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Abstract This paper is the third in a series devoted to the development of a rigorous renor-
malisation group method for lattice field theories involving boson fields, fermion fields, or
both. In this paper, we motivate and present a general approach towards second-order pertur-
bative renormalisation, and apply it to a specific supersymmetric field theory which represents
the continuous-time weakly self-avoiding walk on Z

d . Our focus is on the critical dimension
d = 4. The results include the derivation of the perturbative flow of the coupling constants,
with accompanying estimates on the coefficients in the flow. These are essential results for
subsequent application to the 4-dimensional weakly self-avoiding walk, including a proof of
existence of logarithmic corrections to their critical scaling. With minor modifications, our
results also apply to the 4-dimensional n-component |ϕ|4 spin model.
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1 Introduction

Within theoretical physics, in the study of critical phenomena, or quantum field theory, or
many-body theory, the calculation of physically relevant quantities such as critical exponents
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Perturbative Analysis of Weakly Self-avoiding Walk 493

or particle mass is routinely carried out in a perturbative fashion. The perturbative calcula-
tions involve tracking the flow of coupling constants which parametrise a dynamical system
evolving under renormalisation group transformations. In this paper, we present a general
formalism for second-order perturbative renormalisation, and apply it to the continuous-time
weakly self-avoiding walk.

This paper is the third in a series devoted to the development of a rigorous renormalisation
group method. In part I of the series, we presented elements of the theory of Gaussian inte-
gration and defined norms and developed an analysis for performing analysis with Gaussian
integrals involving both boson and fermion fields [11]. In part II, we defined and analysed
a localisation operator whose purpose is to extract relevant and marginal directions in the
dynamical system defined by the renormalisation group [12]. We now apply the formalism of
parts I and II to the perturbative analysis of a specific supersymmetric field theory that arises
as a representation of the continuous-time weakly self-avoiding walk [10]. Our development
of perturbation theory makes contact with the standard technology of Feynman diagrams as
it is developed in textbooks on quantum field theory, but our differences in emphasis prepare
the ground for the control of non-perturbative aspects in parts IV and V [13,14].

The results of this paper are applied in [2,3], in conjunction with [5,13,14], to the analysis
of the critical two-point function and susceptibility of the continuous-time weakly self-
avoiding walk. They are also applied in [6] to the analysis of the critical behaviour of the
4-dimensional n-component |ϕ|4 spin model. Our emphasis here is on the critical dimension
d = 4, which is more difficult than dimensions d > 4. In this paper, we derive the second-
order perturbative flow of the coupling constants, and prove accompanying estimates on the
coefficients of the flow. The flow equations themselves are analysed in [2,5]. While the results
of this paper are for the specific supersymmetric field theory representing the continuous-
time self-avoiding walk, the principles are of wider validity, and apply in particular to the
n-component |ϕ|4 model.

The paper is organised as follows. We begin in Sect. 2 by motivating and developing
a general approach to perturbation theory. Precise definitions are made in Sect. 3, and the
main results are stated in Sect. 4. Proofs are deferred to Sects. 5 and 6. In addition, Sect. 6
contains a definition and analysis of the specific finite-range covariance decomposition that
is important in and used throughout [2,3,13,14].

2 Perturbative Renormalisation

In this section, we present an approach to perturbative renormalisation that motivates the
definitions of Sect. 3. The analysis is perturbative, meaning that it is valid as a formal power
series but in this form cannot be controlled uniformly in the volume. We do not directly
apply the contents of this section elsewhere, but they help explain why the definitions and
results that follow in Sects. 3 and 4 are appropriate and useful. Also, the approach discussed
here provides a perspective which guides related developments in part IV [13], and which
together with part V [14] lead to remainder estimates that do apply uniformly in the volume.
In particular, the proof of [13, Proposition 2.6], which goes beyond formal power series,
relies on the principles presented here.

Given integers L , N > 1, let� = Z
d/L N

Z denote the discrete torus of period L N . Recall
the definitions of the boson and fermion fields on�, and of the combined bosonic-fermionic
Gaussian integration Ew with covariance w, from [11, Sect. 2] (for notational simplicity we
write the bold-face covariances of [11] without bold face here). Recall also the definition of
local monomial in [12, (1.7)]. Suppose we have a vector space V of local polynomials in
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494 R. Bauerschmidt et al.

the boson and/or fermion fields, whose elements are given by linear combinations of local
monomials. The evaluation of the fields in an element V of V at a point x ∈ � is denoted by
Vx , and V (X) denotes the sum

V (X) =
∑

x∈X

Vx . (2.1)

Supersymmetry plays no role in these considerations, so we do not assume in this section
that the field theory is supersymmetric. For simplicity, we assume here that the elements of
V are translation invariant on �. Observable terms, which break translation invariance, are
handled by adapting what we do here to include the projections π∅ and π∗ as in (3.20) below.

The main problem we wish to address is the computation of a Gaussian integral Ewe−V0(�),
where V0 ∈ V , and where w = wN is a positive-definite covariance matrix indexed by �
which approximates the inverse lattice Laplacian [−�

Zd ]−1 in the infinite volume limit
N → ∞. We will see that divergences arise due to the slow decay of the covariance, but that
perturbative renormalisation leads to expressions without divergences, provided the coupling
constants are allowed to depend on scale. We consider the problem now at the level of formal
power series in the coupling constants, working accurately to second order and with errors of
order O(V 3

0 ). The notation O(V n
0 ) signifies a series in the coupling constants whose lowest

order terms have degree at least n, and we write ≈ to denote equality as formal power series
up to an error O(V 3

0 ). By expanding the exponentials, it is easy to verify that

Ewe−V0 ≈ e−EwV0+ 1
2 Ew(V0;V0), (2.2)

where the second term in the exponent on the right-hand side is the truncated expectation (or
variance)

Ew(V0; V0) = EwV 2
0 − (EwV0)

2. (2.3)

In (2.2)–(2.3), the abbreviation V0 = V0(�) = ∑
x∈� Vx has left the� dependence implicit.

Equation (2.2) gives the first two terms of the cumulant expansion and (2.3) is also referred
to as an Ursell function.

The formula (2.2) provides a way to perform the integral, but it is not useful because in
the infinite volume limit the covariance we are interested in decays in dimension d = 4 as
|x − y|−2, which is not summable in y, and this leads to divergent coefficients in (2.3). For
example, suppose that there just one field, a real boson field φ, and that V0 = V0(�) =∑

x∈� φ2
x . Evaluation of (2.3) in this case gives Ew(V0; V0) = |�|∑x∈� w(0, x)2. The

volume factor |�| is to be expected, but the sum over x is the bubble diagram and diverges
in the infinite volume limit when d = 4. This is a symptom of worse divergences that occur
at higher order.

A solution to this famous difficulty of infinities plaguing the functional integrals of physics
is provided by the renormalisation group method. For the formulation we are using, we decom-
pose the covariance as a sumw = wN = ∑N

j=1 C j . Then, as proved in [11, Proposition 2.6],
the expectation can be performed progressively via iterated convolution:

Ewe−V0(�) = ECN ◦ ECN−1θ ◦ · · · ◦ EC1θe−V0(�), (2.4)

with the operator θ as defined in [11, Definition 2.5] and discussed around (3.17) below.
This is an extension of the elementary fact that if X ∼ N (0, σ 2

1 + σ 2
2 ) then we can evaluate

E( f (X)) progressively as

E( f (X)) = E(E( f (X1 + X2) | X2)), (2.5)
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Perturbative Analysis of Weakly Self-avoiding Walk 495

with independent normal random variables X1 ∼ N (0, σ 2
1 ) and X2 ∼ N (0, σ 2

2 ).
An essential step is to understand the effect of a single expectation in the iterated expec-

tation (2.4). For this, we seek a replacement

I j (V,�) = e−V (�)(1 + W j (V,�)) (2.6)

for e−V (�), with W j (V,�) = ∑
x∈� W j (V, x) chosen to ensure that the form of I j (V,�)

remains stable under expectation. By stability, we mean that given Vj , there exists Vj+1 such
that

EC j+1θ I j (Vj ,�) ≈ I j+1(Vj+1,�) (2.7)

is correct to second order when both sides are expressed as power series in the coupling
constants of Vj . In particular the coupling constants of Vj+1 are power series in the coupling
constants of Vj . The recursive composition of these power series expresses Vj as a series
in the coupling constants of V0 but, as explained above, this series has bad properties as
j → ∞. However, if Vj+1 is instead expressed as a function of Vj as in (2.7), then this opens
the door to the possibility to arrange that (2.7) holds uniformly in j and N . This is one of
the great discoveries of theoretical physics—not in the sense of mathematical proof, but as a
highly effective calculational methodology. Its first clear exposition in terms of progressive
integration is due to Wilson [19], following earlier origins in quantum field theory [16].

We make several definitions, whose utility will become apparent below. According to [11,
Proposition 2.6], for a polynomials A in the fields, the Gaussian expectation with covariance

C can be evaluated using the Laplacian operator 1
2�C , via Eθ A = e

1
2�C A. For polynomials

A, B in the fields, the truncated expectation is then given by

EC (θ A; θB) = e
1
2�C (AB)− (

e
1
2�C A

)(
e

1
2�C B

)
. (2.8)

Given A, B, we define

FC (A, B) = e
1
2�C

(
e− 1

2�C A
)(

e− 1
2�C B

) − AB, (2.9)

and conclude that

EC (θ A; θB) = FC (ECθ A,ECθB). (2.10)

Also, for X ⊂ �, we define W j (V, X) = ∑
x∈X W j (V, x) with

W j (V, x) = 1

2
(1 − Locx )Fw j (Vx , V (�)), (2.11)

with Loc the operator studied in [12], and we use this to define W j (V,�) in (2.6). Then we
define P(X) = P(V, X) = ∑

x∈X Px by

Px = Locx EC j+1θW j (V, x)+ 1

2
Locx FC j+1(EC j+1θVx ,EC j+1θV (�)). (2.12)

Finally, the local polynomial Vpt is defined in terms of V by

Vpt = EC j+1θV − P. (2.13)

In Proposition 4.1 below, we present Vpt in full detail for the weakly self-avoiding walk.
The following is a version of [7, Proposition 7.1], with the observables omitted. Proposi-

tion 2.1 shows that the definitions above lead to a form of the interaction which is stable in
the sense of (2.7). Its proof provides motivation for the definitions of W and Vpt made above.

123



496 R. Bauerschmidt et al.

Proposition 2.1 As formal power series in V ,

EC j+1θ I j (V,�) ≈ I j+1(Vpt,�), (2.14)

with an error which is O(V 3).

Proof The proof includes some motivational remarks that are not strictly necessary for the
proof. Suppose that W j is given; the initial condition is W0 = 0. We initially treat W j as an
unknown sequence of quadratic functionals of V , of order O(V 2), and we will discover that
(2.11) is a good choice to achieve (2.14). We write V = V (�) to simplify the notation. We
use

e−V (1 + W ) ≈ e−V +W , (2.15)

together with (2.6) and (2.2), to obtain

EC j+1θ I j (V,�) ≈ e−EC j+1 θV
[

1 + EC j+1θW j (V,�)+ 1

2
EC j+1(θV ; θV )

]
. (2.16)

The second-order term EC j+1θW j + 1
2 EC j+1(θV ; θV ) contains contributions which are mar-

ginal and relevant for the dynamical system on the space of functionals of the fields, generated
by the maps EC j+1θ .

The idea of the renormalisation group is to track the flow explicitly on a finite-dimensional
subspace of the full space of functionals of the fields. In our case, this subspace is the space
V(�) of local polynomials, and we need to project onto this subspace of marginal and relevant
directions. Call this projection Proj. Below, we will relate Proj to the operator Loc of [12].
For now, the one assumption about Proj we need is that

(1 − Proj) ◦ Eθ ◦ Proj = 0. (2.17)

In other words, integration of relevant or marginal terms does not produce irrelevant terms,
or, to put it differently, the space onto which Proj projects is E-invariant. Then we define

P(�) = Proj

(
EC j+1θW j (V,�)+ 1

2
EC j+1

(
θV ; θV

))
. (2.18)

It follows from (2.10) that

EC (θV (�); θV (�)) = FC (ECθV (�),ECθV (�)), (2.19)

and hence (2.18) is consistent with (2.12) when Proj is taken to be Loc. We then define
Vpt = EC j+1θV − P as in (2.13). From (2.16), dropping� from the notation, we now obtain

EC j+1θ I j (V ) ≈ e−Vpt

(
1 + (1 − Proj)

(
EC j+1θW j (V )+ 1

2
EC j+1(θV ; θV )

))
. (2.20)

In this way, the effect of the marginal and relevant terms in (2.16) has been incorporated into
Vpt.

The demand that the form of the interaction remain stable under expectation now becomes

EC j+1θ I j (V ) ≈ e−Vpt (1 + W j+1(Vpt)), (2.21)

with

W j+1(Vpt) ≈ (1 − Proj)

(
EC j+1θW j (V )+ 1

2
EC j+1(θV ; θV )

)
. (2.22)
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Let V ′
j+1 = EC j+1θV ′

j with initial condition V ′
0 = V0. Since P and W are quadratic in V , it

would be sufficient to solve

W j+1(V
′
j+1) ≈ (1 − Proj)

(
EC j+1θW j (V

′
j )+ 1

2
EC j+1(θV ′

j ; θV ′
j )

)
, (2.23)

instead of (2.22). Thus we are led to the problem of showing that W as defined in (2.11)
satisfies (2.23).

