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Abstract In 1957, Blackwell expressed the entropy of hidden Markov chains using a measure
which can be characterised as an invariant measure for an iterated function system with
place-dependent weights. This measure, called the Blackwell measure, plays a central role
in understanding the entropy rate and other important characteristics of fundamental models
in information theory. We show that for a suitable set of parameter values the Blackwell
measure is absolutely continuous for almost every parameter in the case of binary symmetric
channels.
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1 Introduction and Statements

Blackwell [1] expressed the entropy for hidden Markov chains using a measure which is
called the Blackwell measure and can be characterised as an invariant measure of an iterated

B. Bárány (B)
MTA-BME Stochastics Research Group, Budapest University of Technology and Economics,
P.O. Box 91, Budapest 1521, Hungary
e-mail: balubsheep@gmail.com

B. Bárány
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

I. Kolossváry
Department of Stochastics, Budapest University of Technology and Economics,
P.O. Box 91, Budapest 1521, Hungary
e-mail: istvanko@math.bme.hu

I. Kolossváry
Inter-University Centre for Telecommunications and Informatics, Kassai út 26,
Debrecen 4028, Hungary

123



On the Absolute Continuity of the Blackwell Measure 159

function system (IFS). The properties of the Blackwell measure are examined by several
papers, for example [7,8,11,15] etc. Blackwell showed some examples, where the support
of the measure is at most countable, hence, the measure is singular, see [1, Section 3]. In
our paper we focus on the Blackwell measure defined by the binary-symmetric channel with
crossover probability ε. Bárány, Pollicott and Simon showed a set of parameters, where the
measure is singular, see [4, Theorem 1]. Our goal is to give a set of parameters for which the
Blackwell measure is absolutely continuous (a.c.) with respect to the Lebesgue measure. To
the best of our knowledge, absolute continuity of the Blackwell measure has not been proved
for any example before.

Let us introduce the basic notations for the binary symmetric channel. Let X := {Xi }∞i=−∞
be a binary, symmetric, stationary, ergodic Markov chain source, Xi ∈ {0, 1} with probability
transition matrix

� :=
[

p 1 − p
1 − p p

]
.

Then it is well known that the entropy H(X) is given by

H(X) = −p log p − (1 − p) log(1 − p).

By adding to X a binary independent and identically distributed (i.i.d.) noise E = {Ei }∞i=−∞
independent of X with

P(Ei = 0) = 1 − ε, P(Ei = 1) = ε,

we get a Markov chain Y := {Yi }∞i=−∞, Yi = (Xi , Ei )with states {(0, 0), (0, 1), (1, 0), (1, 1)}
and transition probabilities:

M :=

⎡
⎢⎢⎣

p(1 − ε) pε (1 − p)(1 − ε) (1 − p)ε

p(1 − ε) pε (1 − p)(1 − ε) (1 − p)ε

(1 − p)(1 − ε) (1 − p)ε p(1 − ε) pε

(1 − p)(1 − ε) (1 − p)ε p(1 − ε) pε

⎤
⎥⎥⎦ .

Let � : {(0, 0), (0, 1), (1, 0), (1, 1)} �→ {0, 1} be a surjective map such that

�(0, 0) = �(1, 1) = 0 and �(0, 1) = �(1, 0) = 1.

We consider the ergodic stationary process Z = {Zi = �(Yi )}∞i=−∞, which is the corrupted
output of the channel. Equivalently, Z is the stationary stochastic process

Zi = Xi

⊕
Ei ,

where
⊕

denotes the binary addition.
According to [7, Example 4.1] and [4, Sections 3.1, 3.2], the entropy of Z can be charac-

terized as follows. Let us define the three dimensional simplex

W :=
{
w ∈ R

4 : wi ≥ 0
4∑

i=1

wi = 1

}

in R
4 and define W0, W1 ⊂ W as

W0 := {
w ∈ W : w2 = w3 = 0

}
, W1 := {

w ∈ W : w1 = w4 = 0
}
.
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160 B. Bárány and I. Kolossváry

Let us define two matrices

M0 :=

⎡
⎢⎢⎣

p(1 − ε) 0 0 (1 − p)ε

p(1 − ε) 0 0 (1 − p)ε

(1 − p)(1 − ε) 0 0 pε

(1 − p)(1 − ε) 0 0 pε

⎤
⎥⎥⎦

M1 :=

⎡
⎢⎢⎣

0 pε (1 − p)(1 − ε) 0
0 pε (1 − p)(1 − ε) 0
0 (1 − p)ε p(1 − ε) 0
0 (1 − p)ε p(1 − ε) 0

