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Abstract This paper is the fifth in a series devoted to the development of a rigorous renor-
malisation group method applicable to lattice field theories containing boson and/or fermion
fields, and comprises the core of the method. In the renormalisation group method, increas-
ingly large scales are studied in a progressive manner, with an interaction parametrised by a
field polynomial which evolves with the scale under the renormalisation group map. In our
context, the progressive analysis is performed via a finite-range covariance decomposition.
Perturbative calculations are used to track the flow of the coupling constants of the evolv-
ing polynomial, but on their own perturbative calculations are insufficient to control error
terms and to obtain mathematically rigorous results. In this paper, we define an additional
non-perturbative coordinate, which together with the flow of coupling constants defines the
complete evolution of the renormalisation group map. We specify conditions under which
the non-perturbative coordinate is contractive under a single renormalisation group step.
Our framework is essentially combinatorial, but its implementation relies on analytic results
developed earlier in the series of papers. The results of this paper are applied elsewhere to
analyse the critical behaviour of the 4-dimensional continuous-time weakly self-avoiding
walk and of the 4-dimensional n-component |ϕ|4 model. In particular, the existence of a
logarithmic correction to mean-field scaling for the susceptibility can be proved for both
models, together with other facts about critical exponents and critical behaviour.
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590 D. C. Brydges, G. Slade

1 Introduction and Main Results

1.1 Background

This paper is the fifth in a series devoted to the development of a rigorous renormalisation
group method applicable to lattice field theories containing boson and/or fermion fields, and
it comprises the core of the method. Its immediate goal is to prepare for the application in
[7,8] to a specific supersymmetric field theory that is used to analyse the critical behaviour
of the continuous-time weakly self-avoiding walk, and in particular to prove the existence of
a logarithmic correction to the susceptibility in dimension 4. However, our approach is more
general and applies more broadly including to the critical behaviour of the 4-dimensional
n-component |ϕ4| model [5].

In the renormalisation group method, a multi-scale analysis is performed in which increas-
ingly large scales are studied in a progressive manner, with an interaction parametrised by
a field polynomial which evolves with the scale under renormalisation group transforma-
tions [40]. In our context, progressive integration is performed via a finite-range covariance
decomposition [4,20]. Perturbative calculations are used to track the flow of the coefficients,
or coupling constants, of the evolving polynomial, but on their own perturbative calculations
are insufficient to control error terms and to obtain mathematically rigorous results. In this
paper, we employ another coordinate called K , in addition to the interaction polynomial V ,
for tracking the evolution under renormalisation group transformation. With this additional
coordinate, we provide a framework that allows the error terms to be rigorously controlled.
Our framework is essentially combinatorial, but its implementation relies on analytic results
developed in earlier papers. An important feature of our method is that it respects supersym-
metry, when this is present in the underlying model. Euclidean invariance is not manifest
since our method relies on subdivisions of space into hypercubes. The use of such subdivi-
sions has been universal in nonperturbative work on the renormalisation group, but recently
[37] a manifestly Euclidean invariant method has been invented.

Some aspects of our approach, whose roots go back to [18], were presented in [13]. We
draw on the approach of [14,19] for hierarchical models, but in a much extended and gener-
alised form that applies to Z

d . The idea of using a covariance decomposition to implement
renormalisation goes back to [11,12]. Recent uses of the renormalisation group that bear
some relation to our approach can be found in [1,2,25,26,34].

Different approaches to the renormalisation group include the block spin method used in
[29–32], the phase space expansion method used in [28], and the approach of Bałaban (see
e.g., [3], and [23] for a recent overview). These various methods are distinguished from each
other according to how they combine perturbation theory with estimates on large deviations
connected with large fields. Balaban’s method is particularly powerful because it also applies
to strong coupling problems where the action has degenerate minima. The books and major
reviews [10,13,27,33,36,38] give varied perspectives on renormalisation.

This paper is the culmination of the developments presented in parts I–IV [9,15–17] of
the series and it relies on results from all four parts. A full assembly of parts I–V (and using
also the result of [6]), is given for the 4-dimensional weakly self-avoiding walk in [7,8], and
for the 4-dimensional |ϕ|4 model in [5]. To put the present paper in perspective, we briefly
summarise the other papers in the series as they pertain to this one.

1. In part I [15], we present elements of the theory of Gaussian integration involving both
boson and fermion fields, and develop norms and norm estimates for performing analy-
sis with such Gaussian integrals. A renormalisation group step involves performing a
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A Single Renormalisation Group Step 591

Gaussian integral whose covariance is given by a generic term in the finite-range decom-
position of an original covariance. In the present paper, we show how to obtain effective
control on such an integration, so that error terms do not accumulate upon repeated
integration.

2. In part II [16], we define and analyse the localisation operator Loc, which extracts from
a functional of the fields a polynomial that captures the components of the functional
which are relevant and marginal for the dynamical system defined by the renormalisation
group. These are the components which must be accurately tracked, and this tracking
leads to the flow of the coupling constants. In the present paper, we prove that the operator
Loc achieves its purpose in the sense that the non-perturbative coordinate is contractive
under the renormalisation group map. It is this contraction that prevents error terms from
building up under successive renormalisation group steps.

3. In part III [9], we present a general description of perturbation theory, in which the poly-
nomial Vj at scale j is replaced after a single Gaussian integral by a new polynomial Vpt.
The polynomial Vpt is accurate to second order in the coupling constants but does not take
into account error terms that have the potential to accumulate in repeated renormalisation
group steps. In the present paper we show how to employ Vpt while preventing errors
from accumulating.

4. In part IV [17], we prove nonperturbative estimates for the specific supersymmetric field
theory studied in [7,8]. The results include stability estimates for the interaction, proof of
accuracy of the perturbative calculations of part III, estimates on Gaussian expectations,
and a crucial contraction estimate which implements the achievements of the operator
Loc. The estimates of part IV provide an essential input for the present paper.

5. As an application and dénoument, in [7,8] we obtain a statement of infrared asymptotic
freedom for the 4-dimensional weakly self-avoiding walk, and use it to prove the existence
of a logarithmic correction to mean-field scaling for the sucsceptibility and |x |−2 decay
for the critical two-point function. The analysis of [7,8] combines the results of parts I–V
with the main result of [6] to analyse the infinite-dimensional dynamical system arising
from repeated application of the renormalisation group. A further application to the 4-
dimensional n-component ϕ4 model is given in [5].

Throughout the paper, we concentrate on the case of dimension d = 4. Before stating
our main results in Sect. 1.8, we first introduce the language and concepts needed for their
formulation, as well as the norms used in their statement.

1.2 Polymers and Local Algebras of Forms

Let L ≥ 3 and N ≥ 1 be integers, and let Λ = Z
d/(L N

Z
d) for fixed dimension d > 0. We

write | · |∞ for the �∞ distance on both Z
d and the torus Λ. Since N and Λ are determined

by each other we make Λ the primary object and write N = N (Λ). Our results concern the
renormalisation group in both finite volume Λ and the infinite volume Z

d . To cover both
cases we use the symbol V whose values are Λ or Z

d , and we set N (V) = ∞ for V = Λ.
To allow for the study of the two-point function, two particular points a, b are fixed in Z

d .
We assume a, b have distinct images in Λ, under the projection x �→ x mod (L N

Z
d), and

their images are also called a, b so we can refer to the two distinguished points in V. They
are called observable points. The following definition is basic to our setup.

Definition 1.1 (a) Blocks. For each j ∈ N0 the lattice Z
d is paved in a natural way by disjoint

d-dimensional cubes of side L j . The cube that contains the origin at the corner has the
form
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592 D. C. Brydges, G. Slade

{x ∈ Λ : |x |∞ < L j }, (1.1)

and all other cubes are translates of this one by vectors in L j
Z

d . Similarly, for j =
0, 1, . . . , N (Λ), the torus Λ is paved in a natural way by L N− j disjoint d-dimensional
cubes of side L j . We call these cubes j-blocks, or blocks for short and let B j = B j (V)

denote the set of j-blocks. The integer j is called a scale.
(b) Polymers. A union of blocks in B j is called a polymer (at scale j), and the set of polymers

at scale j is denoted P j = P j (V). The empty union is included: ∅ ∈ P j . For X ∈ P j ,
B j (X) denotes the set of blocks B ∈ B j with B ⊂ X . The size |X | j of X ∈ P j is the
number of j-blocks in X , i.e., |X | j is the cardinality of B j (X). We define P∗ = 	 j P j (Z

d).
In particular, an element X of P∗ has a scale j (X).

(c) Connectivity. A nonempty subset X ⊂ Λ is said to be connected if for any two points
x, x ′ ∈ X there exist points xi ∈ X (i = 0, 1, . . . , n) with |xi+1− xi |∞ = 1, x0 = x and
xn = x ′. The set of connected polymers in P j is denoted C j = C j (V). The null set ∅ is not
in C j . We say that two polymers X, Y do not touch if min{|x− y|∞ : x ∈ X, y ∈ Y } > 1.
A polymer can be decomposed into connected components that do not touch; we write
Comp(X) for the set of connected components of X .

The basic setting for our analysis is detailed in [17, Section 1.1], and we maintain the same
setting and notation here, but now allow infinite volume as well as finite volume. In brief, we
have a complex boson field φ : Λ → C with its complex conjugate φ̄, a pair of conjugate
fermion fields ψ, ψ̄ , and a constant complex observable boson field σ ∈ C with its complex
conjugate σ̄ . The fermion field is given in terms of the 1-forms dφx by ψx = 1√

2π i
dφx and

ψ̄x = 1√
2π i

dφ̄x , where we fix some square root of 2π i . We work with an algebra N which
is defined in terms of a direct sum decomposition

N = N ∅ ⊕N a ⊕N b ⊕N ab. (1.2)

Elements of N ∅ are given by finite linear combinations of products of an even number
of fermion fields with coefficients that are complex-valued functions of the boson fields.
This restriction to forms of even degree results in a commutative algebra. Elements of
N a,N b,N ab are respectively given by elements of N ∅ multiplied byσ , by σ̄ , and byσ σ̄ . For
example, φx φ̄yψx ψ̄x ∈ N ∅, and σ φ̄x ∈ N a . There are canonical projections πα : N → N α

for α ∈ {∅, a, b, ab}. We use the abbreviation π∗ = 1−π∅ = πa+πb+πab. The algebra N
is discussed further around [16, (1.60)]. There N is written N/I, but to simplify the notation
we write N here instead. The quotient space notation reflects our policy of writing arbitrary
functions of σ, σ̄ and identifying any such function with the sum of the constant, σ , σ̄ and
σ σ̄ terms in its formal power series expansion in σ, σ̄ . The parameter pN which appears in
its definition is a measure of the smoothness of elements of N (see [15, Section 2.1]); its
precise value is unimportant as long as it is fixed with pN ≥ 10 (the value “10” is required
for Lemma 2.4 below). Constants in estimates are permitted to depend on pN , and this is
unimportant.

In [15, (3.15), (3.38)], N (X) is defined to be the algebra of differential forms that depend
only on fields with spatial labels in X , where X is a subset of Λ. In this paper the argument
X of N (X) is a subset of V, which is Λ or Z

d , and N (X) consists of differential forms
of even degree generated by monomials in ψ, ψ̄ with spatial labels in X , so that N (X) is
commutative. We also define the commutative algebra

N (V) =
⋃

Xfinite,X⊂V

N (X). (1.3)
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A Single Renormalisation Group Step 593

For V = Λ or V = Z
d we write N = N (V). Note that N (X) is a subalgebra of N (Y ) when

X is a subset of Y .
In the notation of [15, Section 3.2], for X ⊂ Λ, an element of N (X) has the form

F =
∑

y∈ �∗

1

y! Fyψ
y . (1.4)

The sum is over sequences y = (x, x̄), with each of x = (x1, . . . , x p) and x̄ = (x̄1, . . . , x̄q)

a sequence in X , with ψ y = ψx1 . . . ψx p ψ̄x̄1 . . . ψ̄x̄q , and with y! = p!q!. The coefficient
Fy is a complex valued function of (φ, σ ) in C

V × C such that Fy(φ
′, σ ) = Fy(φ, σ ) when

φ′|X = φ|X . The coefficients Fy are zero when the sequence y has odd length. As a function
of σ , Fy has the form α + βσ + γ σ̄ + δσ σ̄ , but β = δ = 0 when X does not contain a and
γ = δ = 0 when X does not contain b. To understand this, one should regard σ as associated
to the point a, and σ̄ to the point b, and then the conditions say that an element F of N (X)
depends only on fields in X .

Let U denote the set of 2d nearest neighbours of the origin in Z
d . For e ∈ U , we define the

finite difference operator ∇eφx = φx+e − φx , and the Laplacian Δ
Zd = − 1

2

∑
e∈U ∇−e∇e.

Important examples of forms are:

τx = φx φ̄x + ψx ψ̄x , τ∇∇,x = 1

2

∑

e∈U

(
(∇eφ)x (∇eφ̄)x + (∇eψ)x (∇eψ̄)x

)
, (1.5)

τΔ,x = 1

2

(
(−Δφ)x φ̄y + φx (−Δφ̄)y + (−Δψ)x ψ̄y + ψx (−Δψ̄)y

)
. (1.6)

Let Q denote the vector space of polynomials of the form

V = V∅ + Va + Vb + Vab, (1.7)

where

V∅ = gτ 2 + ντ + zτΔ + yτ∇∇ , Va = λaσ φ̄, Vb = λbσ̄ φ, Vab = qabσ̄ σ , (1.8)

λa = −λa 1a, λb = −λb 1b, qab = −1

2
(qa1a + qb1b), (1.9)

g, ν, y, z, λa, λb, qa, qb ∈ C, and the indicator functions are defined by the Kronecker delta
1a,x = δa,x . For X ⊂ Λ, we write

V (X) =
∑

x∈X

Vx . (1.10)

Elements V of Q are polynomials with eight independent coefficients, so Q is isomorphic to
C

8 and this identification is sometimes useful. The polynomial V has symmetries which are
inherited by the field theory to be defined below in terms of V . To discuss these symmetries,
an automorphism E : Λ → Λ is an injective map from Λ to Λ under which nearest-
neighbour points are mapped to nearest-neighbour points under both the map and its inverse.
Translations and reflections that preserve Λ are examples of automorphisms. The action of
an automorphism E : Λ→ Λ as a map from N (Λ) to itself is defined in [16, (1.28)]. The
polynomial V∅ is Euclidean covariant, in the sense that for any automorphism E , E(V∅,x ) =
V∅,Ex . Also, Vx is gauge invariant and V∅,x is supersymmetric, where these two terms are
defined for elements of N in [9, Section 5.2].
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594 D. C. Brydges, G. Slade

1.3 Covariance Decomposition

Given m2 > 0, let C = (−ΔΛ + m2)−1. As explained in more detail in [17, Section 1.1.1],
the covariance C has a finite-range decomposition C = C1 + · · ·CN−1 +CN ,N [4,20]. The
expectation EC denotes the combined bosonic-fermionic Gaussian integration on N , with
covariance C , defined in [15, Section 2.4]. The expectation can be performed successively,
using

ECθ = EN θ ◦ EN−1θ ◦ · · · ◦ E1θ, (1.11)

where E j is the expectation corresponding to the j th covariance, and θ denotes a type of
convolution. More precisely, we define the map θ : N (V) → N (V 	 V

′) by making the
replacement in an element of N of φ by φ + ξ , φ̄ by φ̄ + ξ̄ , ψ by ψ + η, and ψ̄ by ψ̄ + η̄.
In applying E j+1θ , the fields ξ, ξ̄ , η, η̄ are integrated out by E j , with φ, φ̄, ψ, ψ̄ kept fixed.
The expectation EC can be obtained as the special case of (1.11) resulting from setting
φ = φ̄ = ψ = ψ̄ = 0 in EN θ .

We assume that the covariance decomposition obeys the estimates listed and discussed in
[17, Section 1.3.1]. In particular, for [17, (1.71)], we restrict m2 to lie in a small interval [0, δ]
when considering C j with j < N , but make the further restriction m2 ∈ [δL−2(N−1), δ] for
CN ,N . The covariances obey the finite-range property that C j (x, y) = 0 for |x − y| ≥ 1

2 L j ,
for each scale j . These properties are established for the covariance decomposition of [4] in
[9].

In analogy with ordinary Gaussian random variables, there is an independence conse-
quence of the finite-range property, called the factorisation property of the expectation. The
latter states that if X1, . . . , Xn ∈ P j+1(Λ) do not touch each other, and if Fm(Xm) ∈ N (Xm)

for each m, then

E j+1θ

n∏

m=1

Fm(Xm) =
n∏

m=1

E j+1θFm(Xm). (1.12)

This factorisation property is a consequence of [15, Proposition 2.7]. It plays an important
role.

1.4 Perturbative and Non-perturbative Coordinates

As in [17, (1.22)], the interaction is defined, for V ∈ Q, B ∈ B j and X ∈ P j , by

I j (V, B) = e−V (B) (1+ W j (V, B)
)
, I j (V, X) =

∏

B∈B j (X)

I j (V, B), (1.13)

where W j is a certain non-local polynomial in the fields, which is an explicit quadratic
function of V discussed in detail in [17, Section 1.1.3]. In the present paper, we rely on
properties of I proved in [17] and the specifics of its definition play a minor role.

Recall the function Vpt : Q → Q defined in [9, (3.23)] and explained in [9, Section 2]. In
[9, Proposition 2.1], we show that

E j+1θ I j (V,Λ) ≈ I j+1(Vpt,Λ), (1.14)

where the approximation is accurate up to and including second order, as formal power series
in the coupling constants. Under this approximate perturbative calculation, the effect of a
single expectation is captured by the map V �→ Vpt, and we refer to V as the perturbative
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A Single Renormalisation Group Step 595

coordinate. We introduce a non-perturbative coordinate K which accurately tracks all the
errors in the approximation (1.14). For this, the following definition is needed.

Definition 1.2 Circle product. Given F,G : P j → N , we define F ◦ G : P j → N by

(F ◦ G)(X) =
∑

Y∈P j (X)

F(Y )G(X \ Y ) (X ∈ P j ). (1.15)

This circle product is commutative and associative.

The circle product depends on j but this is left implicit in the notation. All functions
F : P j → N that we consider are required to obey F(∅) = 1. The sum in (1.15) includes
the degenerate terms Y = ∅, X (in particular, (F ◦G)(∅) = F(∅)G(∅) = 1). The identity
element for the circle product is1∅, defined by setting1∅(X) = 1 if X = ∅ and1∅(X) = 0
otherwise. From (1.11), we obtain

ECθ I0(V,Λ) = ECθ(I0 ◦ 1∅)(Λ) = EN θ ◦ EN−1θ ◦ · · · ◦ E1θ(I0 ◦ 1∅)(Λ). (1.16)

Let Q(0) be the subspace of Q with y = qa = qb = 0. Let j < N (V), let q j ∈ C,
let Vj ∈ Q(0), and let K j : P j → N . The renormalisation group map RG = RG j is a
description of the action of E j+1θ as a map RG : (q j , Vj , K j ) �→ (q j+1, Vj+1, K j+1), with
q j+1 ∈ C, Vj+1 ∈ Q(0), and K j+1 : P j+1 → N , such that

eq jσ σ̄ E j+1θ
(
I j (Vj ) ◦ K j

)
(Λ) = eq j+1σ σ̄

(
I j+1(Vj+1) ◦ K j+1

)
(Λ). (1.17)

This allows (1.16) to be evaluated iteratively. In particular, the flow of q under repeated
applications of the renormalisation group map turns out to be central to the proof obtaining
the decay of the critical two-point function of the continuous-time weakly self-avoiding walk
in [7]. By dividing (1.17) by eq jσ σ̄ and setting δq j+1 = q j+1 − q j , we obtain the equivalent
equation

E j+1θ
(
I j (Vj ) ◦ K j

)
(Λ) = eδq j+1σ σ̄

(
I j+1(Vj+1) ◦ K j+1

)
(Λ). (1.18)

Thus we can regard RG as the map

RG j : (Vj , K j ) �→ (δq j+1, Vj+1, K j+1) (1.19)

The existence of a map obeying (1.17) is easy: there are q j+1, K j+1 that solve this equation
for any choice of Vj+1, and they are not unique. An example is given in Sect. 1.5 below.
It is much harder to choose the map RG and a Banach space in which K j+1 does not grow
in norm under iteration of the renormalisation group map, and the main achievement of the
present paper is to exhibit such a choice.

1.5 Simplified Construction of K1

For illustrative purposes, we now provide an example of a simplified construction of K1 from
(V0, K0) = (V0,1∅). The idea in this section is used in Sect. 5.1 below, but the complete
construction of RG requires a better (but less simple) choice of K+ than the one in the
example.

The following elementary lemma, which relates the circle product and binomial expansion,
is useful here and also later. It uses notation discussed in more detail around (1.29). Namely,
given F : B j → N and X ∈ P j , we write F X = F(X) =∏

B∈B j (X) F(B).
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596 D. C. Brydges, G. Slade

Fig. 1 The four small dark
squares represent a polymer in
P0, and the three larger shaded
squares represent its closure in
P1

L

Lemma 1.3 For F1, F2 : B j → N and X ∈ P j ,

(F1 + F2)
X = (F1 ◦ F2)(X). (1.20)

Proof By (1.29), followed by expansion of the product and application of (1.15), we find
that

(F1 + F2)
X =

∏

B∈B j (X)

(F1 + F2)(B) =
∑

Y∈P j (X)

FY
1 F X\Y

2 = (F1 ◦ F2)(X), (1.21)

and the proof is complete. �	
We also need the following definition, which is depicted in Fig. 1.

Definition 1.4 The closure X of X ∈ P j is the smallest Y ∈ P j+1 such that X ⊂ Y . Given
U ∈ P j+1, we write

P j (U ) = {X ∈ P j | X = U }. (1.22)

The following proposition provides an example of a construction of K1 from the pair I0

and K0 = 1∅, for arbitrary choice of V0, V1 each with qab = 0.

Proposition 1.5 For any V0, V1 ∈ Q, each with qab = 0,

E1(I0(V0) ◦ 1∅)(Λ) = (I1(V1) ◦ K̃1)(Λ), (1.23)

where

K̃1(U ) =
∑

X∈P0(U )

I U\X
1 EC1δ I X

1 (1.24)

with δ I X
1 =∏

x∈X (θ I0(x)− I1(x)).

Proof For X ∈ P0, let δ I X
1 = ∏

x∈X (θ I (x) − I1(x)); this depends on φ1, φ̄1, ψ1, ψ̄1 via
I1, as well as on the fields φ0 = φ1 + ξ1, φ̄0 = φ̄1 + ξ̄1, ψ0 = ψ1 + η1, ψ̄0 = ψ̄1 + η̄1 via
θ I . The integration implied by E1θ integrates out only the fluctuation fields ξ1, ξ̄1, η1, η̄1,

123



A Single Renormalisation Group Step 597

leaving dependence on the scale-1 fields only. Thus we obtain, using Lemma 1.3 for the third
equality,

E1θ(I0 ◦ 1∅)(Λ) = E1θ I0(Λ) = E1(I1 + δ I1)
Λ

= E1(I1 ◦ δ I1)(Λ) = (I1 ◦ E1δ I1)(Λ). (1.25)

The above circle products are at scale 0. Using (1.24) for the last equality, we obtain
(
I1 ◦ E1θ I

)
(Λ) =

∑

X∈P0

IΛ\X
1 E1δ I X

1 =
∑

U∈P1

∑

X∈P0(U )

IΛ\X
1 E1δ I X

1

=
∑

U∈P1

IΛ\U1 K̃1(U ) = (I1 ◦ K̃1)(Λ), (1.26)

where the circle product on the right-hand side is at scale 1. This completes the proof. �	
An important fact is that K̃1 has a certain component factorisation property. For exam-

ple, if U ∈ P1 has connected components U1,U2, then with the help of Fig. 1 it is
straightforward to check that the factorisation property (1.12) of the expectation implies
that K̃ (U ) = K̃ (U1)K̃ (U2). We make a formal definition of the component factorisation
property in the next section.

1.6 Setting for Non-perturbative Coordinate

We now define the basic setting for the non-perturbative coordinate K : P j → N , including
the spaces CK j and K j .

We say that a function K : P j → N is Euclidean covariant if E(K (X)) = K (E X)
for all polymers X ∈ P j and all automorphisms E of V. We say that K is gauge invariant
(supersymmetric) if K (X) is gauge invariant (supersymmetric) for all X in P j ; these two
terms are defined for elements of N in [9, Section 5.2]. We say that K has zero constant part
if the result of setting φ = 0 and ψ = 0 in K (X) is zero for all non-empty polymers X . We
need the following two definitions.

Definition 1.6 Small sets. A polymer X ∈ P∗ is said to be a small set if |X | j (X) ≤ 2d and
X ∈ C j (X). Let S j be the set of all small sets in P j . The small set neighbourhood of X ∈ P∗
is defined by

X� =
⋃

Y∈S j (X):X∩Y �=∅

Y. (1.27)

For the next definition, we define the coalescence scale jab by

jab =
⌊

logL(2|a − b|)⌋. (1.28)

Definition 1.7 For j ≤ N (V) with j < ∞, let CK j = CK j (V) denote the complex vector
space of functions K : C j (V)→ N (V) with the properties:

– Field Locality: For all X ∈ C j (V), K (X) ∈ N (X�). Also, (i) πa K (X) = 0 unless
a ∈ X , (ii) πb K (X) = 0 unless b ∈ X , and (iii) πab K (X) = 0 unless a ∈ X and
b ∈ X� or vice versa, and πab K (X) = 0 if X ∈ S j and j < jab.

– Symmetry: (i) K is gauge invariant; (ii) π∅K is supersymmetric and has no constant
part; (iii) π∅K is Euclidean covariant.
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Let K j = K j (V) be the complex vector space of functions K : P j (V)→ N (V) which have
the properties listed above and in addition

– Component Factorisation: for all polymers X , K (X) =∏
Y∈Comp(X) K (Y ).

Every element of K j determines an element of CK j by restriction to connected sets, and
every element of CK j determines an element of K j by the factorisation condition. The same
symbol is used for both elements related by this correspondence. Under this correspondence,
1∅ ∈ K j becomes 0 ∈ CK j , because the empty set is not a connected set.

Let BK j = BK j (V) denote the set of functions F : B j → N which obey the field locality
and symmetry conditions of Definition 1.7. Given F : B j → N we extend F to P j by

F(X) = F X =
∏

B∈B j (X)

F(B) (X ∈ P j ). (1.29)

The appearance of the set X as an exponent introduces our convention that such exponents
signal functions that factorise over blocks. Using (1.29), an element F ∈ BK j extends to an
element F ∈ K j . An important use of BK j is the map I j : Q → BK j (Λ) defined in (1.13).

The individual properties of Definition 1.7 play different roles in our analysis. The property
of field locality is of fundamental importance and its preservation under iteration of the
renormalisation group map relies on the finite-range property of the covariance decomposition
via (1.12), as illustrated in Sect. 1.5 above. The symmetry properties are enjoyed by any Vj ∈
Q(0), and the symmetry assumption on K ensures that the effect of K j on the construction of
Vj+1 is such that these symmetries are inherited from Vj by Vj+1, and in particular that Vj+1

does not contain additional terms not present in Q(0). It is possible to relax the assumption
of supersymmetry by a suitable enlargement of Q. For example, in the analysis of the |ϕ|4
model in [5] we forego supersymmetry in Definition 1.7 at the cost of including an additional
constant term in Q; this is discussed in Remark 6.3 below.

1.7 Definition of Norms

We use specific norms as detailed in this section. This particular specification is made so that
we can apply estimates on I (e.g., in Sect. 3.3) and an important contraction property (namely
Proposition 5.5); these results are proved in [17]. It also paves the way for applications of our
results in [5,7,8]. However, accepting the results of [17], the majority of this paper can be
read without knowing what the norms are, beyond the facts that the norm of a product is less
than the product of the norms, and the norm of an expectation is less than the expectation of
the norm.

1.7.1 Parameters

We use the norms and regulators for N defined in [17, Section 1.1.6], including the � norm
on test functions, the �̃ norm on boson fields, the Tφ semi-norm on N . The parameters h = � j

and h = h j for these norms are specified in [17, Section 1.3.2] and we repeat the definition
of these parameters here. They depend, in particular, on two numbers g̃ j and g̃ j+1, which
we assume can be taken to be as small as desired (uniformly in j , and depending on L), and
which obey

1

2
g̃ j+1 ≤ g̃ j ≤ 2g̃ j+1. (1.30)
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This permits us to apply results from [17] which rely on (1.30). The parameters h are given
in terms of a (large) L-dependent constant �0 and a (small) universal constant k0 by

h j =
{
�0 L− j[φ] h = �

k0 g̃−1/4
j L− jd/4 h = h,

(1.31)

hσ, j =
{

g̃ j L( j∧ jab)[φ]2( j− jab)+ h = �

g̃1/4
j L( j∧ jab)[φ]2( j− jab)+ h = h,

(1.32)

where [φ] = d−2
2 , x+ = max{x, 0}, and where the coalescence scale jab is defined in (1.28).

1.7.2 Norm for Perturbative Coordinate

As a vector space, Q is isomorphic to C
8 since a polynomial in Q is determined by

eight coupling constants. Although all norms on C
8 are equivalent, the coupling constants

ν, λa, λb, qa, qb have natural scaling factors and we use a norm that takes this into account.
We define a norm on Q by

‖V ‖Q j = max
{
|g|, |z|, |y|, L2 j |ν|, � j�σ, j |λa |, � j�σ, j |λb|, �2

σ, j |qa |, �2
σ, j |qb|

}
.(1.33)

The scaling in (1.33) reflects the fact that the coupling constants g, z, y are associated to
marginal field monomials (for d = 4), whereas the L2 j reflects the fact that ν is associated to
the relevant monomial τ . The scaling of the observable coupling constants includes factors
of � j or �σ, j for each boson or observable field, respectively, in the corresponding monomials
in V .

Two useful subspaces of Q are the subspace Q(0) � C
5 consisting of elements of Q with

y = qa = qb = 0, and the subspace Q(1) � C
7 consisting of elements with y = 0.

