
J Stat Phys (2015) 159:21–42
DOI 10.1007/s10955-014-1179-4

Determinantal Martingales and Correlations
of Noncolliding Random Walks

Makoto Katori

Received: 10 July 2014 / Accepted: 19 December 2014 / Published online: 1 January 2015
© Springer Science+Business Media New York 2014

Abstract We study the noncolliding random walk (RW), which is a particle system of one-
dimensional, simple and symmetric RWs starting from distinct even sites and conditioned
never to collide with each other. When the number of particles is finite, N < ∞, this dis-
crete process is constructed as an h-transform of absorbing RW in the N -dimensional Weyl
chamber. We consider Fujita’s polynomial martingales of RW with time-dependent coeffi-
cients and express them by introducing a complex Markov process. It is a complexification
of RW, in which independent increments of its imaginary part are in the hyperbolic secant
distribution, and it gives a discrete-time conformal martingale. The h-transform is repre-
sented by a determinant of the matrix, whose entries are all polynomial martingales. From
this determinantal-martingale representation (DMR) of the process, we prove that the non-
colliding RW is determinantal for any initial configuration with N < ∞, and determine
the correlation kernel as a function of initial configuration. We show that noncolliding RWs
started at infinite-particle configurations having equidistant spacing are well-defined as deter-
minantal processes and give DMRs for them. Tracing the relaxation phenomena shown by
these infinite-particle systems, we obtain a family of equilibrium processes parameterized
by particle density, which are determinantal with the discrete analogues of the extended
sine-kernel of Dyson’s Brownian motion model with β = 2. Following Donsker’s invariance
principle, convergence of noncolliding RWs to the Dyson model is also discussed.
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22 M. Katori

1 Introduction

Let ζ be a random variable binomially distributed as

P[ζ = 1] = 1

2
, P[ζ = −1] = 1

2
, (1.1)

so that the Laplace transform of the probability distribution is given by

E[eαζ ] = cosh α, α ∈ R. (1.2)

For N ∈ N ≡ {1, 2, . . .}, let {ζ j (t) : 1 ≤ j ≤ N , t ∈ N} be a family of i.i.d.random
variables which follow the same probability law with ζ . We consider a random walk (RW)
on Z

N , S(t) = (S1(t), . . . , SN (t)), t ∈ N0 ≡ {0} ∪ N, in which the components S j (t), j =
1, 2, . . . , N are independent simple and symmetric RWs;

S j (0) = u j ∈ Z,

S j (t) = u j + ζ j (1) + ζ j (2) + · · · + ζ j (t), t ∈ N, 1 ≤ j ≤ N .

Let Ze = 2Z = {. . . ,−2, 0, 2, 4, . . .} and Zo = 1 + 2Z = {. . . ,−1, 1, 3, 5, . . .}. For each
component, S j (·), 1 ≤ j ≤ N , the transition probability is given by

p(t − s, y|x) = P[S j (t) = y|S j (s) = x]

=

⎧
⎪⎪⎨

⎪⎪⎩

1

2t−s

(
t − s

[(t − s) + (y − x)]/2

)

,

if t ≥ s, −(t−s)≤ y−x ≤ t−s, (t−s)+(y−x)∈Ze,

0, otherwise.

(1.3)

We always take the initial point u = (u1, . . . , uN ) = S(0) from Z
N
e , then S(t) ∈ Z

N
e , if

t is even, and S(t) ∈ Z
N
o , if t is odd. The probability space is denoted as (�, F, Pu) and

expectation is written as Eu.
Let

WN = {x = (x1, . . . , xN ) ∈ R
N : x1 < · · · < xN }

be the Weyl chamber of type AN−1. Define τu to be the first exit time from the Weyl chamber
of the RW started at u ∈ Z

N
e ∩ WN ,

τu = inf{t ≥ 1 : S(t) /∈ WN }.
In the present paper, we study the RW conditioned to stay in WN forever. That is, τu = ∞
is conditioned. We call such a conditional RW the (simple and symmetric) noncolliding
RW, since when we regard the j-th component S j (·) as the position of j-th particle on
Z, 1 ≤ j ≤ N , if τu < ∞, then at t = τu there is at least one pair of particles ( j, j + 1),
which collide with each other; S j (τu) = S j+1(τu), 1 ≤ j ≤ N − 1. Such a conditional
RW is also called a system of vicious walkers in statistical physics [6,14], non-intersecting
paths, non-intersecting walks, and ordered random walks in enumerative combinatorics and
probability theory (see [8,36] and Chap. 10 in [15]).

Let M be the space of nonnegative integer-valued Radon measure on Z and M0 ≡ {ξ ∈
M : ξ({x}) ≤ 1,∀x ∈ Z}. We consider the noncolliding RW as a process in M0 and represent
it by

�(t, ·) =
N∑

j=1

δS0
j (t)

(·), t ∈ N0, (1.4)
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Determinantal Martingales and Correlations 23

where

S0(t) = (S0
1 (t), . . . , S0

N (t)) ∈ Z
N ∩ WN , t ∈ N0. (1.5)

The configuration �(t, ·) ∈ M0, t ∈ N0 is unlabeled, while S0(t) ∈ Z
N ∩ WN , t ∈ N0

is labeled. We write the probability measure for �(t, ·), t ∈ N0 started at ξ ∈ M0 as Pξ

with expectation Eξ , and introduce a filtration {F(t) : t ∈ N0} defined by F(t) = σ(�(s) :
0 ≤ s ≤ t, s ∈ N0). Then the above definition of the noncolliding RW gives the follows.
Let ξ = ∑N

j=1 δu j with u ∈ Z
N
e ∩ WN , and t ∈ N, t ≤ T ∈ N. For any F(t)-measurable

bounded function F ,

Eξ

[
F(�(·))

]
= lim

n→∞ Eu

⎡

⎣ F

⎛

⎝
N∑

j=1

δS j (·)

⎞

⎠

∣
∣
∣
∣
∣
∣
τu > n

⎤

⎦. (1.6)

The important fact is that, if we write the Vandermonde determinant as

h(x) = det
1≤ j,k≤N

[xk−1
j ] =

∏

1≤ j<k≤N

(xk − x j ), (1.7)

the expectation (1.6) is obtained by an h-transform in the sense of Doob of the form [35]

Eξ

[
F(�(·))

]
= Eu

⎡

⎣F

⎛

⎝
N∑

j=1

δS j (·)

⎞

⎠ 1(τu > T )
h(S(T ))

h(u)

⎤

⎦. (1.8)

(See also [8,34].) It determines the noncolliding RW, (�(t), t ∈ N0, Pξ ).
The formula (1.8) is a discrete analogue of the construction of noncolliding Brownian

motion (BM) by Grabiner [18] as an h-transform of absorbing BM in WN . The noncolliding
BM is equivalent to Dyson’s BM model with parameter β = 2 and the latter is known as an
eigenvalue process of Hermitian matrix-valued BM and as solutions of the following system
of stochastic differential equations (SDEs)

d X j (t) = dW j (t) +
∑

1≤k≤N ,
k �= j

1

X j (t) − Xk(t)
dt, 1 ≤ j ≤ N , t ∈ [0,∞), (1.9)

where W j (·), 1 ≤ j ≤ N are independent one-dimensional standard BMs [7,18,19,21,
27,32,38,41–43,51,52]. (From now on BM stands for one-dimensional standard Brownian
motion and Dyson’s BM model with β = 2 is simply called the Dyson model in this paper.)
Then the noncolliding RW has been attracted much attention as a discretization of models
associated with the Gaussian random-matrix ensembles [2,3,12,15,22,23,26,40].

