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Abstract We discuss several examples of point processes [all taken from Hough et al. (Zeros
of Gaussian analytic functions and determinantal point processes, 2009)] for which the auto-
correlation and diffraction measures can be calculated explicitly. These include certain classes
of determinantal and permanental point processes, as well as an isometry-invariant point
process that arises as the zero set of a Gaussian random analytic function.

Keywords Point processes · Diffraction spectrum · Gaussian analytic function

1 Introduction

Mathematical diffraction theory deals with the relationship between the structure of point
configurations in space and the associated autocorrelation and diffraction measures, one of
the main questions being how the order properties of the point configuration translate into
properties of the diffraction measure. There exist many results about deterministic point
configurations (periodic and aperiodic tilings, model sets, substitution systems, compare [4]
and the references therein), but in recent years random point configurations have also been
considered. In particular, reference [3] provides a general framework for the investigation of
point configurations within the theory of point processes, along with a number of examples,
most of them closely connected to renewal and Poisson processes. However, beyond the
i.i.d. situation, the number of explicit examples is still rather small, and it seems that more
examples are needed for a better understanding of the problem and a further development of
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916 M. Baake et al.

the theory. In particular, it seems desirable to have examples with some effective interaction
for which the autocorrelation and diffraction measures may be calculated explicitly. Some of
the few exceptional cases which have been considered here are the Ising model on the square
lattice and the dimer model on the triangular lattice; see [5].

The aim of this paper is to extend the list of these explicit examples by discussing various
point processes (all taken from [13]) from the viewpoint of mathematical diffraction theory.
All these examples are simple, stationary and ergodic (see Sect. 2 for definitions). Moreover,
the numbers of points in neighbouring subsets of Euclidean space may be either positively
correlated (“clumping”) or negatively correlated (“repulsion”). We discuss determinantal
and permanental point processes as (classes of) examples for systems with repulsion and
clumping, respectively. As a further example for a system with repulsion, we consider the
zero set of a certain Gaussian random analytic function in the complex plane. More precisely,
we take the unique Gaussian random analytic function, up to scaling, such that the zero set is
translation-invariant (in fact, even isometry-invariant) in distribution; see Sect. 6 for details.
Furthermore, we also briefly look at Cox processes.

Our main results support the widespread expectations about the diffraction measures of
generic random point configurations (with good mixing properties, say). For instance, in most
of our examples, the diffraction measure is absolutely continuous apart from the (trivial)
Bragg peak at the origin. (Here, by a Bragg peak, one understands a point mass contained
in the diffraction measure.) Moreover, for a certain class of determinantal and permanental
point processes, it turns out that the “diffraction spectrum” is equivalent to the “dynamical
spectrum”; see Remark 3.16 for details. For general point processes, the question under what
conditions this is true seems to be open, but for the above examples, this is perhaps not too
surprising in view of their excellent mixing properties.

2 Preliminaries

This section contains some background information on point processes, Fourier transforms,
and mathematical diffraction theory. As they are sufficient for our discussion here, we restrict
ourselves to positive measures, and refer to [3] and the references therein for the general case.

2.1 Point Processes

A measure on R
d is a measure on the Borel σ -field (or σ -algebra) B

d of R
d . A measure

ω on R
d is locally finite if ω(A) < ∞ for any bounded Borel set A. A point measure on

R
d is a measure on R

d taking values in N0 ∪ {∞}. A point measure ω on R
d is simple if

ω({x}) ≤ 1 for any x ∈ R
d . We write M(Rd) for the space of locally finite measures on R

d

and N (Rd) for the subspace of locally finite point measures on R
d . It is well known (compare

[10, Appendix A2] and [11, Sect. 9]) that there exists a metric such that M(Rd) and N (Rd)

are complete separable metric spaces, the induced topology is that of vague convergence,
and the induced Borel σ -fields M (Rd) and N (Rd) are the smallest σ -fields such that the
mappings ω �→ ω(A), with A ∈ B

d , are measurable. A random measure is a random variable
taking values in M(Rd), and a point process is a random variable taking values in N (Rd). A
point process is called simple if its realisation is simple with probability 1. If ω is a random
measure or a point process such that E(ω(A)) < ∞ for any bounded Borel set A, we say
that the expectation measure of ω exists, and call the measure A �→ E(ω(A)) the expectation
measure of ω.
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A locally finite point measure ω on R
d may be written in the form ω = ∑

i∈I δxi , where
I is a countable index set and (xi )i∈I is a family of points in R

d with at most finitely points
in any bounded Borel set. Then, for any k ≥ 1, the locally finite point measures ωk and ω•k

on (Rd)k are defined by

ωk :=
∑

i1,...,ik∈I

δ(xi1 ,...,xik ) and ω•k :=
∑

i1,...,ik∈I
distinct

δ(xi1 ,...,xik ) .

Note that ωk is simply the k-fold product measure of ω. If ω is a point process such that
E(ω(A)k) < ∞ for any bounded Borel set A, the expectation measures μ(k) and μ•(k) of ωk

and ω•k are called the kth moment measure of ω and the kth factorial moment measure of ω,
respectively. If μ•(k) is absolutely continuous with respect to Lebesgue measure on (Rd)k ,
its density is denoted by �k and called the k-point correlation function of the point process
ω.

Remark 2.1 It is easy to see that the absolute continuity of the second factorial moment
measure implies that the underlying point process is simple; compare [10, Proposition 5.4.6]
for details. ♦

For any x ∈ R
d , we write Tx for the translation by x on R

d (with Tx (u) := u + x). The
notation Tx is extended to the induced translation actions on sets, functions, and measures
in the standard way: Tx (A) := x + A := {Tx (y) : y ∈ A}, (Tx f )(y) := f (T−x (y))

= f (−x + y), and (Txω)(A) := ω(T−x (A)) = ω(−x + A). Note that the latter is consistent
with translation of an indicator function 111A (also interpretable as a measure) so that Tx (111A)

= 111Tx (A). Finally, we also write Tx for the induced translation on sets of measures: Tx (B)

:= {Tx (ω) : ω ∈ B}.
A set B ∈ M (Rd) is called invariant if T −1

x (B) = B for any x ∈ R
d . A random measure

ω on R
d is called stationary (or translation-invariant) if for any x ∈ R

d , ω and Tx (ω) have
the same distribution. A random measure ω on R

d is called ergodic if it is stationary and
if, for any invariant set B ∈ M (Rd), one has P(ω ∈ B) ∈ {0, 1}. A random measure ω

on R
d is called mixing if it is stationary and if, for any sets B1, B2 ∈ M (Rd), one has

P(ω ∈ T −1
x (B1) ∩ B2) −→ P(ω ∈ B1) P(ω ∈ B2) as |x | → ∞. Here, |x | denotes the

Euclidean norm of x . It is well known that mixing implies ergodicity; see e.g. [11, Sect.
12.3].

If ω is a stationary point process such that E(ω(A)k) < ∞ for any bounded Borel set A,
the reduced kth moment measure μ

(k)
red of ω and the reduced kth factorial moment measure

μ
•(k)
red of ω are the (unique) locally finite measures on (Rd)k−1 such that

∫

(Rd )k
f (x1, x2, . . . , xk) dμ(k)(x) =

∫

Rd

∫

(Rd )k−1
f (x, x + y1, . . . , x + yk−1) dμ

(k)
red(y) dx

and
∫

(Rd )k
f (x1, x2, . . . , xk) dμ•(k)(x)=

∫

Rd

∫

(Rd )k−1
f (x, x + y1, . . . , x + yk−1) dμ

•(k)
red (y) dx

for any bounded measurable function f on (Rd)k with bounded support, compare [11,
Proposition 12.6.3]. Here, the first reduced (factorial) moment measure is regarded as a
constant �, which is also called the mean density of the point process. Furthermore, if μ•(k)

is absolutely continuous with respect to Lebesgue measure on (Rd)k , we may assume its
density �k(x1, . . . , xk) to be translation-invariant, i.e.

