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Abstract This paper is the second in a series devoted to the development of a rigorous
renormalisation group method for lattice field theories involving boson fields, fermion fields,
or both. The method is set within a normed algebra N of functionals of the fields. In this
paper, we develop a general method—localisation—to approximate an element of N by a
local polynomial in the fields. From the point of view of the renormalisation group, the
construction of the local polynomial corresponding to F ∈ N amounts to the extraction of
the relevant and marginal parts of F . We prove estimates relating F and its corresponding
local polynomial, in terms of the Tφ semi-norm introduced in part I of the series.

Keywords Renormalisation group · Polynomial approximation · Lattice Taylor
polynomials
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1 Introduction and Results

This paper is the second in a series devoted to the development of a rigorous renormalisation
group method. In [5], we defined a normed algebra N of functionals of the fields. The fields
can be bosonic, or fermionic, or both, and in most of this paper there is no distinction between
these possibilities. The algebra N is equipped with the Tφ semi-norm, which is defined in
terms of a normed spaceΦ of test functions. In the renormalisation group method, a sequence
of test function spaces Φ j is chosen, with corresponding normed algebras N j , and there is a
dynamical system whose trajectories evolve through these normed algebras in the sequence
N0 → N1 → N2 → · · · . The dimension of the dynamical system is unbounded, but a finite
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number of local polynomials in the fields represent the relevant (expanding) and marginal
(neutral) directions for the dynamical system. These local polynomials play a central role in
the renormalisation group approach.

In this paper, we develop a general method for the extraction from an element F ∈ N
of a local polynomial LocX F , localised on a spatial region X , that captures the relevant and
marginal parts of F . We also prove norm estimates which show that the norm of LocX F is
not much larger than the norm of F , while the norm of F − LocX F is substantially smaller
than the norm of F . The latter fact, which is crucial, indicates that LocX F has encompassed
the important part of F , leaving the irrelevant remainder F − LocX F . The method used in
our construction of LocX F bears some relation to ideas in [8].

This paper is organised as follows. Section 1 contains the principal definitions and state-
ments of results, as well as some of the simpler proofs. More substantial proofs are deferred
to Sect. 2. Section 3 contains estimates for lattice Taylor expansions; these play an essential
role in the proofs of Propositions 1.11–1.12, which provide the norm estimates on LocX F
and F − LocX F .

1.1 Fields and Test Functions

We recall some concepts and notation from [5].
Let Λ = Z

d/(m RZ) denote the d-dimensional discrete torus of (large) period m R for
integers R ≥ 2 and m ≥ 1. In [5], we introduced an index set � = �b � � f . The set �b is

itself a disjoint union of sets �
(i)
b (i = 1, . . . , sb) corresponding to different species of boson

fields. Each �
(i)
b is either a finite disjoint union of copies of Λ, with each copy representing

a distinct field component for that species, or is Λ � Λ̄ when a complex field species is
intended. The set � f has the same structure, with possibly a different number s f of fermion
field species.

An element of R
�b is called a boson field, and can be written as φ = (φx )x∈�b . Let

R = R(�b) denote the ring of functions from R
�b to C having at least pN continuous

derivatives, where pN is fixed. The fermion field ψ = (ψy)y∈� f is a set of anticommuting
generators for an algebra N = N (�) over the ring R. By definition (see [5]), N consists of
elements F of the form

F =
∑

y∈ ��∗
f

1

y! Fyψ
y, (1.1)

where each coefficient Fy is an element of R. We will use test functions g : ��∗ → C as
defined in [5]. Also, given a boson field φ, we will use the bilinear pairing between elements
of N and test functions defined in [5] and written as

〈F, g〉φ =
∑

z∈ ��∗

1

z! Fz(φ)gz . (1.2)

For our present purposes, we distinguish between the boson and fermion fields only through
the dependence of the pairing on the boson field φ. When the distinction is unimportant, we
use ϕ to denote both kinds of fields, and identify �� withΛ×{1, 2, . . . , p�}, where p� is the
number of copies of Λ comprising ��. This p� is given by the sum, over all species, of the
number of components within a species. Thus we can write the fields all evaluated at x ∈ Λ
as the sequence ϕ(x) = (ϕ1(x), . . . , ϕp�

(x)).
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Approximation by Local Polynomials 463

1.2 Local Monomials and Local Polynomials

Let e1, . . . , ed denote the standard unit vectors in Z
d , so that

U = {±e1, . . . ,±ed} (1.3)

is the set of all 2d unit vectors. For e ∈ U and f : Λ → C, the difference operator is given
by

∇e f (x) = f (x + e)− f (x). (1.4)

When e is one of the standard unit vectors {e1, . . . , ed}, we refer to ∇e as a forward derivative.
When e is the negative of a standard unit vector we refer to ∇e as a backward derivative,
although it is the negative of a conventional backward derivative. We allow 2d directions in
U , rather than only d , so as not to break lattice symmetries by favouring forward derivatives
over backward derivatives. This introduces redundancy expressed by the identity

∇e + ∇−e = −∇−e∇e, (1.5)

which is straightforward to verify by evaluating both sides on a function f . For α ∈ N
U
0 with

components α(e) ∈ N0, we write

∇α =
∏

e∈U
∇α(e), ∇0 = Id, (1.6)

where the product is independent of the order of its factors.
A local monomial M is a finite product of fields and their derivatives, all to be evaluated at

the same point inΛ (whose value we suppress). To be more precise, for m = (m1, . . . ,m p(m))

a finite sequence whose components mk = (ik, αk) are elements of {1, . . . , p�} × N
U
0 , we

define

Mm =
p(m)∏

k=1

∇αkϕik = (∇α1ϕi1

) · · · (∇αp(m)ϕi p(m)

)
. (1.7)

The product in Mm is taken in the same order as the components ik in m. For example,
if the sequence m is given by m = ((1, α1), (1, α1), (1, α2), (1, α2), (1, α2), (2, α3)) with
α1 < α2, then

Mm = (∇α1ϕ1)
2(∇α2ϕ1)

3∇α3ϕ2. (1.8)

It is convenient to denote the number of times m contains a given pair (i, α) as n(i,α) =
n(i,α)(m); in (1.8) we have n(1,α1) = 2, n(1,α2) = 3, n(2,α3) = 1, and all other n(i,α) are
zero. For a fermionic species i , Mm = 0 when n(i,α) > 1. Permutations of the order of the
components of m give plus or minus the same monomial. We will now define a subset m of
sequences such that every non-zero monomial (1.7) is represented by exactly one m ∈ m.
First we fix an order ≤ on the elements of N

U
0 . Let m be the set whose elements are finite

sequences as defined above and such that: (i) i1 ≤ · · · ≤ i p(m); (ii) for i a fermionic species
n(i,α) = 0, 1; (iii) for k < k′ with ik = ik′ , αk ≤ αk′ . Conditions (i) and (iii) together amount
to imposing lexicographic order on the components of a sequence m.

The degree of a local monomial Mm is the length p = p(m) of the sequence m ∈ m. For
m equal to the empty sequence ∅ of length 0, we set M∅ = 1, and we include m = ∅ in
m. In addition, we specify a map which associates to each field species a value in (0,+∞]
called the scaling dimension (also known as engineering dimension), which we abbreviate
as the dimension of the field species. Following tradition, for i = 1, . . . , p�, we denote the

123



464 D. C. Brydges, G. Slade

dimension of the species of the field ϕi by [ϕi ]. This dimension does not depend on the value
of the field, only on its species. Then we define the dimension of Mm by

[Mm] =
p(m)∑

k=1

([ϕik ] + |αk |1
)
, (1.9)

with the degenerate case [M∅] = [1] = 0.
Let m+ denote the subset of m for which only forward derivatives occur. Given d+ ≥ 0,

let M+ denote the set of monomials Mm with m ∈ m+, such that

[Mm] ≤ d+. (1.10)

Example 1.1 Consider the case of a single real-valued boson fieldϕ of dimension [ϕ] = d−2
2 ,

with no fermion field. The space N j is reached after j renormalisation group steps have
been completed. Each renormalisation group step integrates out a fluctuation field, with the
remaining field increasingly smoother and smaller in magnitude. A basic principle is that
there is an L > 0 such that ϕx will typically have magnitude approximately L− j[ϕ], and that
moreover ϕ is roughly constant over distances of order L j . A block B in Z

d , of side L j ,
contains Ld j points, so the above assumptions lead to the rough correspondence

∑

x∈B

|ϕx |p ≈ L(d−p[ϕ]) j . (1.11)

In the case of d = 4, for which [ϕ] = 1, this scales down when p > 4 and ϕ p is said
to be irrelevant. The power p = 4 neither decays nor grows, and ϕ4 is called marginal.
Powers p < 4 grow with the scale, and ϕ p is said to be relevant. The assumption that ϕ is
roughly constant over distances of order L j translates into an assumption that each spatial
derivative of ϕ produces a factor L− j , so that, e.g.,

∑
x∈B |∇αϕx |p ≈ L(d−p[ϕ]−p|α|1) j . Thus,

in dimension d = 4 with d+ = 4, M+ consists of the relevant monomials

1, ϕ, ϕ2, ϕ3, ∇iϕ, ∇ j∇iϕ, ϕ∇iϕ, (1.12)

together with the marginal monomials

ϕ4, ∇k∇ j∇iϕ, ϕ∇ j∇iϕ, ϕ
2∇iϕ, (1.13)

with each ∇l represents forward differentiation in the direction el ∈ {+e1, . . . ,+ed}. ��
Let P be the vector space over C freely generated by all the monomials (Mm)m∈m of finite

dimension. A polynomial P ∈ P has a unique representation

P =
∑

m∈m

am Mm, (1.14)

where all but finitely many coefficients am ∈ C are zero. Similarly, we define P+ to be the
vector subspace of P freely generated by the monomials (Mm)m∈m+ of finite dimension.
Given x ∈ Λ, a polynomial P ∈ P is mapped to an element Px ∈ N by evaluating the fields
in P at x . More generally, for any X ⊂ Λ and P ∈ P , we define an element of N by

P(X) =
∑

x∈X

Px . (1.15)

For a real number t we define Pt to be the subspace of P spanned by the monomials with
[Mm] ≥ t . Let

v+ = {m ∈ m+ : [Mm] ≤ d+} = {m ∈ m+ : Mm ∈ M+}, (1.16)
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and let V+ denote the vector subspace of P+ generated by the monomials in M+. By
definition, the set v+ is finite. The use of only forward derivatives to define V+ breaks
the Euclidean symmetry ofΛ. We wish to replace V+ by a symmetric family of polynomials,
and this leads us to consider symmetry in more detail.

Let � be the group of permutations of U . Let �axes be the abelian subgroup of � whose
elements fix {ei ,−ei } for each i = 1, . . . , d . In other words, elements of �axes act on U by
possibly reversing the signs of the unit vectors. Let�+ be the subgroup of permutations that
permute {e1, . . . , ed} onto itself and {−e1, . . . ,−ed} onto itself. Then (i) �axes is a normal
subgroup of�, (ii) every element of� is the product of an element of�axes with an element
of�+, and (iii) the intersection of the two subgroups is the identity. Therefore, by definition,
� is the semidirect product � = �axes � �+.