⎤
⎥⎥⎦ ,

and a place-dependent probability vector (r0(w), r1(w)), where

ri (w) = ‖wT Mi‖1, (1.1)

where ‖.‖1 denotes the l1 norm and w ∈ W . Introduce two functions f0 : W �→ W0 and
f1 : W �→ W1 such that

fi (w) = wT Mi

‖wT Mi‖1
. (1.2)

For a visualisation of the system we refer to [4, Figure 2]. Then the entropy of Z can be
formulated as follows

H(Z) = −
∫

W0∪W1

r0(w) log r0(w) + r1(w) log r1(w)d Q(w),

where the Blackwell measure Q is the unique measure with supp(Q) ⊆ W0 ∪ W1 that for
every B ⊆ W0 ∪ W1 Borel set

Q(B) =
∫

( f0)−1 B
r0(w)d Q(w) +

∫
( f1)

−1 B
r1(w)d Q(w). (1.3)

As we have mentioned before, our main result shows a set of parameters (ε, p) ∈ (0, 1)2

such that the Blackwell measure Q � L (shown in Fig. 1), where L denotes the one dimen-
sional Lebesgue measure restricted to W0 ∪ W1 .

Theorem 1.1 [Main Theorem] The Blackwell measure Q is absolutely continuous w.r.t the
Lebesgue measure for every ε �= 1/2 and Lebesgue almost every p in the red region marked
on Fig. 1, but if ε = 1/2 then it is singular with dimH Q = 0 for every p ∈ (0, 1).

Remark 1.2 The Blackwell measure is of pure type, i.e. it is either absolute continuous or
singular, see [4, Lemma 8]. The measure is singular in the blue region, which was already
showed in [4, Theorem 2]. We will precisely characterize the region of absolute continuity
in Sects. 3 and 4.

Corollary 1.3 The Blackwell measure Q is equivalent to the measure L|supp(Q) for every
ε �= 1/2 and Lebesgue almost every p in the red region marked on Fig. 1.

In the study of the properties of an invariant measure of a family of parameterised IFSs
the so-called transversality condition is an effective tool (precise definition in Sect. 2). It was
introduced by Pollicott and Simon in [14] and has been used to prove absolute continuity or
to calculate the Hausdorff dimension of invariant measures in several cases, for example [12,
13,16–18]. However, the studied invariant measures were not place-dependent probability
measures. Until recently, there were no tools for handling this case. In [3] a sufficient condition
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On the Absolute Continuity of the Blackwell Measure 161

Fig. 1 The singularity region (blue region) of the Blackwell measure Q and the absolute continuity region
of full measure subset of red region (Color figure online)

was given for calculating the Hausdorff-dimension and for proving absolute continuity for
place-dependent invariant probability measures, which also used the transversality condition.

In the work of Bahsoun and Góra [2] sufficient conditions are shown for the existence
of an absolutely continuous invariant measure for an IFS { fi (x)}m

i=1 with place dependent
probabilities {pi (x)}m

i=1. Their condition

m∑
i=1

pi (x)

| f ′
i (x)| < 1 for all x,

does not hold in our context. In fact for any strictly contractive system this fails, i.e. for
systems with | f ′

i (x)| < 1 for all i and every x .
The main advantage of the absolute continuity is that there exists a measurable density

function qε,p(w) such that d Q(w) = qε,p(w)dL(w) for w ∈ W0 ∪ W1. Unfortunately, the
paper presented here does not give any method to prove properties of qε,p . In order to get a
better understanding of the entropy rate the next step could be to examine the properties of
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162 B. Bárány and I. Kolossváry

the density function, which can replace the iterative methods in the calculation by a simple
Lebesgue integration.

Structure of the Paper
In Sect. 2 we give a short overview of the main tool of the proof, the transversality

condition. A sketch of the proof is also given. Sect. 3 determines the set of parameters
(ε, p) ⊂ (0, 1)2 for which the transversality condition holds and finally Theorem 1.1 is
proved in Sect. 4.

2 Transversality Methods for Place-Dependent Invariant Measures

This section is devoted to introduce the definition of transversality condition and state the
results about place-dependent probability measures.