�k(x1 + t, . . . , xk + t) = �k(x1, . . . , xk) (2.1)
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918 M. Baake et al.

for any t ∈ R
d . Then, μ

•(k)
red is absolutely continuous with respect to Lebesgue measure

on (Rd)k−1, with density �k(0, y1, . . . , yk−1) . In particular, �1(0) = �.

2.2 Fourier Transforms

For the Fourier transform of a function f ∈ L1(Rd), we use the convention

f̂ (y) =
∫

Rd
f (x)e−2π i xy dx, (2.2)

where xy is the standard inner product on R
d . Let us note that, with this convention, Fourier

inversion takes the form

f (x) =
∫

Rd
f̂ (y)e2π i xy dy (2.3)

for any continuous function f ∈ L1(Rd) such that f̂ ∈ L1(Rd). The special case of radially
symmetric functions will be discussed later when we need it.

Besides Fourier transforms of L1-functions, we will also use Fourier transforms of L2-
functions. The Fourier transform on L2 is defined as the (unique) continuous extension of
the Fourier transform on L1 restricted to L1 ∩ L2, viewed as a mapping from L1 ∩ L2 ⊂ L2

to L2. It is well known that the Fourier transform on L2 is an isometry.
Moreover, we will also use Fourier transforms of translation-bounded measures. A mea-

sure μ on R
d is translation-bounded if, for any bounded Borel set B ∈ B

d , one has
supx∈Rd μ(x + B) < ∞. A translation-bounded measure μ on R

d is transformable if there
exists a translation-bounded measure μ̂ on R

d such that
∫

Rd
f (x) dμ̂(x) =

∫

Rd
f̂ (x) dμ(x)

holds for any Schwartz function f ∈ S(Rd). In this case, the measure μ̂ is unique, and
it is called the Fourier transform of the measure μ. Indeed, these definitions may even be
extended to signed measures; see [3] for details.

Given a locally integrable function f on R
d , we write f λd or f (x) λd for the signed

measure on R
d given by ( f λd)(B) := ∫

B f (x) dx , with B ∈ B
d bounded. Note that if

f is integrable, ( f λd )̂ = f̂ λd . Note further that, if f is the Fourier transform of some
integrable function ϕ, it follows by standard Fourier inversion that ( f λd )̂ = ϕ− λd where
ϕ−(x) := ϕ(−x) denotes the reflection of ϕ at the origin.

2.3 Mathematical Diffraction Theory

Let ω be a locally finite measure on R
d , and let ω̃(A) := ω(−A) be its reflection at the origin.

Write Bn for the open ball of radius n around the origin and λd(Bn) for its d-dimensional
volume. The autocorrelation measure of ω is defined by

γ := lim
n→∞

ω|Bn ∗ ω̃|Bn

λd(Bn)
,

provided that the limit exists in M(Rd) with respect to the vague topology. In this case,
the diffraction measure of ω is the Fourier transform of γ . Let us note that γ̂ exists due to
the fact that γ is a positive and positive-definite measure, and that γ̂ is also a positive and
positive-definite measure; see [3,4,8] or [10, Sect. 8.6] for details.

In each of the following examples, ω will be given by the realisation of a stationary and
ergodic simple point process on R

d . The following result from [3], see also [15], shows that
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Diffraction Theory of Point Processes 919

the autocorrelation and diffraction measures exist and, moreover, almost surely do not depend
on the realisation.

Theorem 2.2 ([12, Theorem 1.1], [3, Theorem 3]) Let ω be a stationary and ergodic point
process such that the reduced first moment measure μ

(1)
red = � and the reduced second moment

measure μ
(2)
red exist. Then, almost surely, the autocorrelation measure γ of ω exists and

satisfies

γ = μ
(2)
red = �δ0 + μ

•(2)
red .

�
Remark 2.3 In [12, Theorem 1.1] and [3, Theorem 3], the preceding result is stated in a
slightly different form, namely that the autocorrelation measure of ω is equal to the first
moment measure of the so-called Palm measure of ω. However, the latter coincides with the
reduced second moment measure of ω under the assumptions of the theorem; see e.g. [3,
Equation (47)]. The second equality in Theorem 2.2 is a well-known relation between μ

(2)
red

and μ
•(2)
red ; see e.g. [10, Sect. 8.1]. ♦

We will often use Theorem 2.2 in the following form.

Corollary 2.4 Suppose that, in addition to the assumptions of Theorem 2.2, the factorial
moment measure μ•(2) is absolutely continuous with a translation-invariant density of the
form

�2(x1, x2) = �2 + g(x2 − x1) with g ∈ L1(Rd). (2.4)

Then, almost surely, the autocorrelation and diffraction measures of ω exist and are given by

γ = �δ0 + (�2 + g)λd (2.5)

and
γ̂ = �2δ0 + (

� + ĝ
)
λd , (2.6)

respectively.

If the argument of the function needs to be specified, we usually write g(x)λd in (2.5) and
ĝ(t)λd in (2.6). Note that, under the assumptions of Corollary 2.4, the diffraction measure is
absolutely continuous apart from the Bragg peak at the origin.

Proof of Corollary 2.4 Equation (2.5) is immediate from Theorem 2.2 and our comments
around Eq. (2.1). Equation (2.6) then follows by taking the Fourier transform and using the

relations δ̂0 = λd , λ̂d = δ0, and ̂g λd = ĝ λd . �

3 Determinantal Point Processes

Determinantal point processes are used to model particle configurations with repulsion; see
[19], [13, Sect. 4.2] or [2, Sect. 4.2] for background information. See also [10,16, Example
5.4 (c)], where these point processes are called fermion processes.

In the sequel, we shall always assume the following:

The kernel K : R
d × R

d −→ C is continuous, Hermitian and positive-definite. (3.1)
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Here, K is Hermitian if, for all x, y ∈ R
d , K (x, y) = K (y, x), and positive-definite if, for

all k ∈ N and all x1, . . . , xk ∈ R
d , det

(
K (xi , x j )1≤i, j≤k

) ≥ 0.

A point process ω on R
d is called determinantal with kernel K if, for any k ∈ N, the

k-point correlation function exists and is given by

�k(x1, . . . , xk) = det
(
K (xi , x j )1≤i, j≤k

)
. (3.2)

It is well known that, if there exists a determinantal point process with a given kernel K ,
its distribution is uniquely determined; compare [13, Lemma 4.2.6]. As regards existence,
note first that, if K is a kernel as in Eq. (3.1), then, for any compact subset B ⊂ R

d , we have
an integral operator KB : L2(B) → L2(B) defined by

(KB f
)
(x) :=

∫

B
K (x, y) f (y) dy (x ∈ B). (3.3)

It is well known that this operator is bounded, self-adjoint, positive-definite and of trace
class; see [2, Lemma 4.2.13] and references given there. Furthermore, there is the following
criterion for the existence of an associated determinantal point process.