An element Θ ∈ � acts on elements of N
U
0 via its action on components, as (Θα)(e) =

α(Θ(e)). The action of Θ on derivatives is then given by Θ∇α = ∇Θα . This allows us to
define an action of the group � on P by linear transformations, determined by the action

Mm �→ ΘMm =
p(m)∏

k=1

∇Θαkϕik = MΘm (1.17)

on the monomials, whereΘm ∈ m is defined by the action ofΘ on the components αk of m.
We say that P ∈ P is�axes-covariant if there is a homomorphism λ(·, P) : �axes → {−1, 1}
such that

ΘP = λ(Θ, P)P, Θ ∈ �axes. (1.18)

As the notation indicates, the homomorphism can depend on P .
The polynomials in V+ contain only forward derivatives and hence do not form an invariant

subspace of P under the action of�. We wish to replace V+ by a suitable�-invariant subspace
of P , which we will call V . As a first step in this process, we define a map that associates to
a monomial M ∈ M+ a polynomial P = P(M) ∈ P , by

P(M) = |�axes|−1
∑

Θ∈�axes

λ(Θ,M)ΘM (1.19)

where λ(Θ,M) = −1 if the number of derivatives in M that are reversed by Θ is odd
and otherwise λ(Θ,M) = 1. This is a homomorphism: for Θ,Θ ′ ∈ �axes, λ(ΘΘ ′,M) =
λ(Θ,M)λ(Θ ′,M). Note that P(M) consists of a linear combination of monomials whose
degrees and dimensions are all equal to those of M . We claim that for any M ∈ M+, the
polynomial P = P(M) of (1.19) obeys: P(M) is�axes-covariant; M − P(M) ∈ Pt for some
t > [M] up to terms that vanish under the redundancy relation (1.5); and P(ΘM) = ΘP(M)
for Θ ∈ �+. The proof of this fact is deferred to Sect. 2.3.

To enable the use of the redundancy relation (1.5), let R1 be the vector subspace of P
generated by the relation (1.5); this is defined more precisely as follows. First, 0 ∈ R1. Given
nonzero P ∈ P , we recursively replace any occurrence of ∇e∇−e in any monomial in P
by the equivalent expression −(∇e + ∇−e). This procedure produces monomials of lower
dimension so eventually terminates. If the resulting polynomial is the zero polynomial, then
P ∈ R1, and otherwise P �∈ R1. The claim in the previous paragraph shows the existence
of the polynomial P̂ of the next definition.

Definition 1.2 To each monomial M ∈ M+ we choose a polynomial P̂(M) ∈ P , which is
a linear combination of monomials of the same degree and dimension as M , such that

(i) P̂(M) is �axes-covariant,
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(ii) M − P̂(M) ∈ Pt + R1 for some t > [M],
(iii) Θ P̂(M) = P̂(ΘM) for Θ ∈ �+.

Let V be the vector subspace of P spanned by the polynomials {P̂(M) : M ∈ M+}. We also
define V(X) = {P(X) : P ∈ V}, which is a subset of N .

Note that V depends on our choice of P̂(M) for each M ∈ M+, but is spanned by
monomials of dimension at most d+. The restriction of Θ to �+ in item (iii) ensures that
ΘM ∈ M+ when M ∈ M+, so that P̂(ΘM) makes sense.

Example 1.3 In practice, we may prefer to choose P̂ satisfying the conditions of Defini-
tion 1.2 using a formula other than (1.19). For example, for e ∈ U let Me = ϕ∇e∇eϕ. The
formula (1.19) gives

P(Me) = (1/2)
(
ϕ∇e∇eϕ + ϕ∇−e∇−eϕ

)
, (1.20)

but via (1.5) the simpler choice P̂(Me) = −ϕ∇−e∇eϕ also satisfies the conditions of Defi-
nition 1.2.

Proposition 1.4 The subspace V is a �-invariant subspace of P .

Proof By Definition 1.2(iii), the set {P̂(M) : M ∈ M+} is mapped to itself by �+. Since
P̂(M) is �axes-covariant, V is invariant under �+ and �axes. Thus, since � = �axes � �+,
V is invariant under �. ��
1.3 The Operator loc

We would like to define polynomial functions on subsets of the torus, and for this we need
to restrict to subsets which do not “wrap around” the torus. The restricted subsets we use are
called coordinate patches and are defined as follows. Fix a non-negative integer pΦ ≥ 0 and
let p̄Φ = max{1, pΦ}. For a nonempty subset X ⊂ Λ, let X (1) ⊃ X be the set of all points
within L∞ distance p̄Φ of X . This definition is such that the values of derivatives ∇αgz of a
test function g can be computed when all components of z lie in X , for all α with |α|∞ ≤ pΦ ,
knowing only the values of gz when all components of z lie in X (1). For a nonempty subset
Λ′ ⊂ Λ, a map z = (x1, . . . , xd) from Λ′(1) to Z

d is said to be a coordinate on Λ′ if: (i)
z is injective and maps nearest-neighbour points in Λ′(1) to nearest-neighbour points in Z

d ,
(ii) nearest-neighbour points in the image z(Λ′(1)) of Λ′(1) are mapped by z−1 to nearest-
neighbour points in Λ′(1). We say that a nonempty subset Λ′ of Λ is a coordinate patch if
there is a coordinate z onΛ′ such that z(Λ′) is a rectangle {x ∈ Z

d : |xi | ≤ ri , i = 1, . . . , d}
for some nonnegative integers r1, . . . , rd .

By “cutting open” the torusΛ, all rectangles with maxi 2(ri + p̄Φ) strictly smaller than the
period of Λ are clearly coordinate patches. By definition, the intersection of two coordinate
patches is also a coordinate patch, unless it is empty. If z and z̃ are both coordinates for a
coordinate patch then there is a Euclidean automorphism E of Z

d that fixes the origin and
is such that z̃ = Ez. This is proved by noticing that the composition Z = z̃ ◦ z−1 is well
defined on {x ∈ Z

d : ‖x‖∞ ≤ 1}, and therefore Z is a permutation of the set U of unit
vectors. The orthogonal transformation E that acts by the same permutation on U is then an
automorphism of Z

d with the required properties.
Given a coordinate patch Λ′ with coordinate z, and given α = (α1, . . . , αd) in N

d , we
define the monomial zα = xα1

1 . . . xαd
d , which is a function defined on Λ′(1). We will define

a class of test functions Π = Π[Λ′] which are polynomials in each argument by specifying
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the monomials which span Π . To a local monomial Mm ∈ M+ in fields, as in (1.7), we
associate a monomial pm ∈ Π by replacing ∇αkϕik by zαk

k . Thus

pm(z) =
p(m)∏

k=1

zαk
k , (1.21)

which is a function defined onΛ′(1)
i1

×· · ·×Λ′(1)
i p(m)

. For the degenerate monomial m = ∅, we
set p∅ = 1. We implicitly extend pm by zero so that it becomes a test function defined on
��∗

. For example, we associate the monomial zα1
1 zα1

2 zα2
3 zα2

4 zα2
5 zα3

6 to the field monomial (1.8).
However, we will also need the monomial zα2

1 zα2
2 zα2

3 zα3
4 zα1

5 zα1
6 which cannot be obtained from

m ∈ m+ because the condition (iii) below (1.8) now requires α2 ≤ α3 ≤ α1, whereas we
choseα1 < α2 in (1.8). Therefore we define m̄+ and v̄+ by dropping the order condition (iii) in
m+ and v+. The spaceΠ = Π[Λ′] is the span of {pm : m ∈ v̄+}. Euclidean automorphisms
of Z

d that fix the origin act on Π and map it to itself, and therefore Π[Λ′] does not depend
on the choice of coordinate on Λ′.

An equivalent alternate classification of the monomials in Π[Λ′] is as follows. We
define the dimension of a monomial (1.21) to be its polynomial degree plus

∑p
k=1[ϕik ],

i.e.,
∑p

k=1([ϕik ] + |αk |1), consistent with (1.9). Then we can define Π[Λ′] to be the vector
space spanned by the monomials (truncated outsideΛ′ as above) whose dimension is at most
d+.

In the following, we will also need the subspace SΠ of Π . This is the image of Π under
the symmetry operator S defined in [5, Definition 3.4].

Recall the definition from [5] that, given X ⊂ Λ, N (X) consists of those F ∈ N such that
Fz(φ) = 0 for all φ whenever any component of z lies outside of X . For nonempty X ⊂ Λ,
we say F ∈ NX if there exists a coordinate patchΛ′ such that F ∈ N (Λ′) and X ⊂ Λ′. The
condition F ∈ NX guarantees that neither X nor F “wrap around” the torus.

Proposition 1.5 For nonempty X ⊂ Λ and F ∈ NX , there is a unique V ∈ V , depending
on F and X, such that

〈F, g〉0 = 〈V (X), g〉0 for all g ∈ Π. (1.22)

The polynomial V does not depend on the choice of coordinate z or coordinate patch Λ′
implicit in the requirement F ∈ NX , as long as X ⊂ Λ′ and F ∈ N (Λ′). Moreover, V(X)
and SΠ are dual vector spaces under the pairing 〈·, ·〉0.

The proof of Proposition 1.5 is deferred to Sect. 2.1. It allows us to define our basic object
of study in this paper, the map locX .

Definition 1.6 For nonempty X ⊂ Λ we define locX : NX → V(X) by locX F = V (X),
where V is the unique element of V such that (1.22) holds. For X = ∅, we define loc∅ = 0.

By definition, the map locX : NX → V(X) is a linear map.

1.4 Properties of loc

By definition, for nonempty X ⊂ Λ and F ∈ NX ,

〈F, g〉0 = 〈locX F, g〉0 for all g ∈ Π. (1.23)

Also, if F = V (X) ∈ V(X) then trivially 〈F, g〉0 = 〈V (X), g〉0 and hence the uniqueness
in Definition 1.6 implies that locX F = V (X) = F . Thus locX acts as the identity on V(X).
The following proposition shows that loc behaves well under composition.
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Proposition 1.7 For X, X ′ ⊂ Λ and F ∈ NX∪X ′ , excluding the case X ′ = ∅ �= X,

locX ◦ locX ′ F = locX F. (1.24)

In particular, locX ◦ (Id − locX ) = 0 on NX .

Proof If X = ∅ then both sides are zero, so suppose that X, X ′ �= ∅. Let g ∈ Π . By (1.23),

〈locX ◦ locX ′ F, g〉0 = 〈locX ′ F, g〉0 = 〈F, g〉0 = 〈locX F, g〉0. (1.25)

Since locX ◦ locX ′ F and locX F are both in V(X), their equality follows from the uniqueness
in Definition 1.6. ��

The following proposition gives an additivity property of loc.

Proposition 1.8 Let X ⊂ Λ and Fx ∈ NX for all x ∈ X. Suppose that P ∈ V obeys
loc{x}Fx = Px for all x ∈ X. Then locX F(X) = P(X), where F(X) = ∑

x∈X Fx .

Proof If X is empty then both sides are zero, so suppose that X is not empty. Let g ∈ Π . It
follows from (1.23), linearity of the pairing, and the assumption, that

〈locX F(X), g〉0 = 〈F(X), g〉0 =
∑

x∈X

〈Fx , g〉0 (1.26)

=
∑

x∈X

〈loc{x}Fx , g〉0 =
∑

x∈X

〈Px , g〉0 = 〈P(X), g〉0. (1.27)

Since locX F(X) and P(X) are both in V(X), their equality follows from the uniqueness in
Definition 1.6. ��

For nonempty X ⊂ Λ, let E(X) be the set of automorphisms of Λ which map X to
itself. Here, an automorphism ofΛmeans a bijective map fromΛ toΛ under which nearest-
neighbour points are mapped to nearest-neighbour points under both the map and its inverse.
In particular, E(Λ) is the set of automorphisms of Λ. An automorphism E ∈ E(Λ) defines
a mapping of the boson field by (φE )x = φEx . Then, for F = ∑

y∈ ��∗
f

1
y! Fyψ

y ∈ N , we

define E as a linear operator on N by

(E F)(φ) =
∑

y∈ ��∗
f

1

y! Fy(φE )ψ
Ey =

∑

y∈ ��∗
f

1

y! FE−1 y(φE )ψ
y, (1.28)

where in the second equality we have extended the action of E to component-wise action on
� f , and we used the fact that summation over y is the same as summation over E−1 y. The
following proposition gives a Euclidean covariance property of loc.