With [17, Lemma 3.1] and its proof, it follows that there is a j-independent constant c > 0
such that

c−1 max
B∈B j

‖V (B)‖T0, j (� j ) ≤ ‖V ‖Q j ≤ c max
B∈B j

‖V (B)‖T0, j (� j ). (1.34)

1.7.3 Norms for Non-perturbative Coordinate

Recall from [17, Section 1.1.6] the definition of the Tφ, j (h j ) seminorm. Recall also from
[17, Definition 1.1, (1.38), (1.41)] the definition of the two norm pairs on N (X�) given, for
F ∈ N (X�), by

‖F‖ j = sup
φ∈CΛ

‖F‖Tφ, j (� j )

G j (X, φ)
, ‖F‖ j+1 = ‖F‖T0, j+1(� j+1), (1.35)

‖F‖ j = sup
φ∈CΛ

‖F‖Tφ, j (h j )

G̃ j (X, φ)
, ‖F‖ j+1 = sup

φ∈CΛ

‖F‖Tφ, j+1(h j+1)

G̃γ

j+1(X, φ)
, (1.36)

in terms of an arbitrary parameter γ ∈ (0, 1]. To handle these norms simultaneously we will
write them all as ‖F‖Gk with k = j, j + 1. For the first pair we write G j = G j (� j ) and
G j+1 = T0, j+1(� j+1), and for the second pair we write G j = G̃ j (h j ) and G j+1 = G̃γ

j (h j+1).
Sometimes we omit parameters such as j and h j when we think their values are clear from
context. Note that the notation is potentially misleading because the dependence on the
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parameter hk refers to the Tφ part of this norm, not the regulators which are defined in [17,
(1.38), (1.41)] always in terms of �k .

In (1.35) we actually only have a T0 semi-norm, not a norm. Let I(V) = {F ∈ N (V) |
‖F‖T0 = 0}. The set I(V) is an ideal in the algebra N , since the T0 semi-norm has the
product property. Thus the T0 semi-norm on N defines a norm on the quotient space N/I.
We work in the quotient space, and thus regard T0 as a norm rather than a semi-norm.

The above norms are defined on N (X), but to measure the size of elements of K, which
are maps X �→ F(X) from polymers X into N (X�), we include a weight for the size of X
as well. Thus we let W : C j ×C

V → (0,∞) be a fixed strictly positive weight function. We
say that F ∈ K j vanishes at weighted infinity if for each X ∈ C j ,

lim‖φ‖� j (X)→∞‖F(X)‖Tφ(h)W
−1(X, φ) = 0. (1.37)

Let F j (W ) be the vector subspace of CK j consisting of elements F which vanish at weighted
infinity. We define a norm on F j (W ) by

‖F‖F j (W ) = sup
X∈C, φ∈CV

‖F(X)‖Tφ(h)W
−1(X, φ). (1.38)

Now we make choices of W = W j that connect these norms to the two norm pairs
(1.35)–(1.36). For a > 0 and X ∈ P j , let

f j (a, X) = a(|X | j − 2d)+. (1.39)

Note that f j (a, X) = 0 for any small set X . For G j a regulator, and given ρ j ∈ (0, 1), let

W (X, φ) = ρ
f j (a,X)
j G j (X, φ). (1.40)

The factor ρ
f j (a,X)
j replaces the constant A−1 used in many other papers in a version of

(1.41), e.g., in [13, (6.10)]. Then for each of the four norms in the two norm pairs we have a
choice of W and scale k = j, j + 1 such that

‖F‖Fk (W ) = sup
X∈Ck

ρ
− fk (a,X)
k ‖F(X)‖k, (1.41)

with norms on the right-hand side as in (1.35) and (1.36). We denote the four normed spaces
determined by (1.41) by F j (G), F j+1(T0) and F j (G̃), F j+1(G̃γ ). The space F j+1(T0) is
special, in that it has no dependence on φ, and we have simply

‖F‖F j+1(T0) = sup
X∈C j+1

ρ
− f j+1(a,X)
j+1 ‖F(X)‖T0, j+1(h). (1.42)

The space F j+1(T0) is the set of elements of K j+1 for which the above norm is finite. We
do have a norm here, rather than a semi-norm, because we have taken the quotient space that
factors out elements of semi-norm zero, as discussed in Sect. 1.7.

Fix � > 1 (a good choice is � = 2) and recall from [17, (1.69)–(1.70)] the �-scale j�
and the sequence χ j = �−( j− j�)+ . We make two choices of ρ, namely

ρ j = ε̄ j (h j ) =
{
χ

1/2
j g̃ j h j = � j

χ
1/2
j g̃1/4

j h j = h j ,
(1.43)
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consistent with the definition of ε̄ j in [17, (1.92)]. The h = � choice of ρ is used for F(G)
and F(T0), whereas the h = h choice is used for F(G̃) and F(G̃γ ). We set

ω j = ε̄ j (�)

ε̄ j (h)
= g̃3/4

j , (1.44)

and define another norm on CK j by

‖K‖W j = max
{
‖K‖F j (G), ω

3
j‖K‖F j (G̃)

}
. (1.45)

By definition,

‖K (X)‖Tφ, j (� j ) ≤ ‖K (X)‖G j (� j )G j (X, φ) ≤ ‖K‖W j G j (X, φ) for anyX ∈ S j . (1.46)

On the right-hand side of (1.45), we choose a ∈ (0, 1
4 2−d) as the value of a in the exponent f j

in the weight ε̄ j appearing in the definitions of F j (G) (we make the same choice for F j (T0)),
whereas we choose ã = 4a ∈ (0, 2−d) in the definition of F j (G̃). This particular choice
produces the same power of g̃ for each of ε̄(�) f j (a,X) and ε̄(h) f j (ã,X), and this plays a role in
the proof of Lemma 2.4 below. Let W j = W j (V) denote the vector space F j (G) ∩ F j (G̃)
on V with norm ‖ · ‖W j (V).

Each the four norms (1.35)–(1.36) obeys the product property [17, (1.44)], and our analysis
relies heavily on this. The product property is spoiled in an unequally weighted maximum
of two of these norms, due to the weight. For this reason, we do not have a version of the W
norm obeying the product property, and consequently we often work directly with F norms
instead. The following proposition is proved in Proposition A.3.

Proposition 1.8 For either of the two choices V = Z
d or V = Λ, each of the spaces F(G),

F(G̃), F(T0) and W is a Banach space.

The W norm depends on the parameter g̃ j appearing in (1.43), and also through the
parameter h j = k0 L− jd/4 g̃ j appearing in the norm of F j (G̃). In addition, it depends on
m2 since χ of (1.43) depends on m2. The following lemma measures the effect on the norm
under variation of these two parameters. The lemma is not used in the present paper but it is
recorded here for use in [8].

Lemma 1.9 The norms W j (m2, g̃ j ) and W j (0, g̃ j ) are identical when j ≤ j�. In addition,
if g̃′j ≤ g̃ j < 1 and m′2 ≥ m2 > 0, then in the limit of small g̃ j−g̃′j , for all K ∈ W j (m′2, g̃′),

‖K‖W j (m2,g̃ j )
≤ (1+ O(g̃ j − g̃′j ))‖K‖W j (m′2,g̃′j ). (1.47)

Proof The first statement holds because χ j (m2) = χ j (0) = 1 when j ≤ j�, by definition.
For the second statement, we first consider the dependence on m2. It follows from the def-

inition of χ j in [17, (1.69)–(1.70)] that χ j is monotone non-increasing in m2, and hence 1/χ j

is monotone non-decreasing in m2. Consequently, increasing m2 causes 1/ρ j to increase,
consistent with (1.47).

Next, we consider the g̃ dependence. The norm ‖K‖F j (G) is monotone decreasing in g̃ j ,

by definition. By definition, h j = k0 L− jd/4g̃−1/4
j is also monotone decreasing in g̃ j , so the

norm ‖K‖F j (G̃)
is also monotone decreasing in g̃ j by definition. The factor ω3

j in the W j (g̃)
norm is however monotone increasing, but since it is continuous, the claim follows. �	
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1.7.4 Norm for Scale N

Special attention is required for the norm at scale N , but there is also increased flexibility.
Our need to have both the G and G̃ norms is explained in [17, Section 1.2.1], and it is
connected with the need to propagate estimates from one scale to another. Once scale N has
been reached, there is no further propagation. In particular, it is not a problem if there is
degradation of the G regulator at the final scale N . We employ the T0 and G̃ norms precisely
to prevent such degradation from accumulating over an unbounded number of scales, but for
a single scale it is permissible.

At scale N , the torus Λ is the only polymer, and it is a single block. With the above in
mind, for scale N we define the WN norm of F : PN → N by

‖F‖WN = sup
φ∈CΛ

‖F(Λ)‖Tφ,N

G N−1(Λ, φ)10 . (1.48)

The power “10” in the denominator reflects the regulator degradation mentioned above, and
any fixed larger value could be used instead. (Cf. [17, Remark 1.4]).

1.8 Main Results

In this section, we present our main results. Throughout we typically omit the subscript j
and abreviate the subscript j + 1 to+. Thus we write (V, K ) rather than (Vj , K j ), and write
(V+, K+) rather than (Vj+1, K j+1). We first state results for the finite volume renormalisation
group map on a torus, and then describe the explicit construction of the map (V, K ) �→ V+.
Following this, we extend the definition of the renormalisation group map to infinite volume,
and state results for the infinite volume map. The infinite volume map is important in [8], to
define a dynamical system that is not limited to flow through only a finite number of scales.

1.8.1 Main Result in Finite Volume

To simplify the notation, we write V = Vj , I = I j (V ), K = K j , and we wish to construct
δq+ = δq j+1, V+ = Vj+1, I+ = I j+1(V+), K+ = K j+1 such that the action of E+θ =
E j+1θ is as stated in (1.18), i.e.,

E+θ
(
I (V ) ◦ K

)
(Λ) = eδq+σ σ̄

(
I+(V+) ◦ K+

)
(Λ). (1.49)

At (1.18), we defined the renormalisation group map (V, K ) �→ (δq+, V+, K+), with
V, V+ ∈ Q(0) � C

5 and δq+ ∈ C.
We define a mapping V �→ V (0) from Q � C

8 to Q(0) � C
6, by replacing zτΔ+ yτ∇∇ +

qabσ σ̄ in V ∈ Q by (z+ y)τΔ in V (0) ∈ Q(0). Similarly, we define V �→ V (1) from Q � C
8

to Q(1) � C
7 by replacing zτΔ+ yτ∇∇ in V ∈ Q by (z+ y)τΔ in V (1) ∈ Q(1). Recall the map

V �→ Vpt(V ) from Q to Q defined in [9, (3.23)]. Given V, V+ ∈ Q(0) and δqa+, δqb+ ∈ C,
we define R+ ∈ Q(1) and δq+ ∈ C by

(V+, δqa+, δqb+) = V (1)
pt (V )+ R+, δq+ = 1

2
(δqa+ + δqb+). (1.50)

Conversely, given V, R+, (1.50) determines (V+, δqa+, δqb+), and we state our results about
the map (V, K ) �→ (R+, K+). This then uniquely specifies a map (V, K ) �→ (δq+, V+, K+).
The construction of R+ is explicit and relatively simple, and its formula is written in Sect. 1.8.2
below.
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To state our estimates on R+, we recall the definition of S from Definition 1.6, write
BQ(0) (r) = {V ∈ Q(0) : ‖V ‖Q < r}, and define

BT0(r) = {K ∈ K : sup
Y∈S

‖K (Y )‖T0(�) < r}. (1.51)

Also, for j < N , the covariances C j are identified with those in the decomposition of the
infinite volume covariance (−Δ

Zd + m2)−1, and these are defined and obey the required
estimates when m2 ∈ [0, δ] for small δ. For CN ,N , we restrict to m2 ∈ [δL−2(N−1), δ] as
discussed in Sect. 1.3. Thus we define the intervals

I j =
{ [0, δ] j < N .
[δL−2(N−1), δ] j = N

(1.52)

We can now state our estimates on R+. The analyticity statement concerns an analytic map
from one complex Banach space to another. By definition, such a map is analytic on an open
domain if it is continuously Fréchet differentiable on that domain (see, e.g., [35, Appendix
A] or [22] for the elements of Banach space analyticity). In the derivative estimates, the L p,q

norm is the norm of a multi-linear operator from Qp ×Kq
j to Q j+1. The continuity in m2 is

in the interval [0, δ] for all scales j ; the restriction for j = N occurs later.
The proof of Theorem 1.10 is given in Sect. 2.1.

Theorem 1.10 Let V = Λ and j < N (Λ). There exists rQ > 0 (small) such that the map
R+ : BQ(0) (rQ)×K× I+ → Q+ is analytic in V , quadratic in K , continuous in m2 ∈ [0, δ],
and independent of N . There exists M (large, dependent on p, q ∈ N0, independent of r0, rQ)
such that for r0 ∈ (0, rQ) and (V, K ,m2) ∈ BQ(0) (rQ)× BT0(r0)× [0, δ],

‖D p
V Dq

K R+‖L p,q ≤ M

⎧
⎪⎨

⎪⎩

r0r−p
Q p ≥ 0, q = 0

r1−p−q
Q p ≥ 0, q = 1, 2

0 p ≥ 0, q ≥ 3.

(1.53)

Each Fréchet derivative D p
V Dq

K R+, when applied as a multilinear map to directions V̇ in(Q0
)p

and K̇ in Kq , is jointly continuous in all arguments, m2, V, K , V̇ , K̇ . In particular, it
is jointly continuous on the boundary m2 = 0.

Next, we specify domains for the K+ part of the RG map. Let j < N (Λ). We fix g̃ j , g̃ j+1

obeying (1.30). As in [17, (1.84)], we fix a universal constant CD and for x = ν, z, λa, λb

define rx, j by

L2 j rν, j = rz, j = CD g̃ j , rλ, j = CD. (1.54)

We then define

D j = {(g, ν, z, λ) ∈ C
4 :C−1

D g̃ j < Re g < CD g̃ j , |Im g| < 1
10 Re g,

|x | ≤ rx for x = ν, z, λa, λb}, (1.55)

which is the important stability domain defined in [17, (1.83)] restricted to y = qab = 0. The
mass m2 determines the sequence χ j defined above (1.43) (in particular, χ j = 1 for all j
when m2 = 0). For j < N and R > 0 (large), we define domains D j = D j (V) ⊂ Q×K j (V)

by

D j (V) = D j × BW j (V)(Rχ
3/2
j g̃3

j ). (1.56)
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The radius Rχ3/2
j g̃3

j of the ball in (1.56) depends on m2 viaχ j , and increases as m2 decreases.
By definition,

BW j (Rχ
3/2
j g̃3

j ) ⊂ BF j (G)(Rχ
3/2
j g̃3

j ) ⊂ BT0(Rχ
3/2
j g̃3

j ), (1.57)

so with the choices rQ = CD g̃ j and r0 = Rχ3/2
j g̃3

j , the domain of Theorem 1.10 is larger
than D j :

D j ⊂ BQ(0) (CD g̃ j )× BT0(Rχ
3/2
j g̃3

j ). (1.58)

The following theorem, which constructs the K+ part of the renormalisation group map,
is our main result. The construction of K+ is explicit, but it is not simple. The theorem is a
local existence theorem for the dynamical system that RG generates: it says in particular that
the map (V, K ) �→ K+ is defined and contractive when (V, K ) is in the domain D j (which
in particular requires that K be in a small ball). The contractivity appears in (1.60), due to
κ < 1. It is also evidenced by the fact that we can choose R to be large without affecting the
value of M , so in particular if we choose R = 2M then we see from the p = q = 0 case of
(1.60) that the radius of the ball for K+ is half that of the ball for K in the domain D j . In the
derivative estimates, the L p,q norm is the norm of a multi-linear operator from Qp × Kq

j to
K j+1.

Theorem 1.11 Let V = Λ and j < N (Λ). Fix any a ∈ (0, 2−d), R > 0, CD (both as large
as desired), and let L be sufficiently large (depending on R). Let p, q ∈ N0. There exist δ
(depending on R, L), M > 0 (depending on p, q, L but not R) and κ = O(L−1) such that
for all g̃ ∈ (0, δ) and m2 ∈ I j+1, there exists a map

K+ : D j (Λ)→ W j+1(V) (1.59)

such that (1.49) holds. The map K+ is analytic in (V, K ), and, pointwise in (V, K ), satisfies
the estimates

‖D p
V Dq

K K+‖L p,q ≤

⎧
⎪⎪⎨

⎪⎪⎩

κ p = 0, q = 1

Mχ3/2
+ g̃3−p

+ p ≥ 0, q = 0

Mg̃−p
+

(
χ

1/2
+ g̃10/4

+
)1−q

p ≥ 0, q ≥ 1.

(1.60)

By Theorem 1.10 and (1.58), under the hypotheses of Theorem 1.11, we also have

‖D p
V Dq

K R+‖L p,q ≤

⎧
⎪⎨

⎪⎩

Mχ3/2 g̃3−p p ≥ 0, q = 0

Mg̃1−p−q p ≥ 0, q = 1, 2

0 p ≥ 0, q ≥ 3.

(1.61)

Furthermore, by (1.30), we can replaceχ and g̃ in (1.61) byχ+ and g̃+ at the cost of increasing
M by a bounded multiple depending only on �.

Our construction of K+ gives it a local dependence on K , as formulated in the next
proposition.

Proposition 1.12 For U ∈ P j+1(Λ), the value of K+(U ) depends on K only via the restric-
tion K |U� of K to polymers in P j (U�).

To gain some insight into the meaning of the norm estimates, suppose that the p = q = 0
estimate of (1.60) holds at the final scale j + 1 = N , i.e., ‖KN‖WN ≤ Mχ3/2

N g̃3/2
N . In

[8], we use the θ which appears in (1.49) at all scales, but in [7] the simpler case in which
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θ is omitted at the final scale is sufficient. We consider here the simpler case, in which in
(1.49) the final integration leaves no dependence on the fields. There is only one non-empty
polymer at the final scale, namely Λ itself. We denote the effect of setting the boson and
fermion fields to zero by a superscript 0. Then K 0

N (Λ) is a complex scalar, and we write its
direct sum decomposition, as in (1.2), as K 0

N (Λ) = K 0
N ;∅+ σK 0

N ;σ + σ̄K 0
N ;σ̄ + σ σ̄K 0

N ;σ σ̄ .
By (1.46) and the definition of the norm in [16, (1.61)],

‖KN‖WN ≥ ‖KN (Λ)‖T0,N (�N ) = |K 0
N ;∅| + �σ,N |K 0

N ;σ | + �σ,N |K 0
N ;σ̄ | + �2

σ,N |K 0
N ;σ σ̄ |,

(1.62)

where

�σ,N = 2N− jab L jab[φ]g̃N , (1.63)

by (1.32). We always assume that N is larger than the coalescence scale jab, so that a, b can
be identified with points on the torus. Also, it follows from (1.28) that L jab is bounded above
and below by multiples of |a − b| (in particular, |a − b| ≥ 1

2 L jab ). Thus we conclude that

|K 0
N ;∅| ≤ Mχ3/2

N g̃3
N and

∣∣K 0
N ;σ σ̄

∣∣ ≤ M ′

4N− jab

1

|a − b|2[φ] χ
3/2
N g̃N , (1.64)

for some M ′. This is used in [7].
We also consider the continuity of K+ in the mass parameter m2 ∈ I j+1. This issue is

complicated by the fact that the radius of the ball in K j in the domain D j of (1.56) depends on
χ j , which itself depends on m2. Similarly, the space W j depends on ρ j , which also depends
on χ j and hence on m2. To disentangle the domain from the mass parameter we wish to vary,
we fix m̃2 ∈ I j+1 and define χ̃ j = χ j (m̃2), and use this to define the domain and space.
Thus we define the spaces W̃ j by replacing χ j by χ̃ j in (1.43), and we define the domains

D̃ j (V) = D j × BW̃ j (V)
(r χ̃3/2

j g̃3
j ). (1.65)

By definition, χ̃ j increases as m̃2 decreases. Consequently the domain D̃ j increases as m̃2

decreases, and hence if (V, K ) ∈ D̃ j (m̃2) for a fixed value of m̃2, then (V, K ) ∈ D̃ j ((m̃′)2)
for all m̃′ ≤ m̃. We also define the intervals

Ĩ j = Ĩ j (m̃
2) =

{ [ 1
2 m̃2, 2m̃2] ∩ I j (m̃2 �= 0)
[0, L−2( j−1)] ∩ I j (m̃2 = 0).

(1.66)

Theorem 1.13 Let V = Λ and j < N (Λ). Let a, R,CD, L , δ,M, κ be as in Theorem 1.11.
Let m̃2 ∈ I j+1. The map K+ of Theorem 1.11 extends to a map

K+ : D̃ j (Λ)× Ĩ j+1(m̃
2)→ W̃ j+1(Λ), (1.67)

which is analytic in (V, K ), and obeys the estimates (1.60). For j + 1 < N, every Fréchet
derivative D p

V Dq
K R+, when applied as a multilinear map to directions V̇ in

(Q0
)p

and K̇ in
Wq , is jointly continuous in all arguments m2, V, K , V̇ , K̇ . The domain of joint continuity
includes the boundary m2 = 0, provided (V, K ) is in the domain D̃ j (�) defined with m̃2 = 0.

Our main results all include the presence of observables, corresponding to the observ-
able fields σ, σ̄ . However, our construction is triangular, in the sense that the bulk part of
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606 D. C. Brydges, G. Slade

(V+, K+), obtained by setting σ = σ̄ = 0, is the same as if no observables were present in
the original (V, K ), i.e.,

π∅V+(V, K ) = V+(π∅V, π∅K ), π∅K+(V, K ) = K+(π∅V, π∅K ). (1.68)

The map π∅ : N → N∅ is linear and bounded in T0 norm, and therefore it is continuous
in the topology of this norm. Furthermore π∅ : N → N∅ is a homomorphism of algebras,
because it is evaluation at σ = σ̄ = 0. Therefore, for any polynomial F(V, K ) in V and K ,
we haveπ∅ F(V, K ) = F(π∅V, π∅K ) and the same is true for T0 limits of polynomials. The
first equation in (1.68) then follows from the analyticity statement in Theorem 1.10, which
implies that R+ is the limit in T0 norm of truncations of its power series in V, K . To obtain
the second equation in (1.68), we similarly use Theorem 1.11 to approximate K+(V, K ) in
T0 norm by a polynomial in V and K .

In the presence of observables, (1.68) is supplemented by the statement that, for x = a or
x = b,

if πx V = 0 and πx K (X) = 0 for all X ∈ P then

πx R+ = πab R+ = 0 and πx K+(U ) = πab K+(U ) = 0 for all U ∈ P+. (1.69)

In addition, λa+ is independent of each of λb, πb K , and πab K , and the same is true with a, b
interchanged. The statement in (1.69) concerning K+ is proved in Theorem 2.2(v), and the
statements about R+ and λ+ are proved in Proposition 1.14.

1.8.2 Flow of Coupling Constants in Finite Volume

In this section, we explicitly define the map R+ of Theorem 1.10. The proof that this map
obeys the estimates of Theorem 1.10 is deferred to Sect. 2.1.

We define R+ in such a way that the relevant and marginal parts of K become incorporated
into V+. The operator Loc defined in [16] is designed expressly for this purpose. More
precisely, given Y ⊂ X ⊂ Λ, the operator LocX,Y : NX → Q(Y ) is defined in [16,
Definition 1.17], and we employ here the field dimensions specified in [9, Section 3.2]. The
specific details of the definition of Loc do not play a role in the present paper, but properties
of Loc are important.

The following three steps define q+ ∈ C and V+ ∈ Q(0) as explicit functions of V, K .

1. For V = Λ, given (V, K ) and B ∈ B(Λ), we define

Q(B) =
∑

Y∈S(Λ):Y⊃B

LocY,B I−Y K (Y ), (1.70)

where I = I (V ) and the negative exponent denotes the reciprocal, namely I−Y =
1

I (V,Y ) =
∏

B∈B(Y )
1

I (V,B) . The fact that (1.70) defines an element Q ∈ Q is proved in
Lemma F.2. This defines a map

(V, K ) �→ V̂ = V − Q ∈ Q. (1.71)

2. We compose the map (1.71) with the quadratic function V �→ Vpt(V ) (defined in [9,
(3.23)]) to obtain the map

(V, K ) �→ Vpt(V̂ ) = Vpt(V − Q). (1.72)

The map Vpt = Vpt, j+1 is independent of N ; see [9, Proposition 4.1, Definition 4.2].

123



A Single Renormalisation Group Step 607

3. Finally, we set

V+ = V (0)
pt (V̂ ), q+ = q + 1

σ σ̄
πabVpt(V̂ ), (1.73)

with the superscript (0) denoting the operation described under (1.49) (replacement of
zτΔ + yτ∇∇ + qσ σ̄ by (z + y)τΔ).

We then define I+ ∈ BK j+1(Λ) by

I+ = I j+1(V+). (1.74)

The above definition of (V+, q+) determines R+ : Q(0) ×K j (Λ)→ Q(1) by

R+(V, K ) = V (1)
pt (V̂ )− V (1)

pt (V ). (1.75)

By definition, R+ is a quadratic function of K ; its dependence on V is nontrivial due to the
dependence in Q of I on V .

We now interpret more explicitly the meaning of the estimate (1.53) for the flow of coupling
constants determined by Theorem 1.10. By (1.50) and (1.75), V+, δq+ are determined by
(V, K ) ∈ D j by

V+(V, K ) = V (0)
pt (V )+ (V (0)

pt (V̂ )− V (0)
pt (V )), (1.76)

(
1

2
δqa+,

1

2
δqb+

)
= 1

σ σ̄
πabVpt(V )+ 1

σ σ̄
πab(Vpt(V̂ )− Vpt(V )), (1.77)

δq+(V, K ) = 1

2

(
δqa+ + 1

2 δq
b+
)
. (1.78)

The first terms on the right-hand sides of (1.76)–(1.77) are independent of K and con-
stitute the pertubative flow discussed at length in [6]. The last terms on the right-hand
sides of (1.76)–(1.77) do depend on K and constitute the non-perturbative correction to
the perturbative flow. We write these non-perturbative corrections to the coupling constants
(g+, z+, ν+, λa+, λb+, qa+, qb+) as vx, j , with x = g, z, ν, λa, λb, qa, qb. The following propo-
sition gives estimates for these correction terms.

Proposition 1.14 Let j < N, (V, K ) ∈ D̃ j , and m2 ∈ I j+1. The bounds

vg, j = O(χ3/2
j g̃3

j ), vz, j = O(χ3/2
j g̃3

j ), vν, j = O(χ3/2
j L−2 j g̃3

j ),

vλ, j = O(χ3/2
j g̃2

j )1 j< jab vq, j = 1

|a − b|2[φ] O(χ3/2
j 4−( j− jab) g̃ j )1 j≥ jab (1.79)

hold with L-dependent constants, where λ represents either of λa, λb and similarly for q.
For x = a or x = b, if πx V = 0 and πx K (X) = 0 for all X ∈ P then πx R+ = πab R+ = 0.
In addition, λa+ is independent of each of λb, πb K , and πab K , and the same is true with a, b
interchanged. Finally, each v j is continuous in m2 ∈ [0, δ].
Proof Recall the definition of the Q norm in (1.33) and the definition of �, �σ from (1.31)–
(1.32). With these, (1.53) gives the estimates (1.79), where the indicator functions for
vλ, j , vq, j arise as follows.

The last term on the right-hand side of (1.77) determines vq, j . To justify the indicator
function in (1.79) we have to show that vq, j is zero for j < jab. By the definition of jab the
distance between a and b is at least 1

2 L jab . A small set of scale j has diameter at most cL j

for some c depending only on d = 4. For j < jab, since L is large no small set at scale j can
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608 D. C. Brydges, G. Slade

contain both points a and b, so πab Q = 0 and hence πabV̂ = πabV . Since Vpt(V̂ )− Vpt(V )

is quadratic in V̂ we must also consider σ σ̄ cross terms. Cross terms between σ φ̄a and σ̄ φb

are zero because E j+1φ̄aφb = C j+1;ab = 0 when j < jab (see [9, Lemma 5.8]). Thus vq, j

is zero for j < jab.
Let j ≥ jab. We have to prove that vλ, j = 0. This holds if πa V̂ = πa V for the V̂ and V

in the second term of (1.76). By (1.70) this holds if σ φ̄ and σ̄ φ are not in the range of Loc
at scale j . This is discussed in [9, Section 3.2], where it is explained that the parameters in
Loc are indeed selected so that for j ≥ jab, σ φ̄ and σ̄ φ are not in the range of Loc.

Suppose now that πa V = 0 and πa K (X) = 0 for all X ∈ P . Then πa Vpt(V ) = 0 by the
formula for λpt in [9, (3.34)], and πa V̂ = 0 by (1.70)–(1.71). From this it follows that as
required, πx R+ = πab R+ = 0. A similar argument applies when a is replaced by b.

To see that πa V+ is independent of each of πbV , πb K , πab K , we argue as follows. Since
the flow of λa stops at the coalescence scale, we may assume that j < jab. Let X ∈ S j be a
small set that contains a. Then X cannot also contain b, so by the field locality assumption in
Definition 1.7, πb K (X) = πab K (X) = 0, and hence V̂ does not depend on πb K or πab K .
We appeal again to the formula for λpt in [9, (3.34)] to conclude that πa Vpt(V̂ ) does not
depend on λb either. A similar argument applies when a is replaced by b.

The continuity in m2 of vx, j holds because the coefficients of Vpt (given explicitly in [9,
(3.30)–(3.35)]) are continuous in m2 ∈ [0, δ] by [9, Proposition 4.4]. �	

Finally, for use in [7], we make the following additional observation. Let ν+ = ν+2gC0,0.
We claim that

|ν+ − ν+| = O(χ3/2
j L−2 j g̃2

j ). (1.80)

To see this, we apply (1.76) and (1.79) to obtain |ν+ − νpt| = O(χ3/2
j L−2 j g̃3

j ), so it suffices

to show that |νpt−ν+| = O(χ3/2
j L−2 j g̃2

j ). For the latter, we see from [9, (3.31)] that νpt−ν+
is a sum of terms that are each quadratic in the bulk coupling constants, and the claim then
follows using g̃ bounds on the coupling constants and [9, Lemma 6.2].

1.8.3 Main Result in Infinite Volume

Theorem 1.13 concerns the renormalisation group map on a torus Λ. We now develop a
framework which permits an extension of the map to the infinite volume Z

d , and state results
concerning this extension. The main result is Theorem 1.19.