Theorem 3.1 ([19, Theorem 3], [13, Theorem 4.5.5], [2, Corollary 4.2.22]) Let K be a kernel
as in Eq. (3.1). Then K defines a determinantal point process on R

d if and only if, for any
compact subset B ⊂ R

d , the spectrum of the operator KB is contained in the interval [0, 1].
�

Remark 3.2 Let us mention that in part of the above-mentioned literature it is assumed
that the kernel K is measurable, locally square-integrable, Hermitian, positive-definite, and
locally of trace class. Indeed, all the results stated above continue to hold under this weaker
assumption. However, we will only be interested in stationary determinantal point processes,
and the assumption of continuity is satisfied in all our examples. Furthermore, continuous
kernels are convenient in that they give rise to (unique) continuous correlation functions. ♦

Henceforward, we shall always assume that the determinantal point process ω is stationary
with mean density 1. Then, by Eq. (2.1), (the continuous versions of) the first and second
correlation functions satisfy

�1(x) = K (x, x) = 1 and �2(x, y) = 1 − |K (x, y)|2 = 1 − g(x − y) (3.4)

for all x, y ∈ R
d , where g(x) := |K (0, x)|2. Note that g is positive and positive-definite;

for the latter, use that g(x − y) = |K (x, y)|2 = K (x, y)K (x, y) and that the pointwise (or
Hadamard) product of positive-definite kernels is also positive-definite.

Remark 3.3 Let us emphasise that the stationarity of the determinantal point process entails
the translation-invariance of the correlation functions and of the modulus of the kernel, but
not necessarily that of the kernel itself, as for the Ginibre process (see Example 3.13). ♦

Lemma 3.4 Let ω be a stationary determinantal point process with a kernel K as specified
in Eq. (3.1) and with mean density 1, and let g be as in Eq. (3.4). Then, g is integrable with∫

Rd g(y) dy ≤ 1.

Proof We use the same argument as in the proof of [2, Lemma 4.2.32]. It follows from the
definitions of the ordinary and the factorial moment measures and Eq. (3.4) that, for any
bounded Borel set A, one has
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0 ≤ Var(ω(A)) = μ(2)(A × A) − (
μ(1)(A)

)2 = μ(1)(A) + μ•(2)(A × A) − (
μ(1)(A)

)2

=
∫

A
1 dx +

∫

A

∫

A

(
�2(x, y)−1

)
dy dx =λd(A) −

∫

A

∫

A+x
g(y) dy dx .

Taking A = Bn , the ball of radius n around the origin, we get

1

λd(Bn)

∫

Bn

∫

Bn+x
g(y) dy dx ≤ 1

for any n ∈ N, from which it follows that
∫

Rd g(y) dy ≤ 1. �
Combining Lemma 3.4 with Corollary 2.4, we get the following result.

Proposition 3.5 Let ω be a stationary and ergodic determinantal point process with a kernel
K as in Eq. (3.1) and with mean density 1. Then, the autocorrelation and diffraction measures
of ω are given by

γ = δ0 + (1 − g) λd and γ̂ = δ0 + (1 − ĝ ) λd ,

with g as in Eq. (3.4). Moreover, we have 0 ≤ ĝ(t) ≤ 1 for all t ∈ R
d , with ĝ(t) = 1 at

most for t = 0. In particular, the absolutely continuous part of the diffraction measure is
equivalent to Lebesgue measure.

Proof The statements about γ and γ̂ are immediate from Corollary 2.4, Eq. (3.4), and
Lemma 3.4. The statements about ĝ follow from the positivity and positive-definiteness of
the function g and well-known properties of the Fourier transform. �

Let us now turn to the case that the kernel K itself is translation-invariant, which means
that there exists a function K : R

d → C such that K (x, y) = K (x − y) for all x, y ∈ R
d .

(By slight abuse of notation, we use the same symbol for the function and for the associated
kernel.) More precisely, we will assume the following:

We have K (x, y) = K (x − y) for all x, y ∈ R
d , where the function K : R

d → C

on the right-hand side is the Fourier transform of a probability density ϕ on R
d

with values in [0, 1]. (3.5)

Note that Condition (3.5) entails Condition (3.1).

Remark 3.6 It can be shown that, if a kernel K as in Eq. (3.1) is translation-invariant, it is
the kernel of a (stationary) determinantal point process with mean density 1 if and only if
it is of the form in Eq. (3.5); cf. [14] for a similar result. ♦

Let us sketch the argument why a kernel K as in Eq. (3.5) defines a stationary and
ergodic determinantal point process with mean density 1. Suppose that Eq. (3.5) holds. Then,
ϕ ∈ L1(Rd)∩L2(Rd), ϕ̂ = K ∈ L2(Rd)∩L∞(Rd), and K̂ = ϕ− by Fourier inversion (in the
L2-sense), where ϕ−(x) = ϕ(−x) as before. Moreover, since K ∈ L2(Rd), the convolution

(K f
)
(x) := (

K ∗ f
)
(x) :=

∫

Rd
K (x − y) f (y) dy (x ∈ R

d)

is well-defined for any f ∈ L2(Rd) by the Cauchy–Schwarz inequality. Furthermore, for
f ∈ L1(Rd) ∩ L2(Rd), we have

K̂ f = K̂ ∗ f = K̂ · f̂ = ϕ− · f̂
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and therefore
K f = F−1 Mϕ−F f, (3.6)

where F denotes the Fourier transform on L2(Rd), F−1 its inverse, and Mϕ− the multipli-
cation operator g �→ gϕ− on L2(Rd). By continuity, this extends to all of L2(Rd), and K
is a bounded, self-adjoint, positive-definite convolution operator on L2(Rd) with spectrum
Sϕ ⊂ [0, 1], where

Sϕ := {y ∈ [0, 1] : λd({x ∈ R
d : |ϕ(x) − y| < ε}) > 0 for all ε > 0}

is the essential range of ϕ. Thus, the operators KB defined in Eq. (3.3) must also have spectra
contained in [0, 1], and it follows from Theorem 3.1 that K defines a determinantal point
process ω.

Since the correlation functions determine the distribution of ω, ω is clearly stationary
with mean density K (0) = 1. Moreover, since K = ϕ̂ with ϕ ∈ L1(Rd), it follows from the
Riemann–Lebesgue lemma that K (x) → 0 as |x | → ∞, and this implies that ω is mixing
and ergodic; see [19, Theorem 7] or [2, Theorem 4.2.34].

We therefore obtain the following consequence of Proposition 3.5.

Corollary 3.7 If K is a kernel as in Eq. (3.5), the autocorrelation and diffraction measures
of the associated determinantal point process are given by

γ = δ0 + (1 − |K |2) λd and γ̂ = δ0 + (1 − ̂|K |2) λd .

Equivalently,

γ = δ0 + (1 − |ϕ̂|2) λd and γ̂ = δ0 + (1 − (ϕ ∗ ϕ−)) λd ,

where ϕ−(x) := ϕ(−x) as above. �
Remark 3.8 (Self-reproducing kernels) Suppose that, in the situation of Proposition 3.5, the
kernel K is self-reproducing in the sense that

∫

Rd
K (x, y)K (y, z) dy = K (x, z) (3.7)

for all x, z ∈ R
d or, equivalently, the associated integral operator K on L2(Rd) (defined

similarly as in (3.3), but with B = R
d ) is a projection, i.e. K2 = K. (Let us mention without

proof that K is indeed a well-defined operator on L2(Rd), as follows from Theorem 3.1 and
Lemma 3.4.) Then, with g as in Eq. (3.4), we have

ĝ(0) =
∫

|K (0, x)|2 dx =
∫

K (0, x)K (x, 0) dx = K (0, 0) = 1,

so that the density of the absolutely continuous part of the diffraction measure equals zero at
the origin.