Eigenvalue distributions of random-matrix ensembles provide important examples of
determinantal point processes, in which any correlation function is given by a determinant
specified by a single continuous function called the correlation kernel [4,49,50]. The non-
colliding BM is regarded as a dynamical extension of determinantal point process such that
any spatio-temporal correlation function is expressed by a determinant. Such processes are
said to be determinantal [28]. The dynamical correlation kernel is asymmetric with respect
to the exchange of two points on the spatio-temporal plane and shows causality in the system.
This type of correlation kernel was first obtained by Eynard and Mehta for a multi-matrix
model [11] and by Nagao and Forrester for the noncolliding BM started at a special initial
distribution (the GUE eigenvalue distribution) [39]. It is proved that the noncolliding BM is
determinantal for any fixed initial configuration with finite numbers of particles as well as
two families of infinite-particle initial configurations [30,33].
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24 M. Katori

Nagao and Forrester [40] studied a ‘bridge’ of noncolliding RW started from u0 =
(2 j)N−1

j=0 at t = 0 and returned to the same configuration u0 at time t = 2M, M ∈ N0.
They showed that at time t = M the spatial configuration provides a determinantal point
process and the correlation kernel is expressed by using the symmetric Hahn polynomials.
Johansson [23] generalized the process to a bridge from u0 at t = 0 to M2 − M1 + u0

at t = M1 + M2, M1, M2 ∈ N0, M2 > M1, and proved that the process is determinan-
tal. The dynamical correlation kernel is of the Eynard-Mehta type and called the extended
Hahn-kernel. For the noncolliding RW defined for infinite time-period t ∈ N0 by (1.6) or
(1.8) [8,34,35], however, determinantal structure of spatio-temporal correlations has not been
clarified so far.

In the present paper we show that the construction by the h-transform (1.8) directly
leads to the fact that the discrete-time noncolliding RW is determinantal for any fixed initial
configuration ξ = ∑N

j=1 δu j ∈ M0 with N = ξ(Ze) ∈ N. (See [10] for the noncolliding
system of continuous-time random walks.) There are two key points in the present study of
discrete-time systems; proper complexification of RWs and introduction of determinantal
martingale. Let ζ̃ ∈ R be a continuous random variable in the hyperbolic secant distribution
[13],

P̃[̃ζ ∈ dx] = 1

2
sech

(πx

2

)
dx = 1

2 cosh(πx/2)
dx, (1.10)

which is selfdecomposable (see [47, pp.98–99 ]). The Fourier transform of (1.10) (the char-
acteristic function of ζ̃ ) is also expressed by the hyperbolic secant [13] (i ≡ √−1)

Ẽ[eiαζ̃ ] = sechα = 1

cosh α
, α ∈ R, (1.11)

which is exactly the inverse of (1.2). Let {̃ζ (t) : t ∈ N} be a series of i.i.d.random variables
obeying the same probability law with ζ̃ . We define a discrete-time Markov process S̃(t),
t ∈ N0 on R starting from 0 at time t = 0 by

S̃(t) = ζ̃ (1) + · · · + ζ̃ (t), t ∈ N. (1.12)

At each time t ∈ N0, it is in the generalized hyperbolic secant distribution with density

p̃(t, x |0) ≡ P̃[S̃(t) ∈ dx]
= 2t−2

π�(t)

∣
∣
∣
∣�

(
t

2
+ i

x

2

)∣
∣
∣
∣

2

, t ∈ N0, x ∈ R, (1.13)

where� denotes the gamma function [20]. It can be shown that S̃(t)/
√

t
d→ N(0, 1) as t → ∞

[20]. Let S̃ j (·), 1 ≤ j ≤ N be a set of independent copies of S̃(·) and express the expectation
with respect to these processes also by Ẽ. For the original RW, S(t) = (S1(t), . . . , SN (t)),
t ∈ N0 started at a fixed configuration u ∈ Z

N
e ∩ WN , its complexification is given by the

discrete-time complex processes, Z(t) = (Z1(t), . . . , Z N (t)), t ∈ N0 with

Z j (t) = S j (t) + i S̃ j (t), 1 ≤ j ≤ N , t ∈ N0. (1.14)

We put ξ = ∑N
j=1 δu j ∈ M0 and consider a set of functions of z ∈ C,



uk
ξ (z) =

∏

1≤ j≤N ,
j �=k

z − u j

uk − u j
, 1 ≤ k ≤ N . (1.15)
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Determinantal Martingales and Correlations 25

The function 

uk
ξ (z) is a polynomial of z with degree N − 1 having zeros at u j , 1 ≤ j ≤

N , j �= k and 

uk
ξ (uk) = 1. We can prove that (Lemma 2.3), for each 1 ≤ k ≤ N ,

Muk
ξ (t, S j (t)) ≡ Ẽ

[



uk
ξ (Z j (t))

]
, 1 ≤ j ≤ N (1.16)

provide independent martingales with discrete time t ∈ N0. We consider a determinant of
matrix, whose entries are these martingales,

Dξ (t, S(t)) = det
1≤ j,k≤N

[Muk
ξ (t, S j (t))], t ∈ N0, (1.17)

which we call the determinantal martingale [24]. Our martingales (1.16) are prepared so that
the equality

h(S(t))

h(u)
= Dξ (t, S(t)), t ∈ N0, (1.18)

holds and a kind of reducibility (Lemma 2.4) is established.
This equality (1.18) gives a determinantal-martingale representation (DMR) for the non-

colliding RW (Proposition 3.1), and from it we can prove that the noncolliding RW is deter-
minantal with the correlation kernel,

Kξ (s, x; t, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N∑

j=1

p(s, x |u j )Mu j
ξ (t, y) − 1(s > t)p(s − t, x |y),

if (s, x), (t, y) ∈ N0 × Z, s + x, t + y ∈ Ze,

0, otherwise,

(1.19)

where p is the transition probability (1.3), and 1(·) is an indicator; 1(ω) = 1 if ω is satisfied,
and 1(ω) = 0 otherwise (Theorem 3.2). Note again that

Mu j
ξ (t, y) = Ẽ

[



u j
ξ (y + i S̃(t))

]

=
∫

R

dv p̃(t, v|0)

u j
ξ (y + iv), 1 ≤ j ≤ N (1.20)

with (1.13), are functions of initial configuration ξ = ∑N
j=1 δu j through (1.15).

For a ∈ {2, 3, . . .}, we consider a configuration on Ze having equidistant spacing 2a with
an infinite number of particles,

δ2aZ(·) ≡
∑

k∈Z

δ2ak(·). (1.21)

(The noncolliding RW starting from δ2Z(·), that is, the case a = 1 of (1.21), is trivial. The
process is stationary in the sense that �(2n) = ∑

k∈Z
δ2k , �(2n + 1) = ∑

k∈Z
δ2k+1,

n ∈ N0.) We prove that the noncolliding RW started at (1.21), denoted as (�(t), t ∈
N0, Pδ2aZ

), a ∈ {2, 3, . . .}, is well-defined as a determinantal process with an infinite
number of particles (Proposition 4.1). There the N linearly independent polynomials of
y given by (1.20) are extended to an infinite sequence of linearly independent entire func-
tions of y, M2ak

δ2aZ
(t, y), k ∈ Z, corresponding to the infinite-particle initial configuration

(1.21). Then by using the infinite sequence of independent martingales with discrete time,
(M2ak

δ2aZ
(t, S j (t)))t∈N0 , k ∈ Z, for each j ∈ Z, we can give DMRs for (�(t), t ∈ N0, Pδ2aZ

),
a ∈ {2, 3, . . .} (Proposition 4.2). For each a ∈ {2, 3, . . .}, this discrete-time infinite-particle

123



26 M. Katori

system on Z shows a relaxation phenomenon to the equilibrium determinantal process,
(�(t), t ∈ Z, Pρ), whose correlation kernel is given by

Kρ(t − s, y − x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ρ

0
du

2 cos(πu(y − x))

[cos(πu)]t−s
, if s < t,

2 sin(πρ(y − x))

π(y − x)
, if s = t,

−
∫ 1

ρ

du
2 cos(πu(y − x))

[cos(πu)]t−s
, if s > t,

(1.22)

for (s, x), (t, y) ∈ Z
2, s + x, t + y ∈ Ze, and Kρ(t − s, y − x) = 0 otherwise, where

ρ = 1/2a gives the particle density on Z (Theorem 4.4). This is a discrete analogue of the
extended sine-kernel (see Sect. 11.7.1 in [15]) of the Dyson model (1.9).