Starting with j = 0, for which W0 = 0, we set

W1(V
′
1) = 1

2
(1 − Proj)EC1(θV ′

0; θV ′
0). (2.24)

For j = 1, this leads to

W2(V
′
2) ≈ 1

2
(1 − Proj)

(
EC2θ(1 − Proj)EC1(θV ′

0; θV ′
0)+ EC2(θV ′

1; θV ′
1)
)

≈ 1

2
(1 − Proj)

(
EC2θEC1(θV ′

0; θV ′
0)+ EC2(θV ′

1; θV ′
1)
)
, (2.25)

where in the second line we used (2.17). But by definition,

EC2θEC1(θV ′
0; θV ′

0(�))+ EC2(θV ′
1; θV ′

1) = EC1+C2(θV ′
0; θV ′

0), (2.26)

and hence

W2(V
′
2) ≈ 1

2
(1 − Proj)EC1+C2(θV0, θV0). (2.27)

Iteration then leads to the stable form

W j (V
′
j ) = 1

2
(1 − Proj)Ew j (θV0, θV0) with w j =

j∑

i=1

Ci . (2.28)

By (2.28) and (2.10),

W j (V
′
j ) = 1

2
(1 − Proj) Fw j (V

′
j , V ′

j ). (2.29)

In the above, Proj is applied to Fw j (V (�), V (�)) = ∑
x∈� Fw j (Vx , V (�)). Naively,

we wish to define Proj = Loc�, where Loc is the localisation operator of [12, Defini-
tion 1.17]. A difficulty with this is that � is not a coordinate patch in the sense used in [12],
so Loc� is not defined. This difficulty is easily overcome as, inspired by [12, Proposition 1.8],
we can use the well-defined quantity

∑
x∈� Locx Fw j (Vx , V (�)) instead of the ill-defined

Loc�Fw j (V (�), V (�)). Thus we are led to define

Proj Fw j (V (�), V (�)) =
∑

x∈�
Locx Fw j (Vx , V (�)). (2.30)

In our application, it is shown in Lemma 5.2 below that ECθ maps the range of Loc into
itself, and our assumption (2.17) is then a consequence of [12, (1.68)]. Finally, we observe
that (2.29) is consistent with (2.11), and this completes the proof. ��

We close this discussion with two further comments concerning W j . First, although
e−V (1 + W ) and e−V +W are equivalent as formal power series up to a third order error,
they are by no means equivalent for the expectation. To illustrate this point with a single-
variable example, if V = φ4 and W = φ6, then e−V (1 + W ) is an integrable function of φ,
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498 R. Bauerschmidt et al.

but e−V +W is certainly not. We keep W out of the exponent in I for reasons related to this
phenomenon.

Second, in our applications we use a covariance decomposition with the finite-range
property that w j;x,y = 0 if |x − y| > 1

2 L j , for some L > 1. This is discussed in detail in
Sect. 6.1 below. With such a decomposition, although by definition it appears that W j (V, x)
depends on V (�) and hence on the fields at all points in space, it in fact depends only on Vy

with |x − y| ≤ 1
2 L j .

3 Setup and Definitions

Now we adapt the discussion of Sect. 2 to the particular setting of the supersymmetric
field theory representing the 4-dimensional weakly self-avoiding walk, and make precise
definitions of the objects of study, including Vpt. The minor modifications required to study
the n-component |ϕ|4 spin model instead of the weakly self-avoiding walk are discussed in
[6].

3.1 Fields and Observables

Let d ≥ 4 and let � = Z
d/L N

Z denote the discrete d-dimensional torus of side L N , with
L > 1 fixed. The field theory we consider consists of a complex boson field φ : � → C

with its complex conjugate φ̄, and a pair of conjugate fermion fields ψ, ψ̄ . The fermion field
is given in terms of the 1-forms dφx by ψx = 1√

2π i
dφx and ψ̄x = 1√

2π i
dφ̄x , where we fix

some square root of 2π i . This is the supersymmetric choice discussed in more detail in [11,
Sects. 2.9–2.10].

In addition, we allow an optional constant complex observable boson field σ ∈ C with its
complex conjugate σ̄ . The observable field is used in the analysis of the two-point function of
the weakly self-avoiding walk in [2], and in the more extensive analysis of correlation func-
tions presented in [18]. Readers only interested in bulk quantities, such as the susceptibility
of the weakly self-avoiding walk, may skip any discussion of observables, or set σ = 0.

For the analysis of the two-point function, two particular points a, b ∈ � are fixed. We
then work with an algebra N which is defined in terms of a direct sum decomposition

N = N ∅ ⊕ N a ⊕ N b ⊕ N ab. (3.1)

The algebra N ∅ describes the bulk. Its elements are given by finite linear combinations of
products of fermion fields with coefficients that are functions of the boson fields. The algebras
N a , N b, N ab account for contributions due to observables. Their elements are respectively
given by elements of N ∅ multiplied by σ , by σ̄ , and by σ σ̄ . For example, φx φ̄yψx ψ̄x ∈ N ∅,
and σ φ̄x ∈ N a . Thus F ∈ N has the expansion

F = F∅ + Faσ + Fbσ̄ + Fabσ σ̄ (3.2)

with components F∅, Fa, Fb, Fab ∈ N∅. There are canonical projections πα : N → N α

for α ∈ {∅, a, b, ab}. We use the abbreviation π∗ = 1 − π∅ = πa + πb + πab. The algebra
N is also discussed around [12, (1.60)] (there N is written N/I but to simplify the notation
we write N here instead).
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3.2 Specification of Loc

As motivated in Sect. 2, to apply the renormalisation group method, we require an appropriate
projection from N onto a finite-dimensional vector space V of local polynomials in the
fields. This projection is the operator LocX defined and discussed in [12]. In the absence
of observables, for any set X ⊂ �, the localisation operator LocX : N → V of [12,
Definition 1.17] is simply given by

LocX F = loc∅

X F∅, (3.3)

with loc∅

X specified below. In the presence of observables, LocX is defined in a graded fashion
by

LocX F = loc∅

X F∅ + σ loca
X∩{a}Fa + σ̄ locb

X∩{b}Fb + σ σ̄ locab
X∩{a,b}Fab. (3.4)

The definition of each locα requires: (i) specification of the scaling (or “engineering”) dimen-
sions of the fields, (ii) choice of a maximal monomial dimension d+ = d+(α) for each
component of the range V = V∅ + Va + Vb + Vab of Loc, and (iii) choice of covariant field
polynomials P̂ which form bases for the vector spaces Vα (see [12, Definition 1.2]).

The dimensions of the boson and fermion fields are given by

[φ] = [φ̄] = [ψ] = [ψ̄] = d−2
2 = 1. (3.5)

By definition, the dimension of a monomial ∇αϕ is equal to |α|1 + [φ], where α is a multi-
index and ϕ may be any of φ, φ̄, ψ, ψ̄ , and the dimension of a product of such monomials is
the sum of the dimensions of the factors in the product.

For the restriction loc∅ of Loc to N ∅, we take d+ = d = 4, the spatial dimension. A
natural way to choose the polynomials P̂ and the space V they span is given in [12, (1.19)].
For loc∅, we apply the choice given in [12, (1.19)] for all monomials in M+ with maximal
dimension d+ = d = 4, with one exception. The exception involves monomials containing
a factor ∇e∇eϕ, where ϕ may be any of φ, φ̄, ψ, ψ̄ . For these, we use the choice described
in [12, Example 1.3], namely we define P̂ by replacing ∇e∇eϕ by ∇−e∇eϕ. The set V then
has the Euclidean invariance property specified in [12, Proposition 1.4].

In the presence of observables, the specification of loca , locb and locab depends on the
scale j , and in particular depends on whether j is above or below the coalescence scale jab

defined in terms of the two points a, b ∈ � by

jab = ⌊
logL(2|a − b|)⌋. (3.6)

We assume that πabVj = 0 for j < jab, i.e., that Vj cannot have a σ σ̄ term before the
coalescence scale is reached. For locab we take d+ = 0. When Loc acts at scale k, for loca

and locb we take d+ = [φ] = d−2
2 = 1 if k < jab, and d+ = 0 for k ≥ jab. This choice

keeps σ φ̄ in the range of Loc below coalescence, but not at or above coalescence. The above
phrase “Loc acts at scale k” means that Loc produces a scale k object. For example, Vpt is a
scale j + 1 object, so the Loc occurring in P of (2.13) is considered to act on scale j + 1.
Thus the change in specification of Loc occurs for the first time in the formula for the scale
jab version of Vpt.

Moreover, when restricted to π∗N , according to (3.4), LocX is the zero operator when
X ∩{a, b} = ∅. By definition, the map loca

X∩{a} is zero if a �∈ X , and if a ∈ X it projects onto

the vector space spanned by {1, φa, φ̄a, ψa, ψ̄a} for j < jab, and by {1} for j ≥ jab. A similar
statement holds for locb

X∩{b}, whereas the range of locab
X∩{a,b} is the union of the ranges of

loca
X∩{a} and locb

X∩{b}. As discussed in Sect. 5.2.2, in our application symmetry considerations
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500 R. Bauerschmidt et al.

reduce the range of LocX to the spans of 1aσ φ̄a}, {1bσ̄ φb}, and {1aσ σ̄ ,1bσ σ̄ }, on N a , N b

and N ab, respectively; in fact LocX reduces to the zero operator on N a , N b, for j ≥ jab.
This completes the specification of the operator Loc.

3.3 Local Polynomials

The range V of Loc consists of local polynomials in the fields. In this paper, we only encounter
the subspace Q ⊂ V of local polynomials defined as follows. To define this subspace, we
first let U denote the set of 2d nearest neighbours of the origin in �, and, for e ∈ U , define
the finite difference operator ∇eφx = φx+e − φx . We also set � = − 1

2

∑
e∈U ∇−e∇e. Then

we define the 2-forms

τx = φx φ̄x + ψx ψ̄x , (3.7)

τ∇∇,x = 1

2

∑

e∈U

(
(∇eφ)x (∇eφ̄)x + (∇eψ)x (∇eψ̄)x

)
, (3.8)

τ�,x = 1

2

(
(−�φ)x φ̄y + φx (−�φ̄)y + (−�ψ)x ψ̄y + ψx (−�ψ̄)y

)
. (3.9)

The subspace Q ⊂ V is then defined to consist of elements

V = gτ 2 + ντ + yτ∇∇ + zτ� + λa σ φ̄ + λb σ̄ φ + qabσ σ̄ , (3.10)

where

λa = −λa 1a, λb = −λb 1b, qab = −1

2
(qa1a + qb1b), (3.11)

g, ν, y, z, λa, λb, qa, qb ∈ C, and the indicator functions are defined by the Kronecker delta
1a,x = δa,x .

The observable terms λa σ φ̄+λb σ̄ φ+qabσ σ̄ are discussed in further detail in Sect. 5.2.2
below. For the bulk, the following proposition shows that Q arises as a supersymmetric
subspace of V . To avoid a digression from the main line of discussion, the definition of
supersymmetry is deferred to Sect. 5.2, where the proposition is also proved.

Proposition 3.1 For the bulk, π∅Q is the subspace of π∅V consisting of supersymmetric
local polynomials that are of even degree as forms and without constant term.

The fact that constants are not needed in Q is actually a consequence of supersymmetry
(despite the fact that constants are supersymmetric). This is discussed in Sect. 5.2.

3.4 Finite-Range Covariance Decomposition

Our analysis involves approximation of Z
d by a torus� = Z

d/L N
Z

d of side length L N , and
for this reason we are interested in decompositions of the covariances [�

Zd + m2]−1 and
[−�� + m2]−1 as operators on Z

d and �, respectively. For Z
d , this Green function exists

for d > 2 for all m2 ≥ 0, but for � we must take m2 > 0. For Z
d , in Sect. 6.1 we follow

[1] to define a sequence (C j )1≤ j<∞ (depending on m2 ≥ 0) of positive definite covariances
C j = (C j;x,y)x,y∈Zd such that

[�
Zd + m2]−1 =

∞∑

j=1

C j (m2 ≥ 0). (3.12)

123



Perturbative Analysis of Weakly Self-avoiding Walk 501

The covariances C j are Euclidean invariant, i.e., C j;Ex,Ey = C j;x,y for any lattice automor-
phism E : Z

d → Z
d (see Sect. 5.2), and have the finite-range property

C j;x,y = 0 if |x − y| ≥ 1

2
L j . (3.13)

For j < N , the covariances C j can therefore be identified with covariances on �, and we
use both interpretations. There is also a covariance CN ,N on � such that

[−�� + m2]−1 =
N−1∑

j=1

C j + CN ,N (m2 > 0). (3.14)

Thus the finite volume decomposition agrees with the infinite volume decomposition except
for the last term in the finite volume decomposition. The special covariance CN ,N plays only
a minor role in this paper. For j ≤ N , let

w j =
j∑

i=1

Ci . (3.15)

3.5 Definition of Vpt

The finite range decomposition (3.14) is associated to a natural notion of scale, indexed by
j = 0, . . . , N . In our application in [2,3], we are led to consider a family of polynomials
Vj ∈ Q indexed by the scale. Our goal here is to describe how, in the second order perturbative
approximation, these polynomials evolve as a function of the scale, via the flow of their
coefficients, or coupling constants.