Moreover, for a translation-invariant kernel as in Eq. (3.5), the converse is also true. Indeed,

in this case, we have ̂|K |2(0) = 1 if and only if K̂ (t) is an indicator function, as already
pointed out in [19]. For the convenience of the reader, let us reproduce the argument here:
Using that f̂1 f2 = f̂1 ∗ f̂2 for f1, f2 ∈ L2(Rd) and that K̂ = ϕ− is [0, 1]-valued, we obtain

̂|K |2(0) = (
K̂ ∗ K̂

)
(0) =

∫

K̂ (t)K̂ (t) dt =
∫

(K̂ (t))2 dt ≤
∫

K̂ (t) dt = K (0) = 1,

with equality if and only if K̂ = 1 holds a.e. on the set {K̂ �= 0}. Since indicator functions
correspond to projection operators by Eq. (3.6), this proves the claim. ♦
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Diffraction Theory of Point Processes 923

By [2, Corollary 4.2.23], ‘thinnings’ of determinantal point processes are again determi-
nantal point processes. This leads to the following observation.

Remark 3.9 (Thinned determinantal point processes) Let ω be a determinantal point process
on R

d with a kernel K as in Eq. (3.1), let 0 < p ≤ 1, and let ωp denote the point
process obtained from ω by (i) deleting each point with probability 1 − p, indepen-
dently of one another, and (ii) rescaling the resulting point process so that the mean den-
sity becomes 1. Then, ωp is the determinantal point process associated with the kernel
K p(x, y) := K (x/p1/d , y/p1/d), as follows from [2, Corollary 4.2.23]. Thus, each deter-
minantal point process ω gives rise to an entire family (ωp)0<p≤1 of determinantal point
processes.

Furthermore, if ω is stationary and ergodic, ωp is also stationary and ergodic, and if g is
defined as in Eq. (3.4), and gp is the analogous function for ωp , we have gp(x) = g(x/p1/d)

and ĝp(t) = pĝ(tp1/d). Therefore, by Proposition 3.5, the autocorrelation and diffraction
measures of ωp are given by

γp = δ0 + (
1 − g(x/p1/d)

)
λd and γ̂p = δ0 + (

1 − p ĝ(tp1/d)
)
λd .

As p → 0, the repulsion between the points decreases, and the point process converges in
distribution to the homogeneous Poisson process with intensity 1.

Finally, note that if K is a translation-invariant kernel as in Eq. (3.5), the same holds for K p .
More precisely, if K is the Fourier transform of the probability density ϕ(t) (with values in
[0, 1]), then K p is the Fourier transform of the probability density ϕp(t) := p ϕ(tp1/d) (with
values in [0, p]). In this case, the formulas for the autocorrelation and diffraction measures
reduce to

γ = δ0 + (
1 − |K |2(x/p1/d)

)
λd and γ̂ = δ0 + (

1 − p ̂|K |2(tp1/d)
)
λd ,

as can easily be checked. ♦

Evidently, the construction below Eq. (3.5) gives rise to a large number of examples.
Let us mention some particularly interesting cases.

Example 3.10 (Sine process) An important example is given by the sine process, which corre-
sponds to d = 1, K (x) = sin(πx)

πx and ϕ(t) = 111[−1/2,+1/2](t). In this case, the autocorrelation
and diffraction measures are given by

γ = δ0 +
(

1 −
(

sin(πx)
πx

)2
)

λ and γ̂ = δ0 + (
1 − max{0, 1−|t |}) λ.

This example arises in connection with the local eigenvalue statistics of the Gaussian Unitary
Ensemble (GUE) in random matrix theory [2,13,19], and is discussed from the viewpoint of
diffraction theory in [6].

By Remark 3.9, the sine process gives rise to a whole family of determinantal point
processes, with K p(x) = sin(πx/p)

πx/p and ϕp(t) = p 111[−1/(2p),+1/(2p)](t), where 0 < p ≤ 1.
The autocorrelation and diffraction measures are now given by

γp = δ0+
(

1−
(

sin(πx/p)
πx/p

)2
)

λ and γ̂p = δ0+(
1− p max{0, 1− p|t |}) λ.

See Fig. 1. Note that for p > 1, the function K p does not give rise to a determinantal point
process, as the condition 0 ≤ ϕp ≤ 1 is violated. Thus, the sine process (p = 1) is the point
process with the strongest repulsion in this determinantal family, and it seems to be the only
member of this family arising in random matrix theory. ♦
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Fig. 1 The absolutely continuous parts of the autocorrelation (left) and diffraction (right) measures of the
thinned sine process for p = 1 (normal), p = 0.5 (dashed) and p = 0.25 (dotted)

Example 3.11 Let d ∈ N, let ϕ denote the density of the uniform distribution on the d-
dimensional ball of volume 1 centered at the origin, and let K := ϕ̂. Then it is well known
that K (x) = α−1/2|x |−d/2 Jd/2(2πα−1/d |x |), where α := λd(B1) denotes the volume of the
d-dimensional unit ball B1. Thus, the autocorrelation and diffraction measures are given by

γ = δ0 +
(

1 − α−1|x |−d(
Jd/2(2πα−1/d |x |))2

)
λd

and

γ̂ = δ0 +
(

1 − (ϕ ∗ ϕ)(t)
)
λd .

Here, Jd/2 is the Bessel function of the first kind of order d/2. Note that for d = 1, we
recover the sine process . ♦

Here is another example of a rotation-invariant kernel.

Example 3.12 Take d ∈ N, K (x) = e−π |x |2 and ϕ(t) = e−π |t |2 . In this case, the auto-
correlation and diffraction measures are given by

γ = δ0 +
(

1 − e−2π |x |2) λd and γ̂ = δ0 +
(

1 − ( 1
2

)d/2
e−π |t |2/2

)
λd ,

by an application of Corollary 3.7. ♦

Note that the pair (γ, γ̂ ) comes close to being self-dual here. It seems natural to try to
obtain a genuinely self-dual pair (γ, γ̂ ) by appropriate rescaling. However, this would require
the transformations e−π |x |2 → e−π |x |2/2 for the function K and e−π |t |2 → 2d/2e−2π |t |2 for its
Fourier transform K̂ , and this is not allowed as the spectrum of the corresponding convolution
operator K is no longer contained in the interval [0, 1].

Nevertheless, at least for d = 2, there does exist a stationary determinantal point process
with a self-dual pair (γ, γ̂ ) of the desired form, although one not coming from a translation-
invariant kernel.

Example 3.13 (Ginibre process) On R
2 � C, consider the kernel

K (z, w) = exp
(− 1

2π |z|2 − 1
2π |w|2 + π zw

)
.

This kernel is not translation-invariant, but one can show that it still defines a determinantal
point process that is stationary and ergodic. By Proposition 3.5, the autocorrelation and
diffraction measures are given by

γ = δ0 + (
1 − e−π |x |2)λ2 and γ̂ = δ0 + (

1 − e−π |t |2) λ2.
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Fig. 2 The absolutely continuous parts of the autocorrelation (left) and diffraction (right) measures (viewed
along a line through the origin) of the thinned Ginibre process for p = 1 (normal), p = 0.5 (dashed) and
p = 0.25 (dotted)

Note that the pair (γ, γ̂ ) is self-dual here. Note also that the diffraction density vanishes
at the origin. (Indeed, the integral operator K determined by the kernel K is a projection
operator here.) This example arises in connection with the local eigenvalue statistics of the
Ginibre Ensemble in random matrix theory [2,13,19], and is discussed from the viewpoint
of diffraction theory in [6].