We note that independent increments ζ j (t) of S j (t) and ζ̃ j (t) of S̃ j (t), 1 ≤ j ≤ N , t ∈ N0

are both having mean zero and variance 1. Then Donsker’s invariance principle [5,46] proves
both of S j (n2t)/n and S̃ j (n2t)/n converge to BMs as n → ∞. It implies that the DMRs
for appropriately scaled noncolliding RWs converge to the complex BM representation for
the Dyson model (1.9) given by [33]. The central limit theorem of noncolliding RWs to the
Dyson model will be established.

The paper is organized as follows. In Sect. 2 the polynomial martingales and determinantal
martingales are introduced for noncolliding RW and their properties are discussed. Determi-
nantal properties of noncolliding RW is clarified in Sect. 3. An extension to infinite particle
systems is discussed in Sect. 4. Convergence of noncolliding RWs to the Dyson model is
discussed in Sect. 5.

2 Preliminaries

2.1 Discrete Itô’s Formula and Polynomial Martingales of Fujita

Let S(t), t ∈ N0 be a one-dimensional, simple and symmetric RW starting from 0 at time
t = 0,

S(t) = ζ(1) + ζ(2) + · · · + ζ(t), t ∈ N,

where {ζ(t) : t ∈ N} are i.i.d.obeying the same probability law with ζ . The following discrete
Itô’s formula was given by Fujita for the one-dimensional, simple and symmetric RW [16,17].

Lemma 2.1 For any f : N0 × Z → R and any t ∈ N0,

f (t + 1, S(t + 1)) − f (t, S(t))

= 1

2

[
f (t + 1, S(t) + 1) − f (t + 1, S(t) − 1)

]
ζ(t + 1)

+ 1

2

[
f (t+1, S(t)+1)−2 f (t+1, S(t))+ f (t+1, S(t)−1)

]

+ f (t + 1, S(t)) − f (t, S(t)). (2.1)

We perform the Esscher transform with parameter α ∈ R, S(·) → Ŝα(·) as

Ŝα(t) = eαS(t)

E[eαS(t)] , t ∈ N0. (2.2)
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Determinantal Martingales and Correlations 27

By (1.2), we have Ŝα(t) = Gα(t, S(t)) with

Gα(t, x) = eαx

(cosh α)t
, t ∈ N0, x ∈ Z. (2.3)

If we set f = Gα in (2.1), the second and third terms in the RHS vanish. Then

Gα(t+1, S(t+1)) − Gα(t, S(t)) = 1

2

[
Gα(t+1, S(t)+1) − Gα(t+1, S(t)−1)

]
ζ(t + 1),

which implies that Gα(t, S(t)) is {ζ(1), . . . , ζ(t)}-martingale for any α ∈ R [16,17]. From
now on, we simply say ‘(Gα(t, S(t)))t∈N0 is a martingale’ in such a situation.

Expansion of (2.3) with respect to α around α = 0,

Gα(t, x) =
∞∑

n=0

mn(t, x)
αn

n! , (2.4)

determines a series of monic polynomials of degrees n studied by Fujita in [16]

mn(t, x) = xn +
n−1∑

j=1

c( j)
n (t)x j , n ∈ N0, (2.5)

such that

c( j)
n (0) = 0, 1 ≤ j ≤ n − 1, (2.6)

mn(t, S(t)) is martingale, t ∈ N0. (2.7)

For example,

m0(t, x) = 1,

m1(t, x) = x,

m2(t, x) = x2 − t,

m3(t, x) = x3 − 3t x,

m4(t, x) = x4 − 6t x2 + t (3t + 2),

m5(t, x) = x5 − 10t x3 + 5t (3t + 2)x, . . . . (2.8)

They satisfy the recurrence relations

mn(t, x) = 1

2
[mn(t + 1, x + 1) + mn(t + 1, x − 1)], n ∈ N0.

As mentioned below in Remark 2, mn(t, x), n ∈ N0 are related with the Euler polynomials
studied in [48]. Since the importance of mn(t, x), n ∈ N0 in the context of random walks was
first clearly shown by Fujita [16], however, we would like to call mn(t, x), n ∈ N, Fujita’s
polynomials and (mn(t, S(t)))t∈N0 , n ∈ N0, Fujita’s polynomial martingales for the simple
and symmetric RW.

Remark 1 Let B(t), t ≥ 0 be BM started at 0. Then its Esscher transform with parameter α

is given by B̂α(t) = GBM
α (t, B(t)) with

GBM
α (t, x) = eαx

E[eαB(t)] = eαx
∫ ∞

−∞
dxeαx pBM(t, x |0)

= eαx−α2t/2,

where
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28 M. Katori

pBM(t, y|x) = 1√
2π t

e−(y−x)2/2t , t ≥ 0, x, y ∈ R (2.9)

is the transition probability density of BM. We see that

GBM
α (t, x) =

∞∑

n=0

(
t

2

)n/2

Hn

(
x√
2t

)
αn

n!

with the Hermite polynomials Hn(z) =
[n/2]∑

j=0

(−1) j n!
j !(n − 2 j)! (2z)n−2 j , n ∈ N0. Therefore,

mBM
n (t, B(t)) =

(
t

2

)n/2

Hn

(
B(t)√

2t

)

, n ∈ N0, t ≥ 0, (2.10)

are the polynomial martingales for BM as known well (see, for instance, [48]).

Remark 2 The polynomials (2.10) for BM have the multiple stochastic-integral representa-
tions,

mBM
n (t, B(t)) = n!

∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
d B(tn) · · · d B(t2)d B(t1), n ∈ N.

Their discrete analogues determine the polynomial martingales for RW,

m̂n(t, S(t)) = n!
t∑

t1=1

t1∑

t2=1

· · ·
tn−1∑

tn=1

ζ(t1)ζ(t2) · · · ζ(tn).

For N ∈ N0, 0 < p < 1, the monic Krawtchouk polynomials K̃n(x; N , p), n ∈ N0 are
defined by the generating function as

N∑

n=0

K̃n(x; N , p)
αn

n! = (1 + (1 − p)α)x (1 − pα)N−x .

Then [45,48]

m̂n(t, x) = 2n K̃n((t + x)/2; t, 1/2), n ∈ N0.