Given a positive-definite matrix C whose rows and columns are indexed by �, we define
the Laplacian (see [11, (2.40)])

LC = 1

2
�C =

∑

u,v∈�
Cu,v

(
∂

∂φu

∂

∂φv
+ ∂

∂ψu

∂

∂ψ̄v

)
. (3.16)

The Laplacian is intimately related to Gaussian integration. To explain this, suppose we are
given an additional boson field ξ, ξ̄ and an additional fermion field η, η̄, with η = 1√

2π i
dξ ,

η̄ = 1√
2π i

d ξ̄ , and consider the “doubled” algebra N (� � �′) containing the original fields

and also these additional fields. We define a map θ : N (�) → N (� � �′) by making
the replacement in an element of N of φ by φ + ξ , φ̄ by φ̄ + ξ̄ , ψ by ψ + η, and ψ̄ by
ψ̄ + ξ̄ . According to [11, Proposition 2.6], for a polynomial A in the fields, the Gaussian
super-expectation with covariance C can be evaluated using the Laplacian operator via

ECθ A = eLC A, (3.17)

where the fields ξ, ξ̄ , η, η̄ are integrated out by EC , with φ, φ̄, ψ, ψ̄ kept fixed, and where
eLC is defined by its power series.

For polynomials V ′, V ′′ in the fields, we define

FC (V
′, V ′′) = eLC

(
e−LC V ′)(e−LC V ′′) − V ′V ′′, (3.18)

By definition, FC (V ′, V ′′) is symmetric and bilinear in V ′ and V ′′. The map e−LC is equiva-
lent to Wick ordering with covariance C [17], i.e., e−LC A = :A:C . In this notation, we could
write FC as a truncated expectation

FC (V
′, V ′′) = ECθ(:V ′:C ; :V ′′:C ), (3.19)
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but we will keep our expressions in terms of FC .
To handle observables correctly, we also define

Fπ,C (V
′, V ′′) = FC (V

′, π∅V ′′)+ FC (π∗V ′, V ′′). (3.20)

In particular Fπ,C is the same as FC in the absence of observables, but not in their presence.
When observables are present, if V ′ is expanded as V ′ = π∅V ′ + π∗V ′, there are cross-
terms FC (π∅V ′, π∗V ′′)+ F(π∗V ′, π∅V ′′). The polynomial (3.20) is obtained from (3.18)
by replacing these cross-terms by 2FC (π∗V ′, π∅V ′′). This unusual bookkeeping accounts
correctly for observables (it plays a role in the flow of the coupling constants λ, q and also
in estimates in [13]).

For X ⊂ � we define W j (V, X) = ∑
x∈X W j (V, x) with

W j (V, x) = 1

2
(1 − Locx )Fπ,w j (Vx , V (�)), (3.21)

where Locx (= Loc{x}) is the operator specified above, V (�) = ∑
x∈� Vx as in (2.1), and

w j is given by (3.15). Let

P(X) = Pj (V, X) =
∑

x∈X

Locx

(
eL j+1 W j (V, x)+ 1

2
Fπ,C j+1(e

L j+1 Vx , eL j+1 V (�))

)
,

(3.22)

where here and throughout the rest of the paper we write Lk = LCk . Finally, given V , we
define

Vpt(V, X) = eL j+1 V (X)− Pj (V, X), (3.23)

where we suppress the dependence of Vpt on j in its notation. The subscript “pt” stands
for “perturbation theory”—a reference to the formal power series calculations discussed in
Sect. 2 that lead to its definition. Given V ∈ V , the polynomial Vpt also lies in V by definition.
The polynomial Vpt is the updated version of V as we move from scale j to scale j + 1 via
integration of the fluctuation fields with covariance C j+1.

Remark 3.2 Recall from [11, (3.38)] that, for X ⊂ �, N (X) consists of those elements of
N which depend on the fields only at points in X (for this purpose, we regard the external
field σ as located at a and σ̄ as located at b). A detail needed in the above concerns the NX

hypothesis in [12, Definition 1.6], which requires that we avoid applying Loc to elements of
N (X)when X “wraps around” the torus. We are apparently applying Locx in (3.21)–(3.22) to
field polynomials supported on the entire torus �. However, the finite-range property (3.13)
ensures that the NX hypothesis is satisfied for scales j + 1 < N , so that Loc and Vpt are
well-defined. For the moment, we do not define Vpt when j + 1 = N , but we revisit this in
Definition 4.2 below.

3.6 Further Definitions

To prepare for our statement of the explicit computation of Vpt, some definitions are needed.
The following definitions are all in terms of the infinite volume decomposition (C j ) of (3.12).

We write C = C j+1 and w = w j = ∑ j
i=1 Ci . Given g, ν ∈ C, let

η′ = 2C0,0, ν+ = ν + η′g, w+ = w + C, (3.24)
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and, given a function f = f (ν,w), let

δ[ f (ν,w)] = f (ν+, w+)− f (ν,w). (3.25)

For a function q0,x of x ∈ Z
d , we also define

(∇q)2 = 1

2

∑

e∈U
(∇eq)2, q(n) =

∑

x∈Zd

qn
0,x , q(∗∗) =

∑

x∈Zd

x2
1 q0,x . (3.26)

All of the functions q0,x that we use are combinations of w that are invariant under lattice
rotations, so that x2

1 can be replaced by x2
i for any i = 1, . . . , d in (3.26). We then define

β = 8δ[w(2)], θ = 2δ
[
(w3)(∗∗)], (3.27)

ξ ′ = 4
(
δ[w(3)] − 3w(2)C0,0

) + 1
4βη

′, π ′ = 2δ
[
(w�w)(1)

]
, (3.28)

σ = δ
[
(w�w)(∗∗)], ζ = δ

[
((∇w)2)(∗∗)]. (3.29)

The dependence on j in the above quantities has been left implicit.
We define a map ϕpt = ϕpt, j : Q → Q as follows. Given V defined by coupling constants

(g, ν, z, y, λa, λb, qa, qb), the polynomial ϕpt(V ) has bulk coupling constants

gpt = g − βg2 − 4gδ
[
νw(1)

]
, (3.30)

νpt = ν + η′(g + 4gνw(1)
) − ξ ′g2 − 1

4βgν − π ′g(z + y)− δ[ν2w(1)], (3.31)

ypt = y + σgz − ζgy − gδ
[
ν(w2)(∗∗)], (3.32)

zpt = z − θg2 − 1
2 δ

[
ν2w(∗∗)] − 2zδ[νw(1)] − (ypt − y). (3.33)

The observable coupling constants of ϕpt(V ), with (λpt, λ) denoting either (λa
pt, λ

a) or

(λb
pt, λ

b) and analogously for (qpt, q), are given by

λpt =
{
(1 − δ[νw(1)])λ ( j + 1 < jab)

λ ( j + 1 ≥ jab),
(3.34)

qpt = q + λaλb Cab. (3.35)

4 Main Results

We now present our main results, valid for d = 4. In Sect. 4.1, we give the result of explicit
computation of Vpt of (3.23). The form of Vpt can be simplified by a change of variables,
and we discuss this transformation and its properties in Sect. 4.2. As explained in [3], the
transformed flow equations for the coupling constants form part of an infinite-dimensional
dynamical system which incorporates non-perturbative aspects in conjunction with the per-
turbative flow. This dynamical system can be analysed using the results of [5], which have
been designed expressly for this purpose. To apply the results of [5], certain hypotheses must
be verified, and the results of Sect. 4.2 also prepare for this verification.

4.1 Flow of Coupling Constants

The following proposition shows that for j + 1 < N , if V ∈ Q then Vpt ∈ Q, and gives
the renormalised coupling constants (gpt, νpt, ypt, zpt, λ

a
pt, λ

b
pt, qa

pt, qb
pt) as functions of the
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coupling constants (g, ν, y, z, λa, λb, qa, qb) of V and of the covariances C = C j+1 and

w = w j = ∑ j
i=1 Ci .

Proposition 4.1 Let d = 4 and 0 ≤ j < N − 1. If V ∈ Q then Vpt ∈ Q and

Vpt, j+1 = ϕpt, j V . (4.1)

In particular, Vpt, j+1 is independent of N for j + 1 < N.

For the observable coupling constant q , in view of our assumption that πabVj = 0 for
j < jab, and since C j+1;ab = 0 if j + 1 < jab by (3.6) and (3.13), when Vpt, j+1 is
constructed from Vj we also have qpt = 0 for j + 1 < jab, i.e., πabVpt, j+1 = 0. This lends
consistency across scales to the assumption that πabVj = 0 for j < jab. In fact C j+1;ab = 0
if j + 1 = jab, but we do not take advantage of this because it is sensitive to the choice of
≥ as opposed to > in (3.13).

As mentioned in Remark 3.2, the definition of Vpt breaks down for j + 1 = N due
to an inability to apply the operator Loc on the last scale, where the effect of the torus
becomes essential. However, in view of Proposition 4.1, the following definition of Vpt,N

becomes natural. Moreover, when we prove nonperturbative estimates involving Vpt in [13,
Proposition 2.6], we will see that this definition of Vpt,N remains effective in implementing
an analogue of Proposition 2.1.

Definition 4.2 We extend the definition of Vpt, j+1 to j +1 = N by setting Vpt,N = ϕpt,N−1.

The equations (3.30)–(3.35) are called flow equations because they are applied recursively
with C = C j+1 andw = w j updated at each stage of the recursion. They define a j-dependent
map V �→ Vpt for j < N − 1. The proof of Proposition 4.1 is by explicit calculation of
(3.23). The calculation is mechanical, so mechanical that it can be carried out on a computer.
In fact, we have written a program [4] in the Python programming language to compute the
polynomial P of (3.22), and this computer program leads to the explicit formulas given in
Proposition 4.1. From that perspective, it is possible now to write “QED” for Proposition 4.1,
but in Sect. 5 we nevertheless present a useful Feynman diagram formalism and use it to
derive the coefficients (3.30) and (3.34)–(3.35) of Vpt. The same formalism can be used for
(3.31)–(3.33), but we do not present those details (several pages of mechanical computations).
In Sect. 5, we also discuss consequences of supersymmetry for the flow equations.

4.2 Change of Variables and Dynamical System

The observable coupling constants do not appear in the flow of the bulk coupling constants.
Thus the flow equations (3.30)–(3.35) have a block triangular structure; the flow of the bulk
coupling constants is the same whether or not observables are present, whereas the observable
flow does depend on the bulk flow. This structure is conceptually important and general; it
persists non-perturbatively (see [2] and also [14]), and also holds for observables used in the
analysis of correlation functions other than the two-point function [18].

We now discuss a change of variables that simplifies the bulk flow equations. In partic-
ular, the change of variables creates a system of equations that is itself triangular to second
order. Unlike the block triangularity in bulk and observable variables, this triangularity in
the second-order approximation of the bulk flow will be broken by higher-order corrections.
Nonetheless, it provides an important structure in our analysis by enabling the application of
[5].
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In preparation of the definition of the change of variables, to counterbalance an exponential
decay in ν j , we define the rescaled coupling constant

μ j = L2 jν j , (4.2)

and also define normalised coefficients

ω j = L2 1
4β j , γ j = L2( j+1)γ ′

j (γ = η, ξ, π), (4.3)

w̄
(1)
j = L−2 jw

(1)
j , w̄

(∗∗)
j = L−4 jw

(∗∗)
j . (4.4)

The constants in (4.3)–(4.4) are all uniformly bounded, as we show in Lemma 6.2. Also,
summation by parts on the torus gives

∑
x∈� τ∇∇,x = ∑

x∈� τ�,x , and hence

zpt

∑

x∈�
τ�,x + ypt

∑

x∈�
τ∇∇,x = (zpt + ypt)

∑

x∈�
τ�,x . (4.5)

Boundary terms do arise if the sum over � is replaced by a sum over a proper subset of �,
and in [13,14] we work with such smaller sums. Nevertheless, we are able to make use of
(4.5) (our implementation occurs in [14, Sect. 6.2]). This suggests that zpt + ypt should be a
natural variable, so we define

z(0) = y + z, z(0)pt = ypt + zpt. (4.6)

Taking the above into account, given V we define V (0)
pt by

V (0)
pt = gptτ

2 + μpt L
−2( j+1)τ + z(0)pt τ�. (4.7)

The above definition is valid for all 0 ≤ j < ∞, using the formulas (3.30)–(3.33) with
coefficients computed from the decomposition (C j )1≤ j<∞ of [−�

Zd + m2]−1. In view of
(3.30)–(3.33), this leads us to consider the equations:

gpt = g − β j g2 − 4gδ
[
μw̄(1)

]
, (4.8)

z(0)pt = z(0) − θ j g2 − 1
2 δ

[
μ2w̄(∗∗)] − 2z(0)δ

[
μw̄(1)

]
, (4.9)

μpt = L2μ+ η j
(
g + 4gμw̄(1)

) − ξ j g2 − ω j gμ− π j gz(0) − δ
[
μ2w̄(1)

]
, (4.10)

and we define a map ϕ(0)pt = ϕ
(0)
pt, j on R

3, for 1 ≤ j < ∞, by

ϕ
(0)
pt, j

(
g, μ, z(0)

) = (
gpt, μpt, z(0)pt

)
. (4.11)

The four terms involving δ on the right-hand sides of (4.8)–(4.10) can be eliminated by
a change of variables. To describe the transformed system, we define a map ϕ̄ j on R

3, for
1 ≤ j < ∞, by

ϕ̄ j (ḡ j , z̄ j , μ̄ j ) = (ḡ j+1, z̄ j+1, μ̄ j+1), (4.12)

where

ḡ j+1 = ḡ j − β j ḡ2
j , (4.13)

z̄ j+1 = z̄ j − θ j ḡ
2
j , (4.14)

μ̄ j+1 = L2μ̄ j + η j ḡ j − ξ j ḡ2
j − ω j ḡ j μ̄ j − π j ḡ j z̄ j . (4.15)
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The change of variables is defined by a polynomial map Tj : R
3 → R

3, which we write as
Tj (g, z, μ) = (ǧ, ž, μ̌), where

ǧ = g + 4gμw̄(1)j , (4.16)

ž = z + 2zμw̄(1)j + 1
2μ

2w̄
(∗∗)
j , (4.17)

μ̌ = μ+ μ2w̄
(1)
j . (4.18)

The following proposition, which is proven in Sect. 6.2, gives the properties of the change of
variables. We think that the existence of this change of variables may express an invariance
property of the flow equations with respect to change of covariance decompositions, one that
we do not fully understand.