Similarly as above, by Remark 3.9, we may also consider thinned versions of the Ginibre
process. Here, the autocorrelation and diffraction measures are given by

γp = δ0 + (
1 − e−π |x |2/p)λ2 and γ̂p = δ0 + (

1 − pe−πp|t |2) λ2,

via the usual reasoning (Fig. 2). ♦

Example 3.14 (Renewal process) Another interesting example is given by the class of those
stationary determinantal point processes which are simultaneously renewal processes; see
[19, Sect. 2.4] and references given there. Here, d = 1, K (x) = exp(−|x |/α) and ϕ(t) =

2α
1+(2παt)2 , where 0 < α ≤ 1

2 . The density of the increments of the associated renewal process
is given by

fα(x) = 2√
1 − 2α

e−x/α sinh(
√

1 − 2α(x/α))111(0,∞)(x),

see [19, Eq. 2.42]. The autocorrelation and diffraction measures are given by

γα = δ0 + (
1 − exp(−2|x |/α)

)
λ and γ̂α = δ0 + (

1 − α
1+π2α2t2

)
λ.

See Fig. 3. Of course, this can also be obtained from the density fα and [3, Theorem 1],
which provides formulas for the autocorrelation and diffraction measures of general renewal
processes.

Similarly to what we saw above, this family of point processes approaches the homo-
geneous Poisson process as α → 0, while the kernel does not define a determinantal point
process for α > 1/2. Note also that for α = 1/2 the distribution of the increments is the
gamma distribution with the density 4xe−2x and that all other members of the family can be
obtained from the associated determinantal point process by the thinning procedure described
in Remark 3.9. ♦

Example 3.15 Let Q1 be the Poisson distribution with parameter 1, let Q2 be the compound
Poisson distribution with parameter 1 and compounding distribution 1

2 δ−1 + 1
2 δ+1, and let

ϕ1(x) :=
∫

R

111[−1/2,+1,2](x − y) dQ1(y) and ϕ2(x) :=
∫

R

111[−1/2,+1,2](x − y) dQ2(y) .

123



926 M. Baake et al.

Fig. 3 The absolutely continuous parts of the autocorrelation (left) and diffraction (right) measures of the
renewal process for α = 0.5 (normal), α = 0.25 (dashed) and α = 0.125 (dotted)

Then, ϕ1 and ϕ2 are probability densities bounded by 1, and the associated functions K1 and
K2 read

K1(x) = exp
(
e−2π i x − 1

) sin(πx)
πx and K2(x) = exp

(
cos(2πx) − 1

) sin(πx)
πx .

Since

|K1(x)|2 = exp
(
2 cos(2πx) − 2

)( sin πx
πx

)2 = |K2(x)|2 ,

it follows that the associated stationary determinantal point processes have the same auto-
correlation and diffraction measures. However, the point processes themselves are not the
same, as can be verified by comparing the 3-point correlation functions.

Thus, even within the restricted class of determinantal point processes with a translation-
invariant kernel as in Eq. (3.5), the inverse problem to reconstruct the distribution of a point
process from its diffraction measure does not have a unique solution; see [4] for background
information and other examples. ♦

Remark 3.16 (Diffraction spectrum versus dynamical spectrum) Let ω be a stationary and
ergodic point process for which the first and second moment measures exist. Then, the
diffraction measure (or rather its equivalence class) is also called the diffraction spectrum of
ω, whereas the dynamical spectrum of ω is the spectrum of the dynamical system defined
by the shift operators Tx , x ∈ R

d , on (N (Rd), N (Rd), Pω). More precisely, the dynamical
spectrum may be defined as the maximal spectral type of the group of unitary operators
f �→ f ◦ Tx on L2(N (Rd), N (Rd), Pω); compare [9] or [17] for details. It is of interest
in diffraction theory to clarify the relationship between the diffraction spectrum and the
dynamical spectrum; see [7] and references therein for background information.

Let us consider the diffraction spectrum and the dynamical spectrum for a determinantal
point process with a translation-invariant kernel as in Eq. (3.5). On the one hand, as we have
seen above, the diffraction spectrum is equivalent to δ0+λd . On the other hand, the dynamical
spectrum is also equivalent to δ0 + λd . Indeed, it was shown in [19] that the determinantal
point process is absolutely continuous (when viewed as a dynamical system), so that the
dynamical spectrum is dominated by δ0 +λd . Furthermore, as also shown in [19], the centred
linear statistics ω �→ ∫

f (x) dω(x) − E(
∫

f (x) dω(x)), where f ∈ C ∞
c (Rd), possess the

spectral measure (1 − ̂|K |2(t)) | f̂ (t)|2 λd , which implies that the dynamical spectrum must
be equivalent to δ0 + λd . Thus, the ‘diffraction spectrum’ and the ‘dynamical spectrum’ are
equivalent here.
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It seems interesting to ask whether this is a general property of translation-invariant point
processes with “good” mixing properties. Let us mention here that the determinantal point
process is not only mixing, but even mixing of all orders; see [19]. ♦

4 Permanental Point Processes

We now turn to permanental point processes where the correlation functions are given by the
permanent instead of the determinant of a certain kernel. For such processes, the particles
tend to form clumps, whereas they repel one another for determinantal point processes. See
[13, Sect. 4.9] for background information. See also [16] and [10, Example 6.2 (b)], where
these point processes are called boson processes.

Let K be a kernel as in Eq. (3.1). A point process ω on R
d is called permanental with

kernel K if, for any k ∈ N, the k-point correlation function exists and is given by

�k(x1, . . . , xk) = per
(
K (xi , x j )1≤i, j≤k

)
, (4.1)

where per denotes the permanent; compare [13, Definition 2.1.5].
We refer to [13, Sect. 4.9] for the proof of the following result.

Proposition 4.1 ([13, Corollary 4.9.3]) For any kernel K as in Eq. (3.1), there exists a
permanental point process with kernel K on R

d . �
Furthermore, it is not hard to see that if there exists a permanental point process ω with a

given kernel K as in Eq. (3.1), its distribution is uniquely determined. This follows from the
observation that, for any bounded Borel set A, the probability generating function defined
by z �→ E(zω(A)) exists in an open neighborhood of the unit ball; see [16, Theorem 6].

Remark 4.2 Let us note here that the probability generating function z �→ E(zω(A)) is an
entire function for determinantal, but generally not for permanental point processes. The
reason for this difference is that determinants satisfy Hadamard’s inequality, while there is
no comparable estimate for permanents. ♦

Of course, we will be interested in permanental point processes which are also stationary
with mean density 1. For brevity, let us directly turn to permanental point processes with
translation-invariant kernels. More precisely, we shall assume the following:

K (x, y) = K (x − y) holds for all x, y ∈ R
d , where the function K : R

d → C

on the right-hand side is the Fourier transform of a probability density

ϕ on R
d . (4.2)

Note that, in contrast to Condition (3.5), the probability density need not be bounded here.
However, Condition (4.2) still implies Condition (3.1).