It should be noted that m̂n(t, x), n ∈ N0 are generally different from Fujita’s polynomials
mn(t, x), n ∈ N0. We see that m̂0(t, x) = 1, m̂1(t, x) = x , m̂2(t, x) = x2−t , and m̂3(t, x) =
x(x2 + 2)− 3t x , m̂4(t, x) = x2(x2 + 8)− 6t x2 + 3t (t − 2), . . .. In general, the Krawtchouk
polynomials do not satisfy the condition (2.6). The monic polynomials of order n, E (λ)

n (x)

with parameter λ ∈ N0 defined by the generating function

∞∑

n=0

E (λ)
n (x)

αn

n! =
(

2

1 + eα

)λ

eαx (2.11)

are called the Euler polynomials (see [9, p. 253 ]). Schoutens showed that, if ζ̄ j , j ∈ N

have a binomial distribution Bin(λ, 1/2) and S̄(t) ≡ ∑t
j=1 ζ̄ j , t ∈ N with S̄(0) ≡ 0, then

(E (tλ)
n (S̄(t)))t∈N0 , n ∈ N0 are martingales [48]. Fujita’s polynomials are related with Euler’s

by

mn(t, x) = 2n E (t)
n

(
t + x

2

)

, n ∈ N0. (2.12)
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Determinantal Martingales and Correlations 29

2.2 Complex-Process Representation for Polynomial Martingales

For RW, (S(t))t∈N0 , we consider its complexification,

Z(t) = S(t) + i S̃(t), t ∈ N0, (2.13)

where S̃(·) is defined by (1.12) with S̃(0) ≡ 0. Note that 
Z(t) =
S(t) ∈ Z and �Z(t) = S̃(t) ∈ R, t ∈ N0. We can prove the following.

Lemma 2.2 With the complex process (2.13), Fujita’s polynomial martingales with discrete
time t ∈ N0, (mn(t, S(t)))t∈N0 , n ∈ N0, for the simple and symmetric RW have the following
representations,

mn(t, S(t)) = Ẽ[Z(t)n], n ∈ N0, t ∈ N0. (2.14)

Proof By definition (1.12) of S̃(t), (1.11) gives

Ẽ
[
eiα S̃(t)

]
=
(

Ẽ
[
eiαζ̃

])t = 1

(cosh α)t
, α ∈ R, t ∈ N0. (2.15)

Then for (2.3), the equality Gα(t, S(t)) = Ẽ[eαZ(t)], α ∈ R is established, which proves
(2.14). ��
Remark 3 For a pair of independent BMs, B(t), B̃(t), t ≥ 0, we can see

E[eαB(t)] = eα2t/2 =
(

Ẽ
[
eiα B̃(t)

])−1
, α ∈ R. (2.16)

Then mBM
n (t, B(t)) = Ẽ[B(t)n], n ∈ N0, t ≥ 0, is concluded, where B(t) is a complex

BM, B(t) = B(t) + i B̃(t), t ≥ 0. The reciprocity relations between (1.2) and (1.11), and
E[eαS(t)] = (cosh α)t and (2.15) are discrete-time analogues of (2.16).

A direct consequence of Lemma 2.2 is the following.

Lemma 2.3 Assume that f is polynomial. Then Ẽ[ f (Z(t))] is a martingale with discrete
time t ∈ N0.

2.3 Determinantal Martingales

We consider an N -component complex process Z(t) = (Z1(t), . . . , Z N (t)), t ∈ N0 with
(1.14). The probability space for (1.14) is a product of the probability space (�, F, Pu) for
the RW on Z

N , S(t), t ∈ N0, and (�̃, F̃, P̃) for S̃(t), t ∈ N0 defined on R
N , which we

write as (�̌, F̌, Pu). Let Eu be the expectation for the process Z(t), t ∈ N0 with the initial
condition Z(0) = u ∈ Z

N
e ∩ WN .

By multilinearity of determinant, the Vandermonde determinant (1.7) does not change in
replacing xk−1

j by any monic polynomial of x j of degree k − 1, 1 ≤ j, k ≤ N . Note that
mk−1(t, x j ) is a monic polynomial of x j of degree k − 1. Then

h(S(t))

h(u)
= 1

h(u)
det

1≤ j,k≤N
[mk−1(t, S j (t))]

= 1

h(u)
det

1≤ j,k≤N

[
Ẽ[Z j (t)

k−1]
]

= Ẽ

[
1

h(u)
det

1≤ j,k≤N
[Z j (t)

k−1]
]

,
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where we have used Lemma 2.2, the multilinearity of determinant, and independence of
Z j (t)’s. Therefore, we have obtained the equality,

h(S(t))

h(u)
= Ẽ

[
h(Z(t))

h(u)

]

, t ∈ N0. (2.17)

Now we consider the determinant identity [33],

h(z)
h(u)

= det
1≤ j,k≤N

[



uk
ξ (z j )

]
, (2.18)

where ξ = ∑N
j=1 δu j , u = (u1, . . . , uN ) ∈ WN , and 


uk
ξ (z) is given by (1.15) (see Sect. 4.1

in [24] for derivation). Since 

uk
ξ (z) is a polynomial of z of degree N −1, Lemma 2.3 proves

that (Muk
ξ (t, S j (t)))t∈N0 , 1 ≤ j ≤ N , defined by (1.16) are independent martingales with

discrete time t ∈ N0 and

Eu[Muk
ξ (t, S j (t))] = Eu[Muk

ξ (0, S j (0))]
= Muk

ξ (0, u j )

= 

uk
ξ (u j ) = δ jk, 1 ≤ j, k ≤ N . (2.19)

Using the identity (2.18) for h(Z(t))/h(u) in (2.17), we have

h(S(t))

h(u)
= Ẽ

[

det
1≤ j,k≤N

[
uk
ξ (Z j (t))]

]

= det
1≤ j,k≤N

[
Ẽ[
uk

ξ (Z j (t))]
]
,

where independence of Z j (t)’s was again used. By definition (1.17) of Dξ with (1.16), we
obtain the equality (1.18).

Remark 4 The real parts of the complex processes (1.14) are RWs with Eu[(S j (t)−u j )
2] =

t ∈ N0, 1 ≤ j ≤ N . It is obvious from definition (1.12) that the imaginary parts,
S̃ j (t), t ∈ N0, are {̃ζ j (1), . . . , ζ̃ j (t)}-martingales with Ẽ[S̃ j (t)2] = t ∈ N0, 1 ≤ j ≤ N .
Then Z j (·), 1 ≤ j ≤ N shall be regarded as discrete-time conformal martingales (see
Definition (2.2) in Sect. V.2 of [46]). Their conformal maps by polynomial functions,



uk
ξ (Z j (·)), 1 ≤ j, k ≤ N are discrete-time complex martingales such that

Eu[
uk
ξ (Z j (t))] = Eu[
uk

ξ (Z j (0))] = δ jk, 1 ≤ j, k ≤ N (2.20)

for any t ∈ N0,
For n ∈ N, let In = {1, 2, . . . , n}. Denote the cardinality of a finite set A by |A|. Let x =

(x1, . . . , xN ) ∈ Z
N and 1 ≤ N ′ ≤ N . We write J ⊂ IN , |J| = N ′, if J = { j1, . . . , jN ′ }, 1 ≤

j1 < · · · < jN ′ ≤ N , and put xJ = (x j1 , . . . , x jN ′ ). In particular, we write xN ′ = xIN ′ , 1 ≤
N ′ ≤ N . (By definition xN = x.) Suppose u ∈ Z

N
e ∩ WN and ξ(·) = ∑N

j=1 δu j (·). For
J ⊂ IN , |J| = N ′, 1 ≤ N ′ ≤ N , introduce determinantal martingales

Dξ (t, SJ(t)) = det
j,k∈J

[
Muk

ξ (t, S j (t))
]
, t ∈ N0, (2.21)

where the sizes of matrices for determinants are |J| = N ′, 1 ≤ N ′ ≤ N . We can prove the
following, which is a discrete-time version of Lemma 2.1 in [24].
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Lemma 2.4 Assume that ξ(·) = ∑N
j=1 δu j (·) with u ∈ Z

N
e ∩ WN . Let 1 ≤ N ′ < N. For

t ∈ N, t ≤ T ∈ N and a symmetric bounded function FN ′ on Z
N ′

,
∑

J⊂IN ,|J|=N ′
Eu

[
FN ′(SJ(t))Dξ (T, S(t))

]

=
∫

WN ′
ξ⊗N ′

(dv)Ev

[
FN ′(SN ′(t))Dξ (T, SN ′(T ))

]
. (2.22)

This shows the reducibility of the determinantal martingale in the sense that, if we observe a
symmetric function FN ′ depending on only N ′ variables, N ′ < N , then the size of determinant
for determinantal martingale can be reduced from N to N ′.