Below (4.19) and in the remainder of the paper, O(A−k) with k unspecified denotes a
quantity that is bounded by k-dependent multiple of A−k for arbitrary k > 0.

Proposition 4.3 Let d = 4 and m̄2 > 0. There exist an open ball B ⊂ R
3 centred at 0

(independent of j ≥ 1 and m2 ∈ [0, m̄2]), and analytic maps ρpt, j : B → R
3 such that, with

the quadratic polynomials Tj : R
3 → R

3 given by (4.16)–(4.18),

Tj+1 ◦ ϕ(0)pt, j = ϕ̄ j ◦ Tj + ρpt, j ◦ Tj , (4.19)

Tj (V ) = V + O(|V |2), the inverse T −1
j to Tj exists on B and is analytic with T −1

j (V ) =
V + O(|V |2), and ρpt, j (V ) = O((1 + m2 L2 j )−k |V |3). All constants are uniform in j ≥ 1
and m2 ∈ [0, m̄2].

Our analysis of the dynamical system arising from the bulk flow equations (3.30)–(3.33)
is based on an application of the main result of [5] to the transformed system ϕ̄ + ρpt. The
main result of [5] requires the verification of [5, Assumptions (A1–A3)]. We first recall the
statements of [5, Assumptions (A1–A2)] in our present context, which are bounds on the
coefficients in (4.13)–(4.15). These coefficients depend on the mass m2 and decay as j → ∞
if m2 > 0.

This decay is naturally measured in terms of the mass scale jm , defined by

jm =
{

�logL2 m−2� (m2 > 0)

∞ (m2 = 0).
(4.20)

However, [5, Assumptions (A1–A3)] are stated in a more general context, involving a quantity
j� which is closely related to jm . To define j�, we fix � > 1, and set

j� = inf{k ≥ 0 : |β j | ≤ �−( j−k)‖β‖∞ for all j}, (4.21)

with j� = ∞ if the infimum is over the empty set. In Proposition 4.4 below it is shown that
j� = jm + O(1), uniformly in m2 ∈ (0, δ], with jm = j� = ∞ if m2 = 0.

Assumption (A1) asserts that ‖β‖∞ < ∞ and that there exists c > 0 such that β j ≥ c for
all but c−1 values of j ≤ j�, while Assumption (A2) asserts that each of θ j , η j , ξ j , ω j , π j is
bounded above in absolute value by O(�−( j− j�)+) (the coefficient ζ j of Assumption (A2) is
zero here). The result of [5] also takes into account non-perturbative aspects of the flow, which
are discussed in [14]. The following proposition prepares the ground for the application of [5]
by verifying that the transformed flow obeys [5, Assumptions (A1–A2)]. We write V̌ = T (V ).
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Proposition 4.4 Let d = 4 and m̄2 > 0. Each coefficient in (3.30)–(3.35) and in (4.13)–
(4.15) is a continuous function of m2 ∈ [0, m̄2]. Fix any � > 1. For m2 ∈ [0, δ], with δ > 0
sufficiently small, the map ϕ̄ satisfies [5, Assumptions (A1–A2)]. In addition,

j� = jm + O(1) (4.22)

uniformly in m2 ∈ (0, δ], with jm = j� = ∞ if m2 = 0.

5 Flow Equations and Feynman Diagrams

As mentioned previously, we have written a computer program [4] in the Python programming
language to compute Vpt, and this program produces the equations of Proposition 4.1. In this
section, we provide a Feynman diagram formalism, of independent interest, for an alternate
computation of Vpt. We use the formalism to derive the flow equations for gpt, λpt, qpt of
(3.30) and (3.34)–(3.35). Using this formalism, it is possible also to derive (3.31)–(3.33), but
we do not provide those details.

The polynomial Vpt = eLV − P is defined in (3.23). In Sect. 5.1, we develop the Feynman
diagram approach that we use to calculate the τ 2 term of P , and compute the term eLV . In
Sect. 5.2, we discuss the symmetries of the model and show that they ensure that π∅Vpt does
not contain any terms that are not in Q, and we prove Proposition 3.1. Then in Sect. 5.3 we
complete the proof of (3.30) and (3.34)–(3.35). We assume throughout that d = 4.

5.1 Feynman Diagrams

A convenient way to carry out the computation of Vpt is via the Feynman diagram notation
introduced in this section. Given a, b ∈ �, let

τab = φa φ̄b + ψaψ̄b. (5.1)

Lemma 5.1 For a, b ∈ �,

LCτab = 0, (5.2)

and, for ai , bi ∈ � and n ≥ 2,

LC

n∏

i=1

τai bi =
∑

i, j :i �= j

Cbi ,a j τai b j

∏

k �=i, j

τak bk . (5.3)

Proof Equation (5.2) follows from (3.16) together with
(
∂

∂φx

∂

∂φ̄y
+ ∂

∂ψx

∂

∂ψ̄y

)
τab

= ∂

∂φx

∂

∂φ̄y
φa φ̄b + ∂

∂ψx

∂

∂ψ̄y
ψaψ̄b = δxaδyb − δxaδyb = 0.

Also, taking anti-commutativity into account, direct calculation gives

LC τa1b1τa2b2 = Cb1,a2τa1b2 + Cb2,a1τa2b1 , (5.4)

which is the n = 2 case of (5.3).
The general case of (5.3) can then be proved via induction on n, and we just sketch the

idea. First, we write
∏n

i=1 τai bi = τanbn

∏n−1
i=1 τai bi . When LC is applied to the product, there
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is a contribution of zero when it acts entirely on the factor τanbn and the induction hypothesis
can be applied to evaluate the contribution when LC acts entirely on the factor

∏n−1
i=1 τai bi .

What remains is the contribution where LC acts jointly on both factors, and this can be seen
to give rise to (5.3). ��

This allows for a very simple calculation of the term eLC V in Vpt, as follows.

Lemma 5.2 For V ∈ Q,

eLC Vx = Vx + 2gCx,xτx . (5.5)

Proof Since V is fourth order in the fields, we can expand eLC to second order in LC to
obtain

eLC V = V + LC (gτ
2
x + ντx + zτ�,x + yτ∇∇,x )+ 1

2!L
2
C gτ 2

x . (5.6)

In the second term on the right-hand side, it follows from (5.2) that only gτ 2
x yields a nonzero

contribution, and by the n = 2 case of (5.3) this contributes 2gCx,xτx . A second application
of (5.2) then shows that the final term on the right-hand side is zero. ��

Lemma 5.1 shows, in particular, that products of τab remain products of τab under repeated
application of the Laplacian LC . In (5.4), we say that (a1, b2) and (a2, b1) are contractions of
(a1, b1) and (a2, b2). We visualise τab as a vertex with an “in-leg” labelled a and an “out-leg”
labelled b:

a b .
Contraction is then the operation of joining an out-leg of a vertex to an in-leg of a vertex,
denoted:

a b .
Thus we regard (5.3) as the sum over all ways to contract two of the labelled pairs. For
example, one term that arises in calculating L2

C

∏4
i=1 τai bi is Ca1,b3τa1,b3 Ca2,b4τa2,b4 , which

is denoted:

1 3

2 4 .
This Feynman diagram notation is useful in Sect. 5.3.

5.2 Symmetries

Next, we discuss the symmetries of the model, and prove Proposition 3.1. We first discuss the
bulk, and prove in particular that if V ∈ Q then π∅Vpt ∈ Q. Finally, we discuss the situation
for observables.

5.2.1 Symmetry and the Bulk

Supersymmetry Supersymmetry is discussed in [10, Sect. 6], where the supersymmetry gen-
erator is defined in terms of the exterior derivative and interior product as Q = d + i . It
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is convenient to define Q̂ = (2π i)−1/2 Q. In our present notation, Q̂ can be written as the
antiderivation on N defined by

Q̂ =
∑

x∈�

(
ψx

∂

∂φx
+ ψ̄x

∂

∂φ̄x
− φx

∂

∂ψx
+ φ̄x

∂

∂ψ̄x

)
. (5.7)

In particular,

Q̂φx = ψx , Q̂φ̄x = ψ̄x , Q̂ψx = −φx , Q̂ψ̄x = φ̄x . (5.8)

An element F ∈ N is said to be supersymmetric if Q F = 0.
Gauge symmetry. The gauge flow on N is characterised by q �→ e−2π i t q for q = φx , ψx

and q̄ �→ e+2π i t q̄ for q̄ = φ̄x , ψ̄x , for all x ∈ �. An element F ∈ N is said to be gauge
invariant if it is invariant under this flow.

As discussed in [10, Sect. 6], Q2 is the generator of the gauge flow, so F ∈ N is gauge
invariant if and only if Q2 F = 0. In particular, supersymmetric elements are gauge invariant.
Since the boson and fermion fields have the same dimension, Q maps V to itself. It is
straightforward to verify that the monomials in π∅Q are all supersymmetric, hence gauge
invariant.

We say that V ∈ V is an even form if it is a sum of monomials of even degree inψ, ψ̄ , and
we say that V is homogeneous of degree n if V lies in the span of monomials of degree n.
For d = 4, with fields φ, φ̄, ψ, ψ̄ of dimension [φ] = 1, and with d+ = d = 4, the highest
degree monomials have degree 4 and can have no spatial derivatives. Degree 2 monomials
have at most two spatial derivatives. Gauge invariant monomials in φ, φ̄, ψ, ψ̄ must have
even degree because for every field in the monomial, the conjugate of that field must also be
in the monomial. The next lemma characterises the monomials in V that respect symmetries
of the model, and shows that these are the ones that occur in π∅Q.

Lemma 5.3 If V ∈ V is even, supersymmetric, and degree 4, then V = ατ 2 for some
α ∈ C. If V ∈ V is even, homogeneous of degree 2, and supersymmetric, then V is a linear
combination of τ , τ∇∇ and τ�.

Proof The only gauge invariant, degree four monomials in V that are even forms are (φφ̄)2

and φφ̄ψψ̄ , because ψ2 = ψ̄2 = 0. Therefore, for some α, β ∈ C,

V = α(φφ̄)2 + βφφ̄ψψ̄. (5.9)

Recall that Q̂ is an antiderivation. Since ψψ̄ Q̂(φφ̄) = 0 and since V is supersymmetric,

0 = Q̂V = 2αφφ̄ Q̂(φφ̄)+ βφφ̄ Q̂(ψψ̄) = φφ̄ Q̂
(
2αφφ̄ + βψψ̄

)
, (5.10)

which by (5.8) implies that β = 2α. Therefore, as required,

V = α
(
(φφ̄)2 + 2φφ̄ψψ̄

) = α
(
φφ̄ + ψψ̄

)2 = ατ 2. (5.11)

The monomials in V which are even, homogeneous of degree 2, and gauge invariant are
given by

φφ̄,
∑

e∈U
∇eφ∇eφ̄, φ�φ̄ + (�φ)φ̄, (5.12)

and the same with φ replaced byψ (the fact that only Euclidean symmetric monomials occur
in V is guaranteed by [12, Proposition 1.4].) If we now impose supersymmetry, by seeking
linear combinations that are annihilated by Q̂, the supersymmetric combination that contains
φφ̄ is τ . Similarly τ∇∇ and τ� are generated by the other two terms. ��
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Proof of Proposition 3.1 By Lemma 5.3, the monomials in π∅V that are supersymmetric, of
even degree as forms, of even degree in the fields, and without constant term, are precisely
those in π∅Q. Since gauge symmetry eliminates monomials that are of odd degree in the
fields, this completes the proof. ��

Lemma 5.4 If V ∈ Q then π∅Vpt ∈ Q.

Proof Since π∅Vpt(V ) = Vpt(π∅V ) (because any σ or σ̄ in V cannot disappear in creation
of Vpt), we can and do assume that V = π∅V . In view of Lemmas 5.2–5.3, it suffices to show
that P is supersymmetric but with no constant term (constants are certainly supersymmetric).

We begin by showing that P does not contain a nonzero constant term. Since we are
assuming π∗V = 0, we may replace Fπ by F in (3.22), and also in the definition of W in
(3.21). To see that F contains no constant term, observe that in (3.18), A, B do not contain
constant terms, and therefore, by Lemma 5.1, neither do e−L A and e−L B. Hence, again by
Lemma 5.1, F cannot contain any constant terms. Therefore, neither does Locx F . Similar
reasoning shows that the W term in (3.22) cannot contain a nonzero constant term. Therefore
P does not contain a nonzero constant term.