Proposition 1.9 For X ⊂ Λ, F ∈ NX and E ∈ E(Λ),
E

(
locX F

) = locE X (E F). (1.29)

Proof We define E∗ : Φ → Φ by (E∗g)z = gEz . By (1.28), and by taking derivatives with
respect to φxi for xi ∈ �b, for x ∈ ��∗

b we have

(E F)x,y(φ) = FE−1x,E−1 y(φE ). (1.30)

Therefore,

〈E F, g〉φ =
∑

z∈ ��∗

1

z! FE−1z(φE )gz =
∑

z∈ ��∗

1

z! Fz(φE )gEz = 〈F, E∗g〉φE . (1.31)
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Since F ∈ NX there exists a coordinate patch Λ′ containing X such that F ∈ N (Λ′). Let
g ∈ Π[EΛ′], and note that E∗ maps test functions in Π[EΛ′] to test functions in Π[Λ′].
By (1.23) and (1.31),

〈E locX F, g〉0 = 〈locX F, E∗g〉0 = 〈F, E∗g〉0 = 〈E F, g〉0 = 〈locE X E F, g〉0. (1.32)

Since both E locX F and locE X E F are in V(E X), their equality follows from the uniqueness
in Proposition 1.5. ��

The subgroup of E(Λ) consisting of automorphisms that fix the origin is homomorphic
to the group �, with the element ΘE ∈ � determined from such an E ∈ E(Λ) by the action
of E on the set U of unit vectors. Since E(Λ) is the semidirect product of the subgroup
of translations and the subgroup that fixes the origin, we can use this homomorphism to
associate to each element E ∈ E(Λ) a unique element ΘE ∈ �. The following proposition
ensures that the polynomial P ∈ V determined by locX F inherits symmetry properties of X
and F .

Proposition 1.10 For X ⊂ Λ and F ∈ NX such that E F = F for all E ∈ E(X), the
polynomial P ∈ V determined by P(X) = locX F ∈ V(X) obeys ΘE P = P for all
E ∈ E(X).

Proof By Proposition 1.9 and by hypothesis, E P(X) = locE X E F = P(X). Therefore, for
g ∈ Π ,

〈F, g〉0 = 〈P(X), g〉0 = 〈E P(X), g〉0. (1.33)

Since E P(X) = (ΘE P)(X), this gives

〈P(X), g〉0 = 〈(ΘE P)(X), g〉0, (1.34)

and since ΘE P ∈ V by Proposition 1.4, the uniqueness in Proposition 1.5 implies that
ΘE P = P , as required. ��

The next two propositions concern norm estimates, using the Tφ semi-norm defined in
[5]. The Tφ semi-norm is itself defined in terms of a norm on test functions, and next we
define the particular norm on test functions that we will use here.

The norm depends on a vector h = (h1, . . . , hp�
) of positive real numbers, one for each

field species and component, where we assume that hi depends only on the field species of
the index k. Given z = (z1, . . . , z p(z)) ∈ �∗, we define h−z = ∏p(z)

i=1 h−1
k(zi )

, where k(zi )

denotes the copy of Λ inhabited by zi ∈ �. Given pΦ ≥ 0, the norm on test functions is
defined by

‖g‖Φ(h) = sup
z∈ ��∗

sup
|α|∞≤pΦ

h−z |∇α
R gz |, (1.35)

where ∇α
R = R|α|1∇α . In terms of this norm, a semi-norm on N is defined by

‖F‖Tφ = sup
g∈B(Φ)

|〈F, g〉φ |, (1.36)

where B(Φ) denotes the unit ball in Φ = Φ(h). This Tφ semi-norm depends on the boson
field φ, via the pairing (1.2).

For the next two propositions, which provide essential norm estimates on loc, we restrict
attention to the case where the torus Λ has period L N for integers L , N > 1. In practice,
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both L and N are large. We fix j < N and take R = L j . The proofs of the propositions,
which make use of the results in Sect. 3, are deferred to Sect. 2.2. A j-polymer is defined to
be a union of blocks of side R = L j in a paving of Λ. Given a j-polymer X , we define X+
by replacing each block B in X by a larger cube B+ centred on B and with side 2L j if L j is
even, or 2L j − 1 if L j is odd (the parity consideration permits centring).

Proposition 1.11 Let L > 1, j < N, and let X be a j-polymer with X+ ⊂ U for a
coordinate patch U ⊂ Λ. For F ∈ N (U ), there is a constant C̄ ′, which depends only on
L− j diam(U ), such that

‖locX F‖T0 ≤ C̄ ′‖F‖T0 . (1.37)

The next result, which is crucial, involves the Tφ semi-norm defined in terms of Φ(h), as
well as the T ′

φ semi-norm defined in terms of the Φ ′(h′) norm given by replacing R = L j

and h of (1.35) by R′ = L j+1 and h′. In addition, we assume that h′ and h are chosen such
that h′

i/hi ≤ cL−[φi ] for each component i , where c is a universal constant. Let

d ′+ = min{[Mm] : m �∈ v+}, (1.38)

where v+ was defined in (1.16); thus d ′+ denotes the smallest dimension of a monomial not
in the range of loc. Let [ϕmin] = min{[ϕi ] : i = 1, . . . , p�}. Given a positive integer A, we
define

γ = L−d ′+ + L−(A+1)[ϕmin]. (1.39)

In anticipation of a hypothesis of Lemma 3.6, for the next proposition we impose the restric-
tion that pΦ ≥ d ′+ − [ϕmin]. Its choice of large L depends only on d+.

Proposition 1.12 Let j < N, let A < pN be a positive integer, let L be sufficiently large,
let X be a j-polymer with X+ contained in a coordinate patch, and let Y ⊂ X be a nonempty
j-polymer. For i = 1, 2, let Fi ∈ N (X). Then

‖F1(1 − locY )F2‖T ′
φ

≤ γ C̄ (1 + ‖φ‖Φ ′)A′
sup

0≤t≤1

(‖F1 F2‖Ttφ + ‖F1‖Ttφ‖F2‖T0

)
, (1.40)

where γ is given by (1.39), A′ = A + d+/[ϕmin] + 1, and C̄ depends only on L− j diam(X).

For the special case with F1 = 1, F2 = F , and φ = 0, Proposition 1.12 asserts that

‖F − locX F‖T ′
0

≤ γ C̄‖F‖T0 . (1.41)

For the case of d ≥ 4, d+ = d , [ϕmin] = d−2
2 , and with A (and so pN ) chosen sufficiently

large that (A + 1) d−2
2 ≥ d + 1, we have d ′+ = d+ + 1 and γ = O(L−d−1). This shows that,

when measured in the T ′
0 semi-norm, F − locX F is substantially smaller than F measured

in the T0 semi-norm.

1.5 An Example

The following example is not needed elsewhere in this paper, but it serves to illustrate the
evaluation of loc.

Example 1.13 Consider the case where there is a single complex boson field φ, in dimension
d = 4, with [ϕ] = 1, and with d+ = d = 4. The list of relevant and marginal monomials
is as in (1.12)–(1.13), but now each factor of ϕ in those lists can be replaced by either φ or
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its conjugate φ̄. To define V , for each monomial M we choose P(M) as in (1.19), except
monomials which contain ∇e∇e for which we use ∇−e∇e as in Example 1.3 instead. Let
X ⊂ Λ be contained in a coordinate patch and let a, x ∈ X .

(i) Simple examples are given by

locX |φx |6 = 0, loc{a}|φx |4 = |φa |4, (1.42)

which hold since in both cases the pairing requirement of Definition 1.6 is obeyed by the
right-hand sides.

(ii) Let τx = φx φ̄x , let q : Λ → C, let X be such that the range of q plus the diameter of
X plus 2 p̄Φ is strictly less than the period of the torus, and let

F =
∑

x∈X,y∈Λ
q(x − y)τy . (1.43)

The assumption on the range of q ensures that the coordinate patch condition in the definition
of locX F is satisfied. We define

q(1) =
∑

x∈Λ
q(x), q(∗∗) =

∑

x∈Λ
q(x)x2

1 , (1.44)

and assume that
∑

x∈Λ
q(x)xi = 0,

∑

x∈Λ
q(x)xi x j = q(∗∗)δi, j i, j ∈ {1, 2, . . . , d}. (1.45)

We claim that

locX F =
∑

x∈X

(
q(1)τx + q(∗∗)σx

)
, (1.46)

where, with Δ = −∑d
i=1 ∇−ei ∇ei ,

σx = 1

2

(
φx Δφ̄x +

∑

e∈U
∇eφx ∇eφ̄x +Δφx φ̄x

)
. (1.47)

To verify (1.46), we define

A =
∑

y∈Λ
q(a − y)τy . (1.48)

By Proposition 1.8, it suffices to show that

loc{a} A = q(1)τa + q(∗∗)σa . (1.49)

For this, it suffices to show that A and q(1)τa + q(∗∗)σa have the same zero-field pairing with
test functions g ∈ Π . By definition, 〈A, g〉0 = ∑

y∈Λ q(a − y)gy,y . Since the polynomial
test function g = gy1,y2 is in Π , it is a quadratic polynomial in y1, y2 and we can write
the coefficients of this polynomial in terms of lattice derivatives of g at the point (a, a).
For example the quadratic terms in g are (1/2)

∑d
i, j=1(yi − ai )(y j − a j )∇ei

1 ∇e j
2 ga,a . (The

construction of lattice Taylor polynomials is described below in (2.4).)
The constant term in g is the zeroth derivative ga,a . The linear terms vanish in the pairing

due to (1.45). For the quadratic terms with derivatives on both variables of g, the only non-
vanishing contribution to the pairing arises from 1

2

∑d
i=1(yi −ai )

2∇ei
1 ∇ei

2 ga,a , due to (1.45),
where the subscripts on the derivatives indicate on which argument they act. For the quadratic
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terms with both derivatives on a single variable of g, by (1.45) we may assume that both deriva-
tives are in the same direction, and for those, we can replace the binomial coefficient

(yi −ai
2

)
by

1
2 (yi −ai )

2 due to the first assumption in (1.45), to see that the relevant terms for the pairing are

1

2

d∑

i=1

(yi − ai )
2∇ei

1 ∇ei
1 ga,a + 1

2

d∑

i=1

(yi − ai )
2∇ei

2 ∇ei
2 ga,a . (1.50)

Since g is a polynomial of total degree at most 2, we can use (1.5) to replace derivatives ∇e

by −∇−e in the above expressions involving two derivatives. Thus we obtain

〈A, g〉0 = q(1)ga,a + q(∗∗) 1

2

(
Δ1ga,a +

∑

e∈U
∇e

1∇e
2 ga,a +Δ2ga,a

)
. (1.51)

By inspection, the right-hand side of (1.49) has the same pairing with g as A, so (1.49) is
verified.

(iii) Let

F ′ =
∑

x∈X,y∈Λ
q(x − y)(τxy + τyx ). (1.52)

By a similar analysis to that used in (ii),

locX F ′ =
∑

x∈X

(
2q(1)τx + q(∗∗) 1

2

(
φxΔφ̄x + (Δφ)x φ̄x

))
. (1.53)

��
1.6 Supersymmetry and loc

For our application to self-avoiding walk in [1,2], we will use loc in the context of a super-
symmetric field theory involving a complex boson field φ with conjugate φ̄, and a pair of
conjugate fermion fields ψ, ψ̄ , all of dimension d−2

2 . We now show that if F ∈ N is super-
symmetric then so is locX F .

The supersymmetry generator Q = d + i , which is discussed in [4, Sect. 6], has the
following properties: (i) Q is an antiderivation that acts on N , (ii) Q2 is the generator of the
gauge flow characterised by q �→ e−2π i t q for q = φx , ψx and q̄ �→ e+2π i t q̄ for q̄ = φ̄x , ψ̄x ,
for all x ∈ Λ. An element F ∈ N is said to be gauge invariant if it is invariant under this
flow and supersymmetric if Q F = 0. By property (ii), supersymmetric elements are gauge
invariant. Let Q̂ = (2π i)−1/2 Q. Then Q̂ is an antiderivation satisfying:

Q̂φ = ψ, Q̂ψ = −φ, Q̂φ̄ = ψ̄, Q̂ψ̄ = φ̄. (1.54)

The gauge flow clearly maps V to itself. Also, since the boson and fermion fields have the
same dimension, Q also maps V to itself. The following observation is a general one, but
it has the specific consequences that if F is gauge invariant then so is locX F , and if F is
supersymmetric then QlocX F = locX Q F = 0 so locX F is supersymmetric. This provides
a simplifying feature in the analysis applied in [7].