To begin, we fix a scale j <∞, and now regard Theorem 1.13 as simultaneously a state-
ment about every torusΛwith N (Λ) > j . We write theΛ-dependent input to Theorem 1.13
as KΛ, so we have a family (KΛ) for all Λ with N (Λ) > j , with each KΛ ∈ K j (Λ). The
output of Theorem 1.13 includes a family (K+,Λ), with each K+,Λ ∈ K j+1(Λ). We associate
to an embedding of a torus into a larger torus a compatibility condition on the family (KΛ)
that is preserved by the renormalisation group map, and use this compatibility to construct
the renormalisation group map in infinite volume.

For a nonempty polymer X ∈ P∗(V) (with V either Λ or Z
d ) and a torus Λ′, we say that

ι is a coordinate map from X to Λ′ if (i) ι : X → Λ′ is an injective map that maps nearest-
neighbour points in X to nearest-neighbour points in the image set ιX , (ii) nearest-neighbour
points in ιX are mapped by ι−1 to nearest-neighbour points in X , (iii) if X contains a point x
where there is an observable then ιx is the location of the observable in Λ′. When we write
ι−1, we always understand it to be the inverse defined on the image ιX .
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A Single Renormalisation Group Step 609

Next, we define the maps on N induced by ι. Let X be a polymer in Pk(V) for some scale
k and let ι be a coordinate map from X toΛ′. For φ in C

Λ′ we define φι in C
X by (φι)x = φιx ,

and similarly for the Grassmann generators, (ψι)x = ψιx . To define the action of ι on N , it
suffices to define the action of ι separately on the summands N ∅, N a , N b, N ab in (1.2). We
define an algebra isomorphism ι : N ∅(X)→ N ∅(ιX) (the same name ι is used also for this
map), as follows. An element

F =
∑

y∈ �∗

1

y! Fyψ
y (1.81)

of N ∅(X) is defined in terms of coefficients Fy which are functions of fields in X , i.e.,
Fy : C

X → C. We define ι(Fy) : C
ιX → C by ι(Fy)(φ) = Fy(φι) and then set

ιF =
∑

y∈ �∗

1

y! ι(Fy)ψ
y
ι . (1.82)

According to the definition of ψι the product ψ y
ι is a product of generators attached to points

in ιX , as it should be. The correspondence between ι as a coordinate map and ι as an algebra
isomorphism is functorial: if j = ι ◦ ι′ as coordinate maps then j = ι ◦ ι′ as maps on N . To
define the action of ι on N a(X), recall that the elements of N a(X) have the form σ F with
F ∈ N ∅(X). Then we set ισ F = σ ιF . Thus ι does nothing to the observable fields σ and
σ̄ , which makes it clear how the action of ι on N b, N ab is defined.

Any polymer X on a torusΛ whose diameter is less than that ofΛ will have a coordinate
map to any larger torus Λ′ (meaning N (Λ′) ≥ N (Λ)), and we say that X is a coordinate
patch on Λ if diamX ≤ 1

2 diamΛ. In particular, coordinate patches cannot wrap around the
torus. We always assume that L > 2d , so that for scales j < N (Λ) small sets are coordinate
patches. The next definition introduces the compatibility condition mentioned above. It is
called Property (Zd) and it relates KΛ to KΛ′ . Notice that the definition allows Λ′ = Λ. In
this case Property (Zd) is equivalent to the Euclidean invariance statement in Definition 1.7.

Definition 1.15 We say that a family (KΛ) with each KΛ ∈ K j (Λ) has Property (Zd) if

ιKΛ(X) = KΛ′(ιX) for all coordinate patches X ∈ P j (Λ), allΛ′ larger thanΛ,

and all coordinate maps ι : X� → Λ′. (1.83)

Given a family (KΛ) that has Property (Zd) we define K
Zd ∈ K j (Z

d) by

K
Zd (X) = ι−1(KΛ(ιX)

)
(X ∈ P j (Z

d)), (1.84)

for some choice ofΛwith diamΛ ≥ 2diamX , and some choice of a coordinate map ι : X →
Λ.

We claim that if K has Property (Zd) then K
Zd (X) does not depend on ι or Λ. To see

this, suppose we have two coordinate maps ι1, ι2 from X to toriΛ andΛ′, withΛ′ the larger
torus. Then there exists a coordinate map ι3 from (ι1 X)� toΛ′ such that ι2 = ι3 ◦ ι1 on X�.
Property (Zd) implies that

ι3 KΛ(ι1 X) = KΛ′(ι3 ◦ ι1 X) = KΛ′(ι2 X), (1.85)

and the claim then follows by applying ι−1
2 = ι−1

1 ◦ ι−1
3 to both sides.

For a function F defined on polymers in P j (V) and a polymer Y in P j (V), let F |Y denote
the restriction of F to P j (Y ), i.e. to scale- j polymers X ⊂ Y . According to Proposition 1.12,

123



610 D. C. Brydges, G. Slade

K+,Λ(U ) depends on KΛ only via KΛ|U� , and for fixed V we can therefore regard the map
KΛ → K+,Λ defined by Theorem 1.13 as a family of maps gΛ : KΛ|U� �→ K+,Λ(U )
indexed by Λ.

We will prove the following proposition [see Theorem 2.2(iii)].

Proposition 1.16 Let U ∈ P j+1(Λ) be a coordinate patch and let ι : U� → Λ′ with Λ′
larger than Λ. Then ιgΛ(KΛ|U� ) = gΛ′(ιKΛ|U� ).

The following proposition shows that Property (Zd) is preserved by the renormalisation
group map.

Proposition 1.17 If the collection (KΛ) has Property (Zd) then (K+,Λ) produced by
Theorem 1.13 also has Property (Zd).

Proof Let U ∈ P j+1(Λ) be a coordinate patch and let ι : U� → Λ′ with Λ′ larger than Λ.
Then

ιK+,Λ(U ) = ιgΛ(KΛ|U� ) = g
Λ
′ (ι(KΛ|U� )) = g

Λ
′ (K

Λ
′ |
(ιU )� ) = K+,Λ′ (ιU ), (1.86)

by Proposition 1.16 for the second equality, and by Property (Zd) of (KΛ) for the third. �	
Now we define the infinite volume map (V, K

Zd ) �→ K+,Zd . We fix V and drop it from
the notation. Let K

Zd ∈ K(Zd) and U ∈ P j+1(Z
d). We choose a torusΛwith N (Λ) > j+1

and a coordinate map ι : U� → Λ. We first aim to apply Lemma E.6 to define KΛ ∈ K j (Λ)

appropriately associated to K
Zd . For this, let X = ιC j+1(U�), which is a class of subsets of

Λ. Define F : X → N by F = ι ◦ K
Zd ◦ ι−1. For a Euclidean automorphism E of Λ, and

for X ∈ X such that E X ∈ X , there is an automorphism E ′ of Z
d such that E ′(ι−1 X) =

ι−1(E X). It follows from the Euclidean covariance of K
Zd that K

Zd ◦ E ′ = E ′ ◦ K
Zd , and it

is then straightforward to check that F(E X) = E(F(X)), which is the main hypothesis for
Lemma E.6. The hypothesis involving W can be vacuously satisfied by choosing W = ∞,
and the other hypotheses hold because K

Zd ∈ K j (Z
d). Therefore, by Lemma E.6, there

exists an extension F̂ ∈ K j (Λ) of F such that KΛ defined by KΛ = F̂ satisfies

KΛ|ιU� = ι ◦ K
Zd ◦ ι−1|

ιU� . (1.87)

We then define K+,Zd (U ) ∈ N (U�) by

K+,Zd (U ) = ι−1 ◦ gΛ(KΛ|ιU� ), (1.88)

and we must prove that this definition assigns the same value regardless of how we choose
Λ and ι.

Let ι′ be another coordinate map from U� into another torus Λ′ with N (Λ′) > j + 1,
and let

K
Λ
′ |
ι′U� = ι′ ◦ K

Zd ◦ ι′−1|
ι′U� . (1.89)

Let j = ι′ ◦ ι−1. Then j is a coordinate map from ιU� ⊂ Λ into Λ′. By (1.88) and
Proposition 1.16,

K+,Zd (U ) = (ι−1 ◦ gΛ(KΛ|ιU� ) = ι′−1 ◦ j ◦ gΛ(KΛ|ιU� )

= ι′−1 ◦ gΛ′( j KΛ|ιU� ) = ι′−1 ◦ gΛ′(KΛ′ |ι′U� ). (1.90)
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Therefore the definition of K+,Zd (U ) does not depend on the choices in the definition. Fur-
thermore, this defines a map K

Zd �→ K+,Zd . Because the finite volume map preserves the
symmetries of Definition 1.7 by Theorem 1.11, the infinite volume map also preserves these
symmetries. The infinite volume map K

Zd �→ K+,Zd is the unlabelled arrow in the commu-
tative diagram:

The map R+ of Sect. 1.8.2 depends on Λ because it is a function of K ∈ K(Λ). We
now make this dependence explicit and write R+,Λ and V+,Λ in place of R+ and V+. To
complete the definition of the renormalisation group map in infinite volume, we define the
infinite volume map (V, K

Zd ) �→ R+,Zd . This is similar to the construction of the map
K+,Zd , except R+,Λ has values in Q as opposed to values in K.

To distinguish between scale-( j + 1) blocks in Z
d and blocks in a torus, we write B for

the former and C for the latter. In particular, R+,Λ(C) [as in (1.10)] is an element of N (C).
By (1.75), R+,Λ is defined in terms of Vpt and in terms of Q of (1.70). By definition, Vpt

evaluated on a block C depends only on fields and their derivatives on C , and hence depends
on the values of fields in a cube obtained by extending C by a few vertices in each direction.
The same is true for Q on a scale- j block. Together, these facts much more than imply that
R+,Λ(C) depends only on the restriction of KΛ to polymers in P(C�).

Let K
Zd ∈ K(Zd) and B ∈ B+(Zd). We choose a torus Λ with N (Λ) > j + 1 and a

coordinate map ι : B� → Λ. As in the definition of K
Zd , choose KΛ ∈ K(Λ) such that

KΛ|ιB� = ι ◦ K
Zd ◦ ι−1|

ιB� . (1.91)

We define R+,Zd (B) ∈ N (B) by

R+,Zd (B) = ι−1
(

R+,Λ(V, KΛ)(ιB)
)
. (1.92)

The values of (R+,Zd (B), B ∈ B+(Zd))determine a unique element R+,Zd ∈ Q and therefore
we have a map (V, K

Zd ) �→ Q. The following proposition shows that this map does not
depend on the choices of Λ and ι made in its definition.

Proposition 1.18 (i) Let (KΛ) be a family that has property (Zd). Then for any toriΛ and
Λ′ with N (Λ), N (Λ′) ≥ j + 1,

R+,Λ(V, KΛ) = R+,Λ′(V, KΛ′). (1.93)

(ii) The definition of R+,Zd (B) in (1.92) does not depend on the choice of torus Λ or coor-
dinate map ι.

Proof The proofs of (i) and (ii) require the following preparation. We fix V and drop it
from the notation, and let Λ,Λ′ be as in part (i) of the proposition. Let C ∈ B(Λ) and let
j : C� → Λ′ be a coordinate map. We use subscripts Λ and Λ′ to indicate membership in
N (Λ) or N (Λ′). Let KΛ ∈ K(Λ) and KΛ′ ∈ K(Λ′) be any elements that satisfy
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j KΛ(X) = KΛ′( j X) for X ∈ P(C�). (1.94)

Recall the definition (1.70) of Q, which here we write as QΛ since it depends on KΛ. We
claim that

j
(
QΛ(C)

) = QΛ′( jC). (1.95)

By definition,

j
(
QΛ(C)

) =
∑

Y∈S(Λ):Y⊃C

j
(

LocY,C I−Y
Λ KΛ(Y )

)
, (1.96)

and by a small variation of [16, Proposition 1.9] followed by (1.94),

j
(

LocY,C I−Y
Λ KΛ(Y )

)
= Loc jY, jC j

(
I−Y
Λ

)
j
(
KΛ(Y )

) = Loc jY, jC I− jY
Λ′ KΛ′( jY ). (1.97)

Therefore

j
(
QΛ(C)

) =
∑

Y ′∈S(Λ′):Y ′⊃ jC

LocY ′, jC I−Y ′
Λ′ KΛ′(Y

′) = QΛ′( jC). (1.98)

(i) Since (KΛ) has the (Zd) property, (1.98) holds for all blocks C ∈ B(Λ). Therefore,
QΛ′ = QΛ as elements of Q. By the Λ-independence of the map V �→ Vpt constructed
in [9, Section 4.1] and the definition of R+ in (1.75), it follows that R+,Λ(V, KΛ) =
R+,Λ′(V, KΛ′). This concludes the proof of (i).

(ii) Given K
Zd ∈ K(Zd), choose Λ, ι, KΛ and Λ′, ι′, KΛ′ so that (1.91) holds for both

choices. In this case, recall that N (Λ) and N (Λ′) are greater than j + 1, and ι, ι′ are
defined on B in B+(Zd). Then (1.94) holds with j = ι′ ◦ ι−1 and C = ιB. Therefore, by
part (i),

ι−1
(

R+,Λ(KΛ)(ιB)
)
= ι′−1 j

(
R+,Λ(KΛ)(ιB)

)
= ι′−1

(
R+,Λ(KΛ)( j ιB)

)

= ι′−1
(

R+,Λ′(KΛ′)( j ιB)
)
= ι′−1

(
R+,Λ′(KΛ′)(ι′B)

)
. (1.99)

This shows that the definition of R+,Zd (B) in (1.92) does not depend on the choice ofΛ
or ι, and completes the proof.

�	
By combining (1.88) and Proposition 1.18, we obtain the infinite volume map

(V, K
Zd ) �→ (R+,Zd , K+,Zd ) (1.100)

for all scales j <∞. In contrast to the finite volume case, it is not a defining feature of this map
that it preserves a circle product under expectation. Indeed we do not have an interpretation
of the expectation nor of the circle product in infinite volume. What the infinite volume
map does achieve is a simultaneous encoding of the restriction of the finite volume map to
coordinate patches for all volumes (this effectively ignores the part of the finite volume map
that concerns polymers that wrap around the torus). As such, we regard the infinite volume
map as an inductive limit of the finite volume maps, which given a polymer U captures the
behaviour of K+,Λ(U ) for all volumes Λ whose diameter is at least twice that of U . The
following theorem is an analogue of Theorems 1.10 and 1.13 (the former specialised as in
(1.61)) that summarises the properties of the infinite volume map. It follows directly from
Theorems 1.10 and 1.13 and the definition of the infinite volume map.
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Theorem 1.19 Let V = Z
d and j < ∞. In (1.36), set γ = 1. Let a, R,CD, L , δ,M, κ be

as in Theorem 1.11. Let m̃2 ∈ I j+1. Then (1.100) defines maps

R+,Zd : D̃ j (Z
d)× Ĩ j+1(m̃

2)→ Q(1)
j+1, K+,Zd : D̃ j (Z

d)× Ĩ j+1(m̃
2)→ W̃ j+1(Z

d),

(1.101)

which are analytic in (V, K ), and obey the estimates (1.60)–(1.61) with all the norms on Z
d

(rather than onΛ). Every Fréchet derivative D p
V Dq

K R+,Zd , when applied as a multilinear map
to directions V̇ in

(Q0
)p

and K̇ in Wq , is jointly continuous in all arguments m2, V, K , V̇ , K̇ .
The domain of joint continuity includes the boundary m2 = 0, provided (V, K ) is in the
domain D̃ j (�) defined with m̃2 = 0.

1.8.4 Generalisations of Main Results

We have formulated our results in the specific setting of the supersymmetric representation
of the 4-dimensional weakly self-avoiding walk model, defined by the polynomial V given
in terms of bulk and observable terms in (1.8). However, the results are flexible, and can be
extended with little effort in (at least) the following two directions.

Other observables The first extension is to consider a different choice of observables.
The observable terms in (1.8) are suitable for the analysis of the two-point function in [7].
The choice of hσ made in (1.32) for the observable field σ is designed to be as large as
possible so that the observable terms in V remain benign for the stability estimates of [17],
and in particular for [17, Proposition 1.5]. Different choices of observables could be made
with corresponding different choices of hσ ; what needs to be checked is that: (i) the stability
estimates continue to hold with the new observables, which requires that hσ be not too large,
and (ii) the analogue of the second estimate of (1.64) applies in the new setting, which requires
that hσ be not too small. A specific example where both of these objectives can be met for
other observables is given in [39], where, e.g., watermelon networks for the 4-dimensional
weakly self-avoiding walk are analysed at the critical point. These are networks of p weakly
mutually- and self-avoiding walks from the origin to a distant point x , and we study the
asymptotic behaviour as |x | → ∞, for p > 1.

The |ϕ|4 model The second extension concerns the 4-dimensional n-component |ϕ|4 spin
model, at weak coupling. In [5], we apply the results of the present paper to analyse the
critical behaviour, in particular of the susceptibility. A simplification is that the |ϕ|4 model is
purely bosonic—there is no fermion field. A small complication is that the model is O(n)-
symmetric rather than supersymmetric. Consequently, V+ acquires a constant term δu from
Vpt, in a similar manner to the occurrence of δqσ σ̄ in (1.49). The constant term is a bulk
rather than an observable term, and consequently it occurs in V (X) as δu|X |0, where |X |0
is the cardinality of X . In [5], we extract the constant term from the circle product, just as
we do for δqσ σ̄ . This requires a small adaptation to the proof of Lemma 6.2, discussed in
Remark 6.3. The inclusion of observables for the |ϕ|4 model is studied in [39].

2 Reduction to a Key Theorem

In this section, we reduce the proofs of Theorems 1.11 and 1.13, as well as Propositions 1.12
and 1.16, to the key result Theorem 2.2. We also prove Theorem 1.10 concerning the map R+.
Finally, we prove Theorem 1.19, by transferring the finite volume statements of Theorem 1.11
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614 D. C. Brydges, G. Slade

to infinite volume. The proof of Theorem 2.2 is substantial and is carried out in the remainder
of the paper.

2.1 Flow of Coupling Constants

We now prove Theorem 1.10, which concerns the map R+. The proof uses the fact, proved
in [16, Proposition 1.18], that if Y ⊂ X ∈ S j and F ∈ N (X�) then

‖LocX,Y F‖T0 ≤ C‖F‖T0 . (2.1)

It also uses the fact that for a block B ∈ B and small rQ > 0, the reciprocal I (V, B)−1 of
I (V, B) is an analytic function of V ∈ BQ(0) (rQ) taking values in N , ‖·‖T0 . This and related
facts are further discussed in Sect. 3.3, for the study of K+.

A basic tool we use is the Cauchy estimate for analytic functions on Banach spaces, to
infer estimates on the derivatives of an analytic function from estimates on the function
itself. Cauchy’s formula can be found in [35, p. 134]. For complex Banach spaces X, Y , f an
analytic map from a domain in X to Y , a positive integer p and directions ẋ = (ẋ1, . . . , ẋ p)

in X p , it follows from Cauchy’s formula that the Fréchet derivative of order p of f is given
by

D p f (x)ẋ =
∮
. . .

∮
f
(
x +

∑
t j ẋ j

) dt1
2π i t2

1

. . .
dtp

2π i t2
p
, (2.2)

where the contours of integration are circles in the complex plane, whose radius r is such
that the polydisc

{x +
∑

j

t j ẋ j : |t j | < r, j = 1, . . . , p} (2.3)

is contained in the domain of f . The Cauchy estimate follows from Cauchy’s formula in the
same way that it does for analytic functions of a single variable, and can be found explicitly
in [22, Theorem 9.16].

The following proposition is used in our proofs of continuity statements in our main
results, e.g., in Theorems 1.10–1.11.

Proposition 2.1 Let X and Y be Banach spaces and let U be an open subset of X. Let E
be a compact topological space. Let f : (s, x) �→ fs(x) be a uniformly bounded map from
E × X to Y such that x �→ fs(x) is analytic and s �→ fs(x) is continuous. Then for p ∈ N0,
the map (s, x, ẋ) �→ D p fs(x)ẋ from E ×U × X p to Y is jointly continuous.

Proof Let x ∈ U and p ∈ N0. By the uniform bound on f , and by (2.2), for directions ẋ of unit
norm, the multilinear map D p fs(y) is bounded in norm uniformly both in s and in y in some
neighbourhood Ux of x. Also, by the Cauchy integral formula and dominated convergence,
the map s �→ D p fs(x)ẋ is continuous in s. Since D p fs(y) is itself differentiable, and the
Fréchet derivative is also bounded uniformly, the map y �→ D p fs(y) is norm continuous on
Ux uniformly in s.

We demonstrate the case p = 1, and omit the proof for p = 0 as well as the inductive
proof for p > 1. Let p = 1, s, t ∈ E , x, y ∈ U and ẋ, ẏ ∈ X . We must show that D ft (y)ẏ
converges to D fs(x)ẋ as (t, y, ẏ) tends to (s, x, ẋ), and we start with

D ft (y)ẏ − D fs(x)ẋ = D ft (y)
(
ẏ − ẋ

)+ (
D ft (y)ẋ − D ft (x)ẋ

)+ (
D ft (x)ẋ − D fs(x)ẋ

)
.

(2.4)
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The first term tends to zero because D ft (y) is bounded in norm uniformly in y near x . The
second term tends to zero because y �→ D ft (y) is norm continuous at y = x uniformly in t .
The third term tends to zero because t �→ D ft (x)ẋ is continuous at t = s. This concludes
the proof for p = 1. �	
Proof of Theorem 1.10 By (1.75),

R+(V, K ) = V (1)
pt (V − Q)− V (1)

pt (V ), (2.5)

with

Q(B) =
∑

Y∈S:Y⊃B

LocY,B I−Y K (Y ). (2.6)

The map Vpt is quadratic in V by definition, and hence entire analytic in V . The map LocY,B

is a bounded linear map (with respect to the ‖ · ‖T0 norm), by (2.1), and, as noted above,
I−Y is analytic in V ∈ BQ(0) (rQ). Therefore Q is analytic in V ∈ BQ(0) (rQ) and linear in
K , and hence R+ is analytic in V ∈ BQ(0) (rQ) and quadratic in K . It is also continuous in
m2 ∈ [0, δ], since the coefficients of Vpt (given explicitly in [9, (3.30)–(3.35)]) are continuous
in m2 ∈ [0, δ] by [9, Proposition 4.4].

Next we prove the estimates of (1.53), which we repeat here as

‖D p
V Dq

K R+‖L p,q ≤ M

⎧
⎪⎨

⎪⎩

r0r−p
Q p ≥ 0, q = 0

r1−p−q
Q p ≥ 0, q = 1, 2

0 p ≥ 0, q ≥ 3.

(2.7)

The q ≥ 3 case of (2.7) holds since R+ is quadratic in K . For the remaining cases of
(2.7), we use the Cauchy estimate for analytic functions. Recall from (1.34) that the Q norm
is equivalent to the T0 norm on a block. We choose rQ small enough that Q is analytic
in V ∈ BQ(0) (2rQ) and ‖I (V )−Y ‖T0 ≤ 2 for Y ∈ S. Then ‖Q(B)‖T0(�) ≤ O(r0) for

K ∈ BT0(2rQ). It follows from a small extension of [17, Proposition 1.5] that ‖V (1)
pt (V −

Q, B)‖T0(�) ≤ O(rQ). Let K̇ have unit T0 norm, and let Qt = Q(K + t K̇ ) and f (t) =
V (1)

pt (V − Qt (B)). Then ‖ f (t)‖T0 ≤ O(rQ), and f (t) is analytic in t ∈ C, as long as

K + t K̇ ∈ BT0(2rQ). We seek estimates for K in the smaller ball of radius rQ , so f (t) is
analytic in t for |t | < 2rQ − rQ = rQ . By the Cauchy estimate, for K in the smaller ball we
have

‖DK V (1)
pt (V − Q, B)K̇‖T0,+ = ‖ f ′(0)‖T0,+ ≤

O(rQ)

2rQ − rQ
= O(1). (2.8)

By taking the supremum over K̇ we obtain the (p, q) = (0, 1) case of (2.7).
For the (p, q) = (0, 0) case of (2.7), we define g(s) = V (1)

pt (V − Q(sK ), B) with

K ∈ BT0(r0), so that R+(B) =
∫ 1

0 g′(s)ds. Application of the previous Cauchy argument
to bound g′(s) leads to ‖R+(B)‖T0 ≤ O(r0) on BQ(0) (2rQ) × BT0(r0) (with r0 ≤ rQ). For
(p, q) = (0, 2), as in (2.8) where we lost a factor rQ for the K -derivative in the Cauchy
estimate, in a second application of the Cauchy estimate we lose another rQ and obtain

‖D2
K V (1)

pt (V − Q, B)‖T0 ≤ O(r−1
Q ). This completes the proof of the p = 0 case of (2.7).

We bound the V derivatives similarly, using the fact that a distance rQ separates the ball
BQ(0) (rQ) from the boundary of the larger ball BQ(0) (2rQ). For each V derivative, the Cauchy

estimate causes one power of rQ to be lost. This is the origin of the r−p
Q in (2.7), and this

completes the proof of (2.7).
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Finally, in view of the analyticity and continuity established in the first paragraph of
the proof, the joint continuity of D p

V Dq
K R+ follows from the uniform bound on R+ and

Proposition 2.1. �	
2.2 Flow of Non-perturbative Coordinate

In this section, we state Theorem 2.2 and show that it implies the statements concerning K+ in
Theorem 1.13 and hence also Theorem 1.11. We include the statements of Propositions 1.12
and 1.16 as part of Theorem 2.2, so as to combine what must be proved about the finite
volume K+ in one place. Theorem 2.2 is stated in terms of F norms, and subsequently we
show that estimates in terms of F can be combined to produce estimates in terms of W as in
Theorems 1.11 and 1.13. The structure of the proof of Theorem 2.2 is discussed in Sect. 3.1
below; the proof is carried out in the remainder of the paper.

The following theorem holds for either of the norm pairs F = F j (G), F+ = F j+1(T0),
or F = F j (G̃), F+ = F j+1(G̃γ ). These spaces depend on parameters g̃,m2. The map K+
asserted to exist in the theorem is an explicit function of (V, K ) which is the same for each
of the norm pairs (on the intersection of the domains). An important element of Theorem 2.2
is the fact that κ < 1, in fact κ can be made as small as desired by taking L large. This
contractive property of the map K+ is an essential feature in our applications in [5,8]. Recall
that ε̄ is given in (1.43).

Theorem 2.2 Let V = Λ and j < N (Λ).

(i) Fix any a ∈ (0, 2−d), CD (as large as desired), and let L be sufficiently large. There exist
r (small, independent of L), δ (small, dependent on r, L), M0 > 0 (large, dependent on
L), γ ∗ > 0 (large, independent of L), such that for all g̃ ∈ (0, δ) and m2 ∈ I j+1, and
with κ = γ ∗L−1, there exists a map

K+ : D × BF (r ε̄)→ BF+(κr ε̄+), (2.9)

such that the expectation preserves the circle produce in the sense that (1.49) holds.
The map K+ is analytic in (V, K ), and

‖K+(V, 0)‖F+ ≤ M0ε̄
3+. (2.10)

Moreover, there exist a+ > a and h++ > h+ such that (2.9)–(2.10) hold with a replaced
by a+ and h+ replaced by h++ in the k = j + 1 definitions (1.41) and (1.35)–(1.36).

(ii) For U ∈ P+(Λ), the value of K+(U ) depends on K only via K (X) for X ∈ P(U�).
(iii) Let U ∈ P+(Λ) be a coordinate patch and let ι : U� → Λ′ withΛ′ larger thanΛ. Let

gΛ be the map defined above Proposition 1.16 (given by (2.9)). Then ιgΛ(KΛ|U� ) =
gΛ′(ι(KΛ|U� )).

(iv) Let m̃2 ∈ I j+1. The map K+ extends to a map

K+ : D × BF̃ (r ε̄)× Ĩ+(m̃2)→ BF̃+(κr ε̄+), (2.11)

which is analytic in (V, K ), continuous in m2 ∈ Ĩ j+1(m̃2), and obeys (2.10). Here F̃
is defined in terms of χ̃ = χ(m̃2), whereas m2 is the mass in the original covariance
(−Δ+ m2)−1.

(v) For x = a or x = b, if πx V = 0 and πx K (X) = 0 for all X ∈ P then πx K+(U ) for
all U ∈ P+.
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Definition 2.3 For later convenience, we refer to the analyticity statement of part (i), and to
the statements of parts (ii, iii, iv), simply as (V, K )-analyticity, the restriction property, the
isometry property, and mass continuity, respectively. There is also a vanishing at weighted
infinity property of K+ inherent in the definition of F+ [see (1.37)], and the field locality,
symmetry and component factorisation properties of K+ inherent in the definition of K+
in Definition 1.7. We use these terms when verifying these eight properties of K+ in later
sections.

Our next goal is to conclude our main results for the finite volume K+, from Theorem 2.2.
The statement of Theorem 2.2 includes the statements of Propositions 1.12 and 1.16, and
we show now that Theorems 1.11 and 1.13 follow from Theorem 2.2. This requires the
conversion of F estimates to W estimates.

Let ω = g̃3/4, as in (1.44). We begin with the following lemma, which uses the Y+ norm
defined by

‖K‖Y+ = max{‖K‖F+(T0), ω
3+‖K‖F+(G̃)}. (2.12)

Lemma 2.4 There is a constant c9 > 0 such that for any K ∈ K+,

‖K‖W+ ≤ c9‖K‖Y+ . (2.13)

Proof It follows from [15, Proposition 3.17], for X ∈ P+, K (X) ∈ N (X), and for any
positive integer A < pN , that there is a constant cA such that

‖K (X)‖G+,�+ ≤ cA max

{
‖K (X)‖T0,+(�+),

(
�+
h+

)A+1

‖K (X)‖G̃+,h+

}
. (2.14)

We apply (2.14) with A = 9; it is for this reason that we require pN ≥ 10. To account for
observables, the ratio �+/h+ here is understood as the maximum of the two ratios � j+1/h j+1

and �σ, j+1/hσ, j+1. By (1.31)–(1.32), both ratios are bounded above by an L-dependent

multiple of g̃1/4
+ . This gives

‖K (X)‖G+,�+ ≤ c9 max
{
‖K (X)‖T0,+,�+ , c(L)g̃10/4

+ ‖K (X)‖G̃+,h+

}
. (2.15)

As discussed below (1.46), we make the choice ã = 4a, and this choice gives

ε̄+(�) f+(a,X) = (χ
1/2
+ g̃+)a(|X |−2d )+

≥ (χ
1/2
+ g̃1/4

+ )4a(|X |−2d )+ = ε̄+(h) f+(ã,X). (2.16)

With (1.41), this implies that

‖K‖F+(G) ≤ c9 max
(
‖K‖F+(T0), c(L)g̃10/4

+ ‖K‖F+(G̃)

)
, (2.17)

and since c(L)g̃10/4
+ ≤ g̃9/4

+ = ω3+ for g̃+ sufficiently small depending on L , this implies
that

‖K‖W+ ≤ c9‖K‖Y+ . (2.18)

This completes the proof. �	
We now show that Theorems 1.11 and 1.13 follow from Theorem 2.2. We begin with

Theorem 1.11, and afterwards consider the mass continuity statement of Theorem 1.13.
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Proof of Theorem 1.11 Fix R > 0 (large). The proof uses W balls of radii a � A, defined
in terms of small r and large R by

a = Rχ3/2 g̃3, A = rχ1/2 g̃10/4. (2.19)

We use analyticity in the ball of larger radius to prove estimates in the ball of smaller radius,
using Cauchy estimates. The radius a appears in the definition (1.56) of D j (Λ) and A is
chosen so that ω−3 A = r ε̄(h) where ω is defined by (1.44).