Denote by S = {1, . . . , k} the set of symbols. Let X be a compact interval on the real line
and U ⊂ R

d be an open, bounded set. Let us consider a parametrized family of IFSs

�λ = {
f λ
i : X �→ X

}
i∈S , λ ∈ U ,

such that
(A1) there exists 0 < α < β < 1 such that α <

∣∣( f λ
i )′(x)

∣∣ < β for every x ∈ X , λ ∈ U
and i ∈ S. Let � = SN be the symbolic space. The natural projection from the symbolic
space to the compact interval X is

πλ(i) := lim
n→∞ f λ

i0
◦ · · · ◦ f λ

in
(x) for i = (i0, i1, . . . ) ∈ �.

Since the functions f λ
i are uniformly contracting when (A1) is true, the function π : �×U �→

X is well defined.
(A2) Let us assume that the functions λ �→ f λ

i are uniformly continuous from U to
C1+θ (X).

Definition 2.1 We say that �λ satisfies the transversality condition on the open, bounded
set U ⊂ R

d , if there exists a constant C > 0 such that for any i, j ∈ � with i0 �= j0

Ld (λ ∈ U : |πλ(i) − πλ(j)| < r) < Cr for every r > 0, (2.1)

where Ld is the d-dimensional Lebesgue measure.

(A3) Suppose that �λ satisfies the transversality condition on U .
Let Pλ = {pλ

i : X �→ (0, 1)}i∈S be a parameterized family of Hölder continuous place-
dependent probabilities, i.e.

∑
i∈S pλ

i (x) ≡ 1 for every λ ∈ U .
(A4) Suppose that the functions λ �→ pλ

i are uniformly continuous from U to
Cθ (X, (0, 1)).

It follows from [6] that there exists a unique corresponding place-dependent invariant
measure μλ which satisfies

μλ(B) =
∑
i∈S

∫
(

f λ
i

)−1
(B)

pλ
i (x)dμλ(x) for every Borel set B.

Let us define the entropy h(μλ) and Lyapunov exponent χ(μλ) of measure μλ as

h(μλ) = −
∫ ∑

i∈S
pλ

i (x) log pλ
i (x)dμλ(x), (2.2)
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χ(μλ) = −
∫ ∑

i∈S
pλ

i (x) log
∣∣( f λ

i )′(x)
∣∣dμλ(x). (2.3)

According to the result of Jaroszewska and Rams [10], the quotient h(μλ)/χ(μλ) is
an upper bound for the Hausdorff dimension of the measure μλ for every λ ∈ U . Since
an absolute continuous measure w.r.t the Lebesgue measure must have dimension 1, the
inequality h(μλ)/χ(μλ) ≥ 1 is a necessary condition for the absolute continuity of μλ. The
blue region in Fig. 1 is where the quotient is strictly less than 1.

Theorem 2.2 [3, Theorem 1.1(2)] Suppose that all of the conditions (A1)–(A4) are satisfied.
Then μλ is absolutely continuous w.r.t. the Lebesgue measure for Ld almost every λ ∈
{λ ∈ U : h(μλ)/χ(μλ) > 1}.
Sketch of proof of Theorem 1.1

To apply Theorem 2.2 for the Blackwell measure we need to find a region Rtrans ⊂ (0, 1)2

of parameters (ε, p) where the corresponding IFS satisfies the transversality condition (2.1)
and secondly, another region Rratio where the quotient entropy/Lyapunov exponent is strictly
greater than 1. As a result we can prove absolute continuity in the region Rratio ∩ Rtrans.
Unfortunately, the intersection may be empty in general. However, in the examined case of
the Blackwell measure it is not empty, see Sect. 4.

A region for Rratio can be found using the results of [4, Section 4], see (4.2). It is much
harder to find a region Rtrans, especially in the case of non-linear functions. We show such
a method in Sect. 3, similar to [4, Section 7.1]. The key lemma to prove transversality and
find Rtrans is the following.

Lemma 2.3 [16, Lemma 7.3] Let U ⊂ R
d be an open, bounded set. Suppose that f is a

C1 real-valued function defined in a neighbourhood of U such that there exists an η > 0
satisfying

| f (λ)| < η ⇒ ∥∥gradλ f (λ)
∥∥ > η for every λ ∈ U. (2.4)

Then there exists C = C(η) such that

Ld (λ ∈ U : | f (λ)| < r) < Cr for every r > 0.