It remains to show that P is supersymmetric. Examination of (3.22) reveals that the
supersymmetry of V will be inherited by P as long as the supersymmetry generator Q
commutes with both e±L and Locx . For the former, from (5.7), we obtain the commutator
formulas

[
∂

∂φu

∂

∂φ̄v
, Q̂

]
= − ∂

∂φ̄v

∂

∂ψu
+ ∂

∂φu

∂

∂ψ̄v
, (5.13)

[
∂

∂ψu

∂

∂ψ̄v
, Q̂

]
= − ∂

∂ψ̄v

∂

∂φu
+ ∂

∂ψu

∂

∂φv
, (5.14)

and thereby conclude that Q̂ commutes with L and hence also with e±L. Finally, the fact
that Q commutes with Locx is a consequence of [12, Proposition 1.14]. This completes the
proof. ��

5.2.2 Symmetry and Observables

Next, we discuss symmetry of the observables, and the monomials in π∗Q.
Recall from (3.2) that an element F ∈ N decomposes as F = F∅ + Faσ+ Fbσ̄+ Fabσ σ̄ ,

as a consequence of the direct sum decomposition N = N ∅ ⊕ N a ⊕ N b ⊕ N ab. The direct
sum decomposition of N induces a decomposition V = V∅ ⊕ Va ⊕ Vb ⊕ Vab. In particular,
each V ∈ Q ⊂ V is the sum ofπ∅V = gτ 2+ντ+zτ�+yτ∇∇ ,πa V = λa σ φ̄,πbV = λb σ̄ φ,
and πabV = qabσ σ̄ .

According to Sect. 3.2, the list of monomials in π∗V , i.e., those that contain σ and/or σ̄ , is
as follows. The monomials containing σ but not σ̄ are given by σ multiplied by any element
of {1a,1aφa,1a φ̄a,1aψa,1aψ̄a} for j < jab, and σ multiplied by {1a} for j ≥ jab. The
monomials containing σ̄ but not σ consist of a similar list with σ replaced by σ̄ and a replaced
by b. The monomials containing σ σ̄ are {1aσ σ̄ ,1bσ σ̄ }.

We define the gauge group to act on σ and σ̄ via σ �→ e−2π i tσ and σ̄ �→ e2π i t σ̄ . If we now
demand gauge invariance, and also rule out constants and forms of odd degree, the remaining
monomials in π∗V are {1aσ φ̄a,1bσ̄ φb,1aσ σ̄ ,1bσ σ̄ } when j < jab, and {1aσ σ̄ ,1bσ σ̄ }
when j ≥ jab.
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5.3 Calculation of P

It follows from Lemma 5.4 that π∅Vpt ∈ Q, and hence the bulk part of Vpt contains only the
monomials listed in Lemma 5.3. Thus to compute the bulk part of Vpt it is only necessary to
compute gpt, νpt, ypt, zpt. In this section, we complete the proof of (3.30) and (3.34)–(3.35).
We prove (3.30) in Sect. 5.3.3, and then consider the observables in Sect. 5.3.4. The analysis
is based on a formula for P obtained in Sect. 5.3.1.

5.3.1 Preliminary Identities

Since eLC reduces the dimension of a monomial in the fields, eLC : V → V , and since LocX

acts as the identity on V , it follows that

LocX eLC LocX = eLC LocX . (5.15)

The following lemma gives the formula we use to compute P .

Lemma 5.5 For x ∈ �, for any local polynomial V , and for covariances C, w,

Px = 1

2

∑

y∈�

(
Locx Fπ,w+C (e

LC Vx , eLC Vy)− eLC Locx Fπ,w(Vx , Vy)
)
. (5.16)

Proof The definition of P is given in (3.22), namely

Px = Locx eLC W j (V, x)+ 1

2
Locx Fπ,C (e

LC Vx , eLC V (�)). (5.17)

By the definition of W j in (3.21), this can be rewritten as

Px = 1

2
Locx

(
eLC (1 − Locx )Fπ,w(Vx , V (�))+ Fπ,C (e

LC Vx , eLC V (�))
)
. (5.18)

Application of (5.15) in (5.18) gives

Px = 1

2
Locx

(
eLC Fπ,w(Vx , V (�))+ Fπ,C (e

LC Vx , eLC V (�))
)

− 1

2
eLC Locx Fπ,w(Vx , V (�)). (5.19)

By the definition of F in (3.18), for polynomials A, B in the fields,

Fw+C
(
eLC A, eLC B

) = eLC eLw (e−Lw A
)(

e−Lw B
) − (

eLC A
)(

eLC B
)

= eLC Fw(A, B)+ eLC (AB)− (
eLC A

)(
eLC B

)

= eLC Fw(A, B)+ FC
(
eLC A, eLC B

)
. (5.20)

By (3.20), (5.20) extends to

eLC Fπ,w(A, B)+ Fπ,C
(
eLC A, eLC B

) = Fπ,w+C
(
eLC A, eLC B

)
. (5.21)

With (5.21), (5.19) gives

Px = 1

2
Locx Fπ,w+C

(
eLC Vx , eLC V (�)

) − 1

2
eLC Locx Fπ,w(Vx , V (�)), (5.22)

and the right-hand side is equal to the right-hand side of (5.16). ��
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The first step in the evaluation of the right-hand side of (5.16) is to compute Fw(Vx , Vy).
We do this with the following lemma. Given a symmetric covariance w, and polynomials
V ′, V ′′, we define

V ′ ↔
Lw V ′′ =

∑

u,v∈�
wuv

(
∂V ′

∂φu

∂V ′′

∂φv
+ ∂V ′

∂φv

∂V ′′

∂φu
+ ∂V ′

∂ψu

∂V ′′

∂ψ̄v
+ ∂V ′

∂ψv

∂V ′′

∂ψ̄u

)
. (5.23)

For n ≥ 2, we define V ′(
↔
Lw)n V ′′ analogously as a sum over u1, v1, . . . , un, vn , with n

derivatives acting on each of V ′ and V ′′, with n factors w as in (5.23).

Lemma 5.6 For x, y ∈ �, for a local polynomial V of degree A, and for a covariance w,

Fw(Vx , Vy) =
A∑

n=1

1

n! Vx (
↔
Lw)n Vy . (5.24)

Proof By (3.18),

Fw(Vx , Vy) = eLw (e−LwVx
)(

e−LwVy
) − Vx Vy . (5.25)

The Laplacian can be written as a sum of three contributions, one acting only on Vx , one only
on Vy , and the cross term (5.23). The first two terms are cancelled by the operators e−Lw
appearing in (5.25), leading to

Fw(Vx , Vy) = Vx e
↔
LwVy − Vx Vy . (5.26)

Expansion of the exponential then gives (5.24). ��

5.3.2 Localisation Operator

The computation of the flow equations requires the calculation of P , which involves the
operator Loc as indicated in Lemma 5.5. An extensive discussion of the operator Loc is
given in [12], and [12, Example 1.13] gives some sample calculations involving Loc. Given
the specifications listed in Sect. 3.2, it follows from the definition of Loc that

Locx
[
τa1b1τa2b2

] = τ 2
x , (5.27)

and we use this repeatedly in our calculation of gpt below. Also, for the calculation of λpt

and qpt, we use the fact that the monomials σ�φ̄ and σ̄�φ are annihilated by Loc.
We do not provide the details of the calculation of νpt, ypt, and zpt here. As mentioned

previously, their flow in (3.31)–(3.33) has been computed using a Python computer program.
To help explain the nature of the terms that arise in these equations, we note the following
facts about Loc, which extend [12, Example 1.13] and which are employed by the Python
program. First, monomials of degree higher than 4 are annihilated by Loc. Less trivially,
suppose that q : � → C has range strictly less than the period of the torus and that it
satisfies, for some q(∗∗) ∈ C,

∑

x∈�
q(x)xi = 0,

∑

x∈�
q(x)xi x j = q(∗∗)δi, j , i, j ∈ {1, 2, . . . , d}. (5.28)
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Then

Locx

⎡

⎣
∑

y∈�
q(x − y)τy

⎤

⎦ = q(1)τx + q(∗∗)(τ∇∇,x − τ�,x ), (5.29)

Locx

⎡

⎣
∑

y∈�
q(x − y)(τxy + τyx )

⎤

⎦ = 2q(1)τx + q(∗∗)τ�,x . (5.30)

In particular, the coefficients θ, σ, ζ of (3.27) and (3.29) have their origin in (5.29)–(5.30).
To simplify the result of the computation, we have also used the elementary properties that
for any q : � → C,

∑

x∈�
(∇eq)x = 0,

∑

x∈�
(�q)x = 0, (5.31)

as well as the fact that �x2
1 = −2, which, by summation by parts, implies that
∑

x∈�
(�q)x x2

1 = −2
∑

x∈�
qx = −2q(1). (5.32)

5.3.3 Flow of g

We now prove the flow equation (3.30) for gpt. As in Lemma 5.6, we write

Fw(Vx , Vy) = Fxy =
4∑

n=1

Fn;xy with Fn;xy = 1

n! Vx (
↔
Lw)n Vy . (5.33)

The main work lies in proving the following lemma.

Lemma 5.7 The τ 2
x term in

∑
y∈� Locx Fxy is equal to
(
16g2w(2) + 8gνw(1)

)
τ 2

x . (5.34)

Before proving Lemma 5.7, we first note that it implies (3.30).

Proof of (3.30) By Lemmas 5.7 and 5.2, the τ 2
x term in eLC Locx Fw(Vx , Vy) is given by

(
16g2w2

x,y + 8gνwx,y
)
τ 2

x . (5.35)

Also, by (5.5), eLC V is equal to V with the coefficient ν replaced by

ν+ = ν + 2gC0,0, (5.36)

so by Lemma 5.7 the τ 2 term in
∑

y∈� Locx Fw+C (eLC Vx , eLC Vy) is given by
(
16g2w

(2)
+ + 8gν+w(1)+

)
τ 2

x , (5.37)

where w+ = w + C . By Lemma 5.5, the τ 2
x term in Px is therefore equal to

(
8g2δ[w(2)] + 4gδ[νw(1)])τ 2

x . (5.38)

With the formula Vpt = eLC V − P from (3.23), this implies that

gpt = g − 8g2δ[w(2)] − 4gδ[νw(1)], (5.39)

which is (3.30). ��
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Proof of Lemma 5.7 We compute the τ 2
x term in Locx Fn;x,y for n = 1, 2, 3, 4. Since F4;x,y

has degree zero it contains no τ 2
x term, so it suffices to consider n = 1, 2, 3. The observables

play no role in this discussion, and we can let

V = gτ 2 + ντ + zτ� + yτ∇∇ . (5.40)

To compute Fn;x,y for n = 1, 2, 3, we take the terms in (5.40) into account sequentially,
starting with gτ 2, then ντ , then zτ�, and finally yτ∇∇ .
τ 2 term. We first study

Fn;xy = 1

n! Ax (
↔
Lw)n Ay with A = gτ 2. (5.41)

By (5.41), F1 is a polynomial whose terms are degree 6 and therefore Locx F1;xy = 0. Also,
F3;xy is a polynomial whose monomials have degree 2, and therefore we need not calculate
them here. Thus we need only compute the τ 2 contribution to F2;xy .

To make contact with Sect. 5.1, we replace Ax and Ay by

A12 = gτa1a1τa2a2 , A34 = gτa3a3τa4a4 . (5.42)

The labels 1, 2, 3, 4 help enumerate terms that result from carrying out the contractions in
F , but after the enumeration many of these terms become the same when we return to the
case at hand by setting

a1 = a2 = x, a3 = a4 = y. (5.43)

We represent A by

.
The diagrams for F2;xy are given by

,
as well as the diagram

which contains a closed loop. The latter vanishes, because it arises, for example, from
τ1(L2τ2τ3)τ4 which is 0 by Lemma 5.1. We claim that the five diagrams without closed
loops amount to

F2;xy = g2w2(x, y)
(
2τ 2

xy + 2τ 2
yx + 4τxyτyx + 4τxτy + 4τxτy

)
. (5.44)

As a preliminary observation note that the prefactor of 1
2! in (5.41) cancels the 2! identical

terms that arise from the order of the two contractions in applying (5.3) twice, so for each
diagram we only count matchings: how many ways out-legs can be matched to in-legs. The
five terms correspond to the five diagrams. These arise as follows:
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First and second diagrams: each diagram has two matchings.
Third diagram: four matchings.
Fourth and fifth diagrams: each diagram has four matchings.

