f ) for all configurations different from ±1. This is evident for
nur (σ ) > 0; for nur (σ ) = 0 we have that if l(σ ) > 0, then l(σ ) ≥ L , giving f ≥ (1+1/4)L .
By this observation

πG

[∣∣∣∣
f

πG( f )
− 1

∣∣∣∣

]
= 2

πG( f )

∑

σ : f (σ )<πG ( f )

e−H(σ )

ZG
[πG( f ) − f (σ )]

and the sum contains actually only the two configurations σ = ±1, such that f (σ ) = 1.
Hence we have

‖πPC A − πG‖T V = πG

[∣∣∣∣
f

πG( f )
− 1

∣∣∣∣

]
≤ 2

πG( f )
[πG( f ) − 1] = 2

(
1 − 1

πG( f )

)

≤ 2C

(
1

L
c
2 −1

+ 1

L2k−2

)
. (21)

Inserting (20) in Ref. (21), and using (18), we complete the proof of the theorem.
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4 PCA at Low Temperature

4.1 Realization Through Random Numbers

In what follows it will be useful to realize the Markov chain described above using uniformly
distributed random numbers. Let {Ux (n) : x ∈ �, n ≥ 1} be a family of i.i.d. random
variables, uniformly distributed in (0, 1), defined in some probability space (�, A, P). Given
the initial configuration σ(0), define recursively σ(n + 1) by: σx (n + 1) = 1 if and only if
one of the following conditions holds:

(A) σ d
x (n) = σ l

x (n) = 1 and Ux (n + 1) ≤ e2J+qσx (n)

2 cosh(2J+qσx (n))
;

(B) σ d
x (n) = σ l

x (n) = −1 and Ux (n + 1) ≤ e−2J+qσx (n)

2 cosh(−2J+qσx (n))
;

(C) σ d
x (n) = −σ l

x (n) and Ux (n + 1) ≤ eqσx (n)

2 cosh(qσx (n))
,

while σx (n + 1) = −1 otherwise.

Remark 4.1 Note that with this construction of the process it is immediate to see that the
Markov chain preserves the componentwise partial order on configuration. Coupling the
processes (σ (n))n∈N starting at σ and (σ ′(n))n∈N starting at σ ′ by using the same realization
of uniform variables {Ux (n) : x ∈ �, n ≥ 1} we have that if σ ≤ σ ′ in the sense that
σx ≤ σ ′

x for all x ∈ � then σ(n) ≤ σ ′(n) for each time n ≥ 0.

4.2 Zero-Temperature Dynamics

In the low temperature regime considered in this paper, updatings of type (A) or, symmet-
rically, those for which σ d

x (n) = σ l
x (n) = −1 �→ σx (n + 1) = −1, are typical, as they

occur with probability e2J±q

2 cosh(2J±q � 1; conversely updatings of type (B), or those for which

σ d
x (n) = σ l

x (n) = 1 �→ σx (n + 1) = −1, are atypical, as they occur with probability
e−2J±q

2 cosh(2J±q)
� 0. Finally, updatings of type (C), or those for which σ d

x (n) = −σ l
x (n) = 1 �→

σx (n + 1) = −1, are neutral, as they occur with probability e±q

2 cosh(q)
� 1

2 .
Let N > 0 be a given (large) time. In next section it will be useful to rule out events

of very small probability. For instance, given a time N > 0, we can “force” the system to
perform no atypical updating up to time N . To this aim, we can define

S := min

{
n ≥ 1 : ∃ x such that Ux (n) �∈

(
e−2J+q

2 cosh(2J − q)
, 1 − e−2J+q

2 cosh(2J − q)

)}
,

(22)

and condition to the event {S > N }. Note that under P(·|S > N ) the random numbers {Ux (n) :
x ∈ �, 1 ≤ n ≤ N } are i.i.d., uniformly distributed on

(
e−2J+q

2 cosh(2J−q)
, 1 − e−2J+q

2 cosh(2J−q)

)
.