Proposition 1.14 The map Q : N → N commutes with locX .

Proof Let F ∈ N and g ∈ Π . There is a map Q∗ : Π → Π , which can be explicitly
computed using (1.54), such that 〈Q F, g〉0 = 〈F, Q∗g〉0. It then follows from (1.23) that

〈QlocX F, g〉0 = 〈locX F, Q∗g〉0 = 〈F, Q∗g〉0 = 〈Q F, g〉0 = 〈locX Q F, g〉0. (1.55)
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Since Q : V(X) → V(X) by (1.54), it then follows from the uniqueness in Definition 1.6
that QlocX F = locX Q F . ��

The proof of Proposition 1.14 displays the general principle that a linear map on N
commutes with locX if its adjoint maps � to itself. In particular, the map on N induced by
interchanging φ with its conjugate φ̄ commutes with locX for all X .

1.7 Observables and the Operator Loc

We now generalise the operator loc in two ways: to modify the set onto which it localises,
and to incorporate the effect of observable fields. The first of these is accomplished by the
following definition.

Definition 1.15 For Y ⊂ X ⊂ Λ and F ∈ NX , we define the linear operator locX,Y : N →
V(Y ) by

locX,Y F = PX (Y ) with PX determined by PX (X) = locX F. (1.56)

In other words, locX,Y F evaluates the polynomial locX F on the set Y rather than on X . It is
an immediate consequence of the definition that locX = locX,X , and that if {X1, . . . , Xm} is
a partition of X then

locX =
m∑

i=1

locX,Xi . (1.57)

The following norm estimate for locX,Y is proved in Sect. 2.2.

Proposition 1.16 Suppose Λ has period L N with L , N > 1. Let j < N, and let Y ⊂ X be
j-polymers with X+ ⊂ U for a coordinate patch U ⊂ Λ. For F ∈ N (U ), there is a constant
C̄ ′, which depends only on L− j diam(U ), such that for F ∈ N (U ),

‖locX,Y F‖T0 ≤ C̄ ′‖F‖T0 . (1.58)

Next, we incorporate the presence of an observable field. The observable field is not needed
for our analysis of the self-avoiding walk susceptibility in [2], but it is used in our analysis
of the two-point function in [1]. Specifically, its application is seen in [1, Sect. 2.3]. In that
context we see that the observable field σ ∈ C is a complex variable such that differentiating
the partition function with respect to σ and σ̄ at σ = 0 gives the two-point function. In
particular, elements of N become functions of σ , and given an element F ∈ N we need
the norm of F to measure the size of the derivatives of F at zero with respect to (σ, σ̄ ). We
can make our existing norm do this automatically by declaring (σ, σ̄ ) to be a new species of
complex boson field, that is σ is a function on Λ, but since we do not need the additional
information encoded by the dependence of σ on x ∈ Λ we choose test functions that are
constant in x . This means that the norm only measures derivatives with respect to observable
fields that are constant onΛ. Furthermore we choose test functions such that only derivatives
that are at most first order with respect to each of σ and σ̄ are measured, since higher-order
dependence on σ plays no role in the analysis of the two-point function.

Thus, let σ be a new species of complex boson field. The norm on test functions is defined
as in [5], with the previously chosen weights w−1

αi ,zi
= h

−zi
i R|α| for the non-observable

fields. For the observable field, we choose the weights differently, as follows. First, if α �= 0
then we choosewαi ,zi = 0 when i corresponds to the observable species. This eliminates test
functions which are not constant in the observable variables. In addition, we set test functions
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equal to zero if their observable variables exceed one σ , one σ̄ , or one pair σ σ̄ . Therefore,
modulo the ideal I of zero norm elements, a general element F ∈ N has the form

F = F∅ + Fa + Fb + Fab, (1.59)

where F∅ is obtained from F by setting σ = σ̄ = 0, while Fa = Fσ σ , Fb = Fσ̄ σ̄ , and
Fab = Fσ,σ̄ σ σ̄ with the derivatives evaluated at σ = σ̄ = 0. In the Tφ semi-norm we
will always set σ = σ̄ = 0. We unite the above cases with the notation Fα = Fασα for
α ∈ {∅, a, b, ab}. This corresponds to a direct sum decomposition,

N/I = N ∅ ⊕ N a ⊕ N b ⊕ N ab, (1.60)

with canonical projections πα : N/I → N α defined by π∅ F = F∅, πa F = Faσ , and so
on. Note that

‖F‖Tφ =
∑

α

‖Fασ
α‖Tφ =

∑

α

‖Fα‖Tφ‖σα‖T0 , (1.61)

by definition. We use the same value hσ in the weight for both σ and σ̄ . In particular,
hσ = ‖σ‖T0 = ‖σ̄‖T0 .

On each of the subspaces on the right-hand side of (1.60), we choose a value for the
parameter d+ and construct corresponding spaces V∅,Va,Vb,Vab as in Definition 1.2. We
allow the freedom to choose different values for the parameter d+ in each subspace, and in
our application in [3,6] we will make use of this freedom. Then we define

V = V∅ ⊕ Va ⊕ Vb ⊕ Vab. (1.62)

The following definition extends the definition of the localisation operator by applying it
in a graded fashion in the above direct sum decomposition.

Definition 1.17 Let Λ′ be a coordinate patch. Let a, b ∈ Λ′ be fixed. Let X (∅) = X ,
X (a) = X ∩ {a}, X (b) = X ∩ {b}, and X (ab) = X ∩ {a, b}. For Y ⊂ X ⊂ Λ′ and F ∈ NX ,
we define the linear operator LocX,Y : NX → V(Y ) by specifying its action on each subspace
in (1.60) as

LocX,Y Fα = σαlocαX (α),Y (α)Fα, (1.63)

and the linear map LocX : NX → V(X) by

LocX F = LocX,X F = loc∅

X F∅ + σ loca
X (a)Fa + σ̄ locb

X (b)Fb + σ σ̄ locab
X (ab)Fab. (1.64)

The space V is defined by (1.62). Different choices of d+ are permitted on each subspace, and
the label α appearing on the operators loc on the right-hand side of (1.63)–(1.64) is present
to reflect these choices. The use of V(X) to denote the range of LocX is a convenient abuse
of notation, which does not explicitly indicate that the range on the four subspaces in the four
terms on the right-hand side of (1.64) are actually Vα(X (α)).

It is immediate from the definition that

παLocX,Y = LocX,Yπα for α = ∅, a, b, ab, (1.65)

and from (1.57) that, for a partition {X1, . . . , Xm} of X ,

LocX =
m∑

i=1

LocX,Xi . (1.66)
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It is a consequence of Proposition 1.7 that

LocX ′ ◦ LocX = LocX ′ for X ′ ⊂ X ⊂ Λ, (1.67)

and therefore
LocX ◦ (Id − LocX ) = 0. (1.68)

Also, by Proposition 1.9, for an automorphism E ∈ E(Λ),
E

(
LocX F

) = LocE X (E F) if F ∈ N ∅

X . (1.69)

Note that (1.69) fails in general for F ∈ NX \N ∅

X , due to the fixed points a, b in the definition
of LocX,Y F . The following two propositions extend the norm estimates for loc to Loc.

Proposition 1.18 Suppose Λ has period L N with L , N > 1. Let j < N, and let Y ⊂ X be
j-polymers with X+ ⊂ U for a coordinate patch U ⊂ Λ. For F ∈ N (U ), there is a constant
C̄ ′, which depends only on L− j diam(U ), such that for F ∈ N (U ),

‖LocX,Y F‖T0 ≤ C̄ ′‖F‖T0 . (1.70)

Note that the case X = Y gives (1.70) for LocX F.

Proof By definition, the triangle inequality, Proposition 1.16, and (1.61),

‖LocX,Y F‖T0 =
∑

α=∅,a,b,ab

‖σαlocαX,Y Fα‖T0 ≤ C̄ ′ ∑

α=∅,a,b,ab

‖σα‖T0‖Fα‖T0 = C̄ ′‖F‖T0 ,

(1.71)

where C̄ ′ = maxα C̄ ′
α , with C̄ ′

α the constant arising in each of the four applications of
Proposition 1.16. ��

For the next proposition, which is applied in [6, Proposition 4.9], we write dα for the
choice of d+, and [ϕmin] for the common minimal field dimension on each space N α for
α = ∅, a, b and ab. We choose the spaces Φ(h) and Φ ′(h′) as in Proposition 1.12. With d ′

α

defined as in (1.38), let

γα,β =
(

L−d ′
α + L−(A+1)[ϕmin])

(
h′
σ

hσ

)|α∪β|
. (1.72)

As in Proposition 1.12, for the next proposition we again require that pΦ ≥ d ′+ − [ϕmin] and
consider the case where Λ has period L N .

Proposition 1.19 Let j < N, let A < pN be a positive integer, let L be sufficiently large,
let X be a j-polymer with enlargement X+ contained in a coordinate patch, and let Y ⊂ X
be a nonempty L j -polymer. For i = 1, 2, let Fi ∈ N (X), with F2,α = 0 when Y (α) = ∅.
Let F = F1(1 − LocY )F2. Then

‖F‖T ′
φ

≤ C̄
∑

α,β=∅,a,b,ab

γα,β (1 + ‖φ‖Φ ′)A′

× sup
0≤t≤1

(‖F1,βF2,α‖Ttφ + ‖F1,β‖Ttφ‖F2,α‖T0

)‖σα∪β‖T0 , (1.73)

where γ is given by (1.39), A′ = A + d+/[ϕmin] + 1, and C̄ depends only on L− j diam(X).
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Proof We use
‖F‖T ′

φ
≤

∑

α,β

‖σα∪β‖T ′
0
‖F1,β(1 − locαY (α))F2,α‖T ′

φ
(1.74)

and apply Proposition 1.12 to each term. We also use

‖σα∪β‖T ′
0

= (h′
σ )

|α∪β| = ‖σα∪β‖T0

(
h′
σ

hσ

)|α∪β|
. (1.75)

The constant C̄ is the largest of the four constants C̄α arising from Proposition 1.12. ��

2 The Operator loc

In Sect. 2.1, we prove existence of the operator loc and prove Proposition 1.5. In Sect. 2.2,
we prove Propositions 1.11–1.12, using the results on Taylor polynomials proven in Sect. 3.
Finally, in Sect. 2.3, we prove the claim which guaranteed existence of the polynomials P̂
used to define V in Definition 1.2.

Throughout this section, Λ′ is a coordinate patch in Λ, and the space of polynomial test
functions is Π = Π[Λ′].
2.1 Existence and Uniqueness of loc: Proof of Proposition 1.5

Recall from [5, Proposition 3.5] that the pairing obeys

〈F, g〉φ = 〈F, Sg〉φ (2.1)

for all F ∈ N , g ∈ Φ, and for all boson fields φ. The symmetry operater S is defined
in [5, Definition 3.4]; it obeys S2 = S. Let m ∈ m have components mk = (ik, αk) for
k = 1, . . . , p(m). Recall that m determines an abstract monomial Mm by (1.7) and, given
a ∈ Λ, Mm determines Mm,a ∈ N by evaluation of Mm at a. Recall from [5, Example 3.6]
that, for any test function g,

〈Mm,a, g〉0 = ∇m(Sg)�a, ∇m =
p(m)∏

k=1

∇αk , (2.2)

where on the right-hand side �a indicates that each of the p(m) arguments is evaluated at a,
and ∇αk acts on the variable zk .