For a visualization of Definition 2.1 and Lemma 2.3 for one parameter see Fig. 2. For every
i, j such that i0 �= j0, if the graphs of the functions λ �→ πλ(i) and λ �→ πλ(j) intersect each
other then their tangents at the points of intersection are uniformly (in i, j and in the point of
intersection) separated from each other.

3 Transversality Region

For the binary symmetric channel, since the law is determined by the probability of the state
being 1, we consider another measure με,p on [0, 1] instead of the measure Q on the simplex
W defined in (1.3). Let

{
Sε,p

0 , Sε,p
1

}
be an IFS on the interval [0, 1],

Sε,p
0 (x) := x · p · (1 − ε) + (1 − x) · (1 − p) · (1 − ε)

x · [p(1 − ε) + (1 − p) · ε] + (1 − x) · [(1 − p)(1 − ε) + p · ε]
(3.1)

Sε,p
1 (x) := x · p · ε + (1 − x) · (1 − p) · ε

x · [pε + (1 − p) · (1 − ε)] + (1 − x) · [(1 − p)ε + p · (1 − ε)]
. (3.2)
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164 B. Bárány and I. Kolossváry

Fig. 2 The transversality condition for one parameter λ ∈ R

Further, let us define the place-dependent probability vector (pε,p
0 (x), pε,p

1 (x)) by

pε,p
0 (x) := x · [p(1 − ε) + (1 − p) · ε] + (1 − x) · [(1 − p)(1 − ε) + p · ε] , (3.3)

pε,p
1 (x) := x · [pε + (1 − p) · (1 − ε)] + (1 − x) · [(1 − p)ε + p · (1 − ε)] . (3.4)

Indeed, for every x ∈ [0, 1], pε,p
0 (x), pε,p

1 (x) > 0 and pε,p
0 (x) + pε,p

1 (x) ≡ 1. Hence, there
is a unique probability measure με,p such that for every Borel set B

με,p(B) =
∫
(
Sε,p

0

)−1
(B)

pε,p
0 (x)dμε,p(x) +

∫
(
Sε,p

1

)−1
(B)

pε,p
1 (x)dμε,p(x), (3.5)

see [6, Theorem 1.1].
The measures με,p and Q are equivalent. That is, dimH με,p = dimH Q and με,p � L

if and only if Q � L, see [4, Section 3.1, 3.2].
To show a region of (ε, p) parameters, where the IFS

{
Sε,p

0 , Sε,p
1

}
satisfies the transversal-

ity condition, we first transform this IFS to an equivalent IFS {H ε,q
0 , H ε,q

1 } for easier handling,
where from now on q := 2p − 1. By symmetrical reasons, without loss of generality, we
may suppose 1/2 < p < 1.

Lemma 3.1 For every 0 < ε, q < 1, ε �= 1/2, there exists a linear function fε,q such that

fε,q ◦ H ε,q
i ◦ ( fε,q

)−1 ≡ Sε,(q+1)/2
i for i = 0, 1, i.e. the IFS

{
H ε,q

0 , H ε,q
1

}
is equivalent to

the IFS
{

Sε,(q+1)/2
0 , Sε,(q+1)/2

1

}
, where

H ε,q
0 (x) = −(2 + (−1 + 3q + cε,q)x)

−3 + q + cε,q + 2(−1 + q)(−1 + q + cε,q)x
,

H ε,q
1 (x) = (1 + q − cε,q)x

1 + q + cε,q + 2(−1 + q)(−1 + q + cε,q)x
,

and cε,q = √
1 + 2(1 − 8ε + 8ε2)q + q2. Furthermore, H ε,q

0 and H ε,q
1

(1) map the interval [0, 1
1−q ] into itself,

(2) are strictly monontone increasing on [0, 1
1−q ] for every 0 < ε, q < 1.
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On the Absolute Continuity of the Blackwell Measure 165

Proof Let

Lε,q
i (x) = Sε,(q+1)/2

i (x + 1/2) − 1/2.

Since {S0, S1} maps [0,1] into itself, {L0, L1} maps [−1/2, 1/2] into itself. Moreover, S0(x)+
S1(1 − x) = 1 implies L0(x) = −L1(−x). Let yε,q be the fixed point of L0 in [−1/2, 1/2].
That is

yε,q := −−1 + q + √
1 + 2(1 − 8ε + 8ε2)q + q2

4(−1 + 2ε)q
.