Since all terms on the right-hand side of (5.44) are fourth order in the fields, it is immediate
from (5.27) that the τ 2 contribution to Locx F2;xy is given by

Locx F2;xy = 16g2w2
x,yτ

2
x . (5.45)

τ term. Now we consider the additional terms that arise when we add a ντ term so that

A = gτ 2 + ντ. (5.46)

The additional terms in F2,xy are not needed since they are of degree 2, and there are no
additional terms in F3,xy . Repeating the calculations for F1,xy with the extra term in A we
obtain the additional diagrams

.
Therefore F1,xy has the additional terms

2gντxwx,y(τxy + τyx )+ 2gντywx,y(τyx + τxy)+ ν2wx,y(τxy + τyx ). (5.47)

Thus, by (5.27), the additional τ 2 contribution that arises here after localisation is:

8gνwx,yτ
2
x . (5.48)

τ� term. Now we consider the additional degree four terms that arise by adding zτ� to A,
with τ� defined in (3.9). These degree four terms arise from contractions between τ 2

x and
τ�,y , and between τ�,x and τ 2

y . After localisation at x , these yield contributions involving
(�ywx,y)τ

2
x and (�xwx,y)τ

2
x . These both vanish after summation over y ∈ �. Thus there is

no contribution to
∑

y Locx F1,xy arising from the τ� term.
τ∇∇ term. Now we consider the additional degree four terms that arise by adding yτ∇∇
to A, with τ∇∇ defined in (3.8). These contributions are similar to those for τ�, and after
localisation at x , produce contributions involving

∑
e∈U (∇e

x∇e
ywx,y)τ

2
x , which vanishes after

summation over y ∈ �. Thus there is no contribution to
∑

y Locx F1,xy arising from the τ∇∇
term.
The proof of Lemma 5.7 is now completed by combining (5.45) and (5.48). ��

5.3.4 Flow of λ, q

We now prove the following lemma, which implies the flow equations (3.34)–(3.35).

Lemma 5.8 For j + 1 < jab, the observable part of P = Pj as defined in (3.22) is given
by

π∗ Px = −δ[νw(1)](λaσ φ̄a1x=a + λbσ̄ φb1x=b)+ 1

2
Cabλ

aλbσ σ̄ (1x=a + 1x=b),(5.49)

while for j +1 ≥ jab (5.49) holds with the first term on the right-hand side replaced by zero.
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Proof The distinction involving jab arises due to the change in d+ discussed in Sect. 3.2,
which stops λa, λb from evolving above the coalescence scale. Throughout the proof, we
consider only the more difficult case of j + 1 < jab.

We consider the effect on P of adding the observable terms π∗V into V . The Laplacian
annihilates the σ σ̄ term and it cancels in the subtraction in (5.25), so can be dropped hence-
forth from V . Thus we wish to compute the new contributions that arise after adding the
observable terms

A′
x = −λa σ φ̄x1x=a − λb σ̄ φx1x=b (5.50)

to Ax and Ay . We will see, in particular, that there is no contribution from the observables
to the flow of non-observable monomials.

Recall that d+ = [φ] = 1 in the definition of Loc restricted to π∗N . We first consider
the πaN and πbN terms. Writing F = ∑4

n=1
1
n! Fn as before, we need only consider the

n = 1 term because the observables are degree one polynomials in (φ, φ̄). Contractions with
gτ 2 give rise to monomials that are annihilated by Loc and therefore make no contribution.
Contractions with ντ produce

,
and, according to (3.20), the contribution of these diagrams to Fπ,w(Ax , Ay) is

A′
x

↔
Lw (π∅ντy)+ (π∗ A′

x )
↔
Lw (ντy) = −2ν wx,y

(
λaσ φ̄y1x=a + λbσ̄ φy1x=b

)
. (5.51)

These same diagrams also classify contractions between the observables and zτ� or yτ∇∇ ,
but in this case make no contributions to Locx

∑
y∈� Fxy since, e.g., σ�φ̄ is annihilated by

Loc. Thus (5.51) constitutes the new terms arising from contractions between observable and
non-observable terms in Fπ,w(Ax , Ay).

Next, we consider the πabN term. The contraction of the λ terms in Ax with those in Ay

results in

which contributes

λaλb σ σ̄
(
1x=a1y=bwx,y + 1x=b1y=awy,x

)
. (5.52)

Using wa,b = wb,a , and using (5.33), this makes a contribution

λaλb σ σ̄wa,b (1x=a + 1x=b) (5.53)

to Locx
∑

y∈� F1;x,y(Ax , Ay). By Lemma 5.5, we find that the contribution to Px is

− δ[νw(1)] (λaσ φ̄x1x=a + λbσ̄ φx1x=b
) + 1

2λ
aλb σ σ̄ δ[wa,b] (1x=a + 1x=b). (5.54)

Since δ[wa,b] = C j+1;a,b, this completes the proof. ��

6 Analysis of Flow Equations

In this section, we prove Propositions 4.3–4.4. This requires details of the specific covari-
ance decompositions we use. In Sect. 6.1, we define the covariance decompositions, list
their important properties, and use those properties to obtain estimates on the coefficients
(3.27)–(3.29) of the flow equations. Then we prove Propositions 4.3–4.4 in Sects. 6.2–6.3,
respectively.

123



Perturbative Analysis of Weakly Self-avoiding Walk 517

6.1 Decomposition of Covariance

6.1.1 Definition of Decomposition

Let d > 2. We begin by describing the specific finite-range decomposition of the covariance
[−�

Zd +m2]−1 we use, from [1] (see also [8,9]). Recall from [1, Example 1.1] that for each
m2 ≥ 0 there is a function φ∗

t (x, y; m2) defined for x, y ∈ Z
d and t > 0 such that

[−�
Zd + m2]−1

x,y =
∫ ∞

0
φ∗

t (x, y; m2)
dt

t
. (6.1)

The function φ∗
t is positive definite as a function of x, y, has the finite-range property that

φ∗
t (x, y; m2) = 0 if |x − y| > t (this specific range can be achieved by rescaling in t),

and is Euclidean invariant (this can be seen, e.g., from [1, (3.19)]). To obtain φ∗
t as a well-

behaved function of m2, it is necessary to restrict to a finite interval m2 ∈ [0, m̄2] and we
make this restriction in the following. Further properties of φ∗

t are recalled in the proof of
Proposition 6.1 below. Let

C j;x,y =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ 1
2 L

0
φ∗

t (x, y; m2)
dt

t
( j = 1)

∫ 1
2 L j

1
2 L j−1

φ∗
t (x, y; m2)

dt

t
( j ≥ 2).

(6.2)

Each C j is a positive-definite Z
d × Z

d matrix, is Euclidean invariant, has the finite-range
property

C j;x,y = 0 if|x − y| ≥ 1

2
L j , (6.3)

and, by construction,

C = [−�
Zd + m2]−1 =

∞∑

j=1

C j . (6.4)

This is the covariance decomposition we employ in (3.12).
Next, we adapt (6.2) to obtain a decomposition for the torus� = Z

d/L N
Z

d . Let L , N > 0
be integers and m2 ∈ (0, m̄2). By (6.3), C j;x,y+L N z = 0 for j < N , |x − y| < L N , and
nonzero z ∈ Z

d , and thus

C j;x,y =
∑

z∈Zd

C j;x,y+zL N for j < N . (6.5)

We therefore can and do regard C j either as a Z
d ×Z

d matrix or as a�×�matrix if j < N .
We also define

CN ,N ;x,y =
∑

z∈Zd

∞∑

j=N

C j;x,y+zL N . (6.6)

Then C j and CN ,N are Euclidean invariant on � (i.e., invariant under automorphisms E :
� → � as defined in Sect. 5.2). Since

[−�� + m2]−1
x,y =

∑

z∈Zd

[−�
Zd + m2]−1

x,y+zL N , (6.7)

123



518 R. Bauerschmidt et al.

it also follows that

[−�� + m2]−1 =
N−1∑

j=1

C j + CN ,N . (6.8)

Therefore the effect of the torus is concentrated in the term CN ,N . This is the decomposition
used in (3.14).

6.1.2 Properties of Decomposition

The following proposition provides estimates on the finite-range decomposition defined
above. In its statement, given a multi-index α = (α1, . . . , αd), we write ∇α

x = ∇α1
x1 · · · ∇αd

xd

where ∇xk denotes the finite-difference operator defined by ∇xk f (x, y) = f (x + ek, y) −
f (x, y). The number [φ] is equal to 1

2 (d − 2) as in (3.5).

Proposition 6.1 Let d > 2, L ≥ 2, j ≥ 1, m̄2 > 0.

(a) For multi-indices α, β with �1 norms |α|1, |β|1 at most some fixed value p, and for any
k, and for m2 ∈ [0, m̄2],

|∇α
x ∇β

y C j;x,y | ≤ c(1 + m2 L2( j−1))−k L−( j−1)(2[φ]+(|α|1+|β|1)), (6.9)

where c = c(p, k, m̄2) is independent of m2, j, L. The same bound holds for CN ,N if
m2 L2(N−1) ≥ ε for some ε > 0, with c depending on ε but independent of N .

(b) For j > 1, the covariance C j is differentiable in m2 ∈ (0, m̄2), right-continuous at
m2 = 0, and there is a constant c > 0 independent of m2, j, L such that

∣∣∣∣
∂

∂m2 C j;x,y
∣∣∣∣ ≤ c

(
1 + m2 L2( j−1))−k

⎧
⎪⎨

⎪⎩

L j (d = 3)

log L (d = 4)

L−(d−4)( j−1) (d > 4).

(6.10)

Furthermore, C1 is continuous in m2 ∈ (0, m̄2) and right-continuous at m2 = 0, and
CN ,N is continuous in the open interval m2 ∈ (0, m̄2).

(c) Let m2 = 0. There exists a smooth function ρ : [0,∞) → [0,∞) with
∫∞

0 ρ(t) dt = 1,
such that the function c0 : R

d → R defined by its Fourier transform ĉ0(ξ) =
|ξ |−2

∫ |ξ |
L−1|ξ | ρ(t) dt is smooth with compact support, and, as j → ∞,

C j;x,y = c j (x − y)+ O(L−(d−1)( j−1)) for m2 = 0, (6.11)

where c j (x) = L−(d−2) j c0(L− j x).

Proof We use the results of [1, Example 1.1].
(a,b) Let p, k ∈ N. For any α, β with |α|1, |β|1 ≤ p, [1, (1.35)] implies that there is
c = c(p, k) such that

|∇α
x ∇β

y φ
∗
t (x, y; m2)| ≤ c(1 + m2t2)−k t−(2[φ]+|α|1+|β|1), (6.12)

∣∣∣∣
∂

∂m2 φ
∗
t (x, y; m2)

∣∣∣∣ ≤ c(1 + m2t2)−k t−(2[φ]−2) (6.13)

(using 1
2 d > 1 in [1, (1.36)] for the second bound). Consider first the case j > 1. In this

case, we restrict to t ∈ [ 1
2 L j−1, 1

2 L j ] and obtain upper bounds in (6.12)–(6.13) by replacing
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t2 by L2( j−1). Substitution of the resulting estimates into (6.2) imply (6.9)–(6.10) for j > 1,
with constants independent of L . For example, log L in (6.10) arises as

∫ 1
2 L j

1
2 L j−1

dt

t
= log L . (6.14)

Moreover, since φ∗
t (x, y; m2) is continuous in m2 at m2 = 0+ and bounded for t ∈

[ 1
2 L j−1, 1

2 L j ] by (6.12), for j > 1 the claimed right-continuity of C j;x,y at m2 = 0+
is a straightforward consequence of the dominated convergence theorem.

For j = 1, the bound (6.12) needs to be improved. To this end, we use the discrete heat
kernel pt (x, y) = (δy, e�tδx ). Since e�t is a contraction on L2(Zd) and δx ∈ L2(Zd), it
follows that pt (x, y) is uniformly bounded, i.e., pt (x, x) ≤ ct−α/2 with α = 0. Thus [1,
Theorem 1.1] and (6.12) imply that

|φ∗
t (x, y; m2)| ≤ c(t−2[φ] ∧ t2). (6.15)

It follows that

|C1;x,y | =
∣∣∣∣∣

∫ 1
2 L

0
φ∗

t (x, y; m2)
dt

t

∣∣∣∣∣ ≤ c
∫ 1

0
t2 dt

t
+ c

∫ 1
2 L

1
t−2[φ] dt

t
≤ const. (6.16)

This proves (6.9) for j = 1 with α = β = 0, and the estimates for |α|1, |β|1 ≤ p are an
immediate consequence because the discrete difference operator is bounded on L∞(Zd). For
each t > 0, the integrand φ∗

t is continuous in m2 and right-continuituous at m2 = 0, and
with the uniform bound (6.15), the claimed continuity of C1 follows from the continuity of
φ∗

t by the dominated convergence theorem as for j > 1.
Next we verify the claims for CN ,N . Let ε > 0 and m2 ≥ εL−2(N−1). For j ≥ N , we

have 1 + m2 L2( j−1) ≥ m2 L2( j−1) ≥ εL2( j−N ) and hence, with ε-dependent constant c,

(1 + m2 L2( j−1))−k−d ≤ c(1 + m2 L2( j−1))−k L−2d( j−N ). (6.17)

By (6.12) with k replaced by k + d , and by (6.2) and (6.6), it therefore follows that

|∇α
x ∇β

y CN ,N ;x,y | ≤
∞∑

j=N

∑

z∈Zd

|∇α
x ∇β

y C j;x,y+zL N |

≤ c
(
1 + m2 L2(N−1))−k

∞∑

j=N

Ld( j−N )L−2d( j−N )L−( j−1)(2[φ]+|α|1+|β|1)

≤ c
(
1 + m2 L2(N−1))−k

L−(N−1)(2[φ]+(|α|1+|β|1)), (6.18)

where we have used the estimates

∑

z∈Zd

1zL N ≤O(L j ) = O
(
Ld( j−N )) and

∞∑

j=N

L−( j−N )d = 1

1 − L−d
≤2 (for L ≥2). (6.19)

This shows that (6.9) holds also for CN ,N if m2 L2(N−1) ≥ ε and thus completes the proof
of (a).