We specified a basis forΠ in (1.21), but now we require another basis. For z = (x1, . . . , xd)

a coordinate on Λ′, and α = (α1, . . . , αd) ∈ N
d
0 , we define the binomial coefficient

(z
α

) =(x1
α1

) · · · (xd
αd

)
. The new basis is obtained by replacing, in the definition (1.21) of pm , the

monomial zαk
k by the polynomial

(zk
αk

)
. More generally, we can also move the origin. Thus

for m ∈ m̄+ and a ∈ Λ′ we define

b(a)m,z =
p∏

k=1

(
zk − a

αk

)
. (2.3)

This is a polynomial function defined onΛ′(1)
i1

×· · ·×Λ′(1)
i p(m)

. We implicitly extend it by zero

so that it is a test function defined on ��∗
. For p(m) = 0, we set b(a)

∅
= 1. For any a ∈ Λ′,

the set {b(a)m,z : m ∈ v̄+} is a basis for Π . For g ∈ Φ, we define Taya : Φ → Π by
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(Tayag)z =
∑

m∈v̄+
(∇m g)�a b(a)m,z . (2.4)

The following lemma shows that Taya g is the lattice analogue of a Taylor polynomial approx-
imation to g. Its proof is given in Sect. 3.1.

Lemma 2.1 Let Λ′ be a coordinate patch, and let a, z ∈ Λ′.

(i) For g ∈ Φ, Taya g is the unique p ∈ Π such that ∇m(g − p)z |z=�a = 0 for all m ∈ v̄+.
(ii) Taya commutes with S.

(iii) For g ∈ Π , (Taya g)z = gz.

For m ∈ m+, let

f (a)m = Nm Sb(a)m , (2.5)

where Nm is a normalisation constant (whose value is chosen in (3.9) so that case m = m′
holds in (2.6) below). The lexicographic ordering on m+ implies that f (a)m �= f (a)m′ �= 0

for m �= m′. Since {b(a)m }m∈v̄+ forms a basis of Π , the linearly independent set { f (a)m }m∈v+
forms a basis of SΠ . The next lemma, which is proved in Sect. 3.2, says that {Mm,a}m∈v+
and { f (a)m′ }m′∈v+ are dual bases of V+ and SΠ with respect to the zero-field pairing.

Lemma 2.2 Let Λ′ be a coordinate patch, and let a, z ∈ Λ′.

(i) For m,m′ ∈ m+,
〈
Mm,a, f (a)m′

〉
0 = δm,m′ . (2.6)

(ii) For g ∈ Φ,
(Taya Sg)z =

∑

m∈v+
〈Mm,a, g〉0 f (a)m,z . (2.7)

Definition 2.3 Given a ∈ Λ, we define a linear map loc+,a : N{a} → V+({a}) by

loc+,a F =
∑

m∈v+

〈
F, f (a)m

〉
0 Mm,a . (2.8)

It is an immediate consequence of (2.8) and (2.6) that loc+,a Mm,a = Mm,a for all m ∈ v+.
Since V+ is spanned by the monomials (Mm)m∈v+ , it follows that

loc+,a Pa = Pa P ∈ V+. (2.9)

The following lemma shows that the map loc+,a is dual to Taya with respect to the zero-field
pairing of N and Φ.

Lemma 2.4 For any a ∈ Λ, F ∈ N{a}, and g ∈ Φ,

〈loc+,a F, g〉0 = 〈F,Taya g〉0. (2.10)

In particular, if g ∈ Π , then
〈loc+,a F, g〉0 = 〈F, g〉0. (2.11)

Proof For (2.10), we use Definition 2.3, linearity of the pairing, (2.7), Lemma 2.1(ii) and
(2.1) to obtain
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〈loc+,a F, g〉0 =
∑

m∈v+
〈F, f (a)m 〉0〈Mm,a, g〉0 = 〈F,Taya Sg〉0

= 〈F, STaya g〉0 = 〈F,Taya g〉0. (2.12)

For (2.11), we use (2.10) and the fact that Taya g = g for g ∈ Π , by Lemma 2.1(iii). ��
Lemma 2.5 Let a ∈ Λ and X ⊂ Λ be such that X ∪ {a} is contained in a coordinate patch.
Given V+ ∈ V+, there exists a unique V ∈ V (depending on V+, a, and X) such that

loc+,a V (X) = V+,a . (2.13)

In particular, the map V+ �→ V defines an isomorphism from V+ to V .

Proof Fix V+ = ∑
m∈v+ αm Mm,a ∈ V+({a}); then αm = 〈V+,a, f (a)m 〉0 by (2.6). Let P̂m =

P̂(Mm). We want to show that there is a unique V = ∑
m′∈v+ βm′ P̂m′ ∈ V such that

αm =
∑

m′∈v+
βm′

〈
P̂m′(X), f (a)m

〉
0 =

∑

m′∈v+
βm′ Bm′,m, (2.14)

where Bm′,m = 〈P̂m′(X), f (a)m 〉0. Let Q̂m′ = P̂m′ − Mm′ . According to Definition 1.2,
Q̂m′ ∈ Pt + R1 for some t > [Mm′ ]. By definition, elements of R1(X) annihilate test
functions in pairings. With (3.14)–(3.15) below, this implies that, for [Mm′ ] ≥ [Mm],

Bm′,m = 〈
Mm′(X), f (a)m

〉
0 + 〈

Q̂m′(X), f (a)m

〉
0 = |X |δm′,m + 0 = δm′,m . (2.15)

Thus the matrix B is triangular, with |X | on the diagonal, and hence B−1 exists. Then the
row vector β is given in terms of the row vector α by β = αB−1, and this solution is unique.
Since V+ and V have the same finite dimension, the map V+ �→ V defines an isomorphism
between these two spaces. ��

The following commutative diagram illustrates the construction of locX in the next proof:

Proof of Proposition 1.5 (i) Existence of V ∈ V . Given a in X , letμX,a : V+({a}) → V(X)
denote the map which associates the polynomial V (X) to V+,a in Lemma 2.5. Let V (X) =
(μX,a ◦ loc+,a)F . By (2.11) and Lemma 2.5, for all g ∈ Π ,

〈V (X), g〉0 = 〈loc+,a V (X), g〉0 = 〈loc+,aμX,a loc+,a F, g〉0 = 〈loc+,a F, g〉0 = 〈F, g〉0.

(2.16)

This establishes (1.22).
(ii) Uniqueness. Given two polynomials in V that satisfy (1.22), let P be their difference.

Then P is a polynomial in V such that, for all g ∈ Π and a ∈ X ,

0 = 〈P(X), g〉0 = 〈loc+,a P(X), g〉0, (2.17)
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where we used (2.11). By (2.6), loc+,a P(X) = 0 is zero as an element of V+({a}). By
Lemma 2.5, P = 0. This proves uniqueness.

(iii) Independence of coordinate and coordinate patch. Recall the definition of F ∈ NX

above Proposition 1.5. Suppose there are two coordinate patchesΛ′,Λ′′ with corresponding
coordinates z′, z′′ that imply F ∈ NX . Then there exists V ′ such that (1.22) holds for all
g ∈ Π[Λ′] and V ′′ such that (1.22) holds for all g ∈ Π[Λ′′]. In particular, V ′ and V ′′ satisfy
(1.22) for all g ∈ Π[Λ′ ∩ Λ′′]. Since Λ′ ∩ Λ′′ with either of the coordinates z′, z′′ is also
a valid choice of coordinate patch that contains X , the uniqueness part (ii) with coordinate
patch Λ′ ∩Λ′′ implies V ′ = V ′′. So the polynomial V does not depend on the choice of Λ′
implicit in the requirement F ∈ NX .

(iv) Duality. For n ∈ v+, let cn be the vector (cn)n′ = B−1
n,n′ , where B is the matrix in

the proof of Lemma 2.5. It follows from that proof that the pairing of
∑

n′(cn)n′ P̂n′(X) with

f (a)m is δn,m . Thus the basis (cn)n∈v+ is dual to the basis ( f (a)m )m∈v+ of Π . This completes
the proof of Proposition 1.5. ��

It follows from (i) and (ii) above that, for any a ∈ X ,

locX F = (μX,a ◦ loc+,a)F, (2.18)

2.2 Proof of Norm Estimates for loc

We now prove Propositions 1.11, 1.12 and 1.16, using the following definition which we
recall from [5, (3.37)]. Given X ⊂ Λ and a test function g ∈ Φ, we define

‖g‖Φ(X) = inf{‖g − f ‖Φ : fz = 0 if all components of z lie in X}. (2.19)

Let f be as in (2.19). By definition, if F ∈ N (X) then 〈F, g〉φ = 〈F, g − f 〉φ . Hence
|〈F, g〉φ | ≤ ‖F‖Tφ ‖g − f ‖Φ , and by taking the infimum over f we obtain

|〈F, g〉φ | ≤ ‖F‖Tφ ‖g‖Φ(X) F ∈ N (X). (2.20)

Proof of Propositions 1.11 and 1.16. We use the notation in the proof of Lemma 2.5. By
definition, loc+,a F = ∑

m′∈v+ αm′ Mm′,a with αm′ = 〈F, f (a)m′ 〉0. Therefore, by (2.18) and

the formula β = αB−1 of the proof of Lemma 2.5,

locX F =
∑

m∈v+
βm P̂m(X) =

∑

m,m′∈v+
〈F, f (a)m′ 〉0 B−1

m′,m P̂m(X). (2.21)

By Definition 1.15, this implies that

locX,Y F =
∑

m∈v+
βm P̂m(Y ) =

∑

m,m′∈v+
〈F, f (a)m′ 〉0 B−1

m′,m P̂m(Y ). (2.22)

Hence, writing A = |X |−1 B, and estimating the norm of P̂m(Y ) = ∑
y∈Y P̂m,y by the

triangle inequality, we obtain

‖locX,Y F‖T0 ≤
∑

m,m′∈v+
|〈F, f (a)m′ 〉0| |B−1

m′,m | ‖P̂m(Y )‖T0

≤ |Y |
|X |

∑

m,m′∈v+
|〈F, f (a)m′ 〉0| |A−1

m′,m | ‖P̂m,0‖T0

≤ ‖F‖T0

|Y |
|X |

∑

m,m′∈v+
‖ f (a)m′ ‖Φ(U ) |A−1

m′,m | ‖P̂m,0‖T0 , (2.23)
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where we used (2.20) in the last inequality.
It is shown in Lemmas 3.2 and 3.4 that

‖P̂m,0‖T0 ≤ R−|α(m)|1hm, ‖ f (a)m′ ‖Φ(U ) ≤ C̄h−m′
R|α(m′)|1 , (2.24)

where hm denotes the product of hik over the components (ik, αk) of m. It therefore suffices
to show that

|A−1
m′,m | ≤ C̄hm′

R−|α(m′)|1 R|α(m)|1h−m . (2.25)

The matrix elements Am′,m can be computed using the formula

A−1
m′,m = (I + (A − I ))−1 =

|v+|−1∑

j=0

(−1) j (A − I ) j , (2.26)

where we have used the fact that the upper triangular matrix A − I with zero diagonal is
nilpotent. Consequently, A−1

m′,m is bounded by a sum of products of factors of the form

|X |−1|〈P̂m′(X), f (a)m 〉0| ≤ ‖P̂m′,0‖T0‖ f (a)m ‖
Φ(X̂), (2.27)

where X̂ is a polymer which extends X in a minimal way to ensure that Pm′(X) ∈ N (X̂) for
all m′ ∈ v+. The extension is present because the discrete derivatives in Pm′ cause Pm′(X)
to depend on points near the boundary, but outside X . Now repeated application of (2.24)
gives rise to a telescoping product in which the powers of R and h exactly cancel, leading to
an upper bound

‖locX,Y F‖T0 ≤ C̄‖F‖T0 . (2.28)

This proves Proposition 1.16, and the special case Y = X then gives Proposition 1.11. ��
For the proof of Proposition 1.12, we need some preliminaries. For X contained in a

coordinate patch Λ′, let Π(X) ⊂ Φ denote the set of test functions whose restriction to
every argument in X agrees with the restriction of an element of Π . This is not the same as
Π[Λ′] defined previously. Let

Π⊥(X) = {G ∈ N (X) : 〈G, f 〉0 = 0 for all f ∈ Π(X)}. (2.29)

We claim that Π⊥(X) is an ideal in N (X), namely that

〈FG, f 〉0 = 0 for all F ∈ N (X),G ∈ Π⊥(X), f ∈ Π(X). (2.30)

To prove (2.30), it suffices to consider test functions f ∈ Π(X) which vanish except
on sequences z = (z1, . . . , z p(z)) in ��∗

with p(z) fixed equal to some positive integer n.
Likewise, we can assume that fz = 0 unless the component species i(z1), . . . , i(zn) have
specified values. These restrictions are sufficient because such test functions spanΠ(X). For
such test functions, it follows from [5, (5.24)] that 〈FG, f 〉φ = 〈G, F† f 〉φ , where, for some
constants cz′ ,

(F† f )z′′ =
∑

z′
cz′ Fz′ f̃ (z

′)
z′′ with f̃ (z

′)
z′′ =

∑

z∈z′�z′′
fz . (2.31)

For each fixed z′, the test function f̃ (z
′) is an element of Π(X), and hence 〈G, f̃ (z

′)〉0 = 0.
Then (2.30) follows from (2.31) and the linearity of the pairing.