Thus, (σ (n))N
n=0 is a homogeneous Markov chain also under P(·|S > N ), for which only

typical and neutral transitions are allowed. This conditioned dynamics is often called the
zero-temperature dynamics corresponding, for the inverse temperature parameter J , to the
limit J → ∞.

Note also that, if A is an event depending on (σ (n))N
n=0, then

P(A|S > N )P(S > N ) ≤ P(A) ≤ P(A|S > N ) + P(S ≤ N ), (23)
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Fast Mixing for the 2D Ising Model 11

so that estimates for P(A) are obtained if estimates for P(A|S > N ) and P(S > N ) are
available.

Similarly, to control that the system performs at most one atypical updating per time up
to time N , we define the random time

T := min
{
n ≥ 1 : ∃ x �= y such that Ux (n), Uy(n)

�∈
(

e−2J+q

2 cosh(2J − q)
, 1 − e−2J+q

2 cosh(2J − q)

)}
. (24)

By definition T ≥ S. We now establish estimates for the random times S and T inde-
pendently of the starting configurations. From now on, when we need to indicate the initial
condition σ(0) = σ , we write Pσ rather that P for the underlying probability.

We will adopt the following notation. For a given function f : (0,+∞) → (0,+∞)

we let O( f (r)) to be any function for which there is a constant C > 0 satisfying f (r)
C ≤

O( f (r)) ≤ C f (r) for r ≥ C . Moreover, ar ∼ br will stand for limr→+∞ ar
br

= 1.

Lemma 4.2 There exist constants Ci such that for each a > 0 and L sufficiently large we
have

sup
σ

Pσ (S > L4k−2+a) ≤ C1e−O(La). (25)

sup
σ

Pσ (S ≤ L4k−2−a) ≤ C2 L−a (26)

sup
σ

Pσ (T ≤ L8k−4−a) ≤ C3L−a (27)

sup
σ

Pσ (T = S) ≤ C4L−(4k−2)+2a . (28)

Proof To show (25), observe that {S > n} means that up to time n only typical updatings
have been made. Since the probability that a given updating is typical is bounded above by

1 − e−2J−q

2 cosh(2J+q)
= 1 − O(L−4k),

Pσ (S > L4k−2+a) ≤
(

1 − O(L−4k)
)L2·L4k−2+a

≤ C1e−O(La),

for some C1 > 0, which establishes (25). To prove (26), observe that

Pσ (S ≤ L4k−2−a)

= P

(
∃x ∈ �, n ≤ L4k−2−a : Ux (n) �∈

(
e−2J+q

2 cosh(2J − q)
, 1 − e−2J+q

2 cosh(2J − q)

))

≤ L2 L4k−2−a e−2J+q

cosh(2J − q)
= O(L−a).

The proof of (27) is similar, the difference being that at least two atypical updatings need to
occur:

Pσ (T ≤ L8k−4−a)

= P

(
∃x, y ∈�, n ≤ L8k−4−a : Ux (n), Uy(n) �∈

(
e−2J+q

2 cosh(2J − q)
, 1− e−2J+q

2 cosh(2J −q)

))

≤ L4L8k−4−a
(

e−2J+q

cosh(2J −q)

)2

= O(L−a).
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12 P. Dai Pra et al.

Finally, using (25) and (27),

Pσ (T = S) = Pσ (T = S, S > L4k−2+a) + Pσ (T = S, T ≤ L4k−2+a)

≤ C1e−O(La) + O(L−(4k−2)+2a) = O(L−(4k−2)+2a).

�

5 Mixing Time and Tunneling Time

In this section we prove Theorem 2.4 by giving estimates on the distribution of the hitting
time

T1 := min{n ≥ 1 : σ(n) = 1}.
Since the dynamics described in the previous construction preserves the componentwise
partial order on configurations, as noted in Remark 4.1, we have

sup
σ∈S

Pσ (T1 > N ) ≤ P−1(T1 > N ). (29)

Thus, an upper bound on P−1(T1 > N ) provides an upper bound for the mixing time. Indeed
by using the coupling defined in Remark 4.1 we can define the coupling time

τcouple = min{n ≥ 0 : σ(n) = σ ′(n)}.
The total variation distance between the evoluted measure at time n and the stationary one,
dPC A(n), is related to the coupling time by the following

dPC A(n) ≤ max
σ,σ ′ Pσ,σ ′(τcouple > n)

moreover, again due to the monotonicity of the dynamics mentioned above, we have

max
σ,σ ′ Pσ,σ ′(τcouple > n) ≤ P−1(T1 > n).