For K in the larger ball BW (A) of radius A, the definition (1.45) of the W norm translates
into the F estimates

‖K‖F(G) ≤ A ≤ r ε̄(�), ‖K‖F(G̃) ≤ ω−3 A = r ε̄(h) (2.20)

and the inclusions

BW (A) ⊂ BF(G)(A), BW (A) ⊂ BF(G̃)(ω
−3 A). (2.21)

Recall that Theorem 2.2 asserts that (K , V ) �→ K+ is analytic (continuously differentiable)
as a map from D × F to F+ for two choices of the pair (F,F+), namely (F(G),F+(T0))

and (F(G̃),F+(G̃)). Since the inclusions (2.21) are bounded linear maps they are analytic.
Therefore, the composition of these inclusions with (K , V ) �→ K+ is analytic. It follows
that (K , V ) �→ K+ is an analytic map from D × BW (A) into the intersection of the two
choices of F+, which is the space Y defined by (2.12). According to Lemma 2.4, Y is
continuously embedded into W+, so with a further composition with this embedding we find
that (K , V ) �→ K+ is an analytic map from D× BW (A) to W+. Since D× BW (A) contains
D we have proved that (K , V ) �→ K+ is analytic on D as claimed in Theorem 1.11.

Next, we prove case (p, q) = (0, 1) of the estimates claimed in Theorem 1.11 for (V, K ) ∈
D, namely

‖D p
V Dq

K K+(V, K )‖L p,q ≤

⎧
⎪⎪⎨

⎪⎪⎩

κ
′′

p = 0, q = 1

M
′′
χ

3/2
+ g̃3−p

+ p ≥ 0, q = 0

M
′′
g̃−p
+

(
χ

1/2
+ g̃10/4

+
)1−q

p ≥ 0, q ≥ 1.

(2.22)

We will prove that case (p, q) = (0, 1) holds on the larger domain D × BW (A/2) and this
stronger statement is used in the proof of the other cases.

Let (V, K ) ∈ D× BW (A/2). Let K̇ ∈ F and set T = DK K+(V, K ). We first prove that

‖T K̇‖F+ ≤ κ ′‖K̇‖F , (2.23)

where κ ′ = O(L−1). The argument is the same for both norm pairs. We start with the
pair F = F(G̃) and F+ = F+(G̃). Let f (t) = K+(V, K + t K̇ ). By Theorem 2.2 f is
analytic at t ∈ C such that K + t K̇ is in the ball BF (r ε̄(h)), and f (t) has values in the ball
BF+(κr ε̄+(h)). Since K is in the smaller ball BW (A/2) ⊂ BF (r ε̄(h)/2), f (t) is analytic
in t for |t | < r ε̄(h)/2. By the Cauchy estimate,

‖T K̇‖F+ = ‖ f ′(0)‖F+ ≤
supt ‖ f (t)‖F+

r ε̄(h)− r ε̄(h)/2
≤ κr ε̄+(h)

r ε̄(h)/2
= O(κ), (2.24)

where the last equality follows from (1.30). By Theorem 2.2, κ = O(L−1). Since T is a
linear operator, the above bound on unit norm K̇ implies (2.23) for this norm pair.

Now we consider the same argument for the other norm pair, F = F(G) and F+ =
F+(T0). This time f (t) is analytic in t for |t | < r ε̄(�) − A/2 and the right-hand side of
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the Cauchy estimate is κr ε̄+(�)/(r ε̄(�) − A/2). Since A = O(χ1/2 g̃10/4), it is negligible
relative to r ε̄(�), which is given by (1.43), and we have proved (2.23) for both norm pairs.

By (2.23)

‖T K̇‖F+(T0) ≤ κ ′‖K̇‖F(G) ≤ κ ′‖K̇‖W , (2.25)

ω3+‖T K̇‖F+(G̃) ≤ ω3+κ ′‖K̇‖F(G̃) ≤ 8κ ′‖K̇‖W , (2.26)

where we used ω+ ≤ 2ω. We combine this with Lemma 2.4 and the definition (2.12) of Y ,
to obtain

‖T K̇‖W+ ≤ c9‖T K̇‖Y+ ≤ κ ′′‖K̇‖W , (2.27)

where κ ′′ = 8c9κ
′. We have proved (2.27) for (V, K ) ∈ D × BW (A/2), which is a larger

domain than D. Since T = DK K+(V, K ), this proves case (p, q) = (0, 1) of (2.22).
Next we prove case (p, q) = (0, 0) of (2.22). By integrating the t derivative of K+(V, t K )

with respect to t and estimating the integrand with (2.27), we have, for K in BW (A/2),

‖K+(V, K )− K+(V, 0)‖W+ ≤ κ ′′‖K‖W . (2.28)

Furthermore, it follows from (2.10) and Lemma 2.4 that

‖K+(V, 0)‖W+ ≤ c9‖K+(V, 0)‖Y+ ≤ c9 max{M0χ
3/2
+ g̃3+, g̃9/4

+ M0χ
3/2
+ g̃3/4

+ }
= c9 M0χ

3/2
+ g̃3+. (2.29)

Now let K be in the small ball Ba(W) required for case (p, q) = (0, 0). By combining
(2.28)–(2.29), we obtain

‖K+(V, K )‖W+ ≤ c9 M0χ
3/2
+ g̃3+ + κ ′′‖K‖W ≤ c9(M0 + κR′)χ3/2

+ g̃3+ = M1χ
3/2
+ g̃3+,

(2.30)

where R′ is a multiple of R, we take L large enough that κR′ ≤ 1, and M1 = c9(M0 + 1).
This proves case (p, q) = (0, 0) of (2.22). For later use, note that (2.28)–(2.29) imply that
K+ maps D × BW (A/2) into BW+(A).

To obtain (2.22) for the case q = 0, p > 0, we fix K ∈ BW (a), for which we have just
established that K+ ∈ BW+(M1χ

3/2 g̃3). This bound is understood to hold for V ∈ D(2CD);
this is the domain D with CD doubled, and since CD is arbitrary in Theorem 2.2 we can use
its conclusions with the doubled value. Let ‖V̇i‖Q = 1, and let f (s) = K+

(
V+∑

i si V̇i , K
)
.

We choose ε > 0 so that V +∑
i si V̇i ∈ D(2CD) for |si | ≤ εg̃. Then we apply the Cauchy

estimate to f as an analytic function of s1, . . . , sp in the domain |si | < εg̃. The denominator
in the analogue of (2.24) is the distance from V ∈ D to the boundary of the domain D(2CD),
which is at least εg̃. For p derivatives there is one such denominator for each derivative.
This gives a factor proportional to g̃−p so the Cauchy estimate bounds the derivative by
O(χ3/2 g̃3g̃−p) as stated in the second estimate of (2.22).

To obtain (2.22) for the case p ≥ 1, q ≥ 1, we use the Cauchy estimate on f (s, t) =
K+

(
V +∑

si V̇i , K +∑
ti K̇i

)
as an analytic function of s1, . . . , sp and t1, . . . , tq in the

domain |si | < εg̃ and |ti | < 1
2 A. The denominator in the analogue of (2.24) is the distance

from (V, K ) to the boundary of the domain, and for p + q derivatives there is one such
denominator for each derivative, which gives a factor proportional to g̃−p A−q . As we have
proved above the image of this domain lies in BW+(A), so the Cauchy estimate bounds the
derivative by O(g̃−p A1−q) as desired. �	
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Proof of Theorem 1.13 By Theorem 2.2(iv), K+ is a continuous function of m2 ∈ Ĩ(m̃2) as
a map into F̃+. This is the case for each of the norm pairs, so F̃+ can be either F̃+(T0) or
F̃+(G̃). Therefore K+ is continuous as a map into the space Ỹ+ defined as in (2.12), and so
by Lemma 2.4 it is continuous also as a map into W̃+. The joint continuity of D p

V Dq
K K+

follows from the uniform bound on K+ and Proposition 2.1. �	
2.3 Proof of Main Result for Infinite Volume

We now deduce our main result Theorem 1.19 for the infinite volume map, from the finite
volume result Theorem 2.2. The proof for R+,Zd is similar to but simpler than the proof for
K+,Zd , and we only present the details for K+,Zd . In Sect. 2.2, it is shown that the statements
of Theorem 1.11 for K+ in finite volume are a consequence of Theorem 2.2(i, iv). The
sufficiency of Theorem 2.2(i, iv) was established via Cauchy estimates based on analyticity,
together with an argument to conclude estimates in W norm from those in F norm. Joint
continuity of the Fréchet derivatives was a consequence of Proposition 2.1. These items apply
in the same way to an infinite volume version of Theorem 2.2(i, iv), so it suffices to prove
such an infinite volume version. This is the content of Theorem 2.5 below.

The infinite volume version of Theorem 2.2(iii) is omitted because it is meaningless in
the infinite volume context. We do not need the infinite volume version of Theorem 2.2(ii),
but we note that it does hold by the definition of K+,Zd . Namely, for U ∈ P+(Zd), the value
of K+,Zd (U ) depends on K only via K (X) for X ∈ P(U�). In addition, the field locality
and symmetry properties for K+,Zd , required for membership in F+(Zd), follow from the
corresponding finite volume properties by definition (1.88) of K+,Zd .

Theorem 2.5 Let j = 0, 1, . . . be any scale. In (1.36) set γ = 1.

(i) Fix any a ∈ (0, 2−d), CD (as large as desired), and let L be sufficiently large. There exist
r (small, independent of L), δ (small, dependent on r, L), M0 > 0 (large, dependent on
L), γ ∗ > 0 (large, independent of L), such that for all g̃ j ∈ (0, δ) and m2 ∈ I j+1, and
with κ = γ ∗L−1,

K+,Zd : D × BF(Zd )(r ε̄)→ BF+(Zd )(κr ε̄+). (2.31)

The map K+,Zd is analytic in (V, K ), and

‖K+,Zd (V, 0)‖F+ ≤ M0ε̄
3+. (2.32)

(iv) Let m̃2 ∈ I j+1. The map K+,Zd extends to a map

K+,Zd : D × BF̃ (r ε̄)× Ĩ+(m̃2)→ BF̃+(κr ε̄+), (2.33)

which is analytic in (V, K ), continuous in m2 ∈ Ĩ j+1(m̃2), and obeys (2.32). Here F̃
is defined in terms of χ̃ = χ(m̃2), whereas m2 is the mass in the original covariance
(−Δ+ m2)−1.

The proof relies on the facts about coordinate maps ι and extensions by symmetry given
in Lemmas E.4–E.6.

Proof (i) Let r = r ε̄, r+ = κr ε̄+, W (X) = ε̄ f (a,X), W+(X) = ε̄
f+(a,X)+ . Let (V, K ) ∈

D × BF(Zd )(r), so that (recall the definitions (1.41) and (1.35)–(1.36))

‖K (X)‖G ≤ rW (X) (X ∈ C(Zd)), (2.34)
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with G equal to G j or G̃ j . We will prove that K+,Zd ∈ BF+(Zd )(κr ε̄+). Since we set γ = 1,
it is equivalent to prove that

‖K+,Zd (U )‖T0,+ ≤ r+W+(U ), ‖K+,Zd (U )‖G̃+ ≤ r+W+(U ) (2.35)

hold for all connected polymers U in Z
d . We must also show that K+,Zd vanishes at weighted

infinity (see (1.37)), since this is part of the definition of F+. In our present context, we must
show that

lim‖φ‖�(U )→∞‖K+,Zd (U )‖Tφ,+ G̃−1+ (U, φ) = 0. (2.36)

Let U be a connected polymer in Z
d . We will construct K+,Zd (U ) as the image of K under

a composition ι−1
Λ ◦ CU ◦ B ◦ A of four maps.

Let U ′ = U�, and let ιΛ : U ′ → Λ be a coordinate map to a torus. By (2.34) and
Lemma E.4,

‖ιΛK (ι−1
Λ X)‖G ≤ rW (X) (X ∈ C(ιΛU ′)). (2.37)

Let X = C(ιΛU ′). By Lemma E.6, with Euclidean symmetry hypothesis verified as above
(1.87), the map X �→ ιΛK (ι−1

Λ X) extends from X to an element K̂ ∈ BF(Λ)(r). Lemma E.6
implies that the map AU : K �→ K̂ preserves the vanishing at weighted infinity property
and is a linear contraction from F(Zd) to F(Λ). In particular, the evaluation map is analytic.
We next apply Theorem 2.5, with a and h+ replaced by the values a+ and h++ provided by
Theorem 2.5. To remind us that we have these stronger values, we write F++ in place of F+
and N++ in place of N+. By Theorem 2.2, the map B : (V, K̂ ) �→ K+,Λ(V, K̂ ) is analytic
as a map from the r ball in F(Λ) to the r+ ball in F++(Λ). Now consider evaluation on the
polymer ιΛU as a map CU : K+,Λ �→ K+,Λ(ιΛU ). By definition of the F++(Λ) norm, this
is a bounded linear map into the space N++(ιΛU ′), and we have the++ analogue of (2.36).
In particular it is analytic. Furthermore, by (1.88), the composition CU ◦ B ◦ AU is the map
(V, K ) �→ ιΛK+,Zd (U ) because K+,Λ(ιΛU ) does not depend on the choice K̂ of extension

of ιΛK (ι−1
Λ X) off X . In summary, we have proved that (V, K ) �→ ιΛK+,Zd (U ) is analytic

as a map from the r ball in F(Zd) to N++(ιΛU ′), and putting the estimates together we have

‖ιΛK+,Zd (U )‖G++ ≤ r+W++(U ). (2.38)

We now pass to an estimate on K+,Zd (U ), exploiting the fact that (2.38) holds for all Λ.
According to Lemma E.5 with h replaced by h++, when Λ is sufficiently large, the inverse
ι−1
Λ is a bounded linear operator from N++(U�) to N+(U�). This is the step where we use

the parameter γ < 1 for the regulator G̃γ , and where we use h++ > h+. We obtain

‖K+,Zd (U )‖T0,+ ≤ r+W++(U ), (2.39)

‖K+,Zd (U )‖G̃+ ≤ r+W++(U ). (2.40)

Therefore (2.35) holds and, since the bounded linear operator ι−1
Λ is an analytic map from

N++(U�) to N+(U�), we can compose with the previous maps and conclude that (V, K ) �→
ιΛK+,Zd (U ) is analytic as a map from the r ball in F(Zd) to N+(U ′). Furthermore, (2.36)
holds. Therefore K+,Zd ∈ BF+(Zd )(r+), as desired.

If we set K = 0 so that K̂ = 0 and use (2.10), namely ‖K+(V, 0)‖F+ ≤ M0ε̄
3, then an

argument analogous to the one above gives (2.32).
We now strengthen the above analyticity, which is pointwise in U , to the desired analyticity

statement. It is here that we take advantage of the fact that a+ > a. For a positive integer

123



622 D. C. Brydges, G. Slade

M , let U0 = {U ∈ P+ : |U | j+1 ≤ M, U � 0}. Let U ′0 = {U ′ ∈ P+ : U ∈ U0}. Let

gM,0 : D × BF(Zd )(r)→ N U ′
0+ be the map that takes (V, K ) into

(
π∅K+,Zd (U ),U ∈ U0

)
.

The latter is a Banach space with the norm

‖F‖ = sup
U∈U0

‖F(U )‖N+(U ′)W
−1++(U ). (2.41)

Since U0 is finite, it follows from Lemma 3.4 and the analyticity pointwise in U that gM,0 is
analytic. Let gM (V, K ) = π∅K+,Zd1M , where 1M (U ) = 1 if |U | j+1 ≤ M and otherwise
is zero. For every polymer U such that |U | j+1 ≤ M , there exists a translation EU of Z

d such
that EU U contains the origin. By the Euclidean invariance of π∅K+,Zd ,

π∅K+,Zd (U ) = E−1
U π∅K+,Zd (EU U ). (2.42)

These relations imply that gM equals the composition of gM,0 with a bounded linear extension
map into the space K+(Zd) with the norm

‖F‖F+(W++) = sup
U∈C+(Zd )

‖F(U )‖N+(U ′)W
−1++(U ). (2.43)

Therefore, for each M the map gM is analytic as a map with values in the space K+(Zd)

with this norm. When a+ is replaced by a, the weight W++ becomes W+, and this norm
becomes the F+(Zd) norm. Furthermore, since a+ > a, the space F+(Zd) is a larger space,
and uniformly in V, K we have

lim
M→∞‖π∅K+,Zd (1− 1M )‖F+(Zd ) = 0. (2.44)

Therefore the sequence gM of analytic functions converges toπ∅K+,Zd in F+(Zd) uniformly
in K as M → ∞. According to [35, Theorem 2, p. 137], as a uniform limit, π∅K+,Zd is
analytic as a map into F+(Zd). The observable component π∗K+,Zd is also analytic as a
map into F+(Zd) using the same argument with U0 replaced by U∗ = {U ∈ P+ : |U | j+1 ≤
M, U ∩ {a, b} �= ∅} and omitting (2.42) and the line below about composition with an
extension. Having proved that the ∅ and ∗ components of K+,Zd are analytic it follows from
Lemma 3.4 that K+,Zd is analytic as a map into F+(Zd). This concludes the proof of part (i).

(iv) Let m̃2 ∈ I j+1. We return to the map B defined in part (i). By Theorem 2.2(iv),
B extends to a map that depends on m2, and by fixing (V, K̂ ) this extension becomes a
continuous map m2 �→ K+,Λ into F̃+(Λ). The other maps AU ,CU , ι

−1
Λ do not depend on

m2. It follows that the composition m2 �→ K+,Zd (U ) is continuous as a map into N (U ′)
with norms ‖ · ‖T0,+ and ‖ · ‖G̃+ . Finally, if we replace F+(Zd) by the m2 independent space

F̃+(Zd), then the convergence in (2.44) is also uniform in m2 and since the uniform limit
of continuous functions is continuous, we also achieve mass continuity as claimed. This
completes the proof. �	

3 Preliminaries to Proof of Theorem 2.2

In Sect. 3.1, we describe the basic structure of the proof of Theorem 2.2, and in Sect. 3.2
we specify several parameters that occur in the proof. In Sect. 3.3, we recall several useful
results from [17].

We assume throughout the paper that g̃ is sufficiently small to carry out each steps that is
encountered. According to the definition of ε̄ in (1.43), taking g̃ small is equivalent to taking
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ε̄ small, and we often phrase smallness conditions in terms of ε̄ instead of g̃. The assumption
that g̃ is small is used so frequently that we often apply it without explicit mention.

Throughout the paper, we use the following notation for non-negative real sequences
A = A j , B = B j :

A ≺ B ifA j ≤ cB j for all j,with c independent of L , (3.1)

A ≺L B ifA j ≤ cB j for all j,with c = c(L), (3.2)

A � B if A ≺ B and B ≺ A. (3.3)

3.1 Structure of Proof of Theorem 2.2

We fix V and regard the map (V, K ) �→ K+ asserted to exist in Theorem 2.2 as a map
K �→ K+. We construct K+ as a composition of six maps:

(Map i) : K (i−1) �→ K (i) i = 1, . . . , 6, withK (0) = K , K (6) = K+. (3.4)

The six maps are described in detail in Sects. 4–6, and are described briefly here.
Maps 1 and 2 are defined in such a way that

(I ◦ K )(Λ) = (I ◦ K (1))(Λ) = ( Î ◦ K (2))(Λ), (3.5)

where Î ∈ BK j is defined by Î (V ) = I (V̂ ), with V̂ = V − Q defined by (1.71) in terms
of Q = Q(V, K ) given by (1.70). The combined effect of these two maps is to transfer the
relevant and marginal parts of K (X) for X ∈ S into V , with the result that V is replaced
by V̂ . The decay in |X | that is encoded in our norms for large sets X by (1.41) allows us to
forego any transfer of K (X) for large sets X . Map 1 takes advantage of the non-uniqueness
of the circle product to replace K by K (1), which results from the transfer of the relevant
and marginal parts of K on small sets other than blocks, so that they become concentrated
in K (1) on blocks instead. This transfer is achieved using the important change of variables
formula given by Proposition 4.1. Then Map 2 transfers the relevant and marginal parts of
K (1) that are concentrated on single blocks into V so as to form V̂ . Thus Î appears on the
right-hand side of (3.5). All three circle products in (3.5) are on scale j .

Map 3 is our implementation of the formal power series statement of (1.14) that
E j+1θ I j (V,Λ) ≈ I j+1(Vpt,Λ), but now no longer merely as a statement about formal power
series. The renormalised polynomial Vpt therefore appears, but since Map 2 has replaced V

by V̂ , we write Vpt = Vpt(V̂ ) = Vpt(V − Q), We define Ĩ j+1 ∈ BK j (as in [17, (1.23)]) by

Ĩ j+1(V, b) = e−V (b)(1+ W j+1(V, b)) (b ∈ B j ), (3.6)

and define Ĩpt ∈ BK j by

Ĩpt = Ĩ j+1(Vpt). (3.7)

The expectation is performed in Map 3, and K (3) is constructed such that

E+θ( Î ◦ K (2))(Λ) = ( Ĩpt ◦ K (3))(Λ). (3.8)

The circle product on the left-hand side of (3.8) is at scale j , whereas on the right it is at
scale j + 1. This entails a slight abuse of notation, in which we regard Ĩpt in (3.8) as the
element of BK j+1 defined for B ∈ B j+1 by Ĩpt(B) =∏

b∈B j (B) Ĩpt(b). It is in Map 3 that we

change scale in our estimates, with K (2) measured with scale- j norm but K (3) with scale-
( j + 1) norm. This change of scale is important in revealing the contraction encapsulated in
the small parameter κ in Theorem 2.2.
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The K (3) produced by Map 3 is larger than what is claimed for K+ in Theorem 2.2, due
to the fact that it includes perturbative contributions that arise because of the local manner
in which we implement the spirit of the proof of (1.14) from [9, Proposition 2.1]. Map 4
reapportions these overly large parts of K (3) by a second application of the change of variables
of Proposition 4.1, and thereby constructs a better K (4) such that

( Ĩpt ◦ K (3))(Λ) = ( Ĩpt ◦ K (4))(Λ). (3.9)

Maps 5 and 6 perform three final adjustments, all relatively minor. One adjustment is to
put Ĩpt into the correct scale-( j + 1) form of (1.13) rather than as a product over scale- j
blocks. The other two deal with the fact that Vpt contains terms yτ∇∇ and δqσ σ̄ which are
not present in V+. The term yτ∇∇ is converted to a term zτΔ via summation by parts, at the
cost of an adjustment to K . The term δqσ σ̄ is pulled outside the circle product, at the cost
of another small adjustment to K . This finally leads to

( Ĩpt ◦ K (4))(Λ) = (I+pt ◦ K (5))(Λ) = eδqσ σ̄ (I+ ◦ K+)(Λ), (3.10)

where the precise definition of I+pt is given in Map 5. The circle products in (3.9)–(3.10) are
all at scale j + 1.

The combination of (3.5) and (3.8)–(3.10) gives

E+θ(I ◦ K )(Λ) = eδqσ σ̄ (I+ ◦ K+)(Λ), (3.11)

which is (1.49). This shows that (V+, K+) preserves the form of the circle product under
expectation, as required. To complete the proof of Theorem 2.2(i), it is necessary also to
show that there exist r,M > 0 and κ = O(L−1) such that K+ : D × BF (r ε̄)→ BF+(κr ε̄)
with K+ an analytic map, and such that ‖K+(V, 0)‖F+ ≤ M ε̄3. These facts are required for
each of the norm pairs F = F j (G), F+ = F j+1(T0) and F = F j (G̃), F+ = F j+1(G̃). We
carry out Maps 1–6 simultaneously for each of the two norm pairs, and prove the estimates
and analyticity map by map, culminating in Map 6 with the desired statements for K+.
Similarly, relevant observations concerning the statements of Theorem 2.2(ii–iv) are made
for each Map, and at Map 6 their proof for K+ is complete. See Sect. 7, where the proof of
Theorem 2.2 is summed up.

3.2 Parameters for Proof of Theorem 2.2

For convenience, we gather here the specification of several parameters that occur in the
proof of Theorem 2.2.

For each Map i with i = 1, 2, 4, 5, 6 (i = 3 is excluded) there is an associated L-
independent constant μi ≥ 1; the values (typically large) of these constants are determined
in Sects. 4–6. For Map 3, there is an important constant κ3 which is an L-independent multiple
of L−1; κ3 can be made as small as desired by taking L sufficiently large.

For the constant r that determines the size of balls appearing in Theorem 2.2, we fix any
value

0 < r < min

{
1

μ1μ2
, 1

}
. (3.12)

We set r (0) = r , and define r (i) = μi r (i−1) for i = 1, 2, 4, 5, 6, whereas r (3) = κ3r (2). We
define the small parameter κ by

κ = μ1μ2κ3μ4μ5μ6 < 1. (3.13)
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Then κ = γ ∗L−1 for an L-independent constant γ ∗, r (6) = κr (0), and r (i) < 1 for each i .
We fix a ∈ (0, 2−d) as in the statement of Theorem 2.2. Let η = η(d) > 1 be the

geometrical constant of Lemma C.3. For i ∈ {0, 1, 2, 3, 4, 5, 6}, we fix a(i) such that

0 < a(2) < a(1) < a(0) = a < a(6) < a(5) < a(4) < a(3) < ηa(2) ≤ 2−d . (3.14)

The parameters a(i) determine Banach spaces F (i)
k = Fk(a(i))which are defined by replacing

a by a(i) in (1.39) and (1.41).
For i = 1, 2, Map i maps the ball of radius r (i−1)ε̄ in F j (a(i−1)) into the ball of radius

r (i)ε̄ in F j (a(i)). In Map 3, the scale increases from j to j + 1, and the ball of radius r (2)ε̄ in
F j (a(2)) is mapped into the ball of radius r (3)ε̄ in F j+1(a(3)). Map 3 is the beneficial map,
as a(3) improves by becoming larger, and also r (3) improves by becoming smaller thanks to
the factor κ3. These improvements undergo degradations in Maps 4–6, in which the ball of
radius r (i−1)ε̄ in F j+1(a(i−1)) is mapped into the ball of radius r (i)ε̄ in F j+1(a(i)). However
the overall effect remains beneficial, with a(6) > a(0), and with r (6) = κr (0) for small
κ = γ ∗L−1. The composition of the six maps is well defined and maps the ball BF j (r

(0)ε̄)

into a small ball BF j (κr (0)ε̄).

3.3 Interaction Estimates

The analysis of the six maps uses estimates on I, Î , Ĩpt, which we refer to generically as inter-
action estimates. These estimates, which include stability estimates, rely on the hypothesis
that

(V, K ) ∈ D × BF (r ε̄), (3.15)

with F either F(G) or F(G̃), with corresponding choice of ε̄ in (1.43). It is the purpose of
[17] to provide the interaction estimates, and we appeal frequently to results from [17], some
of which we now recall. Further results from [17] are recalled within the analysis of Maps 3,
5, 6.

The analysis of [17] is missing an ingredient needed here, which is that K now plays
a role in interaction estimates. For example, Î ∈ BK j , is defined by Î (V ) = I (V̂ ), with
V̂ = V − Q defined by (1.71) in terms of Q = Q(V, K ) given by (1.70) as

Q(B) =
∑

Y∈S(Λ):Y⊃B

LocY,B I−Y K (Y ), B ∈ B(Λ). (3.16)

Similarly, Ĩpt = Ĩ (Vpt(V̂ )) depends on K as well as on V . The following proposition com-
bines results from [17] with new statements concerning K -dependence. For its proof, we
recall from (2.1) that LocX,Y is a bounded operator, in the sense that for Y ∈ P j with
Y ⊂ X ∈ S j , and for F ′ ∈ N (X�),

‖LocX,Y F ′‖T0 ≺ ‖F ′‖T0 . (3.17)

We also recall that the enlarged domain D̄ ⊃ D is defined in [17, (1.85)–(1.86)]; its precise
definition does not play a direct role below. Finally, recall that we write I−X = 1/I (X).

Proposition 3.1 Let I∗ denote any one of I, Î , Ĩpt , with j∗ respectively equal to j, j , and
to either of j or j + 1. Let B ∈ B j . Let (V, K ) ∈ D j × BF (r (0)ε̄). Then I∗(B) is an
analytic function of (V, K ) taking values in N (B�), ‖ · ‖ j∗ . In addition, for F ∈ N (B�)

123



626 D. C. Brydges, G. Slade

a gauge-invariant polynomial of bounded degree in the fields such that πab F = 0 when
j ≤ jab,

‖I∗(B)F‖ j∗,h ≺ ‖F‖T0, j (h), (3.18)

‖I∗(B)‖ j∗,h ≤ 2, (3.19)

‖I−B∗ ‖T0, j∗ (h) ≤ 2. (3.20)

In addition, I−B is an analytic function of V ∈ D̄ j taking values in N (B�), ‖ · ‖T0, j .

Proof For the case K = 0, all the above statements are proved already in [17, Proposi-
tions 2.2–2.3]. In particular, this gives the above statements concerning I , since there is no
K -dependence in I . Our task here is to extend the statements of [17, Propositions 2.2–2.3]
to include the dependence of V̂ , Vpt on K ∈ BF (r (0)ε̄), as well as on V . In fact, the state-
ments of [17, Propositions 2.2–2.3] are all proved in the enlarged domain D̄ ⊃ D, and this
is important below.