We define, on Φ, the semi-norm

‖g‖Φ̃(X) = inf{‖g − f ‖Φ : f ∈ Π(X)}. (2.32)
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Lemma 2.6 Let ε > 0, X ⊂ Λ′, and g ∈ Φ. Then there exists a decomposition g = f + h
with f ∈ Π(X), ‖g‖Φ̃(X) ≤ ‖h‖Φ ≤ (1 + ε)‖g‖Φ̃(X) and ‖ f ‖Φ ≤ (2 + ε)‖g‖Φ .

Proof By (2.32), we can choose f ∈ Π(X) so that h = g − f obeys ‖g‖Φ̃(X) ≤ ‖h‖Φ ≤
(1 + ε)‖g‖Φ̃(X), and then ‖ f ‖Φ ≤ ‖h‖Φ + ‖g‖Φ ≤ (2 + ε)‖g‖Φ . ��

Proof of Proposition 1.12. Let R = L j . We write c for a generic constant and c̄ for a generic
constant that depends on R−1diam(X). Let F ∈ N (X) and A < pN . We first apply [5,
Proposition 3.11] to obtain

‖F‖T ′
φ

≤ (1 + ‖φ‖Φ ′)A+1

[
‖F‖T ′

0
+ ρ(A+1) sup

0≤t≤1
‖F‖Ttφ

]
, (2.33)

where, due to our choice of norm, ρ(A+1) ≤ cL−(A+1)[ϕmin]. To estimate ‖F‖T ′
0
, given a test

function g, we choose f ∈ Π(X) as in Lemma 2.6, and obtain

|〈F, g〉0| ≤ |〈F, f 〉0| + |〈F, g − f 〉0| . (2.34)

Now we set F = F1(1 − locY )F2. By (1.23) and (2.29), (1 − locY )F2 ∈ Π⊥(X). By (2.30),
this implies that F ∈ Π⊥(X), so the first term on the right-hand side of (2.34) is zero. For
the second term, we use

|〈F, g − f 〉0| ≤ ‖F‖T0‖g − f ‖Φ ≤ ‖F‖T0(1 + ε)‖g‖Φ̃ ≤ ‖F‖T0(1 + ε)c̄L−d ′+‖g‖Φ ′ ,
(2.35)

where the final inequality is a consequence of Lemma 3.6. After taking the supremum over
g ∈ B(Φ ′), followed by the infimum over ε > 0, we obtain ‖F‖T ′

0
≤ c̄ L−d ′+‖F‖T0 , and

hence

‖F‖T ′
φ

≤ (1 + ‖φ‖Φ ′)A+1 c̄
(

L−d ′+ + L−(A+1)[ϕmin]) sup
0≤t≤1

‖F‖Ttφ . (2.36)

Next, we apply the triangle inequality and the product property of the Tφ semi-norm to
obtain

‖F‖Ttφ ≤ ‖F1 F2‖Ttφ + ‖F1‖Ttφ‖locY F2‖Ttφ . (2.37)

Since locY F2 ∈ V , it is a polynomial of dimension at most d+, and hence of degree
at most d+/[ϕmin]. It follows from [5, Proposition 3.10] that ‖locY F2‖Ttφ ≤ (1 +
‖φ‖Φ)d+/[ϕmin]‖locY F2‖T0 . With Proposition 1.11, this gives

‖F‖Ttφ ≤ ‖F1 F2‖Ttφ + C̄ ′(1 + ‖φ‖Φ)d+/[ϕmin]‖F1‖Ttφ‖F2‖T0 . (2.38)

Since ‖φ‖Φ ≤ cL−[ϕmin]‖φ‖Φ ′ ≤ c‖φ‖Φ ′ due to our choice of norm, this gives

‖F‖Ttφ ≤ ‖F1 F2‖Ttφ + c̄(1 + ‖φ‖Φ ′)d+/[ϕmin]‖F1‖Ttφ‖F2‖T0 . (2.39)

Substitution of (2.39) into (2.36) completes the proof. ��
2.3 The Polynomials P(M)

We now prove the claim which guaranteed existence of the polynomials P̂ of Definition 1.2.
These polynomials were used to define the �-invariant subspace V of P .
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Lemma 2.7 For any M ∈ M+, the polynomial P = P(M) of (1.19) obeys: (i) P(M) is
�axes-covariant, (ii) M − P(M) ∈ Pt +R1 for some t > [M], and (iii) P(ΘM) = ΘP(M)
for Θ ∈ �+.

Proof (i) For Θ ′ ∈ �axes,

Θ ′ P = |�axes|−1
∑

Θ∈�axes

λ(Θ,M)Θ ′ΘM

= |�axes|−1
∑

Θ∈�axes

λ(Θ ′−1Θ,M)ΘM

= λ(Θ ′−1,M)|�axes|−1
∑

Θ∈�axes

λ(Θ,M)ΘM

= λ(Θ ′−1,M)P = λ(Θ ′,M)P, (2.40)

as required.
(ii) Given M ∈ M+ and Θ ∈ �axes, the monomial ΘM is equal to M with derivatives

switched from forward to backward in each coordinate whereΘ changes sign. Any derivative
that was switched can be restored to its original direction using (1.5), modulo a term inPt+R1.
The use of (1.5) introduces a sign change for each restored derivative, with the effect that M
is equal to λ(Θ,M)ΘM modulo Pt . Therefore, M − P(M) is also in Pt + R1.

(iii) Let M ∈ M+, Θ ′ ∈ �+, and Θ ∈ �axes. Since Θ ′−1ΘΘ ′ ∈ �axes, it makes sense
to write λ(Θ ′−1ΘΘ ′,M). Also, since the number of derivatives that change direction in
the transformation M �→ Θ ′−1ΘΘ ′M is equal to the number that change direction in the
transformationΘ ′M �→ ΘΘ ′M , it follows that λ(Θ ′−1ΘΘ ′,M) = λ(Θ,Θ ′M). Therefore,
by the change of variables Θ �→ Θ ′−1ΘΘ ′ in the sum,

Θ ′ P(M) = |�axes|−1
∑

Θ∈�axes

λ(Θ,M)Θ ′ΘM

= |�axes|−1
∑

Θ∈�axes

λ(Θ ′−1ΘΘ ′,M)ΘΘ ′M

= |�axes|−1
∑

Θ∈�axes

λ(Θ,Θ ′M)Θ(Θ ′M) = P(Θ ′M), (2.41)

and the proof is complete. ��

3 Lattice Taylor Polynomials

3.1 Taylor Polynomials

Let Λ′ be a coordinate patch, and let a ∈ Λ′. Recall the definition of the test functions b(a)m

in (2.3), for m ∈ m̄+. We now prove Lemma 2.1.

Proof of Lemma 2.1 (i) To show that p = Taya g obeys the desired identity ∇m(g− p)|z=�a =
0, it suffices to show that

∇mb(a)m′,z |z=�a = δm,m′ , m,m′ ∈ m̄+. (3.1)

To prove (3.1), it suffices to consider one species and the 1-dimensional case, since the
derivatives and binomial coefficients all factor. For non-negative integers k, n, it suffices
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to show that ∇n+
(x−a

k

)|x=a = δn,k , where we write ∇+ to emphasise that this is a forward
derivative. We use induction on n, noting first that when n = 0 we have ∇n+

(x−a
k

)|x=a =(0
k

) = δ0,k = δn,k . To advance the induction, we assume that the identity holds for n − 1

(for all k ∈ N0). Since ∇+
(x−a

k

) = (x−a+1
k

) − (x−a
k

) = (x−a
k−1

)
for all x ∈ Z, the induction

hypothesis gives, as required,

∇n+
(

x − a

k

)∣∣∣∣
x=a

= ∇n−1+
(

x − a

k − 1

)∣∣∣∣
x=a

= δn−1,k−1 = δn,k . (3.2)

For the uniqueness, suppose q ∈ Π obeys ∇m(g − q)|z=�a = 0. Since {b(a)m ,m ∈ v̄+} is
a basis ofΠ , there are constants cm such that q = ∑

m∈v̄+ cmb(a)m . By our assumption about
q and (3.1), ∇m g�a = ∇mq�a = cm , so q = Taya g as required.

(ii) It follows from (2.4) that the Taylor expansion of g with permuted arguments is
obtained by permuting the arguments of Tayag, and from this it follows that Taya commutes
with S.

(iii) This follows from the uniqueness in (i). ��

We also make note of a simple fact that we use below. Suppose the components of m ∈ m̄+
are (ik, αk) and the components of m′ ∈ m̄+ are (ik, α

′
k) where k ∈ {1, . . . , p} and αk, α

′
k ∈

N
d
0 . We say αk ≥ α′

k if each component of αk is at least as large as the corresponding
component of α′

k . By examining the proof of (3.1), we find that

∇mb(a)m′,z = 0 if αk > α′
k for some k = 1, . . . , p, (3.3)

∇mb(a)m,z = 1. (3.4)

In other words, the condition z = �a is not needed in these cases.

3.2 Dual Pairing

For m ∈ m+ let ��(m) be the set of permutations of 1, . . . , p(m) that fix the species when
they act on m by permuting components, i.e., π(ik, αk) = (iπk, απk) with iπk = ik . Let
| ��(m)| be the order of this group. There is also the subgroup ��0(m) of permutations that fix
m. It has order

| ��0(m)| =
∏

(i,α)

n(i,α)(m)!, (3.5)

with n(i,α) as defined below (1.8): n(i,α) denotes the number of times that (i, α) appears as a
component of m.

For example, for m = ((1, α1), (1, α1), (1, α2), (1, α2), (1, α2), (2, α3)) with α1 < α2,
we have | ��(m)| = 5!1! and | ��0(m)| = 2!3!1!. For this choice of m,

b(a)m,z =
(

z1 − a

α1

)(
z2 − a

α1

)(
z3 − a

α2

)(
z4 − a

α2

)(
z5 − a

α2

)(
z6 − a

α3

)
. (3.6)

For this, or for any other m ∈ m̄+, a permutation π in ��(m) has an action on b(a)m,z either

by mapping it to b(a)πm,z or to b(a)m,π z , where π(z1, . . . , z p) = (zπ1, . . . , zπp). The two actions

are related by b(a)πm,z = b(a)
m,π−1z

. Therefore ��0(m) is the set of permutations that leave b(a)m,z

invariant.
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By the definition of the symmetry operator S : Φ → Φ in [5, Definition 3.4], for m ∈ m+,
(
Sb(a)m

)
z = | ��(m)|−1

∑

σ∈ ��(m)
sgn(σ f )b

(a)
m,σ z, (3.7)

where σ f denotes the restriction of σ to the fermion components of z, and sgn(σ f ) denotes
the sign of this permutation. In (2.5), we defined

f (a)m = Nm Sb(a)m , (3.8)

and we now specify that

Nm = | ��(m)|
| ��0(m)|

. (3.9)

We are now in a position to prove Lemma 2.2. Lemma 2.2(i) is subsumed by Lemma 3.1
and is proved in (3.13).