3 Determinantal Properties

3.1 Determinantal Martingale Representation

Since we consider the noncolliding RW as a process represented by an unlabeled configuration
(1.4), measurable functions of �(·) are only symmetric functions of N variables, S0

j (·), 1 ≤
j ≤ N . Then by the equality (1.18), we obtain the following representation. We call it the
DMR for the present noncolliding RW.

Proposition 3.1 Suppose that N ∈ N and ξ = ∑N
j=1 δu j with u = (u1, . . . , uN ) ∈ Z

N
e ∩

WN . Let t ∈ N, t ≤ T ∈ N. For any F(t)-measurable bounded function F we have

Eξ [F (�(·))] = Eu

⎡

⎣F

⎛

⎝
N∑

j=1

δS j (·)

⎞

⎠Dξ (T, S(T ))

⎤

⎦

= Eu

⎡

⎣F

⎛

⎝
N∑

j=1

δ
Z j (·)

⎞

⎠ det
1≤ j,k≤N

[
uk
ξ (Z j (T ))]

⎤

⎦. (3.1)

Note that the second representation of (3.1) is a discrete-time analogue of the complex BM
representation reported in [33] for the Dyson model (i.e. the noncolliding BM). See Remark 4
above again.

Proof of Proposition 3.1. It is sufficient to consider the case that F is given as F(�(·)) =
∏M

m=1 gm(S0(tm)) for M ∈ N, tm ∈ N, 1 ≤ m ≤ M , t1 < · · · < tM ≤ T ∈ N, with
symmetric bounded functions gm on Z

N , 1 ≤ m ≤ M . Here we prove the equalities

Eξ

[
M∏

m=1

gm(S0(tm))

]

= Eu

[
M∏

m=1

gm(S(tm))Dξ (T, S(T ))

]

= Eu

[
M∏

m=1

gm(S(tm)) det
1≤ j,k≤N

[
uk
ξ (Z j (T ))]

]

. (3.2)

By (1.8), the LHS of (3.2) is given by

Eu

[
M∏

m=1

gm(S(tm))1(τu > tM )
h(S(tM ))

h(u)

]

, (3.3)
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where we used the fact that h(S(·))/h(u) is martingale. At time t = τu, there are at least
one pair ( j, j + 1) such that S j (τu) = S j+1(τu), 1 ≤ j ≤ N − 1. We choose the minimal
j . Let σ j, j+1 be the permutation of the indices j and j + 1 and for v = (v1, . . . , vN ) ∈ Z

N

we put σ j, j+1(v) = (vσ j, j+1(k))
N
k=1 = (v1, . . . , v j+1, v j , . . . , vN ). Let u′ be the labeled

configuration of the process at time t = τu. Since u′
j = u′

j+1 by the above setting, under
the probability law Pu′ the processes S(t), t > τu and σ j, j+1(S(t)), t > τu are identical
in distribution. Since gm, 1 ≤ m ≤ M are symmetric, but h is antisymmetric, the Markov
property of the process S(·) gives

Eu

[
M∏

m=1

gm(S(tm))1(τu ≤ tM )
h(S(tM ))

h(u)

]

= 0.

Therefore, (3.3) is equal to

Eu

[
M∏

m=1

gm(S(tm))
h(S(tM ))

h(u)

]

.

By the equality (1.18) and the martingale property of (Dξ (t, S(t)))t∈N0 , we obtain the first
line of (3.2). By definitions of Eu and Dξ , the second line is valid. Then the proof is completed.

��
3.2 Determinantal Process

For any integer M ∈ N, a sequence of times t = (t1, . . . , tM ) ∈ N
M with t1 < · · · < tM ≤

T ∈ N, and a sequence of bounded functions f = ( ft1 , . . . , ftM ), the moment generating
function of multitime distribution of the process �(·) is defined by

� t
ξ [ f ] ≡ Eξ

[

exp

{
M∑

m=1

∫

Z

ftm (x)�(tm, dx)

}]

. (3.4)

It is expanded with respect to

χtm (·) = e ftm (·) − 1, 1 ≤ m ≤ M (3.5)

as

� t
ξ [ f ] =

∑

Nm≥0,
1≤m≤M

∑

x(m)
Nm

∈Z
Nm ∩WNm ,

1≤m≤M

M∏

m=1

Nm∏

j=1

χtm

(
x (m)

j

)
ρξ

(
t1, x(1)

N1
; . . . ; tM , x(M)

NM

)
, (3.6)

where x(m)
Nm

denotes (x (m)
1 , . . . , x (m)

Nm
), and (3.6) defines the spatio-temporal correlation func-

tions ρξ (·) for the process (�(t), t ∈ N0, Pξ ). Given an integral kernel

K(s, x; t, y); (s, x), (t, y) ∈ N0 × Z,
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the Fredholm determinant is defined as

Det
(s,t)∈{t1,...,tM },

(x,y)∈Z
2

[
δstδx ({y}) + K(s, x; t, y)χt (y)

]

=
∑

Nm≥0,
1≤m≤M

∑

x(m)
Nm

∈Z
Nm ∩WNm ,

1≤m≤M

M∏

m=1

Nm∏

j=1

χtm

(
x (m)

j

)
det

1≤ j≤Nm ,1≤k≤Nn ,
1≤m,n≤M

[
K
(

tm, x (m)
j ; tn, x (n)

k

)]
.

(3.7)

By the reducibility of determinantal martingales (Lemma 2.4) and a combinatorial argument,
we can prove the following identity.

Lemma 3.1 Let u ∈ Z
N
e ∩ WN and ξ = ∑N

j=1 δu j . For M ∈ N, tm ∈ N, 1 ≤ m ≤ M,
t1 < · · · < tM ≤ T ∈ N,

Eu

⎡

⎣
M∏

m=1

N∏

j=1

{1 + χtm (S j (tm))}Dξ (T, S(T ))

⎤

⎦

= Det
(s,t)∈{t1,...,tM },

(x,y)∈Z
2

[
δstδx (y) + Kξ (s, x; t, y)χt (y)

]
,

where Kξ is given by (1.19) with (1.20).

The same identity was proved for continuous-time DMR in Sect. 2 of [24]. So we omit the
proof of Lemma 3.1 for discrete-time DMR.

Now we arrive at one of the main theorems of the present paper.