We begin with a bound on Q, which repeats a step in the proof of Theorem 1.10. Let
(V, K ) ∈ D × BF (r (0)ε̄). We claim that

‖Q(B)‖T0 ≺ r (0)ε̄. (3.21)

To prove (3.21), we apply (3.17), together with the I∗ = I case of (3.18), (3.20), and the
product property of the norm, to conclude that if F ∈ N (B�) then

‖I X LocX,Y I−X F‖ j ≺ ‖LocX,Y I−X F‖T0, j ≺ ‖F‖T0, j . (3.22)

With (3.16), this gives

‖Q(B)‖T0 ≺ sup
X∈S

‖K (X)‖T0 ≤ ‖K‖F ≤ r (0)ε̄, (3.23)

which proves (3.21).
Now that (3.21) has been established, it follows immediately from [17, Proposition 2.4]

that Î obeys the estimates (3.18)–(3.20), that Î is analytic in V for fixed Q, and that V−Q lies
in the enlarged domain D̄′ (the prime denotes an unimportant change in constants defining
D̄) on which stability and analyticity of I is proved in [17, Proposition 2.3]. Moreover,
it follows from the definition of Q in (3.16) and the results already established for I that
(V, K ) �→ V − Q is analytic as a map from D × BF (r (0)ε̄) into D̄. Thus Î has the claimed
analyticity. Similarly, since V −Q ∈ D̄, it follows from [17, Proposition 1.5] that Vpt(V −Q)
also lies in the analyticity domain of I both for scale j and scale j + 1, and hence Ĩpt is
analytic both as a map Vpt �→ Ĩpt defined on D̄, and as a function of (V, K ) as desired. This
completes the proof. �	

The proof of analyticity of I−B easily extends to a small ‖V (B)‖T0 -ball, since there is
no need for a positivity of the coupling constant g when employing the T0 norm; this small
extension is used in Theorem 1.10 above. For future reference, we proved in (3.21) that, for
(V, K ) ∈ D × BF (r (0)ε̄),

‖Q(B)‖T0 ≺ r (0)ε̄. (3.24)

Also, with the bounds (3.18) and (3.20), the proof of (3.22) extends to show that for any of
the three choices of I∗ above, if Y ∈ P j , Y ⊂ X ∈ S j and F ∈ N (X) then

‖I X∗ LocX,Y I−X∗ F‖ j ≺ ‖LocX,Y I−X∗ F‖T0, j ≺ ‖F‖T0, j . (3.25)
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We use (3.25) repeatedly. Note that all norms in (3.25) are at scale j , even when I∗ = Ĩpt.
The following lemma is also useful. Its first two estimates can be understood as a conse-

quence of the fact that Î and I differ by the contribution of Q to the interaction polynomial,
with Q obeying (3.24). The third estimate in the lemma is a reflection of the fact that ε̄
provides a measure of the difference between V and Vpt.

Lemma 3.2 Let (V, K ) ∈ D j × BF j (r
(0)ε̄). Let Q be given by (1.70). For B ∈ B j , X ∈ S j

and F ∈ N (X�),

‖ Î (B)− I (B)‖ j ≺ ε̄, (3.26)

‖ Î (B)− I (B)(1+ Q(B))‖T0 ≺L ε̄
2, (3.27)

∥∥LocX
(
I−X − Ĩ−X

pt

)
F
∥∥

T0(h)
≺L ε̄‖F‖T0(h). (3.28)

Proof The bounds (3.26)–(3.27) are a consequence of [17, Proposition 2.4], with its hypoth-
esis on Q of provided by (3.24). For (3.28), we write

I−X − Ĩ−X
pt =

(
I−X − Î−X

)
+

(
Î−X − Ĩ−X

pt

)
, (3.29)

and apply the triangle inequality. The second term is estimated in [17, Lemma B.2] (its
hypothesis is satisfied since we have established in the proof of Proposition 3.1 that V −Q ∈
D̄). The first term can be estimated similarly, using (3.26), and we omit the details. �	

The following proposition is used in the proof that K+ vanishes at weighted infinity.

Proposition 3.3 Let (V, K ) ∈ D j × BF j (r
(0)ε̄), let B ∈ B j , and let I∗, j∗ denote any of the

options in Proposition 3.1. For F ∈ N (B�) a polynomial of degree at most pN ,

lim‖φ‖
� j (B

� ,h)
→∞‖I∗(B)F‖Tφ, j∗G−1

j∗ (X, φ) = 0, (3.30)

where G represents G or G̃ according to whether h = � or h = h.

Proof It is proved in [17, (2.8)] that (3.30) holds for I∗ = I when V ∈ D̄. We have seen above
that V̂ = V − Q ∈ D̄′

j and that Vpt = Vpt(V̂ ) ∈ D̄′
j∗ . The primes represent an unimportant

change in constants defining the domain, so the result follows for the other options for I∗. �	
3.4 Analyticity Lemmas

In establishing the analyticity of K+, we apply the useful and elementary facts about analytic
functions on complex Banach spaces presented in the next lemmas. For a general introduction
to analyticity in Banach spaces, see [22,35].

Let X, Y be complex Banach spaces and let D ⊂ X be an open subset of X . Let L(X, Y )
denote the space of bounded linear maps from X to Y . A map f : D → Y is analytic if it is
continuously Fréchet differentiable, i.e., if there exists a continuous map f ′ : D → L(X, Y )
such that

∥∥ f (x + ẋ)− f (x)− f ′(x)ẋ
∥∥

Y = o(‖ẋ‖Y ) as ẋ → 0. (3.31)

Let A be an index set. For each α ∈ A, let Yα be a Banach space and letwα ≥ 1 be a positive
weight. Let Y =∏

α Yα be the weighted product Banach space: an element of Y has the form
y = (yα ∈ Yα | α ∈ A) with norm

‖y‖Y = sup
α∈A

‖yα‖Yαwα. (3.32)
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628 D. C. Brydges, G. Slade

A collection of maps fα : D → Yα , for α ∈ A, naturally determines a map f : D → Y .
In our applications, the weights play a role in estimates but not in proving analyticity, as the
following lemma shows.

Lemma 3.4 Let A be a finite set and let f = ( fα) as above. Then f : D → Y is analytic if
and only if fα : D → Yα is analytic for each α ∈ A.

Proof Suppose first that each fα is analytic, and let f ′α denote its derivative. In particular,
f ′α : D → L(X, Y ) is continuous. For x ∈ D, let f̂ (x) = ( f ′α(x) | α ∈ A). Since A is a
finite set, f̂ (x) ∈ L(X, Y ) and x �→ f̂ (x) is a continuous map from D to L(X, Y ). Also,

∥∥ f (x + ẋ)− f (x)− f̂ (x)ẋ
∥∥

Y = sup
α∈A

∥∥ fα(x + ẋ)− fα(x)− f ′α(x)ẋ
∥∥

Yα

≤ sup
α∈A

o
(‖ẋ‖Yα

)
. (3.33)

Since A is finite, supα∈A o(‖ẋ‖Yα ) ≤ o(‖ẋ‖Y ), so f : D → Y is analytic and f̂ is its
derivative.

Conversely, suppose that f is analytic. Define πα : Y → Yα by πα y = yα . Since wα ≥ 1
the map πα is a bounded linear map from Y to Yα , and is therefore analytic. Thus fα = πα ◦ f
is the composition of two analytic maps and hence is also analytic. �	

Let n be a positive integer. For i = 1, 2, . . . , n, let Xi be a Banach space. Let Y be a
Banach space and let M : X1 × · · · × Xn → Y be a multilinear map which is bounded. That
is, there is a constant CM such that for any n-tuple x = (x1, . . . , xn) in X1 × · · · × Xn ,

‖M(x)‖Y ≤ CM

n∏

i=1

‖xi‖Xi . (3.34)

For positive weights w1, . . . , wn let X = X1 × · · · × Xn be the Banach space whose norm
is

‖x‖X = sup
i=1,...,n

wi‖xi‖Xi . (3.35)

Lemma 3.5 The map from X to Y defined by x �→ M(x) is analytic with derivative
M ′(x)ẋ =∑

i M(x1, . . . , xi−1, ẋi , xi+1, . . . , xn).

Proof It is straightforward to verify that ‖M(x + ẋ)− M(x)− M ′(x)ẋ‖Y is bounded by
(

CM

n∏

i=1

w−1
i

)
n∑

p=2

(
n

p

)
‖x‖n−p

X ‖ẋ‖p
X = o(‖ẋ‖X ) (3.36)

as required.

4 Maps 1–2: Transfer of Relevant Parts of K to V

We now begin the discussion of the six maps leading from K to K+, with Maps 1–2. In
Maps 1–2, there is no change of scale, and all objects are scale- j objects. To simplify the
notation, we do not indicate the scale explicitly. The norms appearing in this section are either
all the G norm, or all the G̃ norm, each together with its corresponding F space F = F(G)
or F = F(G̃).
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Map 1 (and also Map 4) relies on an essential change of variables formula, which provides
a mechanism for rewriting a circle product (I ◦ K )(Λ) as (I ◦ K ′)(Λ), with K ′ “better” than
K . The change of variables is given by Proposition 4.1 below. Map 1 uses the change of
variables to remove the relevant and marginal parts of K (X) when X ∈ S is not a block, by
transfering them into K (B) where B is a block. This creates K (1) and leaves I unchanged.
Map 2 then removes the relevant and marginal parts of K (B) and transfers them to V , thereby
creating Î and K (2).

4.1 Change of Variables

We work at a fixed scale and do not indicate the scale explicitly in the notation. This section
applies for any norm ‖ · ‖ on N which obeys the product property [17, (1.44)].

Let

D(J ) = {(U, B) ∈ S × B : U ⊃ B}. (4.1)

Suppose we have a mapping J : C × B → N which obeys, for U ∈ C and B ∈ B, the
condition J (U, B) = 0 if (U, B) �∈ D(J ), as well as

∑

U :(U,B)∈D(J )
J (U, B) = 0 for fixed B ∈ B, (4.2)

J (U, B) obeys the field locality (in its B argument)

and symmetry conditions of Definition 1.7. (4.3)

For example, field locality means that J (U, B) ∈ N (B�) and Euclidean symmetry means
that E J (U, B) = J (EU, E B) for all automorphisms E of Λ.

Let αI ≥ 1, and suppose that Iin ∈ BK is stable in the sense that

‖Iin(B)‖ ≤ αI . (4.4)

For Kin ∈ K and U ∈ C, let

M(U ) = Kin(U )− I U
in

∑

B∈B(U )
J (U, B). (4.5)

Given positive aout, ain, ρ we define spaces Fin = F(ain, ρ) and Fout = F(aout, ρ), as in
(1.41). The open balls of radius r in these spaces are denoted by BFin (r) and BFout (r).

Proposition 4.1 Let ain be small as specified in Lemma C.5. Let aout < ain and z′ > 1
2 z. Let

ρ be sufficiently small depending on the difference aout − ain. Let ε ∈ (0, 1). Let J, Iin be as
specified by (4.1)–(4.4). Suppose that Kin ∈ K and J satisfy

sup
D(J )

‖I U
in J (U, B)‖ ≤ ερz′ , (4.6)

M ∈ BFin (ερ
z). (4.7)

Then there exists Kout ∈ K such that

(Iin ◦ Kout)(Λ) = (Iin ◦ Kin)(Λ), (4.8)

Kout is polynomial in Iin, J̄ , Kin (with J̄ (U, B) = I U
in J (U, B)), (4.9)

Kout = M + E with E ∈ BFout (ερ
z+(ain−aout)/2). (4.10)

If Kin = 0 and J = 0, then Kout = 0.
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630 D. C. Brydges, G. Slade

The essential conclusion of the Proposition 4.1 is that Kout is both a suitable replacement
for Kin by (4.8), and is a small perturbation of M by (4.10). The latter property will be useful
in our applications in Maps 1 and 4, where M will have desirable properties. Note also that
it follows immediately from (4.7) and (4.10) that

Kout ∈ BFout (2ερ
z). (4.11)

We defer the proof of Proposition 4.1 to Appendix D.

4.2 Map 1: Transfer from Small Sets to Block

We set I (1) = I (0) = I and K (0) = K . Map 1 determines K (1). The structure of the following
lemma sets a pattern that we follow throughout our analysis of the six maps. Part (i) is the
statement that the output pair (I (1), K (1)) is an equivalent representation of the input pair.
Part (ii) says that the range of the map is contained in the domain of the next map. Part (iii)
finds the image when K = 0, needed in the proof of (2.10). Part (iv) identifies a property
that the map achieves, which did not hold for the input.

As mentioned previously, Map 1 transfers the relevant and marginal parts of K (X) for
X ∈ S \ B into K (B) where B ∈ B. Naively, to achieve this we would attempt to replace
K (X) by K (X) − LocX K (X). However, to maintain stability of the subtracted term, we
replace it instead by I X LocX I−X K (X), which enjoys the decay properties of the factor I X

and will still provide the cancellation we seek. (Recall that we write I−X = 1/I X .) Thus,
for X ∈ S \ B we wish to replace K (X) by K (X)− I X LocX I−X K (X) via a corresponding
adjustment to K (B). This is what Proposition 4.1 permits us to do. To apply Proposition 4.1,
we define J (X, B) = 0 if (X, B) �∈ D(J ) and

J (X, B) = LocX,B I−X K (X) for X ∈ S with X � B, (4.12)

and to achieve the cancellation condition imposed by (4.2), we are forced to define

J (B, B) = −
∑

Y∈S:Y �B

LocY,B I−Y K (Y ). (4.13)

With these definitions, and with Iin = I , it then follows from (4.5) and
∑

B⊂X LocX,B =
LocX (the latter due to [16, (1.57)]) that

M(X) =

⎧
⎪⎨

⎪⎩

K (X) X ∈ C \ S
K (X)− I X LocX I−X K (X) X ∈ S \ B
K (B)+ I B ∑

Y∈S,Y �B LocY,B I−Y K (Y ) X = B ∈ B.
(4.14)

The important achievement of (4.14) is the cancellation of the local part of K (X) when
X ∈ S \ B. The cost for this cancellation is that these local parts have been transferred
to K (B). Recall that LocX = LocX,X by [16, (1.66)]. It then follows from (4.14) and the
definition of Q(B) in (1.70), that

LocB I−B M(B) =
∑

Y⊃B

LocY,B I−Y K (Y ) = Q(B), (4.15)

and this will be cancelled in Map 2 by the Q term in the definition of V̂ in (1.71). We now
expand on the above by presenting the details for Map 1.

Lemma 4.2 For u > 0 sufficiently small and ε̄ sufficiently small, there exist μ1 ≥ 1 and
K (1) such that, for (V, K ) obeying (3.15),
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(i) (I ◦ K )(Λ) = (I ◦ K (1))(Λ),

(ii) K (1) ∈ BF (1) (r (1)ε̄),

(iii) K (1) = 0 when K = 0,

(iv) ‖LocX I−X K (1)(X)‖T0 ≤ r (1)ε̄1+u X ∈ S \ B.

Proof (i) By the hypothesis of Theorem 2.2 that K ∈ BF (0) (r (0)ε̄), and by (3.25), we have

‖I X J (X, B)‖ ≺ r (0)ε̄. (4.16)

We choose μ1, depending on the constant in the above inequality, so that with r (1) =
μ1r (0) we can conclude that

‖I X J (X, B)‖ ≤ 1

4
r (1)ε̄z′ , (4.17)

and also, using (4.14), that

M ∈ BF (0) (
1
2r (1)ε̄). (4.18)

We apply Proposition 4.1 with J given by (4.12)–(4.13) and with

Iin = I, Kin = K , ρ = ε̄, ain = a(0), aout = a(1), z = z′ = 1, ε = 1

2
r (1),

(4.19)

and we define the map K �→ K (1) by setting K (1) = Kout. Then (i) is an immediate
consequence of Proposition 4.1 as soon as we verify that the hypotheses hold. The
hypothesis (4.2) holds by construction. The fact that (4.3) holds can be seen from
the fact that Loc preserves the relevant symmetries and cannot generate a non-zero
constant part (see Lemma F.1 and the proof of Lemma F.2). Hypothesis (4.4) follows
from Proposition 3.1, (4.6) follows from (4.17), and (4.7) follows from (4.18).

(ii) The estimate follows from (4.18). For the vanishing at weighted infinity property inher-
ent in the definition of F+ (see (1.37)), the vanishing as ‖φ‖� →∞ is a consequence
of Proposition 3.3, the definition of J in (4.12)–(4.13), and the fact that K (1) is a
polynomial in I, J̄ , K by Proposition 4.1. The field locality, symmetry and component
factorisation properties follow from the fact that K (1) = Kout ∈ K by Proposition 4.1.

(iii) This is an immediate consequence of Proposition 4.1.
(iv) Let X ∈ S \ B. By (4.14) and the fact that LocX ◦ LocX = LocX by [16, (1.67)],

LocX I−X M(X) = 0, X ∈ S \ B. (4.20)

Therefore (iv) is equivalent to

‖LocX I−X (K (1)(X)− M(X))‖T0 ≤ r (1)ε̄1+u, X ∈ S \ B. (4.21)

By Proposition 4.1,

K (1) − M ∈ BF (1) (
1
2r (1)ε̄1+u) with u = 1

2 (a
(0) − a(1)) > 0, (4.22)

and then (4.21) follows from (3.25), where we remove the constant in ≺ by decreasing
u and taking ε̄ small.

�	
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We also verify that K (1) obeys the remaining properties of Definition 2.3, namely: (V, K )-
analyticity, the restriction property, the isometry property, and mass continuity. The isometry
property holds because ι is an algebra homomorphism and, for each polymer X , K (1)(X) is
polynomial in K . The mass continuity is vacuous here, since K (1) does not depend on the
mass.

The restriction property holds in the sense that K (1)(X) is a function of K (Y ) for Y ∈ X�.
This follows from the explicit formula for Kout given in (D.13). For example, for the case
where X is a single block B, (D.14) gives

K (1)(B) = K (B)− J (B, B)+
∑

U :(U,B)∈D(J )
I U J (U, B). (4.23)

It is due to the dependence of J on K (U ) for U ∈ B� that K (1)(B) develops its dependence
on K in the small set neighbourhood of B.

Finally, for the (V, K )-analyticity, by Lemma 3.4 it suffices to show that for each polymer
X ∈ P , the map (V, K ) �→ K (1)(X) is an analytic function from D× BF (r (0)ε̄) to N (X�),
‖ · ‖ j (here D is the domain for V defined in (1.55), not to be confused with the domain
D(J ) for J in Proposition 4.1). We know from Proposition 4.1 that K (1)(X) is a polynomial
in I, J̄ , K . By Lemma 3.5, it suffices to show that each of the maps (V, K ) �→ I (B) and
(V, K ) �→ J̄ (U, B) is an analytic map from D to N (B�), ‖ · ‖ j . For I (B), this follows from
Proposition 3.1. It therefore suffices to show that the map (V, K ) �→ J̄ is analytic, with J̄
defined by (4.9) and (4.12)–(4.13). This map is linear in K , Loc is a bounded map on T0 by
(3.17), and I−X is an analytic map into N (B�), ‖·‖T0 by Proposition 3.1. Therefore J (U, B)
is an analytic function of (V, K ) taking values in V(B), ‖ ·‖T0 . The bilinear map (I, J ) �→ J̄
is bounded with domain norms ‖ · ‖ j , ‖ · ‖T0 and range norm ‖ · ‖ j , by Proposition 3.1, and
the desired analyticity of J̄ then follows from Lemma 3.5.

4.3 Map 2: Transfer from Block to V

Map 2 transfers relevant parts from K (1)(B) into V . It provides the rationale for the formula
(1.71) for V̂ . We define

I (2) = Î = I j (V̂ ), δ I (2) = I − Î , K (2) = K (1) ◦ δ I (2). (4.24)

Lemma 4.3 There existsμ2 ≥ 1 such that for u > 0 and ε̄ both sufficiently small, for (V, K )
obeying (3.15),

(i) (I ◦ K (1))(Λ) = ( Î ◦ K (2))(Λ),

(ii) K (2) ∈ BF (2) (r (2)ε̄),
(iii) K (2) = 0 when K = 0,
(iv) ‖LocX I−X K (2)(X)‖T0 ≤ r (2)ε̄1+u X ∈ S.

Proof (i) By Lemma 1.3,

I ◦ K (1) = ( Î + δ I (2)) ◦ K (1) = ( Î ◦ δ I (2)) ◦ K (1) = Î ◦ (δ I (2) ◦ K (1)) = I (2) ◦ K (2).

(4.25)

(ii) By (3.26) and the K hypothesis of Theorem 2.2 we have ‖δ I (2)(B)‖ j ≺ ε̄. By choosing
r (2) = μ2r (1) with μ2 sufficiently large, this implies

δ I (2) ∈ BF (1) (2−2d
r (2)ε̄). (4.26)
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By Lemma 4.2, K (1) ∈ BF (1) (2−2d
r (2)ε̄). The desired estimate then follows from

Lemma C.1. The fact that K (2) vanishes at weighted infinity is a consequence of the
fact that K (1) has this property, and that both I and Î vanish at weighted infinity by
Proposition 3.3. The field locality, symmetry and component factorisation properties
can be verified by inspection.

(iii) For K = 0, it follows from (1.70)–(1.71) that V̂ = V . Then (4.24) gives I (2) = I and
hence K (2) = 0.

(iv) We first prove (iv) for the case X ∈ S \ B. By Lemma 4.2(iv) (and increasing μ2), it is
sufficient to prove the result when K (2)(X) is replaced by K (2)(X)− K (1)(X). By the
triangle inequality,

‖K (2)(X)− K (1)(X)‖ ≤
∑

Y∈P:Y �X

‖K (1)(Y )‖‖δ I (2)‖X\Y . (4.27)

There are at most 22d
terms in this sum. By (4.26) and Lemma 4.2(ii), together with the

exclusion of the term Y = X on the right-hand side, we obtain

‖K (2)(X)− K (1)(X)‖ ≺ (r (2))2ε̄2. (4.28)

Then we obtain the desired bound by using (3.25), r (2) < 1, u < 1, and choosing ε̄
small.
Finally, we prove (iv) for the case X = B ∈ B. By definition, K (2)(B) = K (1)(B) +
δ I (2)(B). Therefore, by (4.15),

LocB I−B K (2)(B) = LocB I−B K (1)(B)+ LocB I−Bδ I (2)(B)

= LocB I−B
(

K (1)(B)− M(B)
)
+ LocB

[
I−Bδ I (2)(B)+ Q(B)

]
,

(4.29)

where we used the fact that LocB Q(B) = Q(B), which is a consequence of the fact
that LocX ◦ LocX = LocX by [16, (1.67)]. By (3.20), (3.17), (3.25), (3.27), and (4.22),
it follows that

‖LocB I−B K (2)(B)‖T0 ≤ r (2)ε̄1+u, (4.30)

as required. �	

We also verify that K (2) obeys the (V, K )-analyticity property, the restriction property, the
isometry property, and mass continuity. The restriction property is evident from the definition
of K (2), and the mass continuity is again vacuous.

From the above construction and the explicit formula (D.13) for the change of variables in
Appendix D it follows that, for each polymer X , K (2)(X) is a polynomial in Î and K (1). Since
ι is a homomorphism the isometry property holds provided for each block B the function
Î (K (1), B) of K (1)|B� satisfies ι Î (K (1), B) = Î (ιK (1), ιB). We omit this mechanical step.

For the analyticity, we observe that K (2) is multilinear in I, Î , K (1). We have already
verified the analyticity of K (1) in the previous section, and the analyticity of I and Î is given
by Proposition 3.1. The desired analyticity of K (2) then follows from Lemmas 3.4–3.5.
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5 Maps 3–4: Expectation and Change of Scale

Map 3 expresses the action of the expectation E+ in terms of I ◦ K . A reblocking takes
place in the process, yielding K (3) ∈ K j+1. Thus we measure the size of K (3) in scale j + 1
norms—the change of norm is an important ingredient in establishing contractivity.

In Sect. 5.1, we define I (3) and K (3) and summarise the principal facts about Map 3. The
proof of estimates on K (3) is deferred to Sect. 5.2, which relies heavily on results from [17]
that were designed expressly for this analysis.

There are two types of potentially dangerous contributions to K (3). One type consists of
the leading contributions in K (3) which form a part of the perturbative contributions that
arise in K (3) even when K (2) = 0. These perturbative contributions are larger than what is
permitted in K+ when K = 0. The second type consists of the contribution to K (3) which
is linear in K (2). The latter contribution will be shown to be contractive due to our having
removed the relevant and marginal parts of K (2) in Map 2, as expressed by Lemma 4.3(iv);
large L plays an important role in this step. The leading perturbative contributions will be
redistributed by Map 4, via a second application of the change of variables implemented by
Proposition 4.1, leading to K (4) which obeys the better estimate of Lemma 5.8(iii), which is
the principal achievement of this section.

5.1 Map 3: Expansion, Expectation, Change of Scale

The next proposition gives a formula for K (3). This is the only place where the factorisation
property (1.12) of E+ is used: it ensures that K (3) obeys the component factorisation property
demanded by the space K j+1 in Definition 1.7.

Recall that Ĩ was defined in (3.6). We set

I (3) = Ĩ j+1(Vpt) = Ĩpt, (5.1)

and define δ I ∈ BK j (the space BK j is augmented here by the fluctuation fields introduced
by θ ) by

δ I = θ I (2) − I (3) = θ Î − Ĩpt. (5.2)

Thus, for U ∈ P j ,

δ I U =
∏

b∈B j (U )

(
θ Î (b)− Ĩpt(b)

)
. (5.3)

Proposition 5.1 Given K (2) ∈ K j ,

E+θ( Î ◦ K (2))(Λ) = ( Ĩpt ◦ K (3))(Λ), (5.4)

where, for U ∈ P j+1,

K (3)(U ) =
∑

X∈P j (U )

Ĩ U\X
pt E+(δ I ◦ θK (2))(X). (5.5)

Also, K (3) ∈ F j+1.

Proof We use θ Î (B) = Ĩpt(B)+ δ I (B) and Lemma 1.3 to see that

E+θ( Î ◦ K (2))(Λ) = E+( Ĩpt ◦ δ I ◦ θK (2))(Λ). (5.6)
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Fig. 2 The black squares
represent Xδ I , the small shaded
polymer represents X K and the
five large shaded squares
comprise X I in (5.8)

There is no θ operating on Ĩpt, and this factor contains no fluctuation fields upon which E+
can act. Therefore, with sums over disjoint X K , Xδ I , we have

E+θ( Î ◦ K (2))(Λ) =
∑

X K ,Xδ I∈P j (Λ)

E+
(
δ I Xδ I θK (2)(X K )

)
ĨΛ\(X K∪Xδ I )
pt

=
∑

X K ,Xδ I∈P j (Λ)

E+
(
δ I Xδ I θK (2)(X K )

)
Ĩ X K∪Xδ I \(X K∪Xδ I )
pt ĨΛ\X K∪Xδ I

pt .

(5.7)

We write X I = X K ∪ Xδ I \ (X K ∪ Xδ I ) and U = X K ∪ Xδ I ∪ X I = X K ∪ Xδ I , to obtain

E+θ( Î ◦ K (2))(Λ) =
∑

X K ,Xδ I ,X I∈P j (Λ)

E+
(
δ I Xδ I θK (2)(X K )

)
Ĩ X I
pt ĨΛ\Upt , (5.8)

where the sum is over disjoint X K , Xδ I , X I with X K ∪ Xδ I = X K ∪ Xδ I ∪ X I = U (see
Fig. 2). With K (3) defined as in (5.5) this becomes the conclusion (5.4).

To see that K (3) is in K j+1, the field locality is straightforward. Component factorisation
is an immediate consequence of the factorisation properties for K (2) and the finite-range
property (1.12) of E+, and the symmetry properties required by Definition 1.7 follow for
K (3) from Lemma F.3.

Finally, we show that K (3) vanishes at weighted infinity, as required by the definition of
the space F (3). For this, we rewrite (5.5) as

K (3)(U ) =
∑

X∈P j (U )

Ĩ U\X
pt E+θ( Î X K (2)(X))−

∑

X∈P j (U )

Ĩ U
pt E+θK (2)(X). (5.9)

By Proposition 3.3, each of Ĩ U
pt , Ĩ U\X

pt , Î X vanishes as ‖φ‖� → ∞. So does K (2)(X), by
Lemma 4.3. By Proposition B.7, the property of vanishing at weighted infinity is preserved
by the operator E+θ , and the proof is complete. �	

For connected sets U ∈ C j+1, we define

h(U ) =
∑

X∈P j (U )

Ĩ−X
pt E j+1δ I X , (5.10)

k(U ) =
∑

X∈C j (U )

Ĩ−X
pt E j+1θK (2)(X), (5.11)
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where P j (U ) is defined in Definition 1.4 and

C j (U ) = {X ∈ C j | X = U }. (5.12)

Then we rewrite the formula (5.5) for K (3) as

K (3) = Ĩpth + Ĩptk + R. (5.13)

Here Ĩpth is the perturbative contribution resulting from the terms in (5.5) in which no explicit
K (2) appears, Ĩptk is the contribution to (5.5) that contains exactly one factor K (2) supported
on a connected set, and R consists of the remaining terms in K (3) which are not included in
Ĩpth + Ĩptk. In Sect. 5.2 below (see (5.31) and Lemmas 5.6–5.7), we prove that there exist
κ∗ and u > 0 such that for all U ∈ P j+1,

‖ Ĩpt(U )h(U )‖ j+1 ≺L ε̄
2+ f j+1(a(3),U ), (5.14)

‖ Ĩpt(U )k(U )‖ j+1 ≤ κ∗r (2)ε̄1+ f j+1(a(3),U ), (5.15)

‖R(U )‖ j+1 ≺L ε̄
1+u+ f j+1(a(3),U ). (5.16)

Crucially, κ∗ can be made as small as desired by taking L sufficiently large. In fact, as we
shall see, κ∗ is an L-independent multiple of L−1.

The following lemma provides a summary of Map 3. Parts (i–ii) identify what this map
achieves—it performs the expectation with the resulting K (3) properly bounded at scale
j + 1. There are two important improvements in the lemma: the radius of the ball for K (3)

has decreased by the factor κ3 compared to the ball for K (2), and the value of a(3) has
increased as in (3.14).