Proof of Lemma 2.2(ii) Let g ∈ Π . By Lemma 2.1(ii), Taya S = Taya S2 = STaya S. With
(2.4) and (2.2), this gives

Taya(Sg) = S
∑

m∈v̄+
〈Mm,a, g〉0b(a)m . (3.10)

Since ��0(m) is the set of permutations that leave m invariant, the sum over v̄+ can be written
as a sum over v+, as

S
∑

m∈v̄+
〈Mm,a, g〉0b(a)m = S

∑

m∈v+

1

| ��0(m)|
∑

σ∈ ��(m)
〈Mσm,a, g〉0b(a)σm . (3.11)

The anticommutativity of the fermions implies that 〈Mσm,a, g〉0 = sgn(σ f )〈Mm,a, g〉0.

Since b(a)σm,z = b(a)
m,σ−1z

, it follows from (3.7) to (3.9) and the fact that S f (a)m = f (a)m that

Taya(Sg) = S
∑

m∈v+
〈Mm,a, g〉0 Nm Sb(a)m = S

∑

m∈v+
〈Mm,a, g〉0 f (a)m =

∑

m∈v+
〈Mm,a, g〉0 f (a)m ,

(3.12)
and the proof is complete. ��

The next lemma provides statements concerning the duality of field monomials and test
functions, for use in Sect. 2. In particular, (3.13) gives Lemma 2.2(i).

Lemma 3.1 The following identities hold, for a, x ∈ Λ′:
〈
Mm,a, f (a)m′

〉
0 = δm,m′ m,m′ ∈ m+, (3.13)

〈
Mm,x , f (a)m′

〉
0 = δm,m′ m,m′ ∈ m+ with [Mm] = [Mm′ ], (3.14)

〈
Mm,x , f (a)m′

〉
0 = 0 m ∈ m,m′ ∈ m+ with [Mm] > [Mm′ ]. (3.15)

Proof We begin with a preliminary observation. Let m ∈ m and m′ ∈ m+. It follows from
(2.2), the identity S2 = S, and (3.7)–(3.9) that

〈
Mm,x , f (a)m′

〉
0 = ∇m(

S f (a)m′
)|z=�x = | ��0(m

′)|−1
∑

σ∈ ��(m′)

sgn(σ f )∇mb(a)m′,σ z |z=�x

= | ��0(m
′)|−1

∑

σ∈ ��(m′)

sgn(σ f )∇mb(a)
σm′,z |z=�x , (3.16)
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where for the last step we recall that b(a)πm,z = b(a)
m,π−1z

.

It is now easy to prove (3.13). Indeed, by (3.1) with x = a, ∇mb(a)
σm′,z |z=�a = δm,σm′ . For

m,m′ ∈ m+, m = σm′ holds if and only if m = m′ and σ ∈ ��0(m′). Since n(i,α) = 1 for
fermion species i , we have sgn(σ f ) = 1 for permutations that fix m, and (3.13) follows.

For the proof of (3.14)–(3.15), we first observe that by the definition of the zero-field
pairing, Mm,x has nonzero pairing only with test functions with the same number of variables
as there are fields in Mm,x . Therefore, we may assume that the number p(m) of fields in Mm,x

is equal to the number p(m′) of variables in f (a)m′ . Furthermore, the pairing only replaces the
fields in Mm,x with test functions whose arguments match the species of the fields. Thus,
for m,m′ ∈ m, the pairing 〈Mm,x , f (a)m′ 〉0 is zero unless p(m) = p(m′) and the components
(ik, αk) of m and the components (i ′k, α′

k) of m′ obey ik = i ′k for all k = 1, . . . , p(m). For
(3.14), the condition that [Mm] = [Mm′ ] therefore becomes the condition that |α|1 = |α′|1.
Consider first the case where αk �= α′

k for some k. Then, for some k, αk > α′
k . Since m,m′

are elements of m+ both the αk and the α′
k are ordered within each species. Therefore it is

also true that for any permutation σ ∈ ��(m′) there is some k such that αk > α′
σk . By (3.3),

in this case ∇mb(a)
σm′,z = 0, so the right-hand side of (3.16) is zero. We are now reduced to

the case αk = αk′ for all k. This means that m = m′ and we complete the proof of (3.14) as
in the proof of (3.13), applying (3.4) rather than (3.1).

Finally, we prove (3.15). As in the proof of (3.14), the condition that [Mm] > [Mm′ ]
implies that for any σ there is some k such that αk > α′

σk . By (3.3), this implies that

∇mb(a)
σm′,z = 0, and hence the right-hand side of (3.16) is zero, and (3.15) is proved. ��

The following lemma is used in the proof of Proposition 1.11.

Lemma 3.2 For m ∈ v+, let P̂m,x = P̂(Mm,x ), with P̂ given by Definition 1.2. Then there
is a constant c such that

‖P̂m,x‖T0 ≤ R−|α(m)|1hm, (3.17)

where hm denotes the product of hik over the components (ik, αk) of m.

Proof By Definition 1.2, P̂m is a sum of monomials of the same degree and dimension as
Mm , so it suffices to prove (3.17) for a single such monomial M̃m . But for any test function
g, by (2.2) and by the definition of the Φ(h) norm in (1.35), we have

|〈M̃m,x , g〉0| = |∇ α̃(m)(Sg)z |z=�x | ≤ R−|α(m)|1hm‖Sg‖Φ(h) ≤ R−|α(m)|1hm‖g‖Φ(h),
(3.18)

as required. ��
3.3 Norm Estimates and Taylor Approximation

The main results in this section are Lemmas 3.4 and 3.6, which are used in the proofs of
Propositions 1.11 and 1.12 respectively. Lemma 3.3 is used to prove Lemmas 3.4 and 3.6,
and Lemma 3.5 is used to prove Lemma 3.6. Lemmas 3.3–3.6 are in essence statements about
test functions and Taylor approximation on the infinite lattice Z

d , which we can apply to the
torus Λ by judicious restriction to a coordinate patch. The correspondence between Z

d and
a coordinate patch is possible since norms of test functions are preserved by a coordinate
z as defined at the beginning of Sect. 1.3, since nearest-neighbours and hence derivatives
are preserved by z. Thus we work primarily in this section on Z

d , with commentary in the
statements of Lemmas 3.4 and 3.6 concerning applicability on the torus Λ.
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486 D. C. Brydges, G. Slade

Let j < N and let X be a j-polymer in Λ or Z
d , depending on context. Recall that

we defined an enlargement X+ of X by doubling its blocks, above the statement of Propo-
sition 1.11. We extend this notion, as follows. For real t > 0 and a nonempty j-polymer
X ⊂ Z

d , let Xt ⊂ Z
d be the smallest subset that contains X and all points in Z

d that are
within distance t L j of X . In particular, X+ = X1/2. Below, we frequently write R = L j .

The following lemma shows that, given t > 0, it is possible to estimate theΦ(X) norm of
a test function g using the values of g only in X2t . In its statement, we write z ∈ X2t to mean
that each component zi of z lies in X2t . Recall from (2.19) that the Φ(X) norm is defined in
terms of the Φ = Φ(h) norm of (1.35) by

‖g‖Φ(X) = inf{‖g − f ‖Φ : fz = 0if all components of z lie in X}, (3.19)

where we can interpret g as a test function either on Z
d or on Λ, depending on context.

Lemma 3.3 Let t > 0, p ≥ 1, j < N, and let X ⊂ Z
d be a j-polymer. There is a function

χt of p variables, which takes the value 1 if each variable lies in X, and the value 0 if any
variable lies in Z

d \ X2t , and a positive constant c0, independent of p, X and R = L j , such
that for any test function g on Z

d which depends on p variables,

‖g‖Φ(X) ≤ ‖gχt‖Φ(Zd ) ≤ (
(1 + c0t−1)h−1)p

sup
z∈X2t

sup
|β|∞≤pΦ

|∇β
R gz |. (3.20)

Proof By definition, g is a function of finite sequences each of whose components is in a
disjoint union X of copies of X , where the copies label species (fermions, bosons, field and
conjugate field). We give the proof for the special case X = X , so that g is a function of
z = (z1, . . . , z p) with zi ∈ Z

d . The general proof is a straightforward elaboration of the
notation.

Let t > 0. We first construct a t-dependent function χ : R
d → [0, 1] such that

χ |X = 1, χ |
Zd\X2t

= 0,
∣∣∇α

Rχ |
Zd

∣∣ ≤ c(α)t−|α|1 , (3.21)

where ∇α
R = R|α|1∇α , and where the estimate holds for all multi-indices α and is uniform

in X . Let Yt be the subset of R
d obtained by taking the union over lattice points in Xt of

closed unit cubes centred on lattice points. Let ϕ be a smooth non-negative function on R
d

supported inside a ball of radius one and normalised so that
∫
ϕdx = 1. For a = t R, let

ϕa(x) = a−dϕ(a−1x) and let χ(x) = ∫
Yt
ϕa(x − y) dy. Then

0 ≤ χ(x) ≤
∫

Rd
ϕa(x − y) dy =

∫

Rd
ϕ(x − y) dy = 1 (3.22)

as required. For x ∈ X ⊂ R
d , the distance between x and the complement of Yt is at least

a and therefore χ(x) = ∫
Yt
ϕa(x − y) dy = ∫

Rd ϕ(x − y) dy = 1. Therefore χ |X = 1 as
required. For x �∈ X2t , in the definition of χ , x − y is not in the support of ϕa so χ(x) = 0
as required. The partial derivative χ(α) of χ of total order |α|1 obeys
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∣∣χ(α)(x)
∣∣ ≤ a−|α|1

∫

Xt

∣∣∣ϕ(α)
( x − y

a

)∣∣∣a−d dy

≤ a−|α|1
∫

Rd

∣∣ϕ(α)(x − y)
∣∣ dy ≤ c(α)a−|α|1 . (3.23)

By the mean-value theorem, the finite difference derivative ∇αχ |
Zd is bounded by the con-

tinuum derivative which is less than c(α)a−|α|1 . When we convert ∇ derivatives to ∇R

derivatives the factors of R convert this estimate to c(α)t−|α|1 as claimed. This establishes
the last estimate in (3.21) and concludes the construction of χ .

We extend χ to a function on sequences: for a sequence z = (z1, . . . , z p), we define
χt (z) = ∏p

i=1 χ(zi ). Since gχt agrees with g when evaluated on X, and is zero outside X2t ,
it follows from the definition of the Φ(X) norm in (2.19) that

‖g‖Φ(X) ≤ ‖gχt‖Φ(Zd ) ≤ sup
z∈X2t

h−z sup
|β|∞≤pΦ

|∇β
R(gχt )z |. (3.24)

Recall the lattice product rule ∇e(h f ) = (Te f )∇h + h∇ f for differentiating a product,
where Te is translation by the unit vector e. When the derivatives in ∇β

R(gχt ) are expanded

using the lattice product rule, one of the terms is χt∇β
k g. The remaining terms all involve

derivatives of χt , at most pΦ in each coordinate. This leads to a number of terms that grows
exponentially in p, so that, as required,

sup
|β|∞≤pΦ

|∇β
R(gχt )z | ≤ (

1 + O(t−1)
)p sup

|β|∞≤pΦ
|∇β

R gz |. (3.25)

This completes the proof. ��
Lemma 3.4 Let j < N, let m ∈ m+, let X be a j-polymer in Z

d , and let a ∈ X. There is
a constant C̄, independent of m but dependent on the diameter of R−1 X, such that for the
polynomial f (a)m defined on all of Z

d ,

‖ f (a)m ‖Φ(X) ≤ C̄h−m R|α(m)|1 . (3.26)

The same inequality holds for f (a)m as we have defined it on the torus, provided X+ lies in a
coordinate patch.