Theorem 3.2 For any initial configuration ξ ∈ M0 with ξ(Ze) = N ∈ N, the noncolliding
RW, (�(t), t ∈ N0, Pξ ) is determinantal with the correlation kernel (1.19) with (1.20) in the
sense that the moment generating function (3.4) is given by a Fredholm determinant

� t
ξ [ f ] = Det

(s,t)∈{t1,t2,...,tM }2,

(x,y)∈Z
2

[
δstδx ({y}) + Kξ (s, x; t, y)χt (y)

]
, (3.8)

and then all spatio-temporal correlation functions are given by determinants as

ρξ

(
t1, x(1)

N1
; . . . ; tM , x(M)

NM

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

det
1≤ j≤Nm ,1≤k≤Nn ,

1≤m,n≤M

[

Kξ (tm, x (m)
j ; tn, x (n)

k )

]

,

if x(m)
Nm

∈ Z
Nm
e ∩ WNm , tm = even,

or x(m)
Nm

∈ Z
Nm
o ∩ WNm , tm = odd, 1 ≤ m ≤ M,

0, otherwise,

(3.9)

tm ∈ N, 1 ≤ m ≤ M, t1 < · · · < tM , and 0 ≤ Nm ≤ N , 1 ≤ m ≤ M.

Proof By (1.4) with (1.5), the moment generating function (3.4) is written using (3.5) as

� t
ξ [ f ] = Eξ

⎡

⎣
N∏

m=1

N∏

j=1

{1 + χtm (S0
j (tm))}

⎤

⎦.
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Proposition 3.1 gives its DMR,

� t
ξ [ f ] = Eu

⎡

⎣
N∏

m=1

N∏

j=1

{1 + χtm (S j (tm))}Dξ (T, S(T ))

⎤

⎦.

Then Lemma 3.1 gives (3.8). By definitions of correlation functions (3.6) and Fredholm
determinant (3.7), (3.9) is concluded from (3.8). The proof is completed. ��

4 Dynamics with an Infinite Number of Particles

4.1 Determinantal Process with an Infinite Number of Particles

In this subsection, we will show that the noncolliding RW with an infinite number of
particles can be well-defined as a determinantal process for the initial configurations
δ2aZ, a ∈ {2, 3, . . .} given by (1.21). In order to that, we prepare infinite sequences of entire
functions and discrete-time martingales labeled by k ∈ Z below.

For a configuration ξ = ∑
j δu j ∈ M0 we write its restriction in [−L , L] ⊂ Z, L ∈ N

as ξ ∩ [−L , L] ≡ ∑
j :u j ∈[−L ,L] δu j . For each infinite-particle configuration (1.21) with

a ∈ {2, 3, . . .}, and k ∈ Z, a limit of the polynomial (1.15)


2ak
δ2aZ

(z) ≡ lim
L→∞ 
2ak

δ2aZ∩[−L ,L](z), z ∈ C (4.1)

exists and explicitly calculated as


2ak
δ2aZ

(z) =
∏

j∈Z, j �=k

z − 2aj

2ak − 2aj
=

∏

n∈Z,n �=0

(

1 + z/2a − k

n

)

= sin(π(z/2a − k))

π(z/2a − k)
= 1

2π

∫ π

−π

dλ eiλ(z/2a−k), k ∈ Z (4.2)

by using the product formula of the sine function [30,37], As the analytic continuation of
(2.15) with respect to α,

Ẽ[e−λS̃(t)] = 1

(cos λ)t
, λ ∈

(
−π

2
,
π

2

)
, t ∈ N0, (4.3)

implies that eiλ{(y+i S̃(t))/2a−k} is dλ × dP̃-integrable for a ≥ 2. Then

M2ak
δ2aZ

(t, y) ≡ Ẽ[
2ak
δ2aZ

(y + i S̃(t))], k ∈ Z (4.4)

are well-defined and given by

M2ak
δ2aZ

(t, y) = 1

2π

∫ π

−π

dλ
eiλ(y/2a−k)

[cos(λ/2a)]t
, k ∈ Z. (4.5)

Since |M2ak
δ2aZ

(t, y)| ≤ 2t/2, a ∈ {2, 3, . . .}, |∑ j∈Z
p(s, x |2aj)M2aj

δ2aZ
(t, y)| < ∞ for any

(s, t) ∈ N
2, s, t ≤ T ∈ N, (x, y) ∈ Z

2. Then the kernel

Kδ2aZ
(s, x; t, y) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

j∈Z

p(s, x |2aj)M2aj
δ2aZ

(t, y) − 1(s > t)p(s − t, x |y),

if (s, x), (t, y) ∈ N0 × Z, s + x, t + y ∈ Ze,

0, otherwise,

(4.6)
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defines the moment generating function of the process by the Fredholm determinant

� t
δ2aZ

[ f ] = Det
(s,t)∈{t1,t2,...,tM }2,

(x,y)∈Z
2

[
δstδx (y) + Kδ2aZ

(s, x; t, y)χt (y)
]

for any integer M ∈ N, a sequence of times t = (t1, . . . , tM ) ∈ N
M with t1 < · · · < tM ≤

T ∈ N, and a sequence of bounded functions f = ( ft1 , . . . , ftM ) with (3.5). It implies that
Pδ2aZ

is determined in the sense of finite dimensional distributions.

Proposition 4.1 For each a ∈ {2, 3, . . .}, the noncolliding RW started at δ2aZ, denoted by
(�(t), t ∈ N0, Pδ2aZ

), is well-defined as a determinantal process with the correlation kernel
(4.6).

It is readily shown by Lemma 2.1 (discrete Itô’s formula) that if (S(t))t∈N0 is a RW,
(M2ak

δ2aZ
(t, S(t)))t∈N0 , k ∈ Z are discrete-time martingales, if a ∈ {2, 3, . . .}. Let (S j (t))t∈N0 ,

j ∈ Z be an infinite sequence of independent RWs. Then we have an infinite sequence of
independent martingales with discrete time,

(M2ak
δ2aZ

(t, S j (t)))t∈N0 , k ∈ Z, (4.7)

for each a ∈ {2, 3, . . .} and j ∈ Z. We write the labeled configuration (2aj) j∈Z with an
infinite number of particles as 2aZ, and under P2aZ, S j (0) = 2aj, j ∈ Z. Then, for any
t ∈ N0,

E2aZ

[
M2ak

δ2aZ
(t, S j (t))

]
= E2aZ

[
M2ak

δ2aZ
(0, S j (0))

]

= M2ak
δ2aZ

(0, 2aj)

= δ jk, j, k ∈ Z. (4.8)

Fix N ∈ N. For J ⊂ IN , define the determinantal martingale of (4.7)

Dδ2aZ
(t, SJ(t)) = det

j,k∈J

[
Mk

δ2aZ
(t, S j (t))

]
, t ∈ N0. (4.9)

Let t ∈ N, t ≤ T ∈ N, N ′ ∈ N, N ′ < N , and FN ′ be a symmetric bounded function on Z
N ′

.
Then the reducibility

∑

J⊂IN ,|J|=N ′
E2aZ

[
FN ′(SJ(t))Dδ2aZ

(T, SN (T ))
]

=
∑

J⊂IN ,|J|=N ′
E2aZ

[
FN ′(SJ(t))Dδ2aZ

(T, SJ(T ))
]

=
∫

WN ′
δ⊗N ′

2aZ
(dv)Ev

[
FN ′(SN ′(t))Dδ2aZ

(T, SN ′(T ))
]
. (4.10)

holds as well as Lemma 2.4. Note that the last expression of (4.10) does not change even
if we replace N in the first line of (4.10) by any other integer N̂ with N̂ > N . Based on
such consistency in reduction of DMRs and the fact (4.1), the DMR is valid also for the
noncolliding RW with an infinite number of particles.