Lemma 5.2 Let κ3 = 2κ∗. For L sufficiently large and ε̄ sufficiently small depending on L,
there exists K (3) such that, for (V, K ) obeying (3.15),

(i) E+( Î ◦ K (2))(Λ) = ( Ĩpt ◦ K (3))(Λ),

(ii) K (3) ∈ BF (3) (r (3)ε̄),
(iii) K (3) = Ĩpth (with Vpt(V̂ ) = Vpt(V )) if K = 0.

Proof (i) This follows immediately from Proposition 5.1.
(ii) A decomposition of K (3) into three terms is given in (5.13). According to (5.14)–(5.16),

once we set κ3 = 2κ∗ and choose ε̄ to be sufficiently small depending on L , we find that
K (3) obeys the estimate implied by the statement that K (3) ∈ BF (3) (κ3r (2)ε̄). The fact
that K (3) has the properties required of membership in the space F (3) was established
already in Proposition 5.1.

(iii) This follows from (5.13) and the fact that K (2) = 0 if K = 0 by Lemma 4.3(iii), together
with the fact that V̂ = V when K = 0 by (1.71).

The restriction and isometry properties of Definition 2.3 can be verified from the definition
of K (3) as in Maps 1,2. For the mass continuity and (V, K )-analyticity, we argue as follows.

Mass continuity of Map 3 The mass continuity is needed in the setting of Theorem 1.13. At
this stage of the proof, we consider continuity of m2 �→ K (3)(U ) for each polymer U ∈ P j+1,
as a map into N (U�)with either norm ‖·‖ j or ‖·‖ j+1. (Further discussion occurs in Sect. 7.)
The dependence of K (3)(U ) on the mass m in (5.9) arises from the mass dependence of the
covariance C j+1 in the decomposition of (−Δ+ m2)−1, and occurs in in two ways.

One occurrence is via the dependence of Vpt, and hence of I (3) = Ĩpt, on C j+1 and thus on
the mass. The continuity of the coefficients of Vpt in small non-negative m2 is established in
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[6, Proposition 4.4]. With the analyticity of I in Vpt given by Proposition 3.1, the continuity
of Ĩ X

pt (as an element of N (X�), ‖ · ‖ j+1) in m follows.
The second occurrence is in the covariance C j+1 of the expectation in the definition

of K (3) in (5.5). According to Proposition B.2, given F(X) ∈ N (X�), the linear map
m2 �→ E j+1θF(X) from the interval I j+1 of (1.52) to N (X�), ‖ · ‖ j+1 is a continuous
function. Therefore K (3)(U ) is a continuous function of m2 ∈ I j+1. �	
Analyticity of Map 3 By Proposition 3.1, for b ∈ B j , the map (V, K ) �→ Î (b) is an analytic
map into N (b�), ‖·‖ j , and the map (V, K ) �→ Ĩpt(b) is an analytic map into N (b�), ‖·‖ j+1.
In Sect. 4.3, it is shown that the map (V, K ) �→ K (2)(X) is also analytic into N (X�), ‖ ·
‖ j . By Proposition 5.3 below, the map E+θ is a bounded linear map from N (X�), ‖ · ‖ j

to N (X�), ‖ · ‖ j+1. Therefore, the formula (5.9) expresses K (3)(U ) as a finite sum of
bounded multilinear maps evaluated on factors which are themselves analytic in (V, K ). By
Lemmas 3.4–3.5, (V, K ) �→ K (3) is an analytic map into F (3). �	
5.2 Map 3: Estimates

Throughout this section, we work exclusively with the norm pairs (1.35)–(1.36). Norms with
subscripts are used to denote these pairs of norms: when the scale- j norm is the G j norm
then the scale-( j + 1) norm is the T0, j+1 norm, and when the scale- j norm is the G̃ j norm
then the scale-( j + 1) norm is the G̃ j+1 norm. All the estimates given in terms of norms
‖ · ‖ j and ‖ · ‖ j+1 apply for each of these two choices of norm pairs. Our goal is to prove
(5.14)–(5.16). We begin with the bound on Ĩpth. For this, we recall the following integration
property, which is [17, Proposition 2.7].

Proposition 5.3 Let ε̄ be sufficiently small (depending on L). There is an αE > 0 (indepen-
dent of L) such that for disjoint X, Y ∈ P j and for F(Y ) ∈ N (Y �) which is gauge invariant
and such that πab F(Y ) = 0 when j < jab,

‖E j+1δ I XθF(Y )‖ j+1 ≤ α|X | j+|Y | j
E

ε̄|X | j ‖F(Y )‖ j , (5.17)

where the pair of norms is given by either choice of (1.35) or (1.36), and where |X | j denotes
the number of scale- j blocks in X.

The following proposition is overkill for our needs in Map 3, but we will use its full power
in Map 4 and it is convenient to state it here in this form. The leading part of h, denoted hlead,
was defined in [17, (2.19)] by

hlead(U, B) =

⎧
⎪⎨

⎪⎩

− 1
2 Eπ, j+1θ(V (B); V (Λ \ B)) U = B
1
2 Eπ, j+1θ(V (B); V (U \ B)) U ⊃ B, |U | j+1 = 2

0 otherwise.

(5.18)

The subscript π above corresponds to a bookkeeping device (see [17, (2.18)]) that does not
play an explicit role in what follows. It is shown in [17, (2.22)] that, given B ∈ B j+1,

∑

U :(U,B)∈D(hlead)

hlead(U, B) = 0, (5.19)

and this property is essential in Map 4 where it is used in conjunction with (4.2). We define

hlead(U ) =
∑

B∈B(U )
hlead(U, B). (5.20)
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We now extend the definition of f j (a, X) in (1.39) as follows. Given z ≥ 0, for a ∈ (0, 2−d ]
and X ∈ P j we define

f j (z, a, X) =
{

z + f j (a, X) X �= ∅

0 X = ∅.
(5.21)

Proposition 5.4 There exists a constant clead = clead(L) such that

‖ Ĩpt(U )hlead(U, B)‖ j+1 ≤ clead ε̄
zlead , zlead = 2. (5.22)

Also, for U ∈ C j+1,

‖ Ĩpt(U )[h(U )− hlead(U )]‖ j+1 ≤ cpt ε̄
f j+1(zh ,a(3),U ), zh = 3. (5.23)

The constants clead, cpt may depend on L, and the norms are either of (1.35) or (1.36).

Proof The inequality (5.22) is proved in [17, Proposition 2.5]. For (5.23), given U ∈ C j+1,
we define

hred(U ) =
∑

X∈P j (U ):|X | j≤2

Ĩ−X
pt E+δ I X , (5.24)

hrem(U ) =
∑

X∈P j (U ):|X | j≥3

Ĩ−X
pt E+δ I X , (5.25)

so that

h(U ) = hred(U )+ hrem(U ). (5.26)

The bound (5.23) with h replaced by hred was proved in [17, Proposition 2.6], and hence it
suffices to prove that, for U ∈ C j+1,

‖ Ĩ U
pt hrem(U )‖ j+1 ≤ cpt ε̄

f j+1(zh ,a,U ). (5.27)

But by definition, the fact that |X | j+1 ≤ |X | j , and Proposition 5.3,

‖ Ĩ U
pt hrem(U )‖ j+1 ≤

∑

X∈P j (U ):|X | j≥3

α
|U | j
E

ε̄|X | j ≤ (CL ,d ε̄)
3∨|U | j+1 . (5.28)

If |U | j+1 ≤ 2d then the right-hand side is less than C3
L ,d ε̄

3, and (5.27) holds in this case. On

the other hand, if |U | j+1 ≥ 2d + 1, then, since 3 ≤ 2d ,

|U | j+1 ≥ 3+ (|U | j+1 − 2d) = 3+ a(|U | j+1 − 2d)+ (1− a)(|U | j+1 − 2d), (5.29)

where we take a = a(3) (though in fact any larger a < 1 would also work here). Thus we
can choose t > 0 depending on a such that

|U | j+1 ≥ 3+ (|U | j+1 − 2d) = 3+ a(|U | j+1 − 2d)+ t |U | j+1. (5.30)

The resulting factor ε̄t |U | j+1 can be used to control C
|U | j+1
L ,d and the desired result follows. �	

Since U is a small set, ε̄ f j+1(zh ,a(3),U ) = ε̄zh is much smaller than ε̄ f j+1(zlead,a(3),U ) = ε̄zlead .
Therefore, it is an immediate consequence of Proposition 5.4, via the triangle inequality, that

‖ Ĩpt(U )h(U )‖ j+1 ≤ cpt ε̄
f j+1(zlead,a(3),U ). (5.31)
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This proves (5.14). The constants cpt in (5.31) and (5.23) may be larger than the constant
with the same name in [17, Proposition 2.6], but this is of no importance. The inequality
(5.23) shows that hlead(U ) is in fact the leading part of h(U ).

Next we estimate the term Ĩptk and prove (5.15). For this we will apply the following
crucial estimate, which is [17, Proposition 2.8]. Given X ⊂ Λ, we define

γ = γ (X) = L−d−1 + L−11X∩{a,b}�=∅. (5.32)

Proposition 5.5 Let X ∈ S j and U = X. Let F(X) ∈ N (X�) be such that παF(X) = 0
when X (α) = ∅, and such that πab F(X) = 0 unless j ≥ jab (recall (1.28)). Let κF =
‖F(X)‖ j and let κLocF = ‖ Ĩ X LocX Ĩ−X F(X)‖ j . Then

‖ Ĩ U\X
E+θF(X)‖ j+1 ≺ γ (X)κF + κLocF , (5.33)

where the pair of norms is given by either choice of (1.35) or (1.36).

The following result is at the heart of our method. It establishes the contractivity of the
linear part of the map K (2) �→ K (3) via two different and essential principles: for small sets
X we have arranged in Lemma 4.3(iii) that K (2) has a small relevant/marginal local part and
we can apply Proposition 5.5, while for large sets we apply the geometric fact in Lemma C.3
to exploit the decay of K (X) in the size of X .

Lemma 5.6 For L sufficiently large, ε̄ sufficiently small depending on L, and U ∈ C j+1,

‖ Ĩpt(U )k(U )‖ j+1 ≤ κ∗r (2)ε̄1+ f j+1(a(3),U ), (5.34)

where κ∗ is an L-independent multiple of L−1.

Proof By Lemma 4.3,

‖K (2)(X)‖ j ≤ r (2)ε̄. (5.35)

In the definition of k(U ) in (5.11), we first consider those terms in the sum over X where
X ∈ S j and we prove that the contribution from these terms is bounded by the right-hand
side of (5.34). By Lemma 4.3 and (3.28) (reducing u slightly to absorb the L-dependence in
(3.28)),

‖LocX Ĩ−X
pt K (2)(X)‖T0 ≺ r (2)ε̄1+u, (5.36)

so it follows from the first inequality of (3.25) that

‖ Ĩ X
pt LocX Ĩ−X

pt K (2)(X)‖ j ≺ r (2)ε̄1+u . (5.37)

We have already shown in Proposition 1.14 that πabVpt = 0 unless j ≥ jab. That proof used
the observation that no small set can contain both points a, b when j < jab. By taking L
larger if necessary, it is similarly the case that the small set neighbourhood X� of a small set
X cannot contain a, b when j < jab. By the assumption in Definition 1.7 that πab K (X) = 0
unless a, b ∈ X�, and by the definition of K (2), we conclude that πab K (2)(X) = 0 when
j < jab. It then follows from Proposition 5.5 that

‖ Ĩ U\X
pt E+θK (2)(X)‖ j+1 ≺ γ (X)r (2)ε̄ + r (2)ε̄1+u . (5.38)

We drop the second term because it is small compared with the first term. After summation
over the O(Ld) small sets whose closure is U , and by taking ε̄ small depending on L , the
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resulting right-hand side is bounded above by a multiple of L−1r (2)ε̄, which is the correct
size for (5.34). This completes the analysis for X ∈ S j .

We now consider those terms in the sum over X in (5.11) due to X �∈ S j , and prove that
the contribution from these terms is bounded by the right-hand side of (5.34). In this sum
over X there are fewer than 2|U | j terms. Therefore, by Proposition 3.1, (5.17), (5.35), and
Lemma C.3, there is a constant C = C(d, L) such that

‖
∑

X∈C j (U ):X �∈S j

Ĩ U\X
pt E j+1θK (2)(X)‖ j+1 ≤ r (2)C |U | j sup

X∈C j (U ):X �∈S j

ε̄1+ f j (a(2),X)

≤ r (2)C |U | j ε̄1+a(2)η|U | j+1−2d

≤ r (2)C |U | j ε̄(a
(2)η−a(3))|U | j+1 ε̄1+ f j (a(3),U ),

(5.39)

where C j (U ) is defined by (5.12). By taking ε̄ small, this contribution is negligible compared
to the contribution due to X ∈ S j . �	

Finally, we show that the remainder term R of (5.13) is negligible compared with the term
that contains k.

Lemma 5.7 For ε̄ small depending on L, and for all U ∈ C j+1,

‖R(U )‖ j+1 ≺ ε̄u+1+ f j+1(a(3),U ). (5.40)

Proof By (5.13)

R(U ) = K (3)(U )− Ĩ U
pt [h(U )+ k(U )]. (5.41)

To obtain a convenient expression for (5.41), we introduce X = (
X K , Xδ I , X Ĩpt

)
, and say

that X ∈ X (U ) if X K , Xδ I , X Ĩpt
are disjoint sets in P j whose union is U and also X K ∪Xδ I ∈

P j (U ). We set

nK = number of components ofX K , (5.42)

nδ I = |Xδ I | j , (5.43)

n = (nK , nδ I ). (5.44)

Then

R(U ) =
∑

X∈X (X)
1n∈N c

0
E+

(
δ I Xδ I K (2)(X K )

)
(I (3))

X Ĩpt , (5.45)

where N c
0 is the complement of N0 = {(0,N0), (1, 0)}.

With the value 2 arising in (3.19), we write

α = max{αE, 2}. (5.46)

By the product property [17, (1.44)] of the norm, (5.46), (5.17), and Lemma 4.3,

‖R(U )‖ j+1 ≤
∑

X∈X (X)
In∈N c

0
α|X K | j+|Xδ I | j ε̄|Xδ I | j ‖K (2)(X K )‖ jα

|X Ĩpt
| j

≤ α|X | j
∑

X∈X (X)
In∈N c

0
ε̄|Xδ I | j

∏

i

(r (2)ε̄1+ f j (a(2),X K ,i ))
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≤ (cα)Ld |X | j+1
∑

X∈X (X)
In∈N c

0
ε̄|Xδ I | j ε̄

∑
i f j (a(2),X K ,i ), (5.47)

where the product over i is a product over the connected components X K ,i of X K . By
Lemma C.4 this gives

‖R(U )‖ j+1 ≤ (cαC(L))Ld |X | j+1 ε̄δ|X | j+1+u+1+ f j+1(a(3),X)
∑

X∈X (X)
In∈N c

0
. (5.48)

Since the number of terms in the sum over X ∈ X (U ) is at most the number of ways of
assigning each j-block in U to either X K , Xδ I , or X Ĩpt

, which is 3|U | j = 3Ld |U | j+1 , this gives

‖R(U )‖ j+1 ≤ b|U | j+1 ε̄u+1+ f j+1(a(3),U ), (5.49)

with b = ε̄(3cαC(L))Ld
. This completes the proof since b ≤ 1 for ε̄ sufficiently small. �	

5.3 Map 4: Reapportionment of K (3)

Map 4 removes the second-order perturbative contribution hlead from K (3) when K = 0.
Part (iii) is the purpose of this map—the leading part of K (3) has been reapportioned and is
now absent in K (4). All norms in this section are scale j + 1 norms, either the T0, j+1 or the
G̃ j+1 norms, with their corresponding F norms. We drop the label j + 1 on the norms, to
simplify the notation.

Lemma 5.8 There exist μ4 ≥ 1, K (4), and a constant C = C(L) such that, for (V, K )
obeying (3.15),

(i) Ĩpt ◦ K (3) = Ĩpt ◦ K (4),

(ii) K (4) ∈ BF (4) (r (4)ε̄),

(iii) ‖K (4)(U )‖ ≤ (C ε̄) f j+1(3,a(4),U ) f orU ∈ P i f K = 0 .

Proof (i) Let μ4 = 2, so that r (4) = 2r (3). By Proposition 5.4 and by taking g̃ sufficiently
small, there is a constant C such that

‖ Ĩpt(U )hlead(U, B)‖ ≤ (C ε̄)2 ≤ 1
2r (4)ε̄. (5.50)

We apply Proposition 4.1 with J (U, B) = hlead(U, B) and

Iin = Ĩpt, Kin = K (3), ρ = ε̄, ain = a(3),

aout = a(4), ε = 1
2r (4), z = z′ = 1, (5.51)

and we set K (4) = Kout. Hypothesis (4.2) is provided by (5.19). Hypothesis (4.3) holds by
Lemma F.3, and by the use of Eπ in (5.18) to localise observables properly. The stability
hypothesis (4.4) holds by Proposition 3.1. Hypothesis (4.6) holds by (5.50). Hypothesis
(4.7) is obtained from (5.50) and Lemma 5.2(ii) by using the triangle inequality in the
definition (4.5) of M . Thus all hypotheses hold and Proposition 4.1 implies (i).

(ii) The relevant estimate follows from Proposition 4.1 and (4.11). The fact that K (4) has
the properties required of membership in the space F (3) can be established similarly to
what was done in Proposition 5.1 for K (3).
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(iii) We again apply Proposition 4.1 but with different choices for parameters. We continue to
take J (U, B) = hlead(U, B), and use the first inequality of (5.50). With Lemma 5.2(iii),
(4.5) now gives

M(U ) = Ĩ U
pt (h − hlead)(U ). (5.52)

By Proposition 5.4,

‖M(U )‖ = ‖ Ĩpt(U )(h − hlead)(U )‖ ≤ (C ε̄) f j+1(3,a(3),U ). (5.53)

We apply Proposition 4.1 with ρ = C ε̄, ε = 1, and with z = 1 replaced by z = 3. We
have the required inequality z′ = 2 > 1

2 z = 3
2 . All hypotheses of Proposition 4.1 then

hold with the new parameter values. The conclusion of Proposition 4.1 then implies
that

‖K (4)(U )‖ ≤ 2(C ε̄) f j+1(3,a(4),U ), (5.54)

and by absorbing the factor 2 into C we complete the proof of (iii).
�	

The restriction and isometry properties of K (4) are verified as in Maps 1 and 2. In particular,
the restriction property is a consequence of the change of variables formula (D.13). For the
mass continuity and the (V, K )-analyticity, the new ingredient compared to what we have
seen in previous Maps is to establish the mass continuity and analyticity of Ĩ U

pt J (U, B) =
Ĩ U
pt hlead(U, B), with hlead(U, B) the degree-6 polynomial in the fields defined by (5.18). The

subscript π in (5.18) is not relevant for the continuity or analyticity properties, and it suffices
to verify mass continuity and (V, K )-analyticity for the case where Eπ is replaced by E+ in
(5.18). As in the proof of analyticity in Map 1, what is needed is to establish mass continuity
and V -analyticity (for there is no K -dependence) of hlead(U, B) as a map into N (U�) with
the T0 norm. The analyticity follows from the fact that hlead is a bilinear function of V , by
Lemma 3.5. The mass continuity of K (4)(U ) for each U follows from Proposition B.2 and
the continuity of K (3)(U ) for each U .

6 Maps 5–6: Final Adjustments

The interaction output by Map 4 is Ĩpt(b) = e−Vpt(b)
(
1 + W j+1(Vpt, b)

)
, which involves

blocks b of scale j . Also, the polynomial Vpt contains monomials τ∇∇ and σ σ̄ arising in
Q, and hence does not lie in Q(0). The purpose of Maps 5–6 is to perform the bookkeeping
tasks of replacing Ĩpt by a scale j + 1 interaction of the form (1.13), and replacing Vpt by

V+ = V (0)
pt ∈ Q(0). As in (1.73), V (0)

pt is the polynomial obtained by dropping the σ σ̄ term,
and by replacing zτΔ + yτ∇∇ in Vpt by (z + y)τΔ as a formal summation by parts would
suggest. Then V+ and I+ = I j+1(V+) have the same form as the initial V and I = I j (V ).

To accomplish this we use two steps. First, in Map 5 we eliminate blocks b ∈ B j in favour
of blocks B ∈ B j+1, and we simultaneously adjust W (Vpt) to W (V+). Second, in Map 6 we
replace e−Vpt(B) by e−V+(B) to obtain I+ = I j+1(V+) with corresponding K+.

Norms in this section are scale j + 1 norms, either the T0, j+1 or the G̃ j+1 norms, with
their corresponding F norms. We drop the label j +1 on the norms, to simplify the notation.
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6.1 Map 5: Adjustment to W

For B ∈ B j+1, we define

I+pt (B) = e−Vpt(B)
(
1+ W j+1(V+, B)

)
, (6.1)

and then define δ+ I (B) by

Ĩpt(B) = I+pt (B)+ δ+ I (B). (6.2)

We write

δ I+pt (B) = e−Vpt(B)
(
W j+1(Vpt, B)− W j+1(V+, B)

)
, (6.3)

ΔI (B) = e−Vpt(B)

⎛

⎝
∏

b∈B j (B)

(1+ W j+1(Vpt, b))− (
1+ W j+1(Vpt, B)

)
⎞

⎠ , (6.4)

so that

δ+ I (B) = ΔI (B)+ δ I+pt (B). (6.5)

It is proved in [17, Lemma B.1] (with j replaced by j + 1) that

‖ΔI (B)‖ ≺L ε̄4. (6.6)

To estimate (6.3), we first recall from (3.24) that ‖Q(b)‖T0, j ≺ r (0)ε̄ for b ∈ B j . Since
the τ∇∇ term in Vpt arises solely from a contribution due to Q, it then follows from [17,
Lemma 3.1] that ‖yτ∇∇(b)‖T0, j ≺ ε̄. Thus we can apply [17, Lemma B.3] to conclude that

‖δ I+pt (B)‖ ≺L ε̄2. (6.7)

Lemma 6.1 There exist μ5 ≥ 1, K (5), and a constant C = C(L) such that, for (V, K )
obeying (3.15),

(i) ( Ĩpt ◦ K (4))(Λ) = (I+pt ◦ K (5))(Λ),

(ii) K (5) ∈ BF (5) (r (5)ε̄),

(iii) ‖K (5)(U )‖ ≤ (C ε̄) f j+1(zh ,a(5),U ) f or U ∈ P i f K = 0.

Proof (i) Let

K (5) = K (4) ◦ δ+ I. (6.8)

By (6.2) and Lemma 1.3,

K (4) ◦ Ĩpt = K (4) ◦ (δ+ I ◦ Ipt) = K (5) ◦ I+pt . (6.9)

(ii) By (6.5)–(6.7), for ε̄ sufficiently small we have

‖δ I+(B)‖ ≤ C ε̄2 ≤ r (4)ε̄, (6.10)

i.e., δ I+ ∈ BF (4) (r (4)ε̄). The desired estimate is then a consequence of Lemmas 5.8 and

C.1, once we set r (5) = μ5r (4) with μ5 = 22d
. The vanishing at weighted infinity, field

locality, symmetry, and component factorisation properties inherent in the statement that
K (5) ∈ F (5) can be verified using the fact that K (4) has these properties. (In particular,
δ+ I vanishes at weighted infinity since each of Ĩpt and I+pt do by Proposition 3.3).
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(iii) This follows from the first inequality of (6.10) and from Lemma 5.8(iii), by Lemma C.1.
�	

The restriction and isometry properties of K (5) can be verified as in Maps 1 and 2 using
its definition, as can the mass continuity m2 �→ K (5)(U ) ∈ N (U�), ‖ · ‖ j+1 and the
(V, K )-analyticity, using the corresponding properties of K (4). For the analyticity, slight
modifications to the proof of [17, Proposition 2.3] show that the map (V, K ) �→ I+pt is

analytic from D j × BF j (r
(0)ε̄) into N (B�), ‖ · ‖ j+1 (and so is (V, K ) �→ I+).

6.2 Map 6: Adjustment to V

As in (1.73), we define

I (6) = I+ = e−V+(1+ W j+1(V+)
)
. (6.11)

Map 6 performs two tasks. First, it removes the monomial yτ∇∇ from the exponent of I+pt

by converting it to yτΔ by summation by parts. Second, it extracts δqσ σ̄ from I+pt to bring it

out of the circle product; here δq = 1
2 (δq

a + δqb) as in (1.78). The boundary term resulting
from the first task, and an adjustment to achieve the second, convert K (5) to K+ = K (6). All
objects in this section are at scale j + 1.

In more detail, for Z ∈ P j+1 we define

V∂,Z =
∑

z∈Z

ypt(τ∇∇,z − τΔ,z). (6.12)

With the definition of I+pt in (6.1), this gives

I+pt (Z) = ev(Z) I+(Z)e−V∂,Z , (6.13)

where v(Z) = σ σ̄ 1
2 (δq

a1a∈Z + δqb1b∈Z ) (cf. Vab in (1.8)). By performing summation by
parts on the right-hand side of (6.12) (see [17, Appendix B] for more details), we find that
there exists V∂,Z ,B , which depends only on fields that are in the intersection of B and the
boundary of Z , such that

V∂,Z =
∑

B∈B
V∂,Z ,B . (6.14)

Here V∂,Z ,B = 0 if B is not a block in Z which is on the boundary of Z in the sense that it
has a neighbour not in Z (in particular, V∂,Λ,B = 0).

We therefore have

I+pt (Λ \ X) = ev(Λ\X)
∏

B∈B j+1(Λ\X)

I+(B) (1+ RX (B)) with RX (B) = e−V∂,Λ\X,B − 1.

(6.15)

By Lemma 1.3,

I+pt (Λ \ X) = ev(Λ\X)(δ I (6)X ◦ I+)(Λ \ X) = ev(Λ\X)
∑

Y∈P j+1(Λ\X)

(δ I (6)X )Y IΛ\(X∪Y )
+ ,

(6.16)
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where

(δ I (6)X )Y =
∏

B∈P j+1(Y )

RX (B)I+(B). (6.17)

Note that δ I (6)
∅

= 0 by definition. It follows from [17, Lemma B.3] (together with the
verification of its assumption as above (6.7)) that there is a constant c such that

‖δ I (6)X (B)‖ j+1 ≤ cε̄. (6.18)

Lemma 6.2 There exist μ6 ≥ 1 and K (6) = K+ such that, for (V, K ) obeying (3.15),

(i) I+pt ◦ K (5) = I+ ◦ K+,

(ii) K+ ∈ BF (6) (r (6)ε̄),

(iii)

‖K+(U )‖ ≤ (C ε̄) f j+1(zh ,a(6),U ) for U ∈ P if K = 0. (6.19)

Proof (i) It follows from (6.16), and from the formula for δq in (1.78), that

(I+pt ◦ K (5))(Λ) = eδqσ σ̄
∑

X∈P(Λ)
e−v(X)K (5)(X)(δ I (6)X ◦ I+)(Λ \ X)

= eδqσ σ̄
∑

Z∈P(Λ)

∑

X∈P(Z)
e−v(X)K (5)(X)(δ I (6)X )Z\X IΛ\Z

+

= eδqσ σ̄ (I+ ◦ K+)(Λ), (6.20)

where, for Z ∈ P , we define

K+(Z) =
∑

X∈P(Z)
e−v(X)K (5)(X)(δ I (6)X )Z\X . (6.21)

(ii) It follows from the product property of the Tφ norm that ‖e−v(X)‖ ≤ e‖v(X)‖ (for a
proof, see [15, (5.26)]). By definition, ‖v(X)‖ ≤ |δq|h2

σ . Moreover, δq is non-zero
only when j is at least the coalescence scale jab, and in this case Q no longer contains
a λ term since the corresponding monomials are no longer in the range of Loc above
coalescence (see [9, Section 3.2]). Therefore, by [9, Proposition 4.1] and [9, (3.35)],
|δq| ≺ λ2 L−2 j ≺ L−2 j . This implies that ‖v(X)‖ ≺ L−2 j h2

σ , and from the definitions
of hσ in (1.32), this shows that ‖e−v(X)‖ ≤ 2. With Lemmas 6.1 and C.2, and by (6.18),
this gives

‖K+(Z)‖ ≤
∑

X∈P(Z):X �=∅

‖e−v(X)‖‖K (5)(X)‖‖δ I (6)X ‖|Z\X |

≤ 2r (5)
∑

X∈P(Z):X �=∅

ε̄1+ f (a(5),X)(cε̄)|Z\X |

≤ 2r (5)(2c)|Z | sup
X∈P(Z):X �=∅

ε̄1+ f (a(5),X)+|Z\X |

≤ 2r (5)(2c)2
d
ε̄1+ f (a(6),Z) = r (6)ε̄1+ f (a(6),Z), (6.22)

where in the last step we set r (6) = μ6r (5) with μ6 = 2(2c)2
d
, and used a(6) to cancel

the exponential growth of (2c)|Z | for large sets Z . Specialising to the case where Z is
connected, we obtain the estimate of (ii).
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To see that K+ obeys the component factorisation property, let Z be the disjoint union of
Z1 and Z2. The sum over X in (6.21) can then be written as the sum over X1 ∈ P(Z1) and
X2 ∈ P(Z2), and the component factorisation property of K (5) implies that K (5)(X) =
K (5)(X1)K (5)(X2). It suffices if (δ I (6)X1∪X2

)Z\(X1∪X2) = (δ I (6)X1
)Z1\X1(δ I (6)X2

)Z2\X2 , and
this indeed holds because

∏

B∈B(Z\(X1∪X2))

RX1∪X2(B) =
∏

B∈B(Z1\X1)

RX1(B)
∏

B∈B(Z2\X2)

RX2(B). (6.23)

The fact that K (6) obeys the field locality, symmetry and component factorisation prop-
erties can be seen from its definition. The fact that K (6) vanishes at weighted infinity
follows from the fact that K (5) does, together with the fact that δ I (6)X vanishes at weighted
infinity by an extension of Proposition 3.3.

(iii) When K = 0, by Lemma 6.1(iii) we can replace r (5) in the proof of part (ii) by C ε̄zh ,
and this immediately gives the result.

The restriction and isometry properties are straightforward to verify as in Maps 1 and 2. We
omit the tedious details which justify the mass continuity m2 �→ K (6)(U ) ∈ N (U�), ‖·‖ j+1,
and the (V, K )-analyticity of K (6).