To verify that CN ,N is continuous in m2 ∈ (0, m̄2), let

C M
N ,N ;x,y =

M∑

j=N

∑

z∈Zd

C j;x,y+zL N . (6.20)

123



520 R. Bauerschmidt et al.

This is a finite sum (due to the finite range of C j ) of m2-continuous functions, and thus
is continuous in m2 ∈ (0, m̄2). Analogously to (6.18), it can be seen that, uniformly in
m2 ∈ [εL−2(N−1), m̄2),

|CN ,N ;x,y − C M
N ,N ;x,y | → 0 as M → ∞. (6.21)

As the uniform limit of a sequence of continuous functions, CN ,N ;x,y is thus continuous
in m2 ∈ [εL−2N , m̄2). Since ε > 0 is arbitrary, CN ,N ;x,y is therefore continuous in m2 ∈
(0, m̄2). This completes the proof of (b).
(c) We make several references to [1]. By [1, (1.37)–(1.38)], there exist c > 0 and a function
φ̄ ∈ C∞

c (R
d) such that

φ∗
t (x, y; 0) = (c/t)d−2φ̄(c(x − y)/t)+ O(t−(d−1)) (6.22)

(due to a typographical error, cd−2 is absent on the right-hand side of [1, (1.37)]). The function
φ̄ is given in terms of another function W1 in [1, (3.17)] as φ̄(x) = ∫

Rd W1(|ξ |2)eix ·ξdξ .
By [1, Lemma 2.2, (2.22)], W1(λ) = ϕ(λ1/2) where ϕ : [0,∞) → R is a function such
that

∫∞
0 tϕ(t)dt = 1 and such that its Fourier transform ϕ̂(k) = (2π)−1

∫
R
ϕ(t)eikt dt has

support in [−1, 1] (we have chosen C = 1 as in [1, Remark 2.4]). Thus,

φ∗
t (x, y; 0) = (c/t)d−2

∫

Rd
ϕ(|ξ |)eic

(
x−y

)
·ξ/t dξ + O

(
t−(d−1))

= (t/c)2
∫

Rd
ϕ(|ξ |t/c)ei(x−y)·ξdξ + O

(
t−(d−1)

)
. (6.23)

Set

ρ(s) =
( s

2c

)2
ϕ
( s

2c

) 1

s
. (6.24)

By definition,

ĉ j (ξ) = L2 j ĉ0(L
jξ) = 1

|ξ |2
∫ L j |ξ |

L j−1|ξ |
ρ(s)ds. (6.25)

For j ≥ 2, as in (6.2), interchange of integration (and the change of variables s = 2t |ξ |)
gives

∫ 1
2 L j

1
2 L j−1

dt

t
(t/c)2

∫

Rd
dξ ϕ(|ξ |t/c)ei(x−y)·ξ =

∫

Rd
ĉ j (ξ)e

i(x−y)·ξdξ = c j (x). (6.26)

This completes the proof. ��
6.1.3 Bounds on Coefficients

We now prove two lemmas which provide estimates for the coefficients of ϕpt (and hence
Vpt). The coefficients were defined in Sect. 3.4, in terms of the covariance decomposition
(C j ) of [−�

Zd + m2]−1 given by (6.2).

Lemma 6.2 Let d ≥ 4, j ≥ 0, m̄2 > 0, k ∈ R. The following bounds hold uniformly in
m2 ∈ [0, m̄2] (with constants which may depend on L , m̄2 but not on j):

β j , θ j , σ j , ζ j = O(L−(d−4) j (1 + m2 L2 j )−k), (6.27)

η′
j , π

′
j , ξ

′
j = O

(
L−(d−2) j (1 + m2 L2 j )−k), (6.28)

δ j [(w2)(∗∗)] = O
(
L−(d−6) j (1 + m2 L2 j )−k

), (6.29)
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w
(1)
j = O(L2 j ), w

(∗∗)
j = O(L4 j ), (w2

j )
(∗∗) = O(L2 j ). (6.30)

Moreover, the left-hand sides of (6.27)–(6.30) are continuous in m2 ∈ [0, m̄2].

Proof The continuity of the left-hand sides of (6.27)–(6.30) in m2 is a consequence of their
definitions together with the continuity of C j given by Proposition 6.1(b). Thus it suffices to
prove the estimates.

Fix k ≥ 0. Within the proof, we set M j = (1 + m2 L2 j )−k , and all constants may depend
on L but not on j . We use the uniform bounds (6.9) extensively without further comment.
With the finite-range property, they imply

|∇lC j,x |, |∇lC j+1,x | ≤ O(M j L−(d−2) j L−l j )1|x |≤O(L j ), l = 0, 1, 2. (6.31)

The indicator functions in (6.31) give rise to volume factors in the estimates, i.e.,
∑

x∈Zd

1|x |≤O(L j ) ≤ O(Ld j ). (6.32)

We also frequently bound a sum of exponentially growing terms by the largest term, i.e., for
s > 0,

j∑

l=1

Lsl ≤ O(Lsj ). (6.33)

Finally, we recall the definitions (3.24)–(3.26) with w = w j = ∑ j
l=1 Cl and C = C j+1.

Bound on β j . By definition, β j is proportional to

δ[w(2)] = 2(wC)(1) + C (2). (6.34)

Using dk − 2[φ]k = 2k and −2[φ] j + 2 j = −(d − 4) j ,

(wC)(1) =
∑

x

C j+1,x

j∑

k=1

Ck,x = O(M j L−2[φ] j )

j∑

k=1

Ldk L−2[φ]k = O(L−(d−4) j M j ),

(6.35)

and similarly,

C (2) =
∑

x

C2
j+1,x = O

(
M j Ld j L−4 j[φ]) = O

(
L−(d−4) j M j

)
. (6.36)

Bound on θ j . By definition, θ j is proportional to

δ[(w3)(∗∗)] = 3(w2C)(∗∗) + 3(wC2)(∗∗) + (C3)(∗∗). (6.37)

With dk + 2k − 2[φ]k = 4k and −4[φ] j + 4 j = −2(d − 4) j ≤ −(d − 4) j ,

(wC2)(∗∗) =
∑

x

j∑

k=1

|x |2Ck,x C2
j+1,x ≤ O(M j L−4[φ] j )

j∑

k=1

Ldk L2k L−2[φ]k

= O(L−(d−4) j M j ), (6.38)
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and, with −6[φ] j + d j + 2 j = −(2d − 4) j ≤ −(d − 4) j ,

(C3)∗∗ =
∑

x

|x |2C3
j+1,x ≤ O

(
M j L−6[φ] j Ld j L2 j ) ≤ O(L−(d−4) j M j ). (6.39)

Also,

(w2C)(∗∗) = 2
∑

x

j∑

l=1

l−1∑

k=1

|x |2Ck,x Cl,x C j+1,x +
∑

x

j∑

k=1

|x |2C2
k,x C j+1,x . (6.40)

The first sum in (6.40) is bounded, with dk + 2k − 2[φ]k = 4k and 4l − 2[φ]l = (6 − d)l,
by

∑

x

j∑

l=1

l−1∑

k=1

|x |2Ck,x Cl,x C j+1,x ≤ O(M j L−2[φ] j )

j∑

l=1

l−1∑

k=1

Ldk L2k L−2[φ]k L−2[φ]l

≤ O(M j L−2[φ] j )

j∑

l=1

L(6−d)l . (6.41)

The sum in (6.41) is bounded by O(L2 j ) if d ≥ 4 so that, with −2[φ] j + 2 j = −(d − 4) j ,

∑

x

j∑

l=1

l−1∑

k=1

|x |2Ck,x Cl,x C j+1,x ≤ O(L−(d−4) j M j ) (6.42)

as claimed. The second term in (6.40) is similarly bounded, with dk +2k −4[φ]k = (6−d)k,
as

∑

x

j∑

k=1

|x |2C2
k,x C j+1,x ≤ O(M j L−2[φ] j )

j∑

k=1

Ldk L2k L−4[φ]k ≤ O(L−(d−4) j )M j ).

(6.43)

This completes the proof of (6.27).
Bound on η′

j . It follows immediately from (6.9) that

η′
j = C j+1,0 ≤ O(M j L−(d−2) j ). (6.44)

Bound on ξ ′
j . By definition, ξ ′

j is the sum of three terms. The third term is trivially bounded
by η′

j . The remaining two terms are proportional to

δ[w(3)] − 3w(2)j C j+1;0,0 = (
w
(3)
j+1 − w

(3)
j

) − 3w(2)j C j+1;0,0

= 3
(
(w2

j C j+1)
(1) − w

(2)
j C j+1;0,0

)
+ 3(w j C

2
j+1)

(1) + C (3)
j+1.

(6.45)

To bound the last two terms of (6.45), we use −6[φ] j + d j = −2d j + 6 j ≤ −(d − 2) j to
obtain

C (3)
j+1 =

∑

y

C3
j+1,x ≤ O(M j Ld j L−6[φ] j ) ≤ O(L−(d−2) j M j ). (6.46)
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Similarly, we use dk − 2[φ]k = 2k and −4[φ] j + 2 j = −2d j + 6 j ≤ −(d − 2) j to obtain

(w j C
2
j+1)

(1) ≤ O(M j L−4[φ] j )

j∑

k=1

∑

x

Ck,x ≤ O(M j L−4[φ] j )

j∑

k=1

Ldk L−2[φ]k

≤ O(L−(d−2) j M j ). (6.47)

The first term in (6.45) is proportional to

(
w2

j (C j+1 − C j+1,0)
)(1) =

j−1∑

k=0

∑

x

δk[w2
x ](C j+1,x − C j+1,0), (6.48)

where we have used

w2
j,x =

j−1∑

k=0

δk[w2
x ] with δk[w2

x ] = w2
k+1,x − w2

k,x . (6.49)

The bounds
∣∣∣∣∣C j+1,x − C j+1,0 −

d∑

i=1

xi (∇i C)0

∣∣∣∣∣ ≤ O(|x |2‖∇2C j+1‖∞)

≤ O(M j L−2[φ] j L−2 j )|x |2, (6.50)

∑

x

δk[w2
x ]|x |2 = O(L2k)

∑

x

δk[w2
x ] = O(L2kβk) = O(L2k), (6.51)

and the identity (which follows from w2−x = w2
x )

∑

x

d∑

i=1

δk[w2
x ]xi (∇i C)0 = −

∑

x

δk[w2
x ]xi (∇i C)0 = 0 (6.52)

then imply

(
w2

j (C j+1 − C j+1,0)
)(1) ≤ O

(
M j L−2 j[φ]L−2 j )

j−1∑

k=0

L2k = O(L−(d−2) j M j ). (6.53)

This gives the desired bound on ξ ′
j .

Bound on σ j . By definition,

σ = δ[(w�w)(∗∗)] = (C�w)(∗∗) + (w�C)(∗∗) + (C�C)(∗∗). (6.54)

Since dk − 2[φ]k = 2k and −2[φ] j + 2 j = −(d − 4) j ,

(C�w)(∗∗) = O(L−2[φ] j M j )

j∑

k=1

Ldk L2k L−2k L−2[φ]k = O(L−(d−4) j M j ). (6.55)

Since dk + 2k − 2[φ]k = 4k and −2[φ] j − 2 j + 4 j = −(d − 4) j ,

(w�C)(∗∗) = O(L−2[φ] j L−2 j M j )

j∑

k=1

Ldk L2k L−2[φ]k = O(L−(d−4) j M j ). (6.56)

123



524 R. Bauerschmidt et al.

Since −4[φ] j − 2 j + 6 j = −2d j + 8 j ≤ −(d − 4) j ,

(C�C)(∗∗) = O(L−4[φ] j L−2 j Ld j L2 j M j ) = O(L−(d−4) j M j ). (6.57)

Together the above three estimates give the required result.
Bound on ζ j . The proof is analogous to the bound of σ j and is omitted.
Bound on π ′

j . By definition, π ′
j is proportional to

δ[(w�w)(1)] =
j+1∑

k=1

∑

x

(
Ck,x �C j+1,x +�Ck,x C j+1,x

) = 2
j+1∑

k=1

∑

x

Ck(x)�C j+1,x .

(6.58)

With dk − 2[φ]k = 2k,

j+1∑

k=1

∑

x

Ck(x)�C j+1,x ≤ O(M j L−2[φ] j L−2 j )

j+1∑

k=1

Ldk L−2[φ]k = O(L−(d−2) j M j ),

(6.59)

as required.
Bound on δ[(w2)∗∗] and (w2)∗∗. By definition,

δ[(w2)∗∗] = 2(wC)(∗∗) + (C2)(∗∗). (6.60)

With dk + 2k − 2[φ]k = 4k and −2[φ] j + 4 j = (6 − d) j ,

(wC)(∗∗) =
j∑

k=1

∑

x

|x |2Ck,x C j+1,x = O(M j L−2[φ] j )

j∑

k=1

Ldk L2k L−2[φ]k

= O(M j L(6−d) j ), (6.61)

and similarly,

(C2)(∗∗) =
∑

x

|x |2C2
j+1,x = O(M j L−4[φ] j Ld j L2 j ) = O(M j L(6−d) j ). (6.62)

Since 6 − d ≤ 2 for d ≥ 4, taking the sum over δk[(w2)(∗∗)] also implies the bound
(w2)(∗∗) = O(L2 j ).
Bound on w(1)j . By definition,

w(1) =
∑

x

j∑

k=1

Ck,x = O(1)
j∑

k=1

Ldk L−2[φ]k = O(1)
j∑

k=1

L2k = O(L2 j ). (6.63)

Bound on w(∗∗)
j . By definition,

w(∗∗) =
∑

x

j∑

k=1

|x |2Ck,x = O(1)
j∑

k=1

Ldk L2k L−2[φ]k = O(1)
j∑

k=1

L4k = O(L4 j ).