By the symmetrical properties of L0 and L1, one can show that the fixed point of L1 is −yε,q .
We define y1/2,q = 0. So when ε �= 1/2 the following transformation of the function is
valid.

Qε,q
i (x) := Lε,q

i (yε,q x)/yε,q .

Finally, we do the last manipulation:

H ε,q
i (x) := Qε,q

i (2(1 − q)x − 1) + 1

2(1 − q)
.

By the definition fε,q(x) := 2(1 − q)yε,q x + (1 − q)yε,q − 1.
It is easy to check that the functions H ε,q

0 and H ε,q
1 satisfy property (2). Furthermore,

Qε,q
0 (1) = 1 and Qε,q

1 (−1) = −1, therefore H ε,q
0 ( 1

1−q ) = 1
1−q and H ε,q

1 (0) = 0. This fact
together with (2) implies property (1). ��

Remark 3.2 For ε = 1/2 the IFS
{

H1/2,q
0 , H1/2,q

1

}
is well defined, but it is not equivalent to

the IFS
{

S1/2,(q+1)/2
0 , S1/2,(q+1)/2

1

}
. Hence, the properties of any invariant measures are not

inherited. However, the importance of the modification of our original IFS comes from the fact
that limε→1/2 H ε,q

0 (x) = H1/2,q
0 (x) = qx + 1 and limε→1/2 H ε,q

1 (x) = H1/2,q
1 (x) = qx .

Peres and Solomyak [13] proved that the IFS {qx + 1, qx} satisfies (2.4) and hence, the
transversality condition for q ∈ (0.5, 0.65). Since the functions H ε,q

0 , H ε,q
1 , (H ε,q

0 )′ and
(H ε,q

1 )′ are smoothly parametrized in ε (see Lemma 3.1), one can show by using Lemma 2.3
that the IFS

{
H ε,q

0 , H ε,q
1

}
satisfies the transversality condition w.r.t the parameter q in a

neighbourhood of ε = 1/2.

To characterize the transversality region precisely, we will use the technique of [4, Sec-
tion 7]. First, we restrict ourselves to the set of parameters for which the IFS

{
H ε,q

0 , H ε,q
1

}
is strictly contracting. Let κ(ε, q) denote the contraction ratio of the IFS,

κ(ε, q) := max
{ (

H ε,q
0

)′
(0),

(
H ε,q

0

)′ ( 1

1 − q

)
,
(
H ε,q

1

)′
(0),

(
H ε,q

1

)′ ( 1

1 − q

)}
,

and let
Rcontr := {

(ε, q) ∈ [0, 1]2 : κ(ε, q) < 1
}
. (3.6)

It is easy to see that the derivatives (H ε,q
0 )′ and (H ε,q

1 )′ are either strictly monotone increasing
or decreasing. Thus, Rcontr is exactly the region of parameters, where the IFS is contracting.

Let πε,q denote the usual natural projection from the symbolic space � = {0, 1}N to
[0, 1

1−q ], that is

πε,q(i0, i1, i2, . . . ) = lim
n→∞ H ε,q

i0
◦ H ε,q

i1
◦ · · · ◦ H ε,q

in
(0).
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166 B. Bárány and I. Kolossváry

Since the functions H ε,q
i are contractions for (ε, q) ∈ Rcontr, the function πε,q is well defined.

For every (ε, q) ∈ Rcontr there exists a unique non-empty compact set �ε,q , the attractor,
such that

�ε,q =
⋂
n≥0

1⋃
i0,...,in=0

H ε,q
i0

◦ H ε,q
i1

◦ · · · ◦ H ε,q
in

([0,
1

1 − q
]).

Hence, the set �ε,q is invariant, i.e. �ε,q = H ε,q
0 (�ε,q) ∪ H ε,q

1 (�ε,q), see [5]. The mea-
sure με,p is an invariant measure of the IFS {H ε,q

0 , H ε,q
1 }, the support of με,p is �ε,q . If

H ε,q
0 ([0, 1

1−q ])∩ H ε,q
1 ([0, 1

1−q ]) = ∅ then �ε,q is a Cantor set with zero Lebesgue measure,
which implies that any measure with support �ε,q is singular. Hence, it is necessary that the
two cylinders H ε,q

0 ([0, 1
1−q ]) and H ε,q

1 ([0, 1
1−q ]) overlap (in which case �ε,q = [0, 1

1−q ]).
However, for proving the transversality condition, it is convenient to assume that the

overlap between the images of the two cylinder sets is “weak” in the following sense:

πε,q(i) = πε,q(j) and i0 �= j0 ⇒ i1 = 1 − i0 �= j1 = 1 − j0.

