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Abstract There is a well known analogy between the Laughlin trial wave function for
the fractional quantum Hall effect, and the Boltzmann factor for the two-dimensional one-
component plasma. The latter requires continuation beyond the finite geometry used in its
derivation. We consider both disk and cylinder geometry, and focus attention on the exact
and asymptotic features of the edge density. At the special coupling � := q2/kB T = 2 the
system is exactly solvable. In particular the k-point correlation can be written as a k × k
determinant, allowing the edge density to be computed to first order in � − 2. A double layer
structure is found, which in turn implies an overshoot of the density as the edge of the leading
support is approached from the interior. Asymptotic analysis shows that the deviation from
the leading order (step function) value is different for the interior and exterior directions.
For general �, a Gaussian fluctuation formula is used to study the large deviation form of
the density for N large but finite. This asymptotic form involves thermodynamic quantities
which we independently study, and moreover an appropriate scaling gives the asymptotic
decay of the limiting edge density outside of the plasma.
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1148 T. Can et al.

1 Introduction

In the theory of the fractional quantum Hall effect the so-called Laughlin states are trial wave
functions in a two-dimensional domain of the form

1

CN

N∏

l=1

f (zl)
∏

1≤ j<k≤N

(u(zk) − u(z j ))
m, zl := xl + iyl . (1.1)

Here m is even (odd) for bosonic (fermionic) states, and m furthermore determines the filling
fraction ν of the lowest Landau level according to ν = 1/m.

The setting is a strong, constant magnetic field B, perpendicular to the surface, with all
spin degrees of freedom frozen. For planar geometry in the symmetric gauge

f (z) = e−|z|2/4l2
B , u(z) = z, (1.2)

where lB = √
h̄c/eB is the magnetic length [18]. For cylinder geometry, with axis along the

y-axis and perimeter W , in the Landau gauge [28]

f (z) = e−y2/2l2
B , u(z) = e2π i z/W . (1.3)

Below we set the units of length so that lB = 1/
√

m. We refer to the wave function (1.1) in
the case (1.2) by �d

N , and in the case (1.3) by �c
N . The particles are free to move anywhere

in the plane or on the surface of the cylinder, to be denoted � in both cases.
Our primary interest in this paper is in the particle density

ρ(1)(z; m) := N
∫

�

dx2dy2 · · ·
∫

�

dxN dyN |�N (z, z2, . . . , zN )|2. (1.4)

To leading order, in the planar geometry specified by (1.2), ρ(1)(z; m) = 1/(2π)χ|z|<√
N ,

while in the cylinder geometry specified by (1.3), ρ(1)(z; m) = 1/(2π)χz∈R, where R
= {0 ≤ x ≤ W, 0 ≥ y ≥ −L}, N/(W L) = 1/(2π). Here χJ = 1 for J true, and χJ = 0
otherwise. In the case m = 1,these can be established as point-wise limits of known exact
expressions for the particle density (see e.g. [11, §15.3]), while more generally this follows
from potential theory [21]. At a physical level, these behaviours are most easily seen by
appealing to an interpretation of |�N |2 in terms of the Boltzmann factor for the classical
two-dimensional one-component plasma; see Sect. 2.

Previous studies [7,8,19,26,29,30] have revealed that on the boundary of the leading
support there is a non-trivial double layer, or overshoot, behaviour characterized by a local
maximum in the density. The recent study [29] has argued that the double layer is an essential
ingredient in the theory of edge waves supporting fractionally charged edge solitons. It is the
aim to this study to undertake a study of some of the analytic properties of the double layer
in the N → ∞ limit.

It turns out that thermodynamic quantities of the plasma, such as the free energy and surface
tension, appear in the associated asymptotic forms, so it is necessary to first undertake a study
of the thermodynamic properties of the plasma, which we do in Sect. 3. In particular, in Sect. 3
we pool together knowledge from previous studies to specify as many terms as possible in the
large N expansion of the free energy. The coupling constant in the plasma is � = q2/kB T
(see (2.5) below). In terms of quantities in (1.1) we have � = 2m. Unlike m, the coupling � is
naturally a continuous variable. The dependence on � of the resulting expressions are tested
and illustrated by a combination of exact analytic, and exact numerical results. In relation to
exact analytic results, the case � = 2, which in the interpretation (1.1) corresponds to free
fermions in a magnetic field in the lowest Landau level, is exactly solvable for both planar
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Exact and asymptotic features 1149

[15] and cylinder [6] geometry. Knowledge of the exact one and two-point correlations can
be used to expand the free energy to first order in � − 2. And for � = 4, 6 and 8 expansion
methods of the products of differences in (1.1) based on Jack polynomials (see Sect. 3.3) can
be used to provide exact numerical data up to N = 14.