(6.64)

This completes the proof. ��
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Lemma 6.3 (a) For m2 = 0, lim j→∞ β j = 0 for d > 4, whereas

lim
j→∞β j = log L

π2 for d = 4. (6.65)

(b) Let d = 4 and m̄2 > 0. There is a constant c′ independent of j, L such that, for
m2 ∈ (0, m̄2) and j > 1,

∣∣∣∣
∂

∂m2 β j (m
2)

∣∣∣∣ ≤ c′(log L)Ld+2 j . (6.66)

Proof (a) The conclusion for d > 4 follows immediately from (6.27), and we consider
henceforth the case d = 4. In this proof, constants in error estimates may depend on L .

Let c0 ∈ Cc(R
4) be the function defined by Proposition 6.1(c), and let c j (x) =

L−2 j c0(L− j x), so that

C j,x = c j (x)+ O(L−3 j ). (6.67)

We use the notation (F,G) = ∑
x∈Z4 Fx Gx for F,G : Z

4 → R, and 〈 f, g〉 = ∫
R4 f g dx

for f, g : R
4 → R. We first verify that

(C j ,C j+l)− 〈c0, cl〉 = O(L− j−2l). (6.68)

Let R j,x = C j,x − c j (x). Then

(C j ,C j+l) = (c j , c j+l)+ (c j , R j+l)+ (c j+l , R j )+ (R j , R j+l). (6.69)

Riemann sum approximation gives

(c j , c j+l)− 〈c0, cl〉 = L−4 j
∑

y∈L− j Zd

c(y)cl(y)−
∫

Rd
c(y)cl(y) dy

= O(L− j )‖∇(ccl)‖L∞ = O(L− j−2l). (6.70)

The remaining terms are easily bounded using |supp(C j )|, |supp(R j )| = O(L4 j ):

(c j , R j+l) ≤ O(L4 j )‖c j‖L∞(Z4)‖R j+l‖L∞(Z4) ≤ O(L− j L−3l), (6.71)

(c j+l , R j ) ≤ O(L4 j )‖c j+l‖L∞(Z4)‖R j‖L∞(Z4) ≤ O(L− j L−2l), (6.72)

(R j , R j+l) ≤ O(L4 j )‖R j‖L∞(Z4)‖R j+l‖L∞(Z4) ≤ O(L−2 j L−3l), (6.73)

and (6.68) follows.
From (6.68) we can now deduce that

j∑

k=1

(Ck,C j+1) =
j∑

k=1

〈c0, c j+1−k〉 +
j∑

k=1

O(L−k−2( j−k))

=
j∑

k=1

〈c0, ck〉 + O(L− j ), (6.74)

(C j+1,C j+1) = 〈c0, c0〉 + O(L− j ). (6.75)

Thus, using 〈c0, ck〉 = 〈c0, c−k〉, we obtain

w
(2)
j+1 − w

(2)
j = 2(w j ,C j+1)+ (C j+1,C j+1) =

j∑

k=− j

〈c0, ck〉 + O(L− j ). (6.76)
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Application of ‖c−k‖L∞ ≤ L2k‖c0‖L∞ and supp(c−k) ⊂ BO(L−k ) gives

∞∑

k= j+1

|〈c0, ck〉| =
∞∑

k= j+1

|〈c0, c−k〉| ≤ ‖c0‖L∞
∞∑

k= j+1

L2k
∫

BO(L−k )

|c0(x)| dx

≤ ‖c0‖2
L∞

∞∑

k= j+1

O(L−2k) ≤ O(L−2 j ). (6.77)

Thus we have obtained

β j = 8(w(2)j+1 − w
(2)
j ) = β∞ + O(L− j ) with β∞ = 8

∞∑

k=−∞
〈c0, ck〉. (6.78)

The constant β∞ is determined as follows. By (6.78),

β∞ = 8〈c0, v〉 with v =
∑

k∈Z

ck . (6.79)

By Plancherel’s theorem and (6.25),

〈c0, ck〉 = 1

(2π)4

∫

R4
|ξ |−4

(∫ |ξ |

L−1|ξ |
ρ(t) dt

)(∫ Lk |ξ |

Lk−1|ξ |
ρ(t) dt

)
dξ, (6.80)

and hence, by Fubini’s theorem, radial symmetry, and
∫∞

0 ρ dt = 1,

〈c0, v〉 = ω3

(2π)4

∫ ∞

0

(∫ r

L−1r
ρ(t) dt

)
dr

r
= ω3

(2π)4

∫ ∞

0

(∫ Lt

t

dr

r

)
ρ(t) dt, (6.81)

where ω3 = 2π2 is the surface measure of the 3-sphere as a subset of R
4. The inner integral

in the last equation is equal to log L . Thus, again using
∫∞

0 ρ dt = 1, we find that

β∞ = 8ω3

(2π)4
log L = log L

π2 (6.82)

as claimed.
(b) In this proof, we set d = 4, and constants are independent of L . We write f ′ = ∂

∂m2 f .
Using the notation of (3.26), we have

β ′
j = 16

(
(wC)(1)

)′ + 8
(

C (2)
)′
. (6.83)

By (6.9)–(6.10),

(C (2))′ = 2
∑

x

C ′
j+1,x C j+1,x ≤ O(L−2 j log L)O(Ld( j+1)) ≤ O(Ld(log L)L2 j ) (6.84)

and, similarly,

(
(wC)(1)

)′ =
∑

x

j∑

k=1

(Ck,x C ′
j+1,x + C ′

k,x C j+1,x ). (6.85)
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Again by (6.9)–(6.10),

∑

x

j∑

k=1

Ck,x C ′
j+1,x ≤ O(log L)

j∑

k=1

Ldk L−2(k−1)

≤ O(Ld log L)
j∑

k=1

L(d−2)(k−1) ≤ O
(
Ld(log L)L2 j ), (6.86)

∑

x

j∑

k=1

C ′
k,x C j+1,x ≤ O(L−2 j log L)

j∑

k=1

O(Ldk) ≤ O(Ld( log L)L2 j ). (6.87)

This completes the proof. ��
6.2 Proof of Proposition 4.3

Proof of Proposition 4.3 Letμ+ = L2( j+1)ν+. By (3.25), (4.8)–(4.10) are equivalent to (we
drop superscripts (0) on z and zpt)

[
gpt + 4gμ+w̄(1)j+1

]
=

[
g + 4gμw̄(1)j

]
− β j g2, (6.88)

[
zpt + 2zμw̄(1)j+1 + 1

2μ
2+w̄

(∗∗)
j+1

] = [
z + 2zμw̄(1)j + 1

2μ
2w̄

(∗∗)
j

] − θ j g2, (6.89)
[
μpt + μ2+w̄

(1)
j+1

] = L2[μ+ μ2w̄
(1)
j

] + η j
[
g + 4gμw̄(1)j

]

− ξ j g2 − ω j gμ− πgz. (6.90)

The form of the rewritten equations (6.88)–(6.90) suggests that we define maps Tj : R
3 → R

3

by Tj (g, z, μ) = (ǧ, ž, μ̌) where (ǧ, ž, μ̌) are as in (4.16)–(4.18), i.e.,

ǧ = g + 4gμw̄(1)j , (6.91)

ž = z + 2zμw̄(1)j + 1
2μ

2w̄
(∗∗)
j , (6.92)

μ̌ = μ+ μ2w̄
(1)
j . (6.93)

By the inverse function theorem [15, (10.2.5)], there exists a ball Bε(0) ⊂ R
3 such that Tj is

an analytic diffeomorphism from Bε(0) onto its image. Note that ε can be chosen uniformly
in j and m2 by the uniformity of the bounds on w̄(1)j and w̄(∗∗)

j in j and m2 of Lemma 6.2. It

also follows from the inverse function theorem that T −1(V ) = V + O(|V |2) with uniform
constant.

The left-hand sides of (6.88)–(6.90) equal Tj+1(ϕ
(0)
pt, j (V ))+ O((1 + m2 L2 j )−k |V |3) and

the right-hand sides are equal to ϕ̄ j (Tj (V )) + O((1 + m2 L2 j )−k |V |3). For example, with
Tj+1(Vpt) = (ǧpt, žpt, μ̌pt), it follows from Lemma 6.2 that

gpt + 4gμ+w̄(1)j+1 = [
gpt + 4gptμptw̄

(1)
j+1

] + 4(g − gpt)μ+w̄(1)j+1 + 4gpt(μ+ − μpt)w̄
(1)
j+1

= ǧpt + 4
(
β j g2 + 4gδ[μw̄(1)])μ+w̄(1)j+1

+ 4gpt

(
− 4η j w̄

(1)gμ+ ξ j g2 + ω j gμ+ π j gz + δ[μ2w̄(1)]
)

= ǧpt + O
(
(1 + m2 L2 j )−k |V |3). (6.94)
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Thus

Tj+1(ϕ
(0)
pt, j (V )) = ϕ̄ j (Tj (V ))+ O

(
(1 + m2 L−2 j )−k |V |3) (6.95)

as claimed. ��
6.3 Proof of Proposition 4.4

Lemma 6.4 Let d = 4, m̄2 > 0, and m2 ∈ [0, m̄2]. For any c < π−2 log L, there exists
n < ∞ such that β j (m2) ≥ c for n ≤ j ≤ jm − n, uniformly in m2 ∈ [0, m̄2].
Proof Let ε > 0 satisfy c+ε < π−2 log L . By (6.65), there exists n0 such that β j (0) ≥ c+ε
if j ≥ n0. This is sufficient for the case m2 = 0, where jm − n = ∞.

Thus we consider m2 > 0. With c′ the constant in (6.66), choose n1 such that
c′(log L)L4−2n1 ≤ ε. By definition in (4.20), jm = �logL2 m−2�, so m2 L2 jm ≤ 1. Thus, for
m2 ∈ (0, m̄2], (6.66) implies that if 1 < j ≤ jm − n1 then

|β j (0)− β j (m
2)| ≤ c′(log L)L4+2 j m2 ≤ c′(log L)L4−2n1 ≤ ε. (6.96)

Therefore, β j (m2) ≥ c if n0 ≤ j ≤ jm − n1, as claimed. ��
Proof of Proposition 4.4 The continuity in m2 ∈ [0, m̄2] of the coefficients in (3.30)–(3.35)
and in (4.13)–(4.15) is immediate from Proposition 6.1 and Lemma 6.2.

To verify that ϕ̄ obeys [5, Assumptions (A1–A2)], we fix � > 1, and recall from (4.21)
the definition

j� = inf
{

k ≥ 0 : |β j | ≤ �−( j−k)‖β‖∞ for all j
}
. (6.97)

Let k be such that L2k ≥ �. Then, for all j ≥ 0,

(1 + m2 L2 j )−k ≤ L−2k( j− jm )+ ≤ �−( j− jm )+ . (6.98)

Fix c, n as in Lemma 6.4. Since jm → ∞ as m ↓ 0, there is a δ such that jm > n when
m2 ∈ [0, δ]. For such m, it follows from Lemma 6.4 that ‖β‖∞ ≥ c. We apply Lemma 6.2
and (6.98) to see that there is a constant C such that

|β j | ≤ C�−( j− jm )+ ≤ C

c
�−( j− jm )+‖β‖∞ ≤ �−( j−k)+‖β‖∞ (6.99)

whenever k ≥ jm + log�(C/c). In particular, j� ≤ k and thus j� ≤ jm + O(1). On the
other hand, by Lemma 6.4, β jm−n ≥ c, and the definition of j� thus requires that c ≤
β jm−n ≤ �−( jm−n− j�)+‖β‖∞. Therefore, jm − n − j� ≤ log�(c

−1‖β‖∞), which implies
that j� ≥ jm − n − log�(c

−1‖β‖∞). This completes the proof of (4.22). Also, the number
of j ≤ j� with β j < c is bounded by n + log�(C/c). This proves [5, Assumption (A1)] and
also shows

�−( j− jm )+ = O(�−( j− j�)+). (6.100)

Then [5, Assumption (A2)] follows from Lemma 6.2, (6.98), and the previous sentence. This
completes the proof. ��

Finally, for use in [13], we note the following inequalities. First, it follows from Propo-
sition 4.4 and [5, Lemma 2.1] that the sequence (ḡ j ) solving (4.13) obeys (for sufficiently
small ḡ0)

1

2
ḡ j+1 ≤ ḡ j ≤ 2ḡ j+1. (6.101)

123



Perturbative Analysis of Weakly Self-avoiding Walk 529

In addition, the combination of (6.9), (6.98), and (6.100) implies that there is an L-
independent constant c such that for m2 ∈ [0, δ] and j = 1, . . . , N − 1, and in the special
case C j = CN ,N for m2 ∈ [εL−2(N−1), δ] with the constant c now depending on ε > 0,

|∇α
x ∇β

y C j;x,y | ≤ c�−( j− j�)+ L−( j−1)(2[φ]+(|α|1+|β|1)). (6.102)
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