Now suppose that Condition (4.2) holds. Let ω denote the associated permanental point
process, which exists by Proposition 4.1. Since the correlation functions determine the dis-
tribution of ω, ω is clearly stationary with mean density K (0) = 1. Moreover, by the
Riemann–Lebesgue lemma, we have K (x) −→ 0 as |x | → ∞, and a variation of the
proof of [19, Theorem 7] or [2, Theorem 4.2.34] shows that ω is also mixing and hence
ergodic.

Furthermore, by Eq. (2.1), (the continuous versions of) the first and second correlation
functions of ω satisfy

�1(x1) = K (0) = 1 and �2(x1, x2) = 1 + ∣
∣K (x1 − x2)

∣
∣2

. (4.3)
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Therefore, similarly as in Corollary 2.4, we have the following result:

Proposition 4.3 Let K be a kernel as in Eq. (4.2). Then, the autocorrelation and diffraction
measures of the associated permanental point process ω are given by

γ = δ0 + (
1 + |K |2)λd and γ̂ = δ0 + (

1 + (ϕ ∗ ϕ−)
)
λd ,

where ϕ−(x) := ϕ(−x) as before.

Note that the autocorrelation and diffraction densities are larger than 1 here, in line with the
clumping picture. Also, under the above-mentioned assumptions, the diffraction measure is
absolutely continuous apart from the Bragg peak at the origin, and the absolutely continuous
part of the diffraction measure is equivalent to Lebesgue measure.

Note that if K were square-integrable, we could also write ̂|K |2 instead of (ϕ ∗ϕ−) in the
result for the diffraction measure, similarly as in Corollary 3.7. However, in general, K need
not be square-integrable here.

Proof of Proposition 4.3 This follows from the proof of Corollary 2.4 and the observation
that (|K |2 λ)̂ = (ϕ ∗ ϕ−) λ.

To check this observation, note that K = ϕ̂ implies |K |2 = (ϕ∗ϕ−)̂ . Thus, ((ϕ∗ϕ−) λ)̂ =
|K |2 λ, and the desired relation follows by Fourier inversion in the space of positive and
positive-definite measures, and the fact that (ϕ ∗ ϕ−) λ is a symmetric measure. �

Clearly, all examples for determinantal point processes translate into examples for per-
manental point processes. In particular, the thinning procedure described in Remark 3.9 also
extends to permanental point processes. However, the kernel K p introduced there may now
be considered also for p > 1, where it still defines a permanental point process ωp . (Of
course, the probabilistic description in terms of thinning breaks down in this region. How-
ever, at least for natural numbers p, ωp may be viewed as the superposition of p independent
copies of ω. In fact, this is not surprising in view of the representation as a Cox process to
be mentioned below.) Thus, any permanental point process ω gives rise to a whole family
of permanental point processes (ωp)0<p<∞. These families interpolate between the homo-
geneous Poisson process (for p → 0) and the non-ergodic mixed Poisson process with the
exponential distribution with parameter 1 as mixing distribution (for p → ∞).

Remark 4.4 A careful analysis of the arguments in [19] shows that, with the obvious modifi-
cations, Remark 3.16 continues to hold for permanental point processes as in Proposition 4.3.
In particular, both the diffraction spectrum and the dynamical spectrum are equivalent to
δ0 + λd here. ♦

Remark 4.5 As mentioned in the last section, our Condition (3.5) in the investigation of
determinantal point processes is essential in the sense that it must be satisfied for any deter-
minantal point process with a translation-invariant kernel satisfying Eq. (3.1). In contrast,
our Condition (4.2) in the investigation of permanental point processes could be relaxed.

For instance, we could start from the assumption that the function K : R
d → C in Eq. (4.2)

is the Fourier transform of a continuous (but not absolutely continuous) probability measure
Q on R

d . Let ω be the associated permanental point process, which exists by Prop. 4.1. Then,
it is not necessarily true that K (x) −→ 0 as |x | → ∞, but one can convince oneself that ω

is still stationary and ergodic; see Sect. 5 for details. Hence, an argument similar to the proof
of Prop. 4.3 leads to the conclusion that the autocorrelation and diffraction measures of ω

are given by

γ = δ0 + (
1 + |K |2)λd and γ̂ = δ0 + λd + (

Q ∗ Q−
)
,
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where Q−(A) := Q(−A) denotes the reflection of Q at the origin. Of course, the diffraction
measure may now contain a singular continuous component.

Note that we required the probability measure Q to be continuous. If the probability mea-
sure Q is not continuous, the corresponding Fourier transform K still gives rise to a stationary
permanental point process ω, but this point process need not be ergodic anymore. A simple
(counter)example is given by the kernel K ≡ 1, for which the associated permanental point
process is a mixed Poisson process with directing measure Z λ, where Z has an exponen-
tial distribution with parameter 1. This point process is stationary but not ergodic, and the
autocorrelation measure is equal to γ = Z δ0 + Z2 λ, thus depends on the realisation.

5 Cox Processes

Recall the definition of a Cox process from [10, Sect. 6.2]. Let ω0 be a random measure on
R

d . A point process ω on R
d is called Cox process directed by ω0 if, conditionally on ω0 (i.e.

when ω0 is regarded as fixed), ω is a Poisson process with intensity measure ω0.
It is a standard result that a Cox process on R

d is simple if and only if the directing measure
is continuous. Furthermore, it is well known that a Cox process on R

d is stationary [ergodic,
mixing] if and only if the directing measure is stationary [ergodic, mixing]; compare [11,
Proposition 12.3.7].

For the formulation of the next result, let us recall that, for a general random measure ω,
the kth moment measure μ(k) is defined as the expectation measure (if it exists) of the product
measure ωk , and for a stationary random measure ω, the kth reduced moment measure μ

(k)
red

is then defined similarly as in Sect. 2. Furthermore, for a stationary random measure with
mean density 1, we may define the reduced covariance measure by

κ
(2)
red = μ

(2)
red − λd . (5.1)

For a stationary point process with mean density 1, we may additionally define the reduced
factorial covariance measure by

κ
•(2)
red = μ

•(2)
red − λd . (5.2)

From Theorem 2.2, we obtain the following result.

Proposition 5.1 Let ω be a stationary and ergodic Cox process with a directing measure ω0

for which the first and second moment measures exist, and suppose that ω0, and hence ω,
have mean density 1. Then, almost surely, the autocorrelation and diffraction measures of ω

are given by

γ = δ0 + λd + κ0 and γ̂ = δ0 + λd + κ̂0,

where κ0 is the reduced covariance measure of ω0, and κ̂0 its Fourier transform.

Let us note that the reduced covariance measure κ0 is a positive-definite measure, so
that the Fourier transform κ̂0 exists as a positive measure. Also, let us note that κ̂0 is also
known as the Bartlett spectrum of ω0 in the literature; see e.g. [10, Chapters 8.1 and 8.2] for
more information. (More precisely, the Bartlett spectrum is defined as the inverse Fourier
transform of the reduced covariance measure. However, as the reduced covariance measure
is symmetric, the Fourier transform and the inverse Fourier transform coincide, at least for
our definition of the Fourier transform.)
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Proof of Proposition 5.1 By [10, Proposition 6.2.2], the reduced factorial covariance mea-
sure of the Cox process ω equals the reduced covariance measure of the directing measure
ω0, i.e. κ•(2)

red (ω) = κ
(2)
red (ω0). Here, the measures in the brackets indicate which measures the

moment measures belong to. It therefore follows from Theorem 2.2 and Eq. (5.2) that the
autocorrelation of ω is given by

γ = δ0 + μ
•(2)
red (ω) = δ0 + λd + κ

•(2)
red (ω) = δ0 + λd + κ

(2)
red (ω0).