Our study of the edge density begins in Sect. 4. Following the lead of the earlier work
of Jancovici [16] in the bulk, knowledge of the exact one, two, and three-point correlations
in the case of the planar geometry for � = 2 was recently used [27] to calculate the exact
form of the density to first order in � − 2. We provide its N → ∞ form in the case that the
coordinates are centred on the boundary of the leading support for finite N , and we show
too that the same analytic expression results by computing the edge scaling of the density
computed to first order in � − 2 for cylinder geometry. Such coincidence of expressions is
of course expected on physical grounds; the significance of our two expressions coinciding
is more with regards to a check on the workings, as to carry out the asymptotic analysis in
the disk case it is necessary to make certain assumptions about dominant regions in double
sums. From this analytic expression, the asymptotic behaviour in the interior and exterior
of the boundary of support can determined, and it is found the deviation from the leading
order (step function) value is different in the two cases. The results of this section have been
reported in a Letter by the present authors [5], which furthermore casts them in the context
of the Laughlin droplet interpretation.

In Sect. 5 we study the large deviation form of the density outside of the leading support,
for N large but finite. Our main tool here is to express (1.4) in terms of the characteristic
function for the distribution of a certain linear statistic, then to compute its large N form by
using a Gaussian fluctuation formula. By an appropriate scaling of this expression we obtain
a prediction for the asymptotic decay of the edge density in the region outside of the leading
support for general � > 0.

2 Plasma Viewpoint

The observation that the absolute value squared of the Laughlin trial wave functions for the
fractional quantum Hall effect have an interpretation as the Boltzmann factor for certain
two-dimensional one component plasma (2dOCP) systems was already made in the original
paper of Laughlin [18]. Generally the 2dOCP refers to a system of N mobile point particles
of the same charge q and a smeared out neutralising background, with the domain a two-
dimensional surface. The charges interact via the solution 	(�r , �r ′) of the Poisson equation
on the surface. Thus for the plane

	(�r , �r ′) = − log(|�r − �r ′|/ l), (2.1)

where l is an arbitrary length scale (we take l = 1), while for periodic boundary conditions
in the x-direction, period W (or equivalently a cylinder of circumference length W )

	(�r , �r ′) = − log
(∣∣∣ sin

(
π(x − x ′ + i(y − y′))/W

)( W

π

)∣∣∣
)
. (2.2)

With β := 1/kB T the Boltzmann factor for a classical system is e−βU , where U is
the total potential energy. As detailed in [11, Sect. 1.4.1], U = U1 + U2 + U3, where U1

corresponds to the particle-particle interaction, U2 to the particle-background interaction,
and U3 to the background-background interaction. In the case that the domain is a plane,
with the smeared out neutralizing background a disk at the origin of radius R, the particles
couple to the background via a harmonic potential towards the origin. Explicitly one has
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U1 = −
∑

1≤ j<k≤N

log |�rk − �r j | (2.3)

and

U2 + U3 = N 2
(1

4
log N − 3

8

)
+ 1

2

N∑

j=1

�r2
j , (2.4)

and so the explicit form of the Boltzmann factor is (see e.g. [11, eq. (1.72)])

Ad
N ,�e−π�ρb

∑N
j=1 | �r j |2/2

∏

1≤ j<k≤N

| �rk − �r j |�, Ad
N ,� = e−�N 2

(
1
2 log R− 3

8

)
(2.5)

where ρb = N/π R2 is the background density (and thus the subscript “b” and � = q2/kB T .
The derivation of (2.5) requires the particles be confined to the disk of the smeared out
background and thus | �r j | ≤ R. To get an analogy with the absolute value squared of the trial
wave functions (1.1) we must relax this condition by allowing the domain to be all of R

2;
this will be referred to as soft disk geometry.

With Zd
N ,� denoting the partition function corresponding to (2.5), i.e. (2.5) integrated over

�r j ∈ R
2 ( j = 1, . . . , N ) and multiplied by 1/N !, one has that for � = 2 (see e.g. [26, above

Eq. (3.14)])

Zd
N ,2 = π N e3N 2/4 N−N 2/2(πρb)

−N/2G(N + 1),

where G(N + 1) := ∏N−1
l=1 l!. We remark that this latter function can be extended to an

analytic function, when it is referred to as the Barnes-G function. As a consequence of this
formula, and making use of the asymptotic form of the Barnes-G function, we have [26,
eq. (3.14)]

βFd
N ,2 := − log Zd

N ,2 = Nβ f (2, ρb) + 1

12
log N − ζ ′(−1) + O

( 1

N 2

)
,

where

β f (2, ρb) = 1

2
log

( ρb

2π2

)
. (2.6)

Furthermore, the one-body density can similarly be computed exactly at � = 2 with the
result (see e.g. [11, Proposition 15.3.4])

ρd
(1)(�r; 2) = 1

π

�(N ; r2)

�(N )
, r := |�r |. (2.7)

Note that this expression integrated over R
2 gives N .