So Theorem 2.4 immediately follows by the following:

Theorem 5.1 In the low temperature regime given in Definition 2.2, with c > 1
2 and

k − 4c > 4,

lim
L→+∞ P−1

(
T1 > L8k

)
= 0.

The proof of this theorem is obtained in two steps and both are driven by the following
idea. We have three time scales given by three well separated order of magnitude of transition
probabilities. In the first scale the dynamics recurs in a very small subset of the state space
S1 ⊂ S, this recurrence can be described in terms of a suitable 1 dimensional random walk.
On the second time scale the process jumps between different states in S1 and we can define
a chain on this restricted state space S1 and estimate its transition probabilities. The third
time scale is large enough with respect to the thermalisation of the random walk and thus can
be ignored.

In the first step we show that, due to the particular considered interaction, the configurations
with the same spin in each diagonal are stable under the zero-temperature dynamics and when
the first atypical move takes place, at time S, with large probability we have S < T so that
a single discrepancy appears in a diagonal. The crucial remark is that starting with such
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Fast Mixing for the 2D Ising Model 13

a configuration, the time R needed to come back to diagonal configurations is typically
much shorter than the waiting time for the next atypical move, so that starting from −1 the
dynamics can be studied in terms of a much simpler evolution moving in the space of diagonal
configurations.

We need some notations. We denote by θ the horizontal shift on �:

θ(i, j) = (i + 1, j).

By a common abuse of notation, we let θ act on configurations by θσx := σθ(x). For m
= 0, 1, L − 1, let Dm denote the m-th NW-SE diagonal:

Dm := {(i, j) ∈ � : i + j = m}
(sums are, always, mod. L). Note that Dm+1 = θ Dm . The diagonal configurations, i.e. those
that are constant on the diagonals, are denoted by:

D := {σ ∈ S : x, y ∈ Dm ⇒ σx = σy}.
Assuming σ(0) = σ ∈ D, it is immediately seen from the construction of the process given
in Sect. 18 that if only typical updatings occur up to time N , then σ(n) = θnσ for n ≤ N .
Thus, the evolution is trivial up to the stopping time S and actually

S = min{n : σ(n) �= θσ (n − 1)}. (30)

Let T be the time defined in (24). In the event S < T , which happens, as proven in Lemma
4.2 with high probability, σ(S) is diagonal up to a single discrepancy, i.e. there is a unique
X ∈ � such that σX (S) is opposite to all other spins in the diagonal containing X , while
σ(S) is constant on all other diagonals. Next Lemma shows that the site X at which the first
discrepancy appears is nearly uniformly distributed in �.

Lemma 5.2 The conditional probability

P(X = x |S < T )

is constant on both elements of the following partition of �:

{x : σx = σ l
x }, {x : σx = −σ l

x }
and

e−4q

L2 ≤ P(X = x |S < T ) ≤ e4q

L2 (31)

The next step in our argument consists in studying the process from the time the first dis-
crepancy appears to the next hitting time of D, i.e. the time at which a diagonal configuration
obtained. As we shall see, the time needed to go back to D is, with high probability, much
shorter than the time needed for the next atypical updating to take place.

For a rigorous analysis, under the condition {S < T }, we study the process {σ(S+n) : n ≥
0}. By the strong Markov property, this is equivalent to study the process {σ(n) : n ≥ 0} with
an initial condition σ(0) = σ which is diagonal, with a single discrepancy in x ∈ Dm . Starting
with such σ , besides typical and atypical updatings, neutral updatings arise. Indeed, the sites
xu and xr can perform neutral updatings, having the left neighbor and the down neighbor
of opposite sign. Suppose that no atypical updating occur. Then at time 1 all diagonals are
constant, except at most for the diagonal Dm+1. Here there are three possibilities:
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14 P. Dai Pra et al.