Proposition 4.2 Assume that F is represented as

F(�(·)) = G

(
∑

x∈Z

φ1(x)�(t1, x), . . . ,
∑

x∈Z

φM (x)�(tM , x)

)

,
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where G is a polynomial function on R
M , M ∈ N and φm, 1 ≤ m ≤ M are real-valued

bounded functions with finite supports on Z. Then the expressions (3.1) are valid also in the
cases with ξ = δ2aZ and u = 2aZ,a ∈ {2, 3, . . .}, even though N = δ2aZ(Z) = ∞.

Proof is given in the similar way to that given for Corollary 1.3 in [33].

4.2 Relaxation to Equilibrium Dynamics

Now we prove that the infinite-particle systems (�(t), t ∈ N0, Pδ2aZ
), a ∈ {2, 3, . . .}, con-

structed in the previous subsection show relaxation phenomena to the equilibrium determi-
nantal processes with discrete analogues of the extended sine-kernel (1.22).

Since the transition probability of RW (1.3) is a unique solution of the difference equation

p(t + 1, y|x) = 1

2
[p(t, y − 1|x) + p(t, y + 1|x)], t ∈ N0, x, y ∈ Z,

with the initial condition p(0, y|x) = δxy , it has the following expressions,

p(t, y|x) = 1

2π

∫ π

−π

dk eik(y−x)(cos k)t

= 1

4πa

∫ 2aπ

−2aπ

dθ eiθ(y−x)/2a
[

cos

(
θ

2a

)]t

=
∫ 1

0
du cos(uπ(y − x))[cos(uπ)]t , (4.11)

where a ∈ N. Note that the integral representations (4.11) of (1.3) are valid for any t ∈
N0, x, y ∈ Z. Then combining with (4.5) we have

∑

j∈Z

p(s, x |2aj)M2aj
δ2aZ

(t, y) = 1

8π2a

∑

j∈Z

∫ 2aπ

−2aπ

dθ

∫ π

−π

dλ eiθ(x/2a− j)+iλ(y/2a− j) [cos(θ/2a)]s

[cos(λ/2a)]t
.

We rewrite the first line of (4.6) as follows: for (s, x), (t, y) ∈ N0 × Z, s + x, t + y ∈ Ze,

Kδ2aZ
(s, x; t, y) + 1(s > t)p(s − t, x |y) = G(s, x; t, y) + R(s, x; t, y) (4.12)

with

G(s, x; t, y) = 1

4π2a

∫

|θ |≤π

dθ

∫

|λ|≤π

dλ
ei(θx+λy)/2a

[cos(λ/2a)]t−s

∑

j∈Z

e−i(θ+λ) j
[

cos(θ/2a)

cos(λ/2a)

]s

,

and

R(s, x; t, y) = 1

8π2a

∑

j∈Z

∫

π<|θ |<(2a−1)π

dθ

∫

|λ|≤π

dλ
ei(θx+λy)/2a

[cos(λ/2a)]t−s
e−i(θ+λ) j

[
cos(θ/2a)

cos(λ/2a)

]s

.

Since
∑

j∈Z
e−i(θ+λ) j = 2πδ−λ({θ}) for θ, λ ∈ (−π, π], we obtain

G(s, x; t, y) = 1

2πa

∫ π

−π

dλ
eiλ(y−x)/2a

[cos(λ/2a)]t−s
≡ G(t − s, y − x). (4.13)

123



Determinantal Martingales and Correlations 37

On the other hand, when π < |θ | < (2a − 1)π and |λ| ≤ π , | cos(θ/2a)/ cos(λ/2a)| < 1.

Then for any fixed s, t ∈ N, |R(s + n, x; t + n, y)| → 0 as n → ∞ uniformly on any
(x, y) ∈ Z

2 and it implies

Kδ2aZ
(s + n, x; t + n, y) → Kρ(t − s, y − x) as n → ∞, (4.14)

where

Kρ(t − s, y − x) = G(t − s, y − x) − 1(s > t)p(s − t, x |y)

= 2
∫ ρ

0
du

cos(πu(y − x))

[cos(πu)]t−s
− 1(s > t)p(s − t, x |y), (4.15)

if s + x, t + y ∈ Ze, and Kρ(t − s, y − x) = 0, otherwise, with the density on Z,

ρ = 1

2a
, a ∈ {2, 3, . . .}. (4.16)

By (4.11) and others, we can see that (4.15) is written as (1.22).
The convergence of the correlation kernel (4.14) implies the convergence of generating

function for correlation functions � t
δ2aZ

[ f ], and thus the convergence of the determinantal
process to an equilibrium determinantal process. This is an example of relaxation phenomena
[10,25,29–31].

In order to state the result, we define determinantal point processes on Z.

Definition 4.3 Let � = e or o. For a given density 0 < ρ < 1/2, the probability measures
μsin

ρ,� on Z are defined as determinantal point processes with the sine kernels

Ksin
ρ,�(y − x) =

⎧
⎨

⎩

2 sin(πρ(y − x))

π(y − x)
, if x, y ∈ Z�,

0, otherwize.
(4.17)

Theorem 4.4 For each a ∈ {2, 3, . . .}, the process (�(t), t ∈ N0, Pδ2aZ
) shows a relaxation

phenomenon to equilibrium state such that

�(2n) ⇒ μsin
ρ,e,

�(2n + 1) ⇒ μsin
ρ,o, as n → ∞

with ρ = 1/2a. The equilibrium process, denoted by (�(t), t ∈ Z, Pρ), is time-reversible
and determinantal with the correlation kernel given by (1.22).

Here we note that the local densities of particles (the one-point correlation functions) in μsin
ρ,�

and in (�(t), t ∈ Z, Pρ) are obtained from the expressions (4.17) and (1.22) for correlation
kernels, respectively, by taking the limits as

μsin
ρ,�({x}) = lim

y→x
Ksin

ρ,�(y − x) =
{

2ρ, if x ∈ Z�,

0, otherwize,
� = e or o,

Pρ[�(s, {x}) = 1] = lim
t→s,
y→x

Kρ(y − x, t − s) =
{

2ρ, if s + x ∈ Ze,

0, otherwize.

On the spatio-temporal plane (t, x) ∈ Z
2, the equilibrium state makes a homogeneous bipar-

tite lattice.
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5 Convergence to the Dyson Model

In this final section, we will discuss the convergence of noncolliding RWs to the continuous
version (i.e. the Dyson model) in the sense of Donsker’s invariant principle from the viewpoint
of DMR.