Roughly speaking, only the [01] and [10] cylinders are overlapping. Formally, this defines
the set of parameters

Roverlap :=
{
(ε, q) ∈ [0, 1]2 : H ε,q

0 (0) < H ε,q
1

( 1

1 − q

)
,

H ε,q
0

(
H ε,q

0 (0)
)

> H ε,q
1

( 1

1 − q

)
and H ε,q

1

(
H ε,q

1

( 1

1 − q

))
< H ε,q

0 (0)
}
. (3.7)

Simple calculations show that the functions
∂
(
H ε,q

i

)′
∂q ,

∂ H ε,q
i

∂q , H ε,q
i : [0, 1

1−q ] �→ R are smooth

functions for every 0 < ε, q < 1. Moreover, the function
∂
(
H ε,q

i

)′
∂q has the form aε,q (x)

bε,q (x)
, where

aε,q(x) is a first degree and bε,q(x) is a third degree polynomial. Hence, there exists a unique
root xε,q

i of the function

∂
(
H ε,q

i

)′
∂q

(xε,q
i ) = 0.

As a technical condition we also need that the functions
∂ H ε,q

0
∂q and

∂ H ε,q
1

∂q are monotone
increasing. We define

Rpos :=
{
(ε, q) ∈ [0, 1]2 : ∂(H ε,q

i )′

∂q
(0) > 0 and xε,q

i /∈ [
0,

1

1 − q

]
for i = 0, 1

}
. (3.8)

From now we focus our study for the set of parameters Rregion, where

Rregion := Rcontr ∩ Roverlap ∩ Rpos, (3.9)

see Fig. 3. The definition of Rregion implies that it is open.
Define ω(ε, q) for (ε, q) ∈ Rregion as

ω(ε, q) := max

{
∂ H ε,q

0

∂q

( 1

1 − q

)
,
∂ H ε,q

1

∂q

( 1

1 − q

)}
.

Lemma 3.3 For every (ε, q) ∈ Rregion and i ∈ �

0 ≤ ∂

∂q
πε,q(i) ≤ ω(ε, q)

1 − κ(ε, q)
.
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On the Absolute Continuity of the Blackwell Measure 167

Fig. 3 The regions Rcontr (blue region), Roverlap (red) and Rpos (brown). The intersection of the three regions
is Rregion (Color figure online)

Proof One can check that for every (ε, q) ∈ Rregion,
∂ H ε,q

0
∂q (0),

∂ H ε,q
1

∂q (0) ≥ 0. Since

H ε,q
0 , H ε,q

1 and
∂ H ε,q

0
∂q ,

∂ H ε,q
1

∂q are monotone increasing, the first inequality holds.
On the other hand,

∂

∂q
πε,q(i) = ∂

∂q
(H ε,q

i0
(πε,q(σ i)))

= ∂ H ε,q
i0

∂q
(πε,q(σ i)) + (H ε,q

i0
)′(πε,q(σ i))

∂

∂q
πε,q(σ i)

≤ ω(ε, q) + κ(ε, q)
∂

∂q
πε,q(σ i).

The second inequality follows by induction. ��

Since the functions H ε,q
0 , H ε,q

1 are strictly monotone increasing on [0, 1
1−q ], they are invert-

ible. Denote the inverse functions by

Hε,q
0 := (

H ε,q
0

)−1
and Hε,q

1 := (
H ε,q

1

)−1
.
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For simplicity, denote H ε,q
10 := H ε,q

1 ◦ H ε,q
0 and H ε,q

01 := H ε,q
0 ◦ H ε,q

1 . Then easy calculations
show that the function

H
ε,q(x) := ∂ H ε,q

10

∂q
◦ Hε,q

0 ◦ Hε,q
1 (x) − ∂ H ε,q

01

∂q
◦ Hε,q

1 ◦ Hε,q
0 (x) (3.10)

is a convex polynomial of second degree. Denote the value at which the minimum is obtained
by zε,q .