(i) both σ u
x and σ r

x update to −1: the discrepancy disappears, and σ(1) is diagonal;
(ii) both σ u

x and σ r
x update to 1: the discrepancy has doubled, two neighboring sites in Dm+1

are 1, while the rest of the diagonal is −1.
(iii) in both other cases, the discrepancy has just shifted (up or right) to Dm+1.

Under the condition of no atypical updatings, this argument can be repeated: the discrepancy
is shifted from a diagonal D to θ D, and its length can at most increase or decrease by one
unit. The configuration goes back to D as soon as the discrepancies disappear or fill the whole
diagonal. In order to keep fixed the diagonal containing the discrepancy, set

η(n) := θ−nσ(n).

If no atypical updating occur, η remains constant except for the spins in Dm : here the number
of spins equal to 1 evolves as a random walk, that we show to be nearly symmetric. Standard
estimates on random walks allow to estimate the probability the diagonal Dm gets filled by
ones before returning to all −1’s.

To make this argument precise, define the following stopping time:

R := min{n > 0 : σ(n) ∈ D}.
Thus, R is the time the configuration has returned to D.

Lemma 5.3 Assume the initial configuration σ is diagonal with a single discrepancy at x,
i.e., if x ∈ Dm then σx = −σy for all y �= x in Dm, call Dx these configurations. Assume
2k − 4c − 3 > 0. Then, for all 1 < r < 2k − 1

Pσ (R > Lr |S > L2k) ≤ O(L−r+1)

Pσ (R > Lr ) ≤ O(L−r+1). (32)

Pσ (ηx (R) = σx |S > L2k) ∼
{

4c log L
L if σ u

x = σx
4c log L
L4c+1 if σ u

x = −σx
(33)

Moreover, let ηDm be the configuration obtained from η by flipping all spins in Dm. Then

Pσ

(
η(R) = ηDm

)
∼
{

4c log L
L if σ u

x = σx
4c log L
L4c+1 if σ u

x = −σx
(34)

Before continuing our argument, we comment on the meaning of these inequalities. Since
by (26) we know that the probability that an atypical updating occurs before time L2k is small,
inequality (32) implies, in particular, that the configuration goes back to D in a time much
shorter that S (we are assuming k large). Inequality (33) states that the probability the initial
discrepancy at x propagates to the whole diagonal is much higher if σx , x ∈ Dm , is equal to
the spins in Dm+1. Most importantly, Lemma 5.3 provides estimates on the transition for a
starting diagonal configuration σ ∈ D to the next diagonal configuration hit after having left
D. This suggests to study an effective process obtained by observing η(n) only at the times
it enters D.

Define the stopping times

R0 := 0

S1 := min{m > 0 : σ(m) �∈ D} = S

Rn := min{m > Sn : σ(m) ∈ D} = Sn + R ◦ Sn

Sn+1 := min{m > Rn : σ(m) �∈ D} = Rn + S ◦ Rn (35)
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Fast Mixing for the 2D Ising Model 15

where t is the time shift operator acting on each trajectory of the Markov Chain
{σ(0), σ (1), . . .} as a shift

t {σ(0), σ (1), . . .} = {σ(t), σ (t + 1), . . .}.
The following estimates follow from Lemmas 5.2 and 5.3.

Corollary 5.4 The following estimates hold for all n ≥ 0:

P

(
Sn+1 − Rn > L5k

)
≤ e−Lk

. (36)

P

(
Rn − Sn > Lk

)
≤ sup

σ∈∪x Dx

Pσ

(
R > Lk

)
+ sup

σ
Pσ (S = T ) ≤ O

(
L−k+1

)
. (37)

We now consider the Markov chain (η(n))n≥0 at the times Rn where the chain visits D;
more precisely we define

ξ(n) := η(Rn). (38)

By the strong Markov property, (ξ(n))n≥0 is a Markov chain in D. Estimates on its transition
probability are given in the following statement.