Taking the Fourier transform completes the proof. �
Remark 5.2 It is well known that permanental point processes are special cases of Cox
processes; see [16] or [13, Proposition 4.9.2]. For the convenience of the reader, and since
we can use this connection to establish the ergodicity of permanental point processes, let us
outline the argument in a simple situation.

Suppose that the kernel K is translation-invariant and satisfies Eq. (3.1) and K (0, 0) = 1.
Then, the underlying function K : R

d → C is continuous, Hermitian, and positive-definite
with K (0) = 1, and hence the covariance function of a stationary complex Gaussian process
(Xt )t∈Rd . To avoid technical issues, let us assume that (Xt )t∈Rd has continuous sample
paths. Then, it is not difficult to check (using Wick’s formula for the moments of complex
Gaussian random variables; see e.g. [13, Lemma 2.1.7]) that the Cox process ω directed by
ω0 := |Xt |2 λd is a permanental point process with kernel K .

Furthermore, if (Xt )t∈Rd is stationary [ergodic, mixing], thenω0 is also stationary [ergodic,
mixing], being a factor in the sense of ergodic theory, and this implies that ω is stationary
[ergodic, mixing] by the above-mentioned results on Cox processes. Thus, we obtain use-
ful sufficient conditions for ergodicity and mixing of Cox processes from the well-known
theory of stationary Gaussian processes: ω is ergodic if the spectral measure of (Xt )t∈Rd is
continuous, and ω is mixing if K (x) −→ 0 as |x | → ∞. ♦

Let us end this section with an example demonstrating that stationary and ergodic Cox
processes can have additional Bragg peaks apart from the origin.

Example 5.3 Consider the stochastic process X = (Xt )t∈R with Xt = 1 + cos(2π(t + U )),
where U is uniformly distributed on [0, 1]. Let ω0 := Xt λ be the random measure with
density Xt , and let ω be the Cox process directed by ω0. Then, one can check that ω0, and
hence ω, is stationary and ergodic. Furthermore, it is easy to check that the reduced covariance
measure of ω0 is given by κ0 = 1

2 cos(2πx) λ. It therefore follows from Proposition 5.1 that
the autocorrelation and diffraction measures of ω are given by

γ = δ0 + λ + 1
2 cos(2πx)λ and γ̂ = δ0 + λ + 1

4

(
δ−1 + δ+1

)
,

respectively. ♦

6 Zeros of Gaussian Random Analytic Functions

A Gaussian random analytic function is a random variable f whose values are analytic
functions on C with the property that, for all n ∈ N and for all choices of z1, . . . , zn ∈ C,
the n-tuple ( f (z1), . . . , f (zn)) has a complex Gaussian distribution with mean 0. One such
example is the Gaussian random analytic function f given by

f (z) :=
∞∑

n=0

an

√
Ln

√
n! zn , (6.1)
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where L is a positive constant and the an are i.i.d. standard complex Gaussian random
variables. We are interested in the zero set of f viewed as a point process on C � R

2. By [13,
Proposition 2.3.4], the distribution of the zero set of f is invariant under translations (and
also under rotations), and by [13, Corollary 2.5.4], f is essentially the only Gaussian random
analytic function with this property. Furthermore, by the proof of [13, Proposition 2.3.7],
the zero set of f defines an ergodic point process with respect to the group of translations.
Indeed, the zero set of f is even mixing:

Proposition 6.1 The point process given by the zero set of the Gaussian random analytic
function f in Eq. (6.1) is mixing.

Proof We use a similar argument as in the proof of [13, Proposition 2.3.7]. For convenience,
let us suppose that L = 1. Then, using that the covariance kernel of the complex Gaussian
process f is given by K (z, w) = exp(zw) (cf. Equation (6.4) below), it is straightforward to
check that, for any ζ ∈ C, the complex Gaussian processes ( f (z+ζ )e−|z+ζ |2/2e−i Im (zζ ))z∈C

and ( f (z)e−|z|2/2)z∈C have the same distribution. As a consequence, the stochastic process
(v(z))z∈C given by

v(z) := | f (z)|e−|z|2/2

is stationary, i.e. for any ζ ∈ C, (v(z + ζ ))z∈C and (v(z))z∈C have the same distribution.
Furthermore, the stochastic process (v(z))z∈C is mixing, i.e. for any events A, B ∈ B(C (C)),

P
(
(v(z + ζ ))z∈C ∈ A ∧ (v(z))z∈C ∈ B

) |ζ |→∞−−−−→ P
(
(v(z))z∈C ∈ A

)
P
(
(v(z))z∈C ∈ B

)
.

(6.2)

Here, C (C)denotes the space of continuous functionsϕ : C → R (endowed with the topology
of locally uniform convergence), and B(C (C)) denotes its Borel σ -field, which coincides
with the Borel σ -field generated by the projections πz , with z ∈ C. By standard arguments,
it suffices to check (6.2) for events A and B of the form A = ⋂m

j=1 π−1
z j

(A j ) and B =
⋂n

k=1 π−1
wk

(Bk), where m, n ∈ N, z j , wk ∈ C, and A j , Bk ⊂ R are Borel sets. But now, again
using that the covariance kernel of f is given by K (z, w) = exp(zw), it is easy to see that
the random vectors ( f (z j + ζ )e−|z j +ζ |2/2e−i Im (z j ζ )) j=1,...,m and ( f (wk)e−|wk |2/2)k=1,...,n

are asymptotically independent as |ζ | → ∞. Therefore,

P
(| f (z j + ζ )|e−|z j +ζ |2/2 ∈ A j ∀ j ∧ | f (wk)|e−|wk |2/2 ∈ Bk ∀k

)

|ζ |→∞−−−−→ P
(| f (z j )|e−|z j |2/2 ∈ A j ∀ j

)
P
(| f (wk)|e−|wk |2/2 ∈ Bk ∀k

)
,

and (6.2) is proved. Since the zero set of the Gaussian random analytic function f may be
represented as a factor (in the sense of ergodic theory) of the stochastic process (v(z))z∈C,
this establishes Proposition 6.1. �

Since the point process of zeros is ergodic and the moment measures of any order exist
(see below for details), the autocorrelation and diffraction measures exist by Theorem 2.2.
By [13, Corollary 3.4.2], the k-point correlation functions of the zero set of f are given by

�k(z1, . . . , zk) = per(C − B A−1 B∗)/ det(π A), (6.3)

where the k × k matrices A, B, C have the entries

A(i, j) := E( f (zi ) f (z j )) , B(i, j) := E( f ′(zi ) f (z j )) , C(i, j) := E( f ′(zi ) f ′(z j )) ,
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and B∗ denotes the conjugate transpose of B. Straightforward calculations yield

E( f (z) f (w)) =
∞∑

n=0

E
(|an |2) Ln

n! zn wn = exp(Lzw), (6.4)

E( f ′(z) f (w)) =
∞∑

n=0

E
(|an |2) Ln

n! nzn−1wn = Lw exp(Lzw), (6.5)

E( f ′(z) f ′(w)) =
∞∑

n=0

E
(|an |2) Ln

n! nzn−1nwn−1 = (L2zw + L) exp(Lzw). (6.6)

If we insert this into Eq. (6.3) (for k = 1 and k = 2), we find after some calculation that

�1(z) = L

π

and

�2(z1, z2) =
L2 exp

(
L|z1 − z2|2

)(
1 − exp(L|z1 − z2|2) + L|z1 − z2|2

)2

π2
(

exp(L|z1 − z2|2) − 1
)3

+
L2

(
1 − exp

(
L|z1 − z2|2

) + L|z1 − z2|2 exp
(
L|z1 − z2|2

))2

π2
(

exp
(
L|z1 − z2|2

) − 1
)3 .