Lemma 3.4 For every (ε0, q0) ∈ Rtrans and for every i, j ∈ � such that i0 �= j0 we have

πε0,q0(i) = πε0,q0(j) ⇒
∣∣∣∣ ∂

∂q

(
πε0,q(i) − πε0,q(j)

) ∣∣∣
q=q0

∣∣∣∣ > 0,

where Rtrans is a non-empty set defined by

Rtrans :=
{
(ε, q) ∈ Rregion : H

ε,q(zε,q) − ω(ε, q)κ(ε, q)2

1 − κ(ε, q)
> 0

}
. (3.11)

One can see the region of parameters Rtrans on Fig. 4.

Proof First, we show that Rtrans �= ∅, precisely, we show that (1/2, 0.55) ∈ Rtrans. We note
again that H1/2,q

0 (x) = qx + 1 and H1/2,q
1 (x) = qx . It is easy to check that (1/2, 0.55) ∈

Rregion. By (3.10) we get H
1/2,0.55(x) = 2

0.55 − 1, thus, by (3.11), 2
0.55 − 1 − 0.552

(1−0.55)2 > 0,

which completes the proof of (1/2, 0.55) ∈ Rtrans. By the definitions, Rtrans is open in R
2

thus there exists a point (ε, q) ∈ Rtrans such that ε �= 1/2.
Now, suppose that πε0,q0(i) = πε0,q0(j) and i0 �= j0 then (ε0, q0) ∈ Roverlap implies

0 = πε0,q0(i) − πε0,q0(j) = H ε0,q0
1 ◦ H ε0,q0

0 (πε0,q0(σ
2i)) − H ε0,q0

0 ◦ H ε0,q0
1 (πε0,q0(σ

2j)).

So it is enough to show that the partial derivative by q of the right-hand side is positive.
Then from Lemma 3.3 it follows that

∂

∂q

(
H ε,q

10 (πε,q(σ 2i)) − H ε,q
01 (πε,q(σ 2j))

)

≥ ∂ H ε,q
10

∂q
(πε,q(σ 2i)) − ∂ H ε,q

01

∂q
(πε,q(σ 2j)) − κ(ε, q)2ω(ε, q)

1 − κ(ε, q)
.

Hence by the definition of H
ε,q

∂ H ε0,q
10

∂q
(πε0,q(σ 2i)) − ∂ H ε0,q

01

∂q
(πε0,q(σ 2j))

∣∣∣
q=q0

= ∂ H ε0,q
10

∂q
(Hε0,q

0 ◦ Hε0,q
1 (πε0,q(i))) − ∂ H ε0,q

01

∂q
(Hε0,q

1 ◦ Hε0,q
0 (πε0,q(j)))

∣∣∣
q=q0

≥ H
ε0,q0(zε0,q0),

so the statement follows. ��
For the sake of completeness, finally, we give a compactness argument for proving transver-

sality condition.

Proposition 3.5 For every ε > 0 the IFS
{

H ε,q
0 , H ε,q

1

}
satisfies the transversality condition

on any open interval V ⊂ R such that V ⊂ Rtrans ∩ ([0, 1] × {ε}).
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Proof Let V ⊂ R an open set such that the closure is contained in Rtrans∩Rregion∩[0, 1]×{ε}
and let

η1 := min
q∈V

{
H

ε,q(x)(zε,q) − ω(ε, q)κ(ε, q)2

1 − κ(ε, q)

}
,

where H
ε,q was defined in (3.10). It is easy to see that the space � × � × V is

compact and the function (i, j, q) �→ ∂
∂q

(
πε,q(i) − πε,q(j)

)
is continuous. The function

(i, j, q) �→ πε,q(i) − πε,q(j) is continuous as well. Therefore, for every η ≥ 0, the set
Lη = {

(i, j, q) : ∣∣πε,q0(i) − πε,q0(j)
∣∣ ≤ η

}
is compact. Since

∣∣∣ ∂

∂q

(
πε,q0(i) − πε,q0(j)

) ∣∣∣ ≥ η1 for every (i, j, q) ∈ L0,

there exists an η2 > 0 depending only on ε such that for every q0 ∈ V and any i, j ∈ �,
i0 �= j0 we have

∣∣πε,q0(i) − πε,q0(j)
∣∣ < η1 ⇒

∣∣∣∣ ∂

∂q

(
πε,q(i) − πε,q(j)

) ∣∣∣
q=q0

∣∣∣∣ >
η2

2
.