Remark 6.3 Recall the discussion of the 4-dimensional n-component |ϕ|4 model in
Sect. 1.8.4. We now sketch how Lemma 6.2 can be adapted so that the results of the present
paper can be applied in [5] to the |ϕ|4 model. The new ingredient is that Vpt(V −Q) contains
a constant term u, even when V does not, because Q will contain such a term and also Vpt

will produce one. Let |X | j denote the number of scale- j blocks in X ∈ P j . In particular,
|X |0 is the number of points in X . The term u in V occurs in I (X, V ) only as an overall
factor eδu|X |0 , since a constant term in V cannot contribute to W . In the scale-( j + 1) circle
product considered in Lemma 6.2, we wish to replace the factor eδu|X |0 multiplying I+pt (X)

by eδu|Λ|0 . For this, we use

((eδu I+pt ) ◦ K (5))(Λ) = eδu|Λ|0(I+pt ◦ (e−δu K (5))(Λ). (6.24)

The multiplication of K (5) on the right-hand side is controlled by the estimate

‖e−δu|X |0 K (5)(X)‖ ≤ e|δu| |X |0‖K (5)(X)‖ = e|δu|Ld( j+1)|X | j+1‖K (5)(X)‖. (6.25)

By definition,

δu = Vpt(V − Q)|ϕ=0 = Vpt(V )|ϕ=0 +
(
Vpt(V − Q)|ϕ=0 − Vpt(V )|ϕ=0

)
. (6.26)

As in the proof of Theorem 1.10, we find that
∣∣Vpt(V − Q)|ϕ=0 − Vpt(V )|ϕ=0

∣∣ ≤ O(L−4dχ g̃3). (6.27)

Since Vpt(V )|ϕ=0 = O(L−d jχ g̃) by [6, Lemma A.1], this gives

|δu| = O(L−d jχ j g̃ j ). (6.28)

Therefore,

‖e−δu|X |0 K (5)(X)‖ ≤ eO(χ j ḡ j )|X | j+1‖K (5)(X)‖. (6.29)

The small amount of exponential growth on the right-hand side is handled by the increase
from a(5) to a(6) which already performs a similar task in the proof of Lemma 6.2. Other
aspects of the proof of our main results are unchanged, and we apply this extension in [5].
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7 Completion of proof of Theorem 2.2

We now assemble the conclusions obtained in the analysis of Maps 1–6, to complete the
proof of Theorem 2.2.

Proof of Theorem 2.2(i) Since K+ is the composition of the six maps, the domain of K+
is the domain of the first map K (1), which, as specified in the hypothesis of Lemma 4.2, is
D×BF (r ε̄) as desired. The range of K+ is the range of the sixth map K (6). By Lemma 6.2(ii),
K (6) ∈ BF j+1(a(6))(r

(6)ε̄). From Sect. 3.2, we find that r (6) = κr , so K (6) ∈ BF j+1(a(6))(κr ε̄).
By (1.30) and (1.43), ε̄/ε̄ j+1 is bounded by a constant, so we can replace ε̄ by ε̄+ by absorbing
this constant into the constant γ ∗ in κ = O(L−1). By (3.14), a(6) > a(0) = a, so the output
space F j+1(a(6)) has a+ = a(6) > a as claimed. Furthermore, by [17, Remark 1.3], all
estimates involving our norm pairs in [17] remain valid for some choice of h++ > h+. For
this reason, h+ can be replaced by h++ as required.

The bound (2.10) is obtained in Lemma 6.2(iii), again with a larger constant to allow the
replacement of ε̄ by ε̄+ as explained above. The fact that the circle product is preserved in
the sense of (1.49) is a consequence of part (i) of Lemmas 4.3, 5.2, 5.8, 6.1 and 6.2. The
desired (V, K ) analyticity is a consequence of the analyticity established for each Map. �	

Proof of Theorem 2.2(ii–iii) These have both been established for the six individual Maps
and therefore hold for K+. �	

Proof of Theorem 2.2(iv) For mass continuity, the mass m2 which is being varied appears
in the analysis via the mass dependence of the covariance C+, which is a member of the
decomposition of the covariance (−Δ + m2)−1. The mass continuity established for the
six Maps provides a statement of continuity of K+ as a map from m2 ∈ I+ into the space
N (U�), ‖ · ‖ j+1, for each polymer U ∈ P+.

We wish to transfer this into a statement of continuity of K+ as a map from m2 ∈ Ĩ+(m̃2)

into F+. The value of m̃2 fixes the space F̃+ and fixes χ̃ which determines the radius of
balls in this space, so that neither the space nor the ball varies with m2. By [9, (4.22)],
χ j = �−( j− j�)+ � �−( j− jm )+ , where jm = #logL2 m−2$. The values of m2 and m̃2

are comparable by definition of Ĩ, hence so are jm and jm̃ , and hence so are χ(m2) and
χ̃ = χ(m̃2). Consequently, ε̄ of (1.43) differs by a constant factor when computed using χ
or χ̃ . The estimates of Propositions 5.3–5.4 produce ε̄ constructed from m2, since these are
estimates based on the covariance C+. On the other hand, estimates implied by membership
in the space F̃+ are in terms of ε̄ constructed from m̃2, by definition. The fact that the
two versions of ε̄ are comparable means that it does not matter if different versions appear at
different steps of the analysis. As there are only finitely many polymers U inΛ, the continuity
of K+ as a map into N (U ), ‖ · ‖ j+1 therefore implies continuity into F+, as required. �	

Proof of Theorem 2.2(v) We consider the case x = a, as the case x = b is similar. Ifπa V = 0
and πa K (X) = 0 for all X ∈ P , then neither I nor K has a component in πaN , and the
observable field σ is not present in either of I or K . It is possible that σ̄ or σ σ̄ are present in
K . However, in our construction of K+ via Maps 1–6, the operations involving the observable
fields consist of multiplication of polynomials in the quotient space discussed around (1.2).
Therefore no σ term, i.e. no term in πaN , can be created in K+ if it is not present initially. �	
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Appendix A: Proof of Proposition 1.8

In this section we prove Proposition 1.8, which states that several normed spaces are complete.
We fix the scale j and suppress it in the notation. Thus C(V) is the set of connected

polymers at scale j . For X ∈ C(V), let W (X, φ) be a continuous positive function of φ in the
normed space �(X�). This means that W (X, φ) is a function of φ in the space of fields in
φ : V → C but only depends on the restriction of φ to X�. Let S(V) be the space of maps
F : C(V)→ N (V) such that F(X) is in N (X�) for X in C(V). The following proposition
provides the first step in the proof of Proposition 1.8.

Proposition A.1 For V = Λ or V = Z
d the space S(V) is complete in the norm

‖F‖W = sup
X∈C(V),φ∈�(V)

‖F‖TφW−1(X, φ). (A.1)

Proof We suppress the V argument. For X ∈ C, φ ∈ �, g ∈ �, define the linear functional

λX,φ,g : S → C by F �→ 〈F(X), g〉φW−1(X, φ), (A.2)

with the pairing on the right-hand side defined in [15, Definition 3.3]. Then

‖F‖S = sup
X∈C,φ∈�,g∈B(�)

∣∣λX,φ,g(F)
∣∣. (A.3)

Therefore a sequence Fn in S is Cauchy if and only if λX,φ,g(Fn) is Cauchy in C, uniformly
in the parameters (X, φ, g) ∈ C × � × B(�). Let Fn be a Cauchy sequence in S. By
completeness of C the sequence λX,φ,g(Fn) has a limit FX,φ,g in C. Since Fn is uniformly
Cauchy the convergence is uniform in the parameters. Therefore, to prove that S is complete,
it suffices to prove that there exists F in S such that λX,φ,g(F) = FX,φ,g for all values of the
parameters. Thus we fix X ∈ C, assume that Fn is a sequence in N (X�), and it suffices to
prove that there exists F ∈ N (X�) such that λX,g,φ(Fn)→ λX,g,φ(F).

It suffices to restrict the test function g to a small class of test functions, as follows. Let
z be a sequence in �∗ and let x and y be the boson and fermion subsequences of z. Let the
length p(x) of the sequence x be at most pN + 2, where the 2 allows for observables. We
define a test function δz ∈ � by setting δz(z′) = 1 when z′ = z and δz(z′) = 0 otherwise, for
z′ ∈ �∗. By the definition of �(X�) all elements of �(X�) are finite linear combinations
of these special test functions. Thus it suffices to prove that λX,φ,δz (Fn)→ λX,φ,δz (F) since
this gives the corresponding results for all g in �(X�) and therefore also for all g in �.

Since δz can be normalised to be in B(�), λX,φ,δz (Fn) is Cauchy in C, uniformly in φ ∈ �.
By the definition of the pairing,

p(x)!〈Fn, δz〉φ = Fn,x,y =
⎛

⎝
p(x)∏

i=1

∂

∂φxi

⎞

⎠ Fn,y(φ) (A.4)

is a partial derivative of Fn,y with respect to φ. By the definition of S this partial derivative is
continuous inφ and the pairing is well defined on the equivalence classesφ ∈ �(X�) and g ∈
�(X�). By hypothesis, W (X, φ) is bounded below uniformly on compact subsets of�(X�).
Therefore the uniform convergence of λX,φ,δz (Fn) implies that the partial derivative Fn,x,y

converges uniformly in φ for φ in compact subsets of�(X�). By the continuity of Fn,x,y as a
function of φ the limit of Fn,x,y is continuous in φ. By integration we find that the derivatives
of the limit are the limits of the derivatives. Therefore there exists Fy ∈ N (X�) such that
Fn,x,y(φ) converges to Fx,y(φ) for all φ. Letting F = ∑

y
1
y! Fy(φ)ψ

y and noting that this
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sum over y is a finite sum because X is a finite set, we have λX,φ,δz (Fn)→ λX,φ,δz (F), and
the proof is complete. �	

As in Sect. 1.7, we denote by I(V) the set of elements of N whose T0 semi-norm is
zero. Define S(T0) to be the space of maps F : C(V) → N (V)/I(V) such that F(X) ∈
N (X�)/I(V). Since we have factored out the ideal I(V), the T0 semi-norm becomes a norm
on this space.

Proposition A.2 For V = Λ or V = Z
d , the space S(T0) is complete.

Proof Given F ∈ N , we replace φ andψ by tφ and tψ and construct a polynomial T ∈ N of
degree pN by making a Taylor expansion in powers of t to order pN and setting t = 1. Then
derivatives of T at φ = 0 match derivatives of F up to and including order pN . Therefore
F − T ∈ I(V), and the map F �→ T identifies N (V)/I(V) with polynomials of degree pN .
Then, for all X , N (X)/I(V) is a finite dimensional space and therefore S(T0) is complete
in T0 norm.

Proposition A.3 For either of the two choices V = Z
d or V = Λ, the spaces F(G), F(G̃),

are closed subspaces of S and are complete. Likewise, F(T0) is a closed subspace of S(T0)

and is also complete.

Proof The spaces F(G) and F(G̃) are obtained when W (X, φ) is chosen as in (1.40).
According to the definitions of the regulators in [17, (1.38), (1.41)], W (X, φ) is positive
and continuous in φ. Therefore, by Proposition A.1, with either choice of W , the space S is
complete. Also, according to Proposition A.2, S(T0) is complete. Therefore it is sufficient
to prove that F(G), F(G̃) and F(T0) are closed subspaces. As discussed in Sect. 1.7.3,
elements of F(G), F(G̃) and F(T0) must satisfy the symmetry and field locality conditions
of Definition 1.7. These conditions define closed subspaces.

Therefore, it only remains to prove for the cases F(G), F(G̃) that the condition of vanish-
ing at weighted infinity defines a closed subspace of S. For this let F1, F2, . . . be a sequence
of elements of S that vanish at weighted infinity and are such that the sequence converges
in S to a limit F . We must prove F vanishes at weighted infinity. Let ε > 0 and let X
be a polymer. By definition, there exists N such that ‖F(X) − FN (X)‖TφW−1(X, φ) < ε

uniformly in φ. Therefore

‖F(X)‖TφW−1(X, φ) < ε + ‖FN‖TφW−1(X, φ). (A.5)

Since FN ∈ S, it follows that

lim sup
‖φ‖�(X)→∞

‖F(X)‖TφW−1(X, φ) < ε, (A.6)

and since this holds for all ε, F vanishes at weighted infinity, as was to be proved. �	
Proof of Proposition 1.8 In view of Proposition A.3, it suffices to consider W(V). A Cauchy
sequence Fn in W(V) is Cauchy in each of the F(G) and F(G̃) norms. Therefore it has
limits FG and FG̃ in the F(G) norm and the F(G̃) norm. Both norms imply convergence
pointwise in X, φ so FG = FG̃ and therefore Fn is convergent in W(V). �	

Appendix B: Two Properties of the Expectation

In this section, we prove that the expectation is continuous in the mass, and that the expectation
preserves the property of vanishing at infinity. We begin with the continuity statement.
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B.1 Mass Continuity of the Expectation

B.1.1 Statement of Continuity

We consider the continuity properties of the expectation as a function of the covariance, and
of the mass which defines the covariance. There are two fixed scales, j and j + 1, and the
scale advances in norms when the expectation is taken. We omit the scale when it is j and
write + to indicate scale j + 1. The covariance C is always considered to be a test function
with two arguments and, furthermore, is assumed to be in the unit ball B1(�+) of the space
�+ of test functions. Let X ∈ C be a connected polymer X ∈ C. Recall from (1.35) to (1.36)
that two norm pairs ‖ · ‖ j , ‖ · ‖ j+1 are defined on N (X�). We write X for either of the
normed spaces defined by the two choices of ‖ ·‖ j and for each of these choices let X+ be the
normed spaces defined by the accompanying choice of ‖ · ‖ j+1. The main continuity result
is the following proposition, whose proof is given in the remainder of Sect. B.1.

Proposition B.1 For F ∈ X , the map C �→ ECθF from B1(�+) to X+ is continuous.

Now we choose the covariance C to be one of the m2-dependent covariances C = C j+1

for j < N (V), or C = CN ,N for j+1 = N (Λ), which arise in the finite-range decomposition
of the covariance (−Δ+m2)−1 described in [17, Section 1.1.1]. Proposition B.1 then implies
the continuity of the expectation as a function of the mass m2.

Proposition B.2 For F ∈ X , the map m2 �→ ECθF from X to X+ is continuous.

Proof By Proposition B.1, it suffices to show that m2 �→ C is a continuous function from
I j to B1(�+). This is a consequence of [9, Proposition 6.1(b)]. (In fact, [9, Proposition 6.1]
does not directly address mass continuity in the � j+1 norm, but it does when augmented
with the estimate [4, (1.15)]). �	

B.1.2 Reduction to Dense Subset

The following lemma is a standard result in functional analysis. We omit the proof, which is
an ε/3 argument.

Lemma B.3 Let B and B+ be Banach spaces. Suppose that the sequence of linear operators
Tn : B → B+ is uniformly bounded in operator norm, and suppose that T : B → B+ is a
bounded linear operator. If Tn F → T F for all F in a dense subset of B, then Tn F → T F
for all F ∈ B.

The dense subset we use is the subspace X0 of X whose elements are compactly supported
in φ, namely, given X ∈ P ,

X0 = {F ∈ X : ∃R such that ‖F‖Tφ = 0 if ‖φ‖
�(X� ) ≥ R}. (B.1)

Lemma B.4 The set X0 is dense in X .

Proof Let χ : C → R be a smooth non-negative function of compact support that is bounded
by 1, equals 1 on a neighbourhood of the unit disk and has support inside the disk of radius
2. For R ≥ 1, x ∈ Y , and φ ∈ �, let χR,x (φ) = χ(φx/R). Let F ∈ X and let ε > 0. We will
show that R can be chosen so that ‖F − χR F‖X < ε, and this suffices since χR F ∈ X0.
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By the definition of the Tφ norm (see [15, Definition 3.3]), for R large depending on h,

‖χR,x‖Tφ ≤
pN∑

p=0

1

p!χ
(p)(φx/R)(h/R)p ≤ 1+ O (h/R) ≤ 2. (B.2)

Also, since ‖1− χR,x‖Tφ = 0 for |φx | < R,

‖1− χR,x‖Tφ = 1|φx |≥R ‖1− χR,x‖Tφ ≤ 31‖φ‖�≥R . (B.3)

Let χR(φ) =∏
x∈Y χR,x (φ). Let( be any total ordering of the points in Y = X�. We apply

(B.2) and (B.3) and the product property of the Tφ semi-norm to obtain

‖1− χR‖Tφ ≤
∑

y∈Y

‖1− χR,y‖Tφ

∏

x∈Y,x(y

‖χR,x‖Tφ ≤ 1‖φ‖�(Y )≥R 3|Y |2|Y |. (B.4)

By hypothesis, ‖F‖TφG−1(X, φ) → 0 as ‖φ‖�(Y ) → ∞. By the product property, for R
sufficiently large depending on ε, h, Y , this gives

‖F − χR F‖X ≤ 3|Y |2|Y | sup
φ:‖φ‖�(Y )≥R

‖F‖TφG−1(X, φ) < ε. (B.5)

This completes the proof. �	

B.1.3 Continuity of Expectation in Covariance

Before proving Proposition B.1, we first prove the following lemma concerning a norm
equivalence. We write Y = X� below, to simplify the notation. The normed space X is
defined above Proposition B.1.

Lemma B.5 Let S ⊂ C
Y and let Fn ∈ X for n ∈ N. Then Fn is convergent in Tφ semi-norm

uniformly in φ ∈ S if and only if Fn,y and its derivatives up to order pN converge uniformly
in φ ∈ S for the finitely many possible sequences y arising from Y . This is the same as Fn,y

being convergent in the C pN (S) topology for each such y.

Proof The proof is closely related to that of Proposition A.1. Given φ ∈ S and g ∈ �, we
define the linear functional λφ,g : X → C by F �→ 〈F, g〉φ . Then

sup
φ∈S

‖F‖Tφ = sup
φ∈S,g∈B(�)

∣∣λφ,g(F)
∣∣. (B.6)

Therefore the sequence Fn in S is convergent in Tφ uniformly in φ ∈ S if and only if λφ,g(Fn)

is convergent in C, uniformly in the parameters (φ, g) ∈ S × B(�).
Let z ∈ �∗. We define a test function δz ∈ � by setting δz(z′) = 1 when z′ = z and

δz(z′) = 0 otherwise, for z′ ∈ �∗. All test functions are finite linear combinations of these
special test functions and they comprise a finite basis for the test functions in�(Y ). Therefore
λφ,g(Fn) is convergent uniformly in (φ, g) if and only if λφ,g(Fn) is convergent uniformly in
φ ∈ S when g is a basis test function. Exactly as in (A.4), 〈Fn, δx,y〉φ is a partial derivative of
Fn,y with respect to φ. Therefore, uniform convergence of λφ,g(Fn) is equivalent to uniform
convergence of partial derivatives, as claimed. �	
Proof of Proposition B.1 By Proposition 5.3, the linear map TC : F �→ ECθF from X to X+
is a bounded operator. The proof of Proposition 5.3 shows that ‖TC‖ is bounded uniformly
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in C ∈ B1(�+). Let Cn be a sequence of covariances in B1(�) that converges to C , and let
TCn : F �→ ECn θF . By Lemmas B.3 and B.4, it suffices to show that TCn F → TC F for
all F ∈ X0, with X0 the dense subset of X defined by (B.1). An element F ∈ X0 has the
form F =∑

y
1
y! Fyψ

y , and this is a finite sum because there are finitely many fermion fields
with labels in Y . Therefore it suffices to show that, for each finite sequence y, ECn θFyψ

y

converges to ECθFyψ
y . By [15, (2.39)], ECθF = (ECθFy)(ECθψ

y), so it suffices to prove
that ECn θFy → ECθFy and ECn θψ

y → ECθψ
y .

Since Fyψ
y ∈ N (Y ) we can regard C as an element of the finite-dimensional vector

space�+(Y ), on which all norms are equivalent. In particular a sequence Cn of covariances
converges in �+(Y ) if and only if the sequence converges in the sense of convergence of
matrix elements of Y × Y matrices. By definition, ECθψ

y is a polynomial in ψx for x ∈ Y ,
with coefficients that are polynomials in matrix elements of C . The space of such polynomials
is finite-dimensional, so the map C �→ ECθψ

y is continuous.
It remains to prove that C �→ ECθFy is continuous as a map from a domain of fixed-size

matrices to X+, for Fy a compactly supported pN times continuously differentiable function
of φ ∈ C

Y . However, the map ECθ represents convolution by a Gaussian, and from this it can
be seen that ECθFy is jointly continuous in φ and C . Derivatives commute with convolution
so the same is true for derivatives. Therefore, ECθFy is continuous in C , as a map into
C pN (CY ). By Lemma B.5, it is therefore also continuous in the topology of convergence in
Tφ norm uniformly in φ. This is a stronger topology than the norm on X+, so the proof is
complete. �	

B.2 Expectation and Vanishing at Weighted Infinity

We now prove that the property of vanishing at weighted infinity is preserved by the expec-
tation. Since we only take expectations in finite volume we consider the vector space K(Λ)
with the F(G) norm defined in (1.41) in terms of the weight

W (X, φ) = ρ f (a,X)G(X, φ) (B.7)

of (1.40), with ρ given by (1.43). There is also the space F+(G+) defined in terms of the
weight

W+(X, φ) = ρ
f+(a+,X)+ G+(X, φ), (B.8)

where we assume that a < a+. Our norm pairs (1.35) and (1.36) are such that G = G j is
paired with G+ = T0, j+1, and G j = G̃ j is paired with G+ = G̃γ

j+1. As a first step, we prove
the following lemma.

Lemma B.6 Let fR = 1{‖ξ‖�(X)≤R}. Then for X ∈ P and φ ∈ C
X�

,

E+W (X, φ + ξ) ≤ W+(X, φ), (B.9)

lim
R→∞ sup

φ∈�
1

W+(X, φ)
E+ [(1− fR(ξ))W (X, φ + ξ)] = 0. (B.10)

Proof By definition of the regulators, and by the inequality ‖φ + ξ‖2 ≤ 2(‖φ‖2 + ‖ξ‖2),

G(X, φ + ξ) ≤ G2(X, φ)G2(X, ξ) ≤ G2(X, φ)G2(X, ξ). (B.11)
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Using [17, Lemma 1.2], we obtain

G(X, φ + ξ) ≤ G+(X, φ)G2(X, ξ). (B.12)

By [17, (1.74)],

E+G2(X, ξ) ≤ 2|X | j , (B.13)

and hence

E+G(X, φ + ξ) ≤ 2|X | j G+(X, φ). (B.14)

By (B.7), (B.14), and the fact that ρ f (a,X)2|X | j ≤ ρ f+(a+,X)+ by definition (for small g̃),

E+W (X, φ + ξ) ≤ ρ f (a,X)2|X | j G+(X, φ) ≤ W+(X, φ). (B.15)

This completes the proof of (B.9).
To prove (B.10), we repeat the steps in the proof of (B.9) but with the factor 1 − fR

included. This factor then appears under the expectation in (B.13), and (B.10) then follows
by dominated convergence. �	

A second ingredient we need is that for a function f = f (ξ) of the fluctuation field ξ ,

‖E+ f F(X)‖Tφ,+(h+) ≤ E+
[| f (ξ)| ‖F(X)‖Tφ+ξ (h)

]
. (B.16)

This follows from a slight adaptation of [17, (7.2)–(7.3)], with the improved version of [15,
Proposition 3.19] provided by [15, (3.68)] to include the function h = fR . These give the
inequality

‖E+ f F(X)‖Tφ(h/2) ≤ E+
[| f (ξ)| ‖F(X)‖Tφ+ξ (h)

]
. (B.17)

With the monotonicity in h of the Tφ norm provided by [17, Lemma 3.2], (B.16) then follows
from h+ ≤ 1

2 h. This application of [17, Lemma 3.2] requires that F ∈ N is gauge invariant
and such that πab F = 0 when j < jab, so we make this assumption throughout the rest of
the section without further mention.

Proposition B.7 Suppose F ∈ K vanishes at W -weighted infinity. Then E+θF vanishes at
W+-weighted infinity.

Proof Let CF = ‖F‖W and let X be a polymer. Given R > 0, let fR = 1{‖ξ‖�(X)≤R}. We
write IR = E+ fRθF(X) and I �R = E+(1− fR)θF(X) so that

E+θF(X) = IR + I �R . (B.18)

By (B.10), we can choose R large such that

E+ [|1− fR(ξ)|W (X, φ + ξ)] ≤ C−1
F εW+(X, φ). (B.19)

Therefore, by (B.16),

‖I �R‖Tφ(h+) ≤ E+|1− fR(ξ)| ‖F(X)‖Tφ+ξ (h)

≤ E+|1− fR(ξ)|CF W (X, φ + ξ) ≤ εW+(X, φ), (B.20)

and hence

lim sup
‖φ‖�→∞

1

W+(X, φ)
‖I �R‖Tφ(h+) ≤ ε. (B.21)
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Let

M(φ) = sup
ξ

| fR(ξ)| 1

W (X, φ + ξ)‖F(X)‖Tφ+ξ (h). (B.22)

By (B.16) and (B.9),

‖IR‖Tφ(h) ≤ E+| fR(ξ)| ‖F(X)‖Tφ+ξ (h) ≤ M(φ)E+W (φ + ξ) ≤ M(φ)W+(X, φ). (B.23)

When ‖ξ‖� ≤ R, if ‖φ‖� →∞ then also ‖φ + ξ‖� →∞. Since F vanishes at weighted
infinity, it follows that M(φ)→ 0 as ‖φ‖� →∞, and hence

lim‖φ‖�→∞‖IR‖Tφ(h)W
−1+ (X, φ) = 0 (B.24)

With (B.21) and (B.18), this concludes the proof. �	

Appendix C: Polymer Geometry

We now prove some geometric lemmas used in our analysis. They concern f j (z, a, X), which
is defined for z ≥ 0 and a ∈ (0, 2−d ] and X ∈ P j by (5.21). We begin with the following
elementary but useful observation. We claim that for X ∈ P , 0 ≤ a′ < a, C ≥ 1, and for ε
sufficiently small,

C |X | j ε f (z,a,X) ≤ C2d
ε f (z,a′,X). (C.1)

This follows from

C |X | j ε f (z,a,X) ≤ εzC2d
(Cεa)(|X | j−2d )+ ≤ εzC2d

(εa′)(|X | j−2d )+ = C2d
ε f (z,a′,X), (C.2)

when ε is small enough that Cεa ≤ εa′ .
The following is a subadditivity property of f j . Fix any a ∈ [0, 2−d z], and let X =⋃

i Xi

be a nonempty union of disjoint sets X1, . . . Xn ∈ P j . Then

f j (z, a, X) ≤
∑

i

f j (z, a, Xi ). (C.3)

To prove this, we observe that for |X | j ≤ 2d the inequality reduces to z ≤ ∑
i z, and

otherwise the left-hand side equals

z − a2d +
∑

i

a|Xi | j ≤
∑

i

(
z − a2d + a|Xi | j

)
≤

∑

i

f j (z, a, Xi ). (C.4)

For F,G ∈ K j it is straightforward to check that F ◦ G is in K j . We use the following
estimate for the circle product several times.

Lemma C.1 Fix 0 < aout < ain ∈ (0, 2−d ] and let ε̄ be sufficiently small depending on
aout, ain. Let ε ∈ (0, 1) and δ = 2−2d

ε. If F,G ∈ Bin(δ) then F ◦ G ∈ Bout(ε).

Proof By the triangle inequality, the product property of the norm, the hypotheses and the
subadditivity (C.3) of f j , we have, for Z connected and ε̄ ≤ 1,
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‖(F ◦ G)(Z)‖ j ≤
∑

X∈P(Z)
‖F(X)‖ j ‖G(Z \ X)‖ j ≤ δ

∑

X∈P(Z)
ε̄ f j (ain,X)ε̄ f j (ain,Z\X) (C.5)

≤ δ2|Z |ε̄ f j (ain,Z) ≤ δ22d
ε̄ f j (aout,Z) = εε̄ f j (aout,Z). (C.6)

The last inequality is obtained from (C.1) and requires ε̄ to be small. This completes the
proof. �	
Lemma C.2 For z ≥ 0, zlead ≥ a ≥ 0, and X, Y disjoint with X �= ∅,

f (z, a, X)+ zlead|Y | j ≥ f (z, a, X ∪ Y ). (C.7)

Proof Case |X | j ≥ 2d . The left-hand side equals

z + a
(|X | j − 2d)+ zlead|Y | j ≥ z + a

(|X ∪ Y | j − 2d), (C.8)

which equals the desired right-hand side.
Case |X | j < 2d , |X ∪ Y | j ≥ 2d . Since X is not empty the left-hand side equals

z + zlead|Y | j > z + a|Y | j + a
(|X | j − 2d) = z + a

(|X ∪ Y | j − 2d), (C.9)

which equals the desired right-hand side.
Remaining case |X ∪ Y | j < 2d . Since X is not empty, the left-hand side equals

z + zlead|Y | j ≥ z = z + a
(|X ∪ Y | j − 2d)

+, (C.10)

which equals the desired right-hand side. �	
The following lemma is stated (but not proved) above [24, Lemma 2]. A consequence of the

lemma is that if X ∈ S j then X ∈ S j+1. The important geometrical constant η = η(d) > 1
used in Lemma 5.6 is introduced in Lemma C.3.

Lemma C.3 There is an η = η(d) > 1 such that for all L ≥ L0(d) = 2d + 1 and for all
large sets X ∈ C j ,

|X | j ≥ η|X | j+1. (C.11)

In addition, (C.11) holds with η = 1 for all X ∈ P j (not necessarily connected, and possibly
small).

Proof Fix L ≥ L0(d) = 2d + 1 (this restriction enters only in the third paragraph of the
proof). It is clear that for any m ≥ 1 the closure of any set of m j-blocks contains at most m
( j + 1)-blocks, and hence (C.11) always holds with η = 1.

Assume that X is a large connected set. Let Δ = Δ(d) denote the maximum possible
number of blocks that touch a connected set of 2d + 1 blocks. We will prove (C.11) by
induction on |X | j+1, with η = 1+ 1/(2d + 1+ 2dΔ).