Proof For the case of Z
d , by the definition of f (a)m in (3.8), and by Lemma 3.3 with t = 1

2 ,
it suffices to show that for z ∈ X+ and for |β|∞ ≤ pΦ ,

|∇β
Rb(a)m,z | ≤ c̄R|α|1 , (3.27)

where c̄ depends on m and R−1 X . Note that any dependence on p (from Lemma 3.3) and m
is uniformly bounded since the number of variables in bounded when m ∈ m+.

To prove (3.27), we first note that if any component of β exceeds the corresponding
component of α = α(m) then the left-hand side of (3.27) is equal to zero as in the proof
of (3.15). Thus we may assume that each component of β is at most the corresponding
component of α, and without loss of generality we may consider the 1-dimensional case. In
this case, for j = j− + j+ ≤ k, |∇ j−− ∇ j++

(x−a
k

)| = |(x−a− j−
k− j

)| and this is at most a multiple

of Rk− j , with the multiple dependent on the ratio of the diameter of X to R. This proves
(3.27) and completes the proof of (3.26) for Z

d . There is no dependence of C̄ on m ∈ m+,
since m+ is a finite set.

This then implies the extension to the torus, since derivatives of b(a)m are the same on a
coordinate patch and its image rectangle in Z

d . ��
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The following Taylor remainder estimate is used to prove Lemma 3.6, which plays an
important role in the proof of the crucial change of scale bound in Proposition 1.12. For its
statement, given a ∈ Z

d , p ∈ N, z = (z1, . . . , z p)with z1, . . . , z p ∈ Z
d and with (zi ) j ≥ a j

for all i = 1, . . . , p and j = 1, . . . , d , and t ∈ N, we define St (a, z) = {y = (y1, . . . , yp) :
yi ∈ Z

d : a j − t ≤ (yi ) j ≤ (zi ) j }. We make use of the map Taya : Φ → Π given by
(2.4), interpreted as a map on test functions g defined on Z

d . The range of Taya involves
polynomials in the components of z to maximal degree s = d+ − ∑p

k=1[ϕi(zk )], where i(zk)

denotes the field species corresponding to the component zk . Also, given a test function
g ∈ Φ(p), we write Mg = supy∈Ss (a,z) sup|α|∞=s+1 |∇αgy | where the supremum over α is a
supremum over only forward derivatives.

Lemma 3.5 For a ∈ Z
d , components of z = (z1, . . . , z p) in Z

d with (zi ) j ≥ a j for all i, j ,
and for |β|1 = t ≤ s (forward or backward derivatives), the remainder in the approximation
of g = gz by its Taylor polynomial obeys

|∇β(g − Taya g)z | ≤ Mg

( |z − �a|1
s − t + 1

)
, (3.28)

with Mg and s as defined above.

Proof The proof is by induction on the dimension of z ∈ Z
dp and does not depend on the

grouping of these components of z into Z
d . Therefore we give the proof for case d = 1. Also

without loss of generality, we assume that a = 0. Let fz = Taya gz = Tay0gz .
We first show that it suffices to establish (3.28) for the case |β|1 = t = 0, namely

|gz − fz | ≤ Mg

( |z|1
s + 1

)
, (3.29)

with the supremum defining M taken over S0(z). In fact, for the case where β involves only
forward derivatives, ∇β f is the degree s − t Taylor polynomial for ∇βg, and it follows from
(3.29) that

|∇β(g − f )z | ≤ Mg

( |z|1
s − t + 1

)
, (3.30)

which is better than (3.28). To allow also backward derivatives, we simply note that a single
backward derivative is equal in absolute value to a forward derivative at a point translated
backwards, and this translation is handled in our estimate by the extension of S0(z) to St (z)
in the definition of Mg .

It remains to prove (3.29). The proof is by induction on p (with s held fixed). Consider
first the case p = 1. For a function φ on Z, let (Tφ)x = φx+1 and let D = T − I . For m > 0,
T m = I + ∑m

n=1(T − I )T n−1. Iteration of this formula s times gives

T m = I +
∑

m≥n1≥1

DI +
∑

m≥n1>n2≥1

D2T n2−1 = · · · =
s∑

α=0

(
m

α

)
Dα + E, (3.31)

where
E =

∑

m≥n1>n2>···>ns+1≥1

Ds+1T ns+1−1. (3.32)

We apply this operator identity to (T z1 g)0 and obtain, for p = 1,

gz1 = (T z1 g)0 = fz1 + (Eg)0. (3.33)
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The remainder term obeys the estimate

|(Eg)0| ≤
∑

m≥n1>n2>···ns+1≥1

sup
x∈S0(z1)

|Ds+1gx | =
(

m

s + 1

)
sup

x∈S0(z1)

|Ds+1gx |. (3.34)

This proves (3.29) for p = 1.
To advance the induction, we assume that (3.29) holds for p − 1. We write y =

(z1, . . . , z p−1) and z = (y, z p), and apply the case p − 1 to g with the coordinate z p

regarded as a parameter. This gives

gz =
∑

|β|1≤s

(
y

β

)
Dβg(0,z p) + Ẽ, (3.35)

where by the induction hypothesis |Ẽ | ≤ M
(|y|1

s+1

)
. We also apply the case p = 1 to obtain

Dβg(0,z p) =
s−|β|1∑

α=0

(
z p

α

)
DαDβg0 + E1, (3.36)

with |E1| ≤ M
( z p

s−|β|1+1

)
. The insertion of (3.36) into (3.35) yields

gz =
∑

|β|1≤s

(
y

β

) s−|β|1∑

α=0

(
z p

α

)
DαDβg0 +

∑

|β|1≤s

(
y

β

)
E1 + Ẽ . (3.37)

The first term on the right-hand side is just the Taylor polynomial fz for gz . It therefore
suffices to show that

∑

|β|1≤s

(
y

β

)(
z p

s − |β|1 + 1

)
+

( |y|1
s + 1

)
≤

( |z|1
s + 1

)
. (3.38)

However, (3.38) follows from a simple counting argument: the right-hand side counts the
number of ways to choose s + 1 objects from |z|1, while the left-hand side decomposes this
into two terms, in the first of which at least one object is chosen from the last coordinate of
z, and in the second of which no object is chosen from the last coordinate. This completes
the proof of (3.29). ��

The following lemma is used in this paper in the proof of Proposition 1.12, and it is also
used in [6, Lemma 1.2]. Its most natural setting is Z

d , but we do require it in the case of a torus
Λ with period L N for integers L , N > 1. Given j < N , let R = L j and R′ = L j+1. Let
Φ(h),Φ ′(h′) be test function spaces defined via weights involving parameters R = L j , h and
R′ = L j+1, h′ respectively. Suppose that h′

i/hi ≤ cL−[φi ], where c is a universal constant.

Lemma 3.6 Suppose that pΦ ≥ d ′+ − [ϕmin]. Fix L > 1. Let j < N and let X be an
L j -polymer on Z

d with enlargement X+ as in Lemma 3.3 with t = 1
2 . There exists C̄3, which

is independent of L and depends on j only via L− j diam(X), such that for any test function
g on Z

d ,
‖g‖Φ̃(X) ≤ C̄3L−d ′+‖g‖Φ̃ ′(X+), (3.39)

with d ′+ given by (1.38). In particular, ‖g‖Φ̃(X) ≤ C̄3L−d ′+‖g‖Φ ′ . The bound (3.39) also
holds for a test function g on the torus Λ, provided L is sufficiently large and there is a
coordinate patch Λ′ ⊃ X+.
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Proof We first consider the case of Z
d . We assume that X is connected; if it is not then the

following argument can be applied in a componentwise fashion. For connected X , let a be
the largest point which is lexicographically no larger than any point in X .

Given g, we use Lemma 2.6 to choose f ∈ Π(X) such that h = g − f obeys ‖h‖Φ ′(X) ≤
2‖g‖Φ̃ ′(X). Then g − (h − Tayah) ∈ Π(X), and hence

‖g‖Φ̃(X) = ‖h − Tayah‖Φ̃(X) ≤ ‖h − Tayah‖Φ(X). (3.40)

It suffices to prove that for every test function h,

‖h − Tayah‖Φ(X) ≤ 1

2
C̄3L−d ′+‖h‖Φ ′(X+), (3.41)

since ‖h‖Φ ′(X+) ≤ 2‖g‖Φ̃ ′(X+) ≤ 2‖g‖Φ ′ .

The rest of the proof is concerned with proving (3.41). We write R = L j and R′ = L j+1.
Let r = h − Tayah. By Lemma 3.3 with t = 1

2 , there is a constant K > 1 such that

‖r‖Φ(X) ≤ sup
z∈X+

(Kh−1)z sup
|β|∞≤pΦ

|∇β
Rrz |. (3.42)

By the hypothesis on h′, (3.42) implies that

‖r‖Φ(X) ≤ sup
z∈X+

(cKh′−1)z sup
|β|∞≤pΦ

L−(∑k [ϕik ]+|β|1)|∇β

R′rz |, (3.43)

where the sum on the right-hand side is over the components present in z. We write u ≺ v to
denote u ≤ const v with a constant whose value is unimportant.

Consider first the case
∑

k[ϕik ] + |β|1 > d+, for which ∇βrz = ∇βhz . By definition of
d ′+ in (1.38),

∑
k[ϕik ] + |β|1 ≥ d ′+. We claim that the contribution to the right-hand side of

(3.43) due to this case is

≺ L−d ′+‖h‖Φ ′(X+), (3.44)

as required. In fact, here there is no dependence on R−1diam(X) in the constant, and the
hypothesis on pΦ ensures that there are sufficiently many derivatives in the norm of h. The
potentially dangerous factor (cK )z is uniformly bounded when p(z) is uniformly bounded,
in particular with p(z) ≤ d ′+/[ϕmin]. On the other hand, when p(z) > d ′+/[ϕmin], the excess

(cK )p(z)−d ′+/[ϕmin] is more than compensated by the number of excess powers of L−1 from
(3.43), namely

∑
k[ϕik ] + |β|1 − d ′+ ≥ p(z)[ϕmin] − d ′+, for large L .

For the case
∑

k[ϕik ] + |β|1 ≤ d+, we write t = |β|1 and s = d+ − ∑
k[ϕik ] ≥ t . In

this case, p(z) must be uniformly bounded, and hence so is the factor (cK )z in (3.43). By
Lemma 3.5, there exists c̄, depending on R−1diam(X), such that

|∇βrz | ≤ c̄ sup
|α|=s+1

Rs−t+1 sup
z

|∇αhz | ≤ c̄Rs−t+1(R′)−s−1(h′)z‖h‖Φ ′(X+), (3.45)

(the power of R in the first line arises from the binomial coefficient in (3.28), and it is here
that the constant develops its dependence on R−1diam(X)) and hence

(h′)−z |∇β

R′rz | ≤ c̄Rs−t+1(R′)t−s−1‖h‖Φ ′(X+) ≺ c̄Lt−s−1‖h‖Φ ′(X+). (3.46)

Thus the contribution to (3.43) due to this case is

≺ c̄L−∑
k [ϕik ]−t+t−s−1‖h‖Φ ′(X+) = c̄L−d+−1‖h‖Φ ′(X+). (3.47)

Since d+ + 1 ≥ d ′+ by the definition of d+′ , this completes the proof for the case of Z
d .
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The torus case follows from the Z
d case by the coordinate patch assumption, once we

choose L large enough to ensure that the set ∪z∈X+ Ss(a, z) lies in a coordinate patch if X+
does. This is possible because j < n and hence there is a gap of diameter at least L preventing
X+ from “wrapping around” the torus, whereas the enlargement of X+ due to the set Ss(a, z)
depends only on d+. This enlargement cannot wrap around the torus if L is large enough. ��
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