This implies the statement of the proposition by Lemma 2.3. ��

4 Proof of Theorem 1.1

The last section of our paper is devoted to prove the absolute continuity of the Blackwell
measure. In order to apply Theorem 2.2 we recall a result of [4] to find the region where the
quotient entropy over Lyapunov exponent is strictly greater than 1. Let

hε,q(x) = −
(

pε,(q+1)/2
0 (x) log pε,(q+1)/2

0 (x) + pε,(q+1)/2
1 (x) log pε,(q+1)/2

1 (x)
)

.

Define the Perron–Frobenius operator corresponding to measure με,p as follows

(Tε,p f )(x) := pε,p
0 (x) · f (Sε,p

0 (x)) + pε,p
1 (x) · f (Sε,p

1 (x)),

where the functions and probabilities were defined in (3.1)–(3.4).

Our next step is to find a region on which
h(με,(q+1)/2)

χ(με,(q+1)/2)
≥ 1, where h(με,p) is the entropy

(2.2) and χ(με,p) denotes the Lyapunov exponent (2.3) of the measure με,p . According to
[4, Corollary 12]

χ(με,p) = − log(ε(1 − ε)q) − 2h(με,(q+1)/2)

and hence

h(με,(q+1)/2)

χ(με,(q+1)/2)
≥ 1 ⇔ 3h(με,(q+1)/2) + log(ε(1 − ε)q) ≥ 0.

By [4, Proposition 18], h(με,(q+1)/2) ≥ (T n
ε,(q+1)/2hε,q)(0) for every n ≥ 0, where T n

ε,(q+1)/2
denotes the n-th iterate of the operator Tε,(q+1)/2. Thus,

3(T 10
ε,(q+1)/2hε,q)(0) + log(ε(1 − ε)q) > 0 ⇒ h(με,(q+1)/2)

χ(με,(q+1)/2)
> 1. (4.1)

Define Rratio as the region where the ratio is strictly greater than 1

Rratio := {
(ε, q) ∈ [0, 1]2 : 3(T 10

ε,(q+1)/2hε,q)(0) + log(ε(1 − ε)q) > 0
}
. (4.2)
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Fig. 4 The region Rtrans

Fig. 5 The region Rratio ∩ Rtrans

Proof (Proof of Theorem 1.1) During the proof we consider only parameter q as the parameter
used for transversality. Therefore, let us fix an ε �= 1/2. Then the IFS

{
Sε,(q+1)/2

0 , Sε,(q+1)/2
1

}
satisfies the transversality condition by Lemma 3.1 and Proposition 3.5 for every open interval
V with V ⊆ Rtrans ∩ ([0, 1] × {ε}), when Rtrans ∩ ([0, 1] × {ε}) �= ∅.

It follows from Theorem 2.2 and (4.1) that for every open interval V and Lebesgue-a.e
q ∈ V , where V ⊆ Rratio ∩ Rtrans ∩ ([0, 1] × {ε}), the measure με,(q+1)/2 is absolutely con-
tinuous w.r.t Lebesgue measure. Since the interval V was arbitrary, by using the symmetrical
properties of με,p , one can finish the proof of absolute continuity.

Now let us assume that ε = 1/2. Observe that S1/2,p
0 (x) = S1/2,p

1 (x) = xp + (1− x)(1−
p). By (3.5), the measure με,p is supported on the common fixed point of S1/2,p

0 and S1/2,p
1 ,

which is x = 1/2. Thus, it is the Dirac measure supported on 1/2. ��
For the absolute continuity region Rratio ∩ Rtrans, see Fig. 5. Figure 4 shows us the region

of overlap, where transversality condition holds, but it is not guaranteed that the Blackwell
measure is absolutely continuous on this region, so we restrict this to the region where it is
guaranteed.
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Proof of Corollary 1.3. The statement follows immediately from Theorem 1.1 and [9, The-
orem 1.1]. ��
Remark 4.1 (Concluding remark) In cases where the Blackwell measure, defined by a hid-
den Markov chain, is equivalent to a place-dependent invariant measure on R, the presented
method can be adapted to find a region of absolute continuity (if it exists). Namely, absolute
continuity holds almost surely on the set of parameters where the transversality condition
holds and the entropy over Lyapunov exponent quotient is strictly greater than one. Unfor-
tunately, this intersection may be empty.
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