In particular, the 2-point correlation function depends on z1 and z2 only via their distance
r := |z1 − z2|, as it should. From now on, we will always set L = π , so that the mean
density of the point process is equal to 1. Then, expressing the two-point correlation function
in terms of r , we obtain

�2(0, r) = 1 − g(r),

where

g(r) := e−πr2( − 2 + 4πr2 − π2r4
) + e−2πr2(

4 − 4πr2 − π2r4
) − 2e−3πr2

(
1 − e−πr2)3 . (6.7)

Moreover, an explicit calculation with the Fourier transform of a radially symmetric function
shows that the Fourier transform of g is given by

h(s) := 1 +
∞∑

k=2

(−1)k+1

(k − 2)! π
ks2kζ(k + 1); (6.8)

see below for details. Therefore, Corollary 2.4 implies the following result.

Theorem 6.2 Let ω be the point process given by the zeros of the Gaussian random analytic
function in Eq. (6.1), with L = π . Then, the autocorrelation and diffraction measures of ω

are given by

γ = δ0 + (
1 − g(r)

)
λ2 and γ̂ = δ0 + (

1 − h(s)
)
λ2,

where r ≡ r(x1, x2) :=
√

x2
1 + x2

2 , s ≡ s(t1, t2) :=
√

t2
1 + t2

2 , and g(r) and h(s) are the
functions defined in Eqs. (6.7) and (6.8).
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Fig. 4 The autocorrelation (left) and diffraction (right) density (viewed along a line through the origin) of
the point process that derives from the zeros of the Gaussian random analytic function (6.1)

We can see from Fig. 4 that the diffraction density exceeds 1 for s ≈ 1. Consequently, as
already observed in [13], the zero set of the Gaussian random analytic function f is not a
determinantal point process.

Proof of Theorem 6.2 Let

ϕ(u) := e−u
(−2 + 4u − u2

) + e−2u
(
4 − 4u − u2

) − 2e−3u

(1 − e−u)3 , u > 0. (6.9)

A straightforward Taylor expansion shows that ϕ(u) = 1 + O(u) as u → 0. Thus, ϕ(u) has
a continuous extension at zero, with ϕ(0) = 1. Moreover, there exists a constant C > 0 such
that |ϕ(u)| ≤ Ce−u/2 for all u ≥ 0. It therefore follows that the function g(r) = ϕ(πr2)

(regarded as a radially symmetric function on R
2) is integrable on R

2.
We can now compute the Fourier transform of g. In general, when g ∈ L1(R2) is radially

symmetric, which means that it depends only on the Euclidean norm r = |x |, the analogous
property holds for ĝ. Writing g(r) and ĝ(s) instead of g(x) and ĝ(t), respectively, and using
polar coordinates, one obtains

ĝ(s) =
∫ ∞

0

∫ 2π

0
e−2π i rs cos(ϑ) dϑ g(r) r dr = 2π

∫ ∞

0
rg(r) J0(2πrs) dr, (6.10)

which is essentially the Hankel transform in one dimension. Here, we have employed the
classic identity

1

2π

∫ 2π

0
ei z cos(ϑ) dϑ = J0(z),

where J0 is the Bessel function of the first kind of order 0, with series expansion

J0(z) =
∞∑

m=0

(−1)m z2m

4m(m!)2 .

Clearly, J0(0) = 1, while J0(r) = O(r−1/2) as r → ∞; compare [1]. Applying the identity
(6.10) to the function g(r) = ϕ(πr2) from (6.7), we obtain, after a change of variables,

ĝ(s) =
∫ ∞

0
ϕ(u) J0(

√
4πus) du =

∞∑

m=0

(−1)mπms2m

(m!)2

∫ ∞

0
umϕ(u) du. (6.11)

The exchange of integration and summation is justified by dominated convergence, using the
estimate |ϕ(u)| ≤ Ce−u/2.
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Lemma 6.3 The function I : [0,∞) → R defined by I (α) := ∫ ∞
0 uαϕ(u) du is continuous

on [0,∞), with

I (α) =
{

1, if α = 0,

α(1 − α)�(α + 1)ζ(α + 1), if α > 0,

where � is the gamma function and ζ is Riemann’s zeta function.

We thus have I (0) = 1, I (1) = 0 and I (m) = −m(m − 1) m! ζ(m + 1) for m ∈ N,
m ≥ 2. Inserting this into (6.11) gives

ĝ(s) = 1 +
∞∑

m=2

(−1)m+1

(m − 2)! (πs2)mζ(m + 1),

as claimed.

Proof of Lemma 6.3 Using the estimate |ϕ(u)| ≤ Ce−u/2, it is straightforward to see that
u �→ uαϕ(u) is integrable for any α ≥ 0 and, by dominated convergence, α �→ I (α) is
continuous at any α ≥ 0.

Observe that (1 − e−u)−3 = ∑∞
n=0

1
2 (n + 1)(n + 2)e−nu for any u > 0. Inserting this

into (6.9) gives

ϕ(u) = −
∞∑

n=1

(n2u2 − 4nu + 2)e−nu

for any u > 0. Since
∫ ∞

0 ux−1e−u du = �(x) and �(x + 1) = x�(x) for any x > 0, we find
for any fixed α > 0 that

I (α) = −
∞∑

n=1

�(α + 3)

nα+1 + 4
∞∑

n=1

�(α + 2)

nα+1 − 2
∞∑

n=1

�(α + 1)

nα+1

= α(1 − α)�(α + 1)ζ(α + 1).

Here, the termwise integration is justified by dominated convergence as long as α > 0.
Recalling that αζ(α + 1) = 1 + O(1) as α → 0 and using the continuity of α �→ I (α) at

α = 0, we finally obtain

I (0) = lim
α→0

I (α) = �(1) = 1,

which completes the argument. �
Although we have seen in Proposition 6.1 that the point process of zeros of the Gaussian

random analytic function f is mixing, any realisation of it displays an amazing amount of
structure. Indeed, the zero set can be given a remarkable visual interpretation as tilings. The
details can be found in [13, Chapter 8], but briefly, the tilings arise as the basins of descent
of the ‘potential function’ u on C defined by

u(z) := log | f (z)| − 1
2 |z|2 .

This function goes to −∞ at the zeros of f , and if one follows the gradient curves defined
by the equation

d Z(t)

dt
= ∇u(Z(t)) ,
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Fig. 5 The point process of zeros of the Gaussian random analytic function (6.1) and the associated basins of
attraction. Thanks to Manjunath Krishnapur and Ron Peled for making the MatLab program available to us

they can be thought of as paths of descent under u as a ‘gravitational’ attraction. The basins
of attraction of each zero of f then lead to a tiling (Fig. 5). Remarkably, these tiles almost
surely have the same area π/L and are bounded by finitely many smooth curves; see [18]
or [13, Theorem 8.2.7]. Technically, this is an example of an allocation, by which area is
associated to each point of the point process.

Clearly, we have no long-range order that manifests itself as non-trivial Bragg peaks, and
also none that would lead to singular continuous components. Yet, there are lots of remarkable
patterns that almost repeat (at random locations, of course), and one might wonder to what
extent spectral theory is able to capture such features. This might be an interesting point for
future investigations.
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