Corollary 5.5 For all η ∈ D the following estimates hold.

(a) If ηx = −ηy for x ∈ Dm, y ∈ Dm+1 (we say Dm is a favorable diagonal), then

P

(
ξ(n + 1) = ηDm |ξ(n) = η

)
≥ O

(
log L

L2

)
. (39)

Moreover, the above conditional probability is constant in m on both elements of the
partition of {0, 1, . . . , L − 1}:

{m : x ∈ Dm, y ∈ Dm−1 ⇒ σx = σy}, {m : x ∈ Dm, y ∈ Dm−1 ⇒ σx = −σy}.
(b) If ηx = ηy for x ∈ Dm, y ∈ Dm+1 (Dm is an unfavorable diagonal), then

O
(
L−4c−2) ≤ P

(
ξ(n + 1) = ηDm |ξ(n) = η

)
≤ O

(
L−4c−1) . (40)

(c)

P

(
ξ(n + 1) �∈ {η, ηDm : m = 0, . . . , L − 1}|ξ(n) = η

)
≤ O

(
L−k+1

)
(41)

Proof Estimates (39) and (40) follow from (34) and the fact (see 31) that a discrepancy is
nearly uniformly distributed in � (Lemma 5.2 ). Estimate (41) follows for the observation that
if ξ(n + 1) �∈ {η, ηDm : m = 0, . . . , L − 1}, then necessarily either two atypical updatings
have occurred simultaneously between times Rn and Sn+1, or an atypical updating have have
occurred between times Sn+1 and Rn+1; the probability of this event has been estimated in
(28) (used here with a = k − 1) and (32). �

The process ξ(n) defined in (38) starts at ξ(0) = −1, and it can clearly identified with
a process taking values in {−1, 1}L . Thus we write ξ = (ξi )

L−1
i=0 , where ξi is the spin in

the diagonal Di . By (40), after a waiting time of order at most L4c+2, a one is created at
some i . At this point there are two favorable diagonals: Di and Di−1; all other diagonals
are unfavorable. Thus, in one time step, two transitions are equally likely: ξi goes back to

−1 or ξi−1 flips to 1. By (39), these transitions occur with probability p ≥ O
(

log L
L2

)
. The
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16 P. Dai Pra et al.

probability that ξ changes to some other configurations is, by (40) and (41), not larger than
O
(
L−k+1

) + O
(
L−4c−1

)
. In the case ξ is back to −1 the process starts afresh. Otherwise,

there are two consecutive ones at i −1, i . The above argument can be iterated: in the next step
two diagonals are favorable, Di and Di−2, so ξi−2 and ξi flips with the same probability p.
Therefore, with overwhelming probability, the ones in ξ(n) are consecutive, and their number
evolves, up to events of small probability, as a symmetric p random walk. This makes simple,
for this effective process, to give estimates on the hitting time of 1.

Lemma 5.6 Define H (ξ)
1 the first time ξ(n) visits {1}. Then, assuming c > 1

2 and k −4c > 4,

P

(
H (ξ)

1 > Lk+2
)

≤ O
(
L−1) .

We are now ready to complete the proof of Theorem 5.1. Indeed using also Corollary 5.4,

P−1

(
T1 > L8k

)
≤ P

(
H (ξ)

1 > Lk+2
)

+ P

(
RLk+2 > L8k

)

≤ O
(
L−1) +

∑

n≤Lk+2

P

(
Rn − Rn−1 > L7k−2

)

= O
(
L−1) ,

which is the desired result.

5.1 Proofs of the Lemmas

We are therefore left with the proof of Lemmas 5.2, 5.3 and 5.6.