To begin the induction, we claim that if |X | j+1 = 2d + 1 then |X | j ≥ 2d + 2, and hence

|X | j

|X | j+1
≥ 2d + 2

2d + 1
= 1+ 1

2d + 1
≥ η. (C.12)

To prove the claim, we proceed as follows. The maximum possible value of |X | j+1 is |X | j ,
so we only need to rule out the case |X | j = |X | j+1 = 2d + 1, which we now assume. Let
D(X) be the integer part of L− j maxx,y∈X |x − y|∞; this is a measure of the diameter of X
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counted in number of j-blocks. Then D(X) ≤ 2d + 1 ≤ L . Also, every j-block in X lies
in a different ( j + 1)-block in X . However, any set of 2d + 1 ( j + 1)-blocks contains a pair
of blocks B1, B2 that do not touch. Therefore D(b1 ∪ b2) > L for every pair of j-blocks
b1 ∈ B1 and b2 ∈ B2, so that b1 ∪ b2 ⊂ X is not possible. This contradiction proves the
claim.

To advance the induction, suppose that (C.11) holds when 2d + 1 ≤ |X | j+1 ≤ n, and
suppose now that |X | j+1 = n + 1. We remove from X a connected subset of 2d + 1 blocks.
The complement of this connected subset consists of no more thanΔ connected components
(since if there were more then one of these components is not adjacent to the removed subset
nor to any of the at mostΔ components adjacent to the removed subset, and hence X would
be disconnected). We list these components as X1, . . . , XΔ, and choose k ∈ {0, 1, . . . , Δ}
such that |Xi | j+1 ≥ 2d + 1 for i ≤ k and |Xi | j+1 ≤ 2d for i > k (some of the latter
components may be empty). Let M = ∑k

i=1 |Xi | j+1 and m = ∑Δ
i=k+1 |Xi | j+1. By the

induction hypothesis applied to Xi for i ≤ k, and by (C.11) with η = 1 for i > k,

|X | j

|X | j+1
≥ 2d + 2+ ηM + m

2d + 1+ M + m
= 1+ 1+ (η − 1)M

2d + 1+ M + m

≥ 1+ 1+ (η − 1)M

2d + 1+ M +Δ2d
= 1+ 1+ (η − 1)M

1
η−1 + M

= η, (C.13)

where we used our specific choice for the value of η in the penultimate step (note that the last
equality is true no matter what the value of M). This advances the induction and completes
the proof. �	

Lemma C.4 Suppose that either X K has at least two components, or X K has at least one
component and Xδ I �= ∅. Let nδ I = |Xδ I | j and write X Ki for the connected components of
X K . Let z ≥ z0 > 0. Let 0 < a ≤ 1 and let ã ∈ (a, ηa). There exist positive δ, v, depending
on d, z0, ã, a, such that

nδ I +
∑

i

f j (z, a, X Ki ) ≥ v + δ|Xδ I ∪ X K | j+1 + f j+1(z, ã, Xδ I ∪ X K ). (C.14)

Proof Suppose first that Xδ I ∪ X K ∈ S j+1. Then the right-hand side is at most v+ δ2d + z.
In the two cases listed at the beginning of the statement of the lemma, the left-hand side is at
least 2z, 1+ z. There exist v, δ positive so that each of these is greater than v + δ2d + z.

So suppose now that Xδ I ∪ X K �∈ S j+1. For non-empty X K we let
∑

i denote the sum
over components X Ki . We reduce v, δ, if necessary, so that ã+δ ≤ ηa and v− ã2d ≤ −a2d .
By Lemma C.3, using a ≤ 1 and (C.3), we have

v + δ|Xδ I ∪ X K | j+1 + f j+1(z, ã, Xδ I ∪ X K ) ≤ v + z − ã2d + ηa|Xδ I ∪ X K | j+1

≤ v + z − ã2d + anδ I + a|X K | j

≤ z − a2d + nδ I + a|X K | j

≤ nδ I + f j (z, a, X K )

≤ nδ I +
∑

i

f j (z, a, X Ki ), (C.15)

as required.
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Lemma C.5 Let 0 < z < 2z′. Recall the definition of Y0(W ) below (D.17). There exists
c = c(d) such that for ain ∈ (0, c), aout ∈ [0, ain], and for (X, {(UB , B)},UM ) ∈ Y0(W ),

z′|X | j +
∑

i

f j (z, ain,UM,i ) ≥ (ain − aout)|W | j + f j (z, aout,W ). (C.16)

Proof Let UM,i , i = 1, . . . , nM , be the components of UM . Let S denote the number of
small sets U that can contain a given block B. Then |X�| j ≤ 2d S|X | j , and hence, since
W = X� ∪UM ,

|W | j ≤ 2d S|X | j +
∑

i

|UM,i | j . (C.17)

Letting u = ain − aout we rewrite this as

u|W | j + aout|W | j + z − aout2
d ≤ ain2d S|X | j +

∑

i

ain|UM,i | j + z − aout2
d . (C.18)

The definition of Y0 excludes the case X = ∅ so we assume X �= ∅ and we can also assume
W �∈ S, because W = X�∪UM and X� �∈ S. Then f j (z, aout,W ) = z−aout2d+aout|W | j .
Therefore the left-hand side is u|W | j+ f j (z, aout,W ). Let v = z−ain2d so that v+ain|U | j ≤
f j (z, ain,U ). Then we can rewrite the inequality as

u|W | j + f j (z, aout,W ) ≤ ain2d S|X | j +
∑

i

ain|UM,i | j + v + u2d

= ain2d S|X | j +
∑

i

(
v + ain|UM,i | j

)+ (1− nM )v + u2d

≤ ain2d S|X | j +
∑

i

f j (z, ain,UM,i )+ (1− nM )v + u2d .

(C.19)

We choose ain > 0 sufficiently small that v = z − ain2d ≥ 0. Decreasing ain if necessary
we have ain2d S + u2d ≤ z′. If nM ≥ 1 then we use ain2d S|X | j + u2d ≤ z′|X | j to obtain
the desired result.

Now we consider the case nM = 0, which is the same as UM = ∅. Decreasing ain if
necessary, and using z < 2z′, we have ain2d S+ 1

2 z+u2d ≤ z′. The definition of Y0 requires
|X | j ≥ 2 when UM = ∅ so

ain2d S|X | j + (1− nM )v + u2d = ain2d S|X | j + v + u2d

≤ ain2d S|X | j + z + u2d

≤ (
ain2d S + 1

2 z + u2d)|X | j

≤ z′|X | j . (C.20)

This completes the proof. �	

Appendix D: Change of Variables

In this section, we prove Proposition 4.1, which for convenience we restate here as Proposi-
tion D.1. For further discussion of this proposition, see [13, Section 5]. This section applies
for any norm ‖ · ‖ on N which obeys the product property [17, (1.44)]. We make use of
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658 D. C. Brydges, G. Slade

(4.1)–(4.5), and in particular recall that M is defined in (4.5), for Kin ∈ K and U ∈ C and
with J̄ (U, B) = I U

in J (U, B), by

M(U ) = Kin(U )−
∑

B∈B(U )
J̄ (U, B). (D.1)

Proposition D.1 Let ain be small as specified in Lemma C.5. Let aout < ain and z′ > 1
2 z.

Let ρ be sufficiently small depending on the difference aout − ain. Let ε ∈ (0, 1). Let J, Iin

be as in (4.1)–(4.4). Suppose that Kin ∈ K and J satisfy

sup
D(J )

‖I U
in J (U, B)‖ ≤ ερz′ , (D.2)

M ∈ BFin (ερ
z). (D.3)

Then there exists Kout ∈ K such that

(Iin ◦ Kout)(Λ) = (Iin ◦ Kin)(Λ), (D.4)

Kout is polynomial in Iin, J̄ , Kin, (D.5)

Kout = M + E with E ∈ BFout (ερ
z+(ain−aout)/2). (D.6)

If Kin = 0 and J = 0, then Kout = 0.

Proof For U ∈ C and B ∈ B, with J̄ (U, B) = I U
in J (U, B), let

J̄ (U ) =
∑

B∈B(U )
J̄ (U, B). (D.7)

For UJ ∈ P , let

J̄ (UJ ) =
∏

U∈Comp(UJ )

J̄ (U ). (D.8)

By the definition of M and the component factorisation property of Kin,

(Iin ◦ Kin)(Λ) =
∑

Uin∈P
IΛ\Uin
in Kin(Uin)

=
∑

Uin∈P
IΛ\Uin
in

∏

U∈Comp(Uin)

(
J̄ (U )+ M(U )

)

=
∑

Uin∈P
IΛ\Uin
in

∑

ÛM⊂Comp(Uin)

J̄ (Uin \UM )M(UM ), (D.9)

where UM is the union of components in ÛM .
Given X ∈ P , let B1, . . . , Bn be a list of the blocks in B(X), and let

U(X) ={{(UB1 , B1), . . . , (UBn , Bn)} :
UBi ∈ P, UBi ⊃ Bi , UBi does not touch UB j for i �= j}. (D.10)

(In particular, U(X) is empty if any two blocks of X touch each other.) Given an element of
U(X), we write UJ = ∪B∈B(X)UB , and write P ′(Λ \UJ ) for the set of polymers that do not
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Fig. 3 This figure illustrates an element of Y(W ). The white squares are the blocks of X , and are centred in
two larger squares whose union is X�. Each white square B is contained in a small set UB , which is itself
contained in B�. The components of UM are the two shaded components without white squares, and W is
the total area

touch UJ . By interchanging the sums over blocks B in (D.7) and polymers UB , we obtain

(Iin ◦ Kin)(Λ) =
∑

X∈P(Λ)

∑

{(UB ,B)}∈U(X)

⎛

⎝
∏

B∈B(X)
J̄ (UB , B)

⎞

⎠

×
∑

UM∈P ′(Λ\UJ )

M(UM )I
Λ\(UM∪UJ )
in . (D.11)

Recall the definition of the small set neighbourhood of X in Definition 1.6. For W = X� ∪
UM , we write

IΛ\(UM∪UJ )
in = IΛ\W

in I W\(UM∪UJ )
in . (D.12)

With this notation the claim (D.4) holds with Kout given by

Kout(W ) =
∑

(X,{(UB ,B)},UM )∈Y(W )

⎛

⎝
∏

B∈B(X)
J̄ (UB , B)

⎞

⎠ M(UM )I
W\(UM∪UJ )
in (W ∈ P).

(D.13)

Here Y(W ) denotes the set of triples (X, {(UB , B)},UM ), with X ∈ P(W ), {(UB , B)} ∈
U(X), UM ∈ P ′(Λ \ UJ ), and X� ∪ UM = W (see Fig. 3). Note that the small set neigh-
bourhood X� contains all possible unions UJ of small sets in the summation over the UB .

Note that the above formula implies that if J = 0 then Kout = Kin. In particular, as
claimed, Kout = 0 when Kin = 0 and J = 0. Also, it shows that Kout is polynomial in
Iin, J̄ , Kin as claimed in (D.5). As an explicit example, for the case where W is a single
block B, (D.13) gives

Kout(B) = M(B)+
∑

U :(U,B)∈D(J )
J̄ (U, B). (D.14)

The properties that define Y(W ), together with the hypothesis that Kin ∈ K and that J
obeys (4.3), can be used to verify the claim that Kout ∈ K. In particular, Kout obeys the
factorisation property of Definition 1.7 by construction, and the field locality property holds
because we have constructed Kout(W ) as a polynomial in the local objects J̄ , M , Iin evaluated
on sets contained in W .

For the bound claimed in (D.6), we first show that the contribution to (D.13) due to triples
with |X | = 1 and UM = ∅ vanishes. This feature is a crucial ingredient. In this case, X is a
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single block B, Kout(W ) = 0 unless W = X� = B� and thus B is uniquely determined by
W , and by (4.2), the contribution to (D.13) is

∑

U∈S:U⊃B

J (U, B)I B�
in = 0. (D.15)

Let W ∈ C. As in (5.21), we write

f j (z, a, X) =
{

z + f j (a, X) X �= ∅

0 X = ∅,
(D.16)

for z ≥ 0, a ∈ (0, 2−d ] and X ∈ P j . We apply the triangle inequality, product property [17,
(1.44)], and the hypotheses to (D.13), to obtain

‖Kout(W )− M(W )‖ ≤
∑

(X, U ,UM )∈Y0(W )

ε ρz′|X |∏

i

(
ρ f (z,ain,UM,i )

)
α
|W\(UJ∪UM )|
I ,

(D.17)

where Y0(W ) imposes the constraints on (X, {(UB , B)},UM ) required in (D.13) with the
additional constraint that the terms with X = ∅, UM = W , and with |X | = 1, UM =
∅ are omitted (the first omission is because M is subtracted in (D.17) and the second is
due to the cancellation in (D.15)). Since αI ≥ 1, and since W \ (UJ ∪ UM ) ⊂ X� and
|X�| ≤ 2d S|X |, the power of αI above can be replaced by const|W |. By Lemma C.5, for
(X, {(UB , B)},UM ) ∈ Y0(W ), and with 2u = ain − aout, we have

z′|X | +
∑

i

f (z, ain,UM,i ) ≥ 2u|W | + f (z, aout,W ). (D.18)

Therefore,

‖Kout(W )− M(W )‖ ≤ ερ2u|W |+ f (z,aout,W )const|W ||Y0(W )|, (D.19)

where |Y0(W )| denotes the cardinality of Y0(W ). Let S denote the number of small sets
that can contain a given block B. For fixed X , there are at most S|X | possible choices of
the small sets UB specified in the definition of Y0(W ). We use this, and also relax the
summation to disjoint X and UM in W . Since there are at most 3|W | ways to partition W
into X,UM ,W \ (X ∪ UM ), we can absorb |Y0(W )| into const|W |. Finally, we choose ρ
sufficiently small depending on u so that const|W | ≤ 1

2ρ
−u|W |. Then

‖Kout(W )− M(W )‖ ≤ 1
2ε ρ

u|W |+ f (z,aout,W ) ≤ 1
2ε ρ

u+ f (z,aout,W ), (D.20)

which implies (D.6). �	

Appendix E: Approximate Isometry Between Finite and Infinite Volume

The proof of Theorem 2.5 uses Lemmas E.4–E.6, which are given below. Lemmas E.1–E.3
are used in the proof of Lemmas E.4 and E.5. In this section k is any scale, in particular it can
be j or j + 1. Let X ∈ Pk(Z

d). A coordinate map ι from X to a torusΛ exists for allΛ with
diam(Λ) ≥ 2diam(X). Given a coordinate map ι : X → Λ and a test function g ∈ �(ιX),
we define a test function gι ∈ �(X) by (gι)z = gιz , where ιz is defined by letting ι act on
the sequence z componentwise.
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For the first lemma, recall the pairing in the definition of the Tφ semi-norm in [15, Defin-
ition 3.3].

Lemma E.1 Let X ∈ Pk(Z
d). For a coordinate map ι : X → Λ, F ∈ N (X), g ∈ �(Λ),

and φ ∈ C
Λ,

〈ιF, g〉φ = 〈F, gι〉φι (E.1)

Proof Both sides are linear in F . By (1.81), it suffices to consider F = Fyψ
y . Then ιF =

ι(Fy)ψ
y
ι . According to (1.82),

〈ιF, g〉φ =
∑

x∈(ιX)∗
1

x !
(

Fy(φι)
)

x
gx,ιy =

∑

x∈X∗

1

x ! Fx,y(φι)gιx,ιy = 〈F, gι〉φι . (E.2)

�	
For real t > 0 and a nonempty polymer X ∈ Pk(Z

d), let Xt ⊂ Z
d be the smallest

subset that contains X and all points in Z
d that are within distance t Lk of X . The next

lemma expresses a sense in which coordinate maps are approximately isometries as maps
between spaces of test functions. Our norms on test functions (see [15, Example 3.2] and
[15, (3.37)]) depend on a parameter h. For the next lemma, we exhibit this dependence by
writing �k(ιX, h), etc.

Lemma E.2 Let X ∈ Pk(Z
d), let s > 0, and let ι be a coordinate map from a polymer

containing Xs into a torus Λ. There exists hs > 0 and c > 0 (independent of X, k, ι,Λ),
with 1 ≤ h/hs ≤ 1+ cs−1, such that for g ∈ �k(ιX, h),

‖gι‖�k (X,h) ≤ ‖g‖�k (ιX,h) ≤ ‖gι‖�k (X,hs ), (E.3)

and likewise for the �̃k semi-norm.

Proof We give the proof for the case � = Λ, because the general case is merely an elaboration
of notation. We write� = �k . By the definition of the norm on test functions, we see that it
is sufficient to fix an integer p ≥ 1 and prove the lemma for the case where the test function
g ∈ �(ιX, h) is zero except on sequences of length p. The domain ιX is contained in a torus
Λ. By thinking of Λ as a hypercube in a lattice of hypercubes paving Z

d , we identify a test
function onΛ with a function on (Zd)p which is periodic in each component. The�(ιX, h)
norm of g is the infimum of ‖g′‖�(Λ) over extensions g′ of g toΛp; by the identification and
the definition of gι this is the infimum of ‖g′ι‖�(Zd ,h) over extensions g′ι of gι to functions
of (Zd)p that are periodic in each component. The norm ‖gι‖�(X,h) is the same but the
extensions are not constrained to be periodic. Therefore

‖g‖�(ιX,h) ≥ ‖gι‖�(X,h) (E.4)

which is the lower bound claimed in (E.3).
Let r = s

3 . By the definition of �(X, h), there exists an extension g̃ι ∈ �(Zd , h) of gι
such that

‖g̃ι‖�(Zd ,h) ≤ (1+ r−1)‖gι‖�(X,h). (E.5)

By [16, Lemma 3.3], there exists a function χ = χr , which is equal to 1 on X p and 0 on
Z

d p \ X p
2r , and a constant c0 > 0 (independent of p, X , and L j ), such that

‖g̃ιχ‖�(Zd ,h) ≤
(
1+ c0r−1)p‖g̃ι‖�(Zd ,h). (E.6)
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In combination with (E.5), this gives the existence of hs obeying the desired bound, such that

‖g̃ιχ‖�(Zd ,h) ≤ ‖gι‖�(X,hs ). (E.7)

By hypothesis, the domain of ι strictly contains X2r , so we can invert ι on ιX2r . Therefore
(g̃ιχ)ι−1 is an extension of g|ιX to the subset ιX2r of Λ. Provided L is large enough so that
r Lk ≥ p� for all k, the derivatives up to order p� in each argument of this extension are
zero near the inner boundary of ιX2r so we can further extend by zero to all of Λ. Call this
extension G. Then, by definition of �(ιX, h),

‖g‖�(ιX,h) ≤ ‖G‖�(Λ,h) = ‖g̃ιχ‖�(Zd ,h) ≤ ‖gι‖�(X,hs ) (E.8)

and this proves the upper bound of (E.3). �	
The next three lemmas express senses in which coordinate maps are isometries, provided

a small change is made in the parameter h.

Lemma E.3 Let X ∈ Pk(Z
d), let ι : X̃ → Λbe a coordinate map with X N/4 ⊂ X̃ ∈ Pk(Z

d),
and let φ ∈ C

Λ. The induced map ι : N (X) → N (ιX) is defined in (1.82). This map is
linear, and there exists h− = h−(N ) ≤ h, with h− → h as N = N (Λ) → ∞, such that
‖F‖Tφι (h

−) ≤ ‖ιF‖Tφ(h) ≤ ‖F‖Tφι (h) for all F ∈ N (X).

Proof The linearity of the map is clear. We write� = �k . Let F ∈ N (X) and g ∈ �(ιX, h).
By Lemma E.1, the definition of the Tφ(h) norm, and Lemma E.2,

|〈ιF, g〉φ | = |〈F, gι〉φι | ≤ ‖F‖Tφι (h)‖gι‖�(X,h) ≤ ‖F‖Tφι(h)‖g‖�(ιX,h). (E.9)

Taking the supremum over g with unit norm, we have ‖ιF‖Tφ(h) ≤ ‖F‖Tφι (h) which is
one of the desired inequalities. For the reverse estimate, we consider N (Λ)→ ∞, assume
diamX < 1

4 diamΛ, let s = 1
4 N (Λ) and write h− for hs of Lemma E.2. Note that h− ↑ h as

desired. By the second bound in Lemma E.2, for a test function f ∈ �(X, h),
|〈F, f 〉φι | = |〈ιF, fι−1〉φ | ≤ ‖ιF‖Tφ(h)‖ fι−1‖�(ιX,h) ≤ ‖ιF‖Tφ(h)‖ f ‖�(X,h−). (E.10)

Taking the supremum over f with ‖ f ‖�(X,h−) = 1, we have ‖F‖Tφι (h
−) ≤ ‖ιF‖Tφ(h), which

completes the proof. �	
Lemma E.4 Let X ∈ Pk(Z

d), F ∈ N (X�), and let ι : X̃ → Λ be a coordinate map with
X N/4 ⊂ X̃ ∈ Pk(Z

d). The map F �→ ιF is a linear map from N (X�) to N (ιX�), and
obeys

‖ιF‖G ≤ ‖F‖G (E.11)

for either choice of the regulators G = G or G = G̃ (recall (1.35) and (1.36)).

Proof The linearity of F �→ ιF is clear. By the definition of the norm, followed by Lemma E.3
and then Lemma E.2 (to bound the norm in the regulator),

‖ιF‖G = sup
φ∈CΛ

‖ιF‖TφG−1(ιX, φ) ≤ sup
φ∈CΛ

‖F‖TφιG−1(ιX, φ)

≤ sup
φ∈CΛ

‖F‖TφιG−1(X, φι) ≤ ‖F‖G, (E.12)

and the proof is complete. �	
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Lemma E.5 Let h− be as in Lemma E.3, and let γ+ = γ (h/h−)2. For X ∈ Pk(Z
d),

F ∈ N (X�), γ ∈ (0, 1], and for a coordinate map ι : X̃ → Λ with X N/4 ⊂ X̃ ∈ Pk(Z
d),

‖F‖T0(h−) ≤ ‖ιF‖T0(h) (E.13)

‖F‖G̃γ+ (h−) ≤ ‖ιF‖G̃γ (h). (E.14)

Proof We only prove (E.14), because (E.13) is a specialisation of the same method to φ = 0.
Let φ ∈ C

Λ. By Lemma E.2,

‖φ‖�(ιX,h) ≤ ‖φι‖�(X,h−) = (h/h−)‖φι‖�(X,h), (E.15)

and hence, by definition of the regulator, G̃γ (ιX, φ) ≤ G̃γ+(X, φι). Therefore, by
Lemma E.3,

‖F‖Tφι (h
−) ≤ ‖ιF‖Tφ(h) ≤ ‖ιF‖Tφ(h)G̃

−γ (ιX, φ)G̃γ+(X, φι). (E.16)

We divide by G̃γ+ and take the the supremum over φ to complete the proof. �	
Let X ⊂ Ck(V), and let F : X → N have the properties listed in Definition 1.7 except

that Euclidean covariance is replaced by the restricted version that if X, Y ∈ X and E is a
Euclidean automorphism such that Y = E X then E(F(X)) = F(E X). Let W : Ck(V) →
R+ be a Euclidean invariant function such that ‖F(X)‖k ≤ W (X) for X ∈ C(U ). The
following lemma, whose proof does not depend on the other lemmas in this appendix, shows
that F has an extension to an element of K(V).

Lemma E.6 Any F : X → N as above has an extension to an element F̂ ∈ K(V) such that
‖F̂(X)‖k ≤ W (X) for X ∈ C(V). The map F �→ F̂ is linear, and if F(X) satisfies (1.37)
for X in X , then the same is true for F̂(X) for all polymers X.

Proof For X ∈ Ck(V) such that X = EY for some automorphism E of V and some Y ∈ X ,
define F̂(X) = E F(Y ). If there exists another Y ′ ∈ X and an automorphism E ′ such that
X = E ′Y ′, then A = E−1 E ′ is a Euclidean automorphism such that AY ′ = Y . By hypothesis,
E ′F(Y ′) = E AF(Y ′) = E F(AY ′) = E F(Y ), so this definition of F̂ is not dependent on
choices. If there is no pair Y, E such that X = EY then define F̂(X) = 0. By construction
F̂ has the properties listed in Definition 1.7, the extension is bounded by W , linear in F , and
preserves the property (1.37). �	

Appendix F: Aspects of Symmetry

We now prove properties of the polynomial Q of (1.70), and prove in particular that it lies in Q
as claimed below (1.70). In addition, we prove that Gaussian expectation preserves defining
properties of the space K in Definition 1.7; this is used in the proof of Proposition 5.1.

We draw attention to a notational clash in this appendix: Q denotes the polynomial (1.70)
in Lemma F.2, whereas Q denotes the supersymmetry generator (see [9, Section 5.2.1] or
[21, Section 6]) in Lemma F.3.

For the following lemma, we write F |0 for the constant part of F ∈ N , which results
from setting φ = 0 and ψ = 0 in F .

Lemma F.1 For F ∈ N and X ⊂ Λ, the constant monomial of LocX F is F |0.
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Proof It is the defining property of LocX F in [16, Definition 1.6] that 〈F, g〉0 = 〈LocX F, g〉0
for all test functions g in the space Π of polynomial test functions. One such test function
is g∅ = 1 (a test function with no arguments). By setting g = g∅ in the pairing, we
obtain F |0 = (LocX F)|0. Since (LocX F)|0 is the constant monomial of LocX F , the proof
is complete. �	
Lemma F.2 The formula Q(B) = ∑

Y∈S(Λ):Y⊃B LocY,B I−Y K (Y ) of (1.70) defines an
element Q ∈ Q.

Proof The operator Loc preserves Euclidean covariance, gauge invariance, and supersym-
metry, according to [16, Proposition 1.9] and [16, Proposition 1.14]. Since V and K have
these properties, therefore Q also has them. It is then a consequence of [9, Lemma 5.3] that Q
lies in Q, once we prove that Q cannot have a constant term. But by Lemma F.1, the constant
monomial in LocY I−Y K (Y ) equals the constant part of I−Y K (Y ), and this is zero by the
assumption that K ∈ K and V ∈ Q. Therefore, the constant monomial in LocY,B I−Y K (Y )
is also zero, and hence so is the constant monomial in Q(B), as desired.

To understand the role of the block B in more detail, we first note that any choice of B
determines π∅ Q, because by the Euclidean invariance of π∅K specified in Definition 1.7,
(1.70) assigns the same value to π∅ Q for all choices of B. For the observable terms, because
(1.9) contains indicator functions, (1.70) does not determine the coupling constants in παQ
(α = a, b, ab) unless B contains a or b. Taking all choices of B, (1.70) consistently deter-
mines a unique element Q in Q. �	
Lemma F.3 Let F ∈ N and suppose that E j+1θF exists.

(i) If F is gauge invariant or Euclidean covariant, then so is E j+1θF.
(ii) The supersymmetry generator Q commutes with E j+1θ , i.e., QE j+1θ = E j+1θQ. In

particular, if F is supersymmetric then so is E j+1θF.
(iii) If F is supersymmetric, then E j+1 F = F |0. In particular, if F has zero constant part,

then so does E j+1θF.

Proof Throughout the proof, we write simply E for E j+1, and we omit some details. All
forms in the proof have even degree.

(i) Let A j+1 = C−1
j+1. By definition,

(EθF)(σ, σ̄ , φ, φ̄, ψ, ψ̄) =
∫

e−SA j+1 (ξ,ξ̄ ,η,η̄)F(σ, σ̄ , φ + ξ, φ̄ + ξ̄ , ψ + η, ψ̄ + η̄),
(F.1)

where the action SA j+1 is Euclidean and gauge invariant. The claim can be seen to follow
from this.

(ii) From [9, (5.13)–(5.14)], we know that Q̂ = (2π i)−1/2 Q commutes with L and hence
also with eL. Since the action of Eθ on polynomials is the same as the action of eL by
[15, Lemma 4.2], this implies that EθQ P = QEθ P for polynomials P ∈ N .
A proof for general integrable elements of N can be based on the argument of [14,
Lemma A.2], and we provide a sketch. By definition, θF is a function of fluctuation and
other fields, and the expectation integrates out the fluctuation fields leaving dependence
on the others. We denote integration with respect to the fluctuation fields by

∫
1, with

respect to the other fields by
∫

2, and with respect to all fields by
∫

21. Then for a form
K12 depending on both fields, and a form K2 depending on the other fields, since the

123



A Single Renormalisation Group Step 665

integral of any Q-exact form is zero (see [21, p. 58]), we have
∫

21 Q(K2 K12) = 0.
Therefore, since Q is an antiderivation and K2 has even degree,
∫

2
K2

∫

1
QK12 =

∫

21
K2(QK12) = −

∫

21
(QK2)K12 = −

∫

2
(QK2)

∫

1
K12.

(F.2)

Similarly,
∫

2 Q(K2
∫

1 K12) = 0, and hence
∫

2(QK2)
∫

1 K12 = − ∫
2 K2 Q

∫
1 K12. Thus

we have shown that
∫

2
K2

∫

1
QK12 =

∫

2
K2 Q

∫

1
K12. (F.3)

Since K2 is arbitrary, this implies that Q
∫

1 K12 =
∫

1 QK12.
We set K12 = e−SAθF and use Qe−SA = 0 (for A = C−1

j+1) to conclude that

QEθF = Q
∫

e−SAθF =
∫

Q(e−SAθF) =
∫

e−SA QθF = EQθF. (F.4)

In particular, QEθF = EQθF . It suffices finally to show that QθF = θQ F . Since Q
is an antiderivation and θ is a homomorphism, it is enough to verify that QθF = θQ F
for F = f (φ, φ̄), F = ψx , and F = ψ̄x . These are readily verified using Q = d + ιX
(see [21, (6.4)]).

(iii) Suppose that F is supersymmetric. Let F̃ = F − F |0, which is supersymmetric and
has zero constant part. For m ≥ 0, let F̃(m) = e−m

∑
x∈Λ τx F̃ . We claim that EF̃(m) is

independent of m. Indeed, let vx = φxψx . Then τx = Q̂vx and since Q̂ F̃ = 0,

∂

∂m
EF̃(m) =

∑

x∈Λ
E(τx F̃(m)) =

∑

x∈Λ
E(Q̂(vx F̃(m))). (F.5)

The right-hand side of (F.5) is zero, since the integral of any Q-exact form vanishes
(see [21, p. 58]). It follows that EF̃ = limm→∞ EF̃(m), and this limit vanishes since
F̃ has zero constant part. Therefore, EF = F |0. In particular, since (EθF)|0 = EF , if
F has zero constant part then so does EθF . �	
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