For n ∈ N, define scaled discrete-processes as

S(n)
j (t) = 1

n
S j (n

2t), S̃(n)
j (t) = 1

n
S̃ j (n

2t),

Z (n)
j (t) = S(n)

j (t) + i S̃(n)
j (t), t ∈ N0, 1 ≤ j ≤ N . (5.1)

We set S j (0) = nu j , 1 ≤ j ≤ N . Since

E[ζ j (t)] = Ẽ[̃ζ j (t)] = 0,

E[ζ j (t)
2] = Ẽ[̃ζ j (t)

2] = 1, t ∈ N, 1 ≤ j ≤ N ,

Donsker’s invariance principle [5,46] proves the convergence in distribution

S(n)
j (·) d→ B j (·), S̃(n)

j (·) d→ B̃ j (·), Z (n)
j (·) d→ B j (·), as n → ∞, (5.2)

where B j (·) and B̃ j (·) are independent BMs with B j (0) = u j , B̃ j (0) = 0, 1 ≤ j ≤ N , and
B j denotes the complex BMs, B j (·) = B j (·) + i B̃ j (·), 1 ≤ j ≤ N . For 


uk
ξ (·), 1 ≤ k ≤ N

are polynomials and thus continuous functions, (5.2) implies



uk
ξ (Z (n)

j (·)) d→ 

uk
ξ (B j (·)) as n → ∞, 1 ≤ j, k ≤ N . (5.3)

For each n ∈ N, let S0 (n)(·) = (S0 (n)
1 (·), . . . , S0 (n)

N (·)) be the N -particle scaled RW
conditioned never to collide with each other started at u = (u1, . . . , uN ) ∈ Z

N
e ∩ WN and

put �(n)(t, ·) = ∑N
j=1 δ

S0 (n)
j (t)

(·), t ∈ N0. Then we have a series of scaled noncolliding RWs,

(�(n)(t), t ∈ N0, Pξ ), n ∈ N, each of which has DMR

Eξ

[
F
(
�(n)(·)

)]
= Enu

⎡

⎣F

⎛

⎝
N∑

j=1

δ
S(n)

j (·)

⎞

⎠Dξ

(
n2T, S(n)(T )

)
⎤

⎦

= Enu

⎡

⎣F

⎛

⎝
N∑

j=1

δ
Z (n)
j (·)

⎞

⎠ det
1≤ j,k≤N

[



uk
ξ

(
Z (n)

j (T )
)]
⎤

⎦ (5.4)

for any F(t)-measurable bounded function F for any t ∈ N, t ≤ T ∈ N. Let (�(t), t ∈
[0,∞), Pξ ) be the Dyson model started at ξ = ∑N

j=1 δu j ∈ M0 with u = (u1, . . . , uN ) ∈
Z

N
e ∩ WN . That is, �(t, ·) = ∑N

j=1 δX j (t)(·), t ∈ [0,∞), where X(·) = (X1(·), . . . , X N (·))
is a unique solution of the SDEs (1.9) under the initial configuration X(0) = u ∈ Z

N
e ∩ WN .

By the invariance principle (5.2), (5.3), if F is continuous, the DMRs given by the RHS
of (5.4) converge to the complex BM representation for (�(t), t ∈ [0,∞), Pξ ) given by
Theorem 1.1 in [33]. Since the complex BM representation is a special case of DMR (see
Remark 4 and a comment mentioned just after Proposition 3.1), we will say that

(�(n)(t), t ∈ N0, Pξ ) converges to (�(t), t ∈ [0,∞), Pξ ) in DMR. (5.5)

As shown in Sect. 3, the DMR gives a Fredholm determinantal expression for any generating
function of multitime correlation functions. Then (5.5) implies the convergence in the sense
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of finite dimensional distributions. It also implies the convergence as determinantal processes.
By the convergence of processes (5.2), the following convergence of functions are concluded;
if p(n2t, ny|nx) �= 0,

Pnx [S(n)(t) ∈ dy] = p(n2t, ny|nx)ndy → pBM(t, y|x),

and

Ẽ
[



uk
ξ (x + i S̃(n)

j (t))
]

= Muk
ξ (n2t, x)

→
∫

R

dv pBM(t, v|0)

uk
ξ (x + iv) ≡ Muk

ξ (t, x)

as n → ∞ with (2.9). Therefore, the correlation kernel of the Dyson model, (�(t), t ∈
[0,∞), Pξ ), is determined as the limit of the kernels of (�(n)(t), t ∈ N0, Pξ ) of the form
(1.19),

Kξ (s, x; t, y) =
N∑

j=1

pBM(s, x |u j )M
u j
ξ (t, y) − 1(s > t)pBM(s − t, x |y), (5.6)

(s, x), (t, y) ∈ [0,∞) × R. The limit (5.6) is exactly the same as the correlation kernel of
the Dyson model given as Eq.(2.2) in [30] for general ξ ∈ M0, ξ(R) = N ∈ N, which was
obtained by using the multiple Hermite polynomials.

As claimed by Proposition 4.2, DMR is valid for (�(t), t ∈ N0, Pδ2aZ
), a ∈ {2, 3, . . .}.

Then we will conclude that

(�(n)(t), t ∈ N0, Pδ2aZ
) converges to (�(t), t ∈ [0,∞), Pδ2aZ

) in DMR, (5.7)

if a ∈ {2, 3, . . .}. From (4.4) with (4.2),

Ẽ
[

2ak

δ2aZ
(x + i S̃(n)(t))

]
= M2ak

δ2aZ
(n2t, x)

→
∫

R

dv pBM(t, v|0)
2ak
δ2aZ

(x + iv) ≡ M2ak
δ2aZ

(t, x) (5.8)

as n → ∞. We find

M2ak
δ2aZ

(t, y) = 1

2π

∫ π

−π

dλ eλ2t/8a2+iλ(y/2a−k), (t, y) ∈ [0,∞) × R, k ∈ Z.

Then the Dyson model with an infinite number of particles, (�(t), t ∈ [0,∞), Pδ2aZ
), is

determinantal and its correlation kernel is determined as

Kδ2aZ
(s, x; t, y) =

∑

j∈Z

pBM(s, x |2aj)M2ak
δ2aZ

(t, y) − 1(s > t)pBM(s − t, x |y), (5.9)

(s, x), (t, y) ∈ [0,∞) × R. Let

ϑ3(v, τ ) =
∑

j∈Z

e2π iv j+π iτ j2
, �τ > 0,

which is a version of the Jacobi theta function. If we use the reciprocity relation

ϑ3(v, τ ) = ϑ3

(
v

τ
,− 1

τ

)

e−π iv2/τ

√
i

τ
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(see, for example, Sect. 10.12 in [1]), we can obtain the expression

∑

j∈Z

pBM(s, x |2aj)M2aj
δ2aZ

(t, y) = ρ

2π

∫ π

−π

dλ eλ2ρ2(t−s)/2+iλρ(y−x)ϑ3(ρx − iλρ2s, 2π iρ2s),

where ρ is the density of particles given by (4.16). Then (5.9) is written as

Kδ2aZ
(s, x; t, y) = Ksin

ρ (t − s, y − x)

+ ρ

2π

∫ π

−π

dλ eλ2ρ2(t−s)/2+iλρ(y−x){ϑ3(ρx − iλρ2s, 2π iρ2s) − 1},
(5.10)

(s, x), (t, x) ∈ [0,∞) × R, where

Ksin
ρ (t − s, y − x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ρ

0
du eπ2u2(t−s)/2 cos(πu(y − x)), if s < t,

sin(πρ(y − x))

π(y − x)
, if s = t,

−
∫ ∞

ρ

du eπ2u2(t−s)/2 cos(πuπ(y − x)), if s > t.

(5.11)

The correlation kernel (5.10) coincide with Eq.(1.5) in [30] if we set ρ = 1. The kernel
(5.11) is called the extended sine kernel with density ρ (see Sect. 11.7.1 in [15]), which is a
continuum limit of (1.22). The relaxation phenomenon associated with limτ→∞ Kδ2aZ (s +
τ, x; t + τ, y) = Ksin

1 (t − s, y − x) was studied in [30].
The above shows that the convergence in DMR implies the convergence in the sense

of finite dimensional distributions and that as determinantal processes. As demonstrated by
Proposition 1.4 and Theorem 1.5 in [33], DMR is useful to test the Kolmogorov criterion
for tightness. Relations between the present convergence in DMR and the previous results
concerning convergence to the Dyson model [3,26,44] will be discussed elsewhere.
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