Proof of Lemma 5.2 For the proof of (31), recall that an atypical updating is made at x at
time n if Un(x) ∈ Ix (σ (n − 1)), where

Ix (σ ) =
⎧
⎨

⎩

(
0, e−2J+qσx

2 cosh(−2J+qσx )

)
if σ d

x = σ l
x = −1

(
e2J+qσx

2 cosh(2J+qσx )
, 1
)

if σ d
x = σ l

x = 1

We have:

P (X = x |T > S) = 1

P(T > S)

∑

n

P (X = x, S = n, T > n)

and

{X = x, S = n, T > n}
= {S > n − 1} ∩ {

Ux (n) ∈ Ix (σ (n − 1)), Uy(n) �∈ Iy(σ (n − 1)) for y �= x
}
.

so that

P (X = x, S = n, T > n) = P (S > n − 1) |Ix (σ (n − 1))|
∏

y �=x

(
1 − |Iy(σ (n − 1))|

)

= P (S > n)
|Ix (σ (n − 1))|

1 − |Ix (σ (n − 1))| =: P (S > n) fx (n)

We note that the function fx (n) as a function on x , is constant on the sets

M+ = {x : σx = σ l
x }, M− = {x : σx = −σ l

x },
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Fast Mixing for the 2D Ising Model 17

so on these sets P (X = x |T > S) is constant, say P (X = x |T > S) = PM± . Moreover
since

min
σ

|Ix (σ )| ≥ e−4q max
σ

|Ix (σ )|
we have uniformly in n

e−4q <
fx (n)

fy(n)
< e4q

and so

e−4q <
PM+
PM−

< e4q , |M+|PM+ + |M−|PM+ = 1

from which (31) easily follows. �
Proof of Lemma 5.3 We prove (32) and (33). The second inequality in (32) follows form the
first, (26) and the assumption r < 2k − 1, since

Pσ (R > Lr ) ≤ Pσ (R > Lr |S > L2k) + Pσ (S ≤ L2k)

Note that, under Pσ (·|S > L2k), the random numbers {Ux (n) : x ∈ �, n ≤ L2k} are

i.i.d. with uniform distribution on
(

e−2J+q

2 cosh(2J−q)
, 1 − e−2J+q

2 cosh(2J−q)

)
. The following probabil-

ity describe the two possible neutral updatings; atypical updatings are forbidden by the
conditioning.

P(ηx (1) = 1|S > L2k) = P(ηxu (1) = 1|S > L2k) = eqσ r
x

2 cosh(qσ r
x )

= 1

2
+ cσ r

x

2

log L

L
+ O

((
log L

L

)2
)

.

Thus, denoting by N (n) the number of spins equal to 1 in the restriction to Dm of η(n), we
have that

p+ := P(N (1) = 2|S > L2k) =
(
P(ηx (1) = 1|S > L2k)

)2

= 1

4
+ cσ r

x

2

log L

L
+ O

((
log L

L

)2
)

p− := P(N (1) = 0|S > L2k) =
(

1 − P(ηx (1) = 1|S > L2k)
)2

= 1

4
− cσ r

x

2

log L

L
+ O

((
log L

L

)2
)

.

This argument can now be repeated, since either the discrepancy for η in Dm has disappeared,
or two neutral updatings are possible. This implies that, for n ≤ L2k and m > 0

p+ = P(N (n) = m + 1|N (n − 1) = m, S > L2k)

p− = P(N (n) = m − 1|N (n − 1) = m, S > L2k)

So, set R̃ := min{n : N (n) ∈ {0, L}}. Note that R̃ ∧ L2k = R ∧ L2k on {T > S > L2k}.
Moreover, up to time R̃∧L2k , N (n) evolves as a (p+, p−) one dimensional random walk. We
recall that if (ξ(n))n≥1 is a (p+, p−) random walk with ξ(0) = 1, and denote by H0L , H0, HL
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18 P. Dai Pra et al.

the hitting times of, respectively, {0, L}, {0} and {L}, then (see e.g. [4], XIV.2 and XIV.3,
where the case p+ + p− = 1 is treated, but the same proof applies to p+ + p− < 1)

P(HL < H0) =
1 − p−

p+

1 −
(

p−
p+

)L
∼

{
4c log L

L if σ u
x = σx

4c log L
L4c+1 if σ u

x = −σx
(42)

E(H0L) = 1

p+ − p−

⎡

⎢⎣L
1 − p−

p+

1 −
(

p−
p+

)L
− 1

⎤

⎥⎦ ∼
{

4L if σ r
x = 1

L
c log L if σ r

x = −1 (43)

In particular, by Markov inequality, for every r > 1

P(H0L > Lr ) ≤ O(L−r+1). (44)

From (42) and (44), the desired estimate (32) and (33) follow. Finally, (33) follows from (25)
and(33), using the assumption 2k − 4c − 3 > 0. �
Proof of Lemma 5.6 Let

T ξ := min{n : ξ(n) �∈ {ξ(n − 1), ξ Dm (n − 1) : m = 0, . . . , L − 1}}.
By (41),

P(T ξ ≤ Lk−2) ≤ Lk−2 O
(

L−k+1
)

= O(L−1).

Similarly with what we did in previous Lemmas, we condition the Markov chain ξ(n) to the
event {T ξ > Lk−2}. Under this conditioning, we are left with a Markov chain for which, up
to time Lk−2, (39) and (40) hold, but transitions of the type in (41) are forbidden. Let

S(ξ)
1 := min{n : ξ(n) �= −1}

be the first time the process leaves the initial configuration, and

S
(ξ)

1 := min{n > S(ξ)
1 : ξ(n) = ξ i (n − 1) for some i such that ξi (n − 1) = ξi+1(n − 1)},

where ξ i is the configuration obtained from ξ by flipping ξi . By (40)

P

(
S(ξ)

1 > L4c+3
)

≤ (
1 − O

(
L−4c−2))L4c+3 ≤ e−O(L),

and

P

(
S

(ξ)

1 − S(ξ)
1 ≤ L2c

)
≤ L2c L O

(
L−4c−1) = O

(
L−2c) .

Conditioning to the event {T ξ > Lk−2, S(ξ)
1 ≤ L4c+3, S

(ξ)

1 − S(ξ)
1 > L2c} which, for k − 4c

large enough, has probability at least 1− O
(
L−2c

) ≥ 1− O(L−1), the number of spin equal

to 1 in ξ(S(ξ)
1 + n) evolves as a symmetric random walk, starting from 1, and moving with

probability p ≥ O
(

log L
L2

)
(see 39). We now use identities analogous to (42) and (43) for the

case p+ = p− = p:

P(HL < H0) = 1

L
, (45)

and

E(H0L) = L − 1

2p
≤ O(L3).
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It follows that

P

(
ξ(H0L) = 1, H0L < S

(ξ)

1 |T ξ > Lk−2, S(ξ)
1 ≤ L4c+3, S

(ξ)

1 − S(ξ)
1 > L2c

)
≥ O(L−1),

and

P(H0L > C) ≤ O(L3)

C
.

Thus, introducing the stopping times, for j ≥ 1 (note the analogy with (35) in the previous
step of the renormalization)

R(ξ)
0 := 0

S(ξ)
j := min{n > R(ξ)

j−1 : ξ(n) �∈ {−1, 1}}
R(ξ)

j := min{n > S(ξ)
j : ξ(n) ∈ {−1, 1}}

we have, by (45),

P

(
ξ(R(ξ)

j ) = 1|ξ(R(ξ)
j−1) = −1

)
≥ O(L−1),

and

P

(
R(ξ)

j − R(ξ)
j−1 > Lk

)
≤ P

(
S(ξ)

1 > Lk−1
)

+ P(H0L > Lk−1) ≤ O(L−k+4),

where we have used again the fact that k −4c is sufficiently large. Finally, for k large enough,

P

(
T (ξ)

1 > Lk+2
)

≤ P

(
R(ξ)

L2 ≤ Lk
)

+
∑

j≤L2

P

(
R(ξ)

j − R(ξ)
j−1 > Lk

)

≤ (
1 − O(L−1)

)L2 + L2 O(L−k+4) ≤ O(L−1).

�
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