In the case of semi-periodic boundary conditions, the neutralizing background is chosen
to be the rectangle 0 < x < W , 0 < y < L , and the particles couple to the background via
a harmonic potential in the y-direction only, centred at y = L/2 [6]. For the corresponding
Boltzmann factor we find

Ac
N ,�e−π�ρb

∑N
j=1(y j −L/2)2 ∏

1≤ j<k≤N

∣∣∣2 sin
π(x j − xk + i(y j − yk))

W

∣∣∣
�

, (2.8)

where

Ac
N ,� =

( W

2π

)−N�/2
e− π�

12 N L2ρb (2.9)

123



Exact and asymptotic features 1151

and ρb = N/LW . Analogous to the situation with (2.5), the derivation of (2.8) requires
0 < y j < L , but to get an analogy with the absolute value squared of the trial wave function
(1.1) in the case (1.3) we must relax this condition, obtaining what will be referred to as soft
cylinder geometry. For � = 2, results from [6] tell us that

1

N
βFc

N ,2 = β f (2, ρb) + πρb L2

6N 2 (2.10)

and

ρc
(1)(�r; 2) = 1

W

√
2ρb

N−1∑

m=0

exp
(

− 2πρb

(
y − m + 1/2

Wρb

)2)
. (2.11)

3 Universal Properties of the Free Energy

3.1 Introductory Remarks

Consider first the soft disk geometry. For general � > 0 one expects the large N expansion

βFd
N ,� := − log Zd

N ,� = Nβ f (�, ρb) + βμ(�, ρb)
(
2π

√
N/(πρb)

) + 1

12
log N + O(1).

(3.1)
In the leading term, β f (�, ρb) is the dimensionless free energy per particle. The universal
term 1

12 log N was identified by relating the plasma to a free Gaussian field [17] in the same
geometry. Here the adjective ‘universal’ is used to refer to the fact that this term is expected
to hold independent of microscopic details such as the particles also interacting via a short
range potential. An unpublished result of Lutsyshin makes the conjecture

βμ(�, ρb) =
√

πρb

2π

4 log(�/2)

3
√

π
= √

ρb
2 log(�/2)

3π
. (3.2)

Since the radius of the background is 2π
√

N/(πρb), μ(�, ρb) has the interpretation as a
surface tension. Note that (3.2) is consistent with the exact result (2.6) as it gives βμ(2, ρb)

= 0.
Consider now the soft cylinder. Universality of the dimensionless free energy per particle

and the surface tension imply that for large N

βFc
N ,� := − log Z c

N ,� = Nβ f (�, ρb) + βμ(�, ρb)(2W ) + πρb L2

6N
+ O(1). (3.3)

Here the universal term πρb L2/6N 2—termed universal for the same reason as the discussion
below (3.1)—is a consequence of the relationship between the plasma on an infinitely long
cylinder and the corresponding Gaussian free field [9].

3.2 Validity of Free Energy Expansion for � = 2 + ε (ε 
 1)

Consider the soft disk plasma system with mobile particles having charge q = 1 and total
energy U (recall Sect. 2). It follows from the definitions that an expansion in � − 2 reads

βFd
N ,� − βFd

N ,2 = (� − 2)〈U 〉
∣∣∣
�=2

+ O((� − 2)2), (3.4)

where U denotes the total energy. But we know from above that U = U1 + U2 + U3, with
U1 the potential energy of the particle-particle interaction as given by (2.3), and U2 +U3 the
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1152 T. Can et al.

sum of the particle–background and background–background interactions as given by (2.4).
A result of Shakirov [24] tells us that

〈U1〉
∣∣∣ �=2
ρb=1/π

= −1

2

(
N 2

2
log N − N 2

4
+ 1

2
(1 + C)N − 4

3

√
N

π
+ 5

24
+ O

(
1√
N

))
,

(3.5)
where C denotes Euler’s constant. The remaining averages are simple to compute.

Lemma 1 We have

〈U2 + U3〉
∣∣∣ �=2
ρb=1/π

= N 2

4
log N − N 2

8
+ N

4
.

Proof We see from (2.4) that

〈U2 + U3〉
∣∣∣ �=2
ρb=1/π

= N 2
(1

4
log N − 3

8

)
+ 1

2

〈 N∑

j=1

�r 2
j

〉∣∣∣ �=2
ρb=1/π

. (3.6)

Introducing the configuration integral

Qd
N ,�(ρb) :=

∫

R2
d�r1 · · ·

∫

R2
d�rN e−(πρb�/2)

∑N
j=1 �r2

j
∏

1≤ j<k≤N

|�rk − �r j |�, (3.7)

we see that

〈 N∑

j=1

�r 2
j

〉 ∣∣∣∣∣ �=2
ρb=1/π

= − 1

π

∂ log Qd
N ,2(ρb)

∂ρb

∣∣∣∣∣
ρb=1/π

.

On the other hand, a simple scaling shows

Qd
N ,�(ρb) = ρ

−�N (N−1)/4−N
b Qd

N ,�(1),

so we obtain
〈 N∑

j=1

�r 2
j

〉
= 1

πρb

(
�N (N − 1)

4
+ N

)
. (3.8)

Setting � = 2, ρb = 1/π and substituting in (3.6) gives the stated result. �
Adding (3.5) to the result of Lemma 1 and substituting in (3.4) we have to first order in

� − 2

(βFd
N ,� − βFd

N ,2)

∣∣∣
ρb=1/π

= (� − 2)

(
−CN

4
+ 2

3

√
N

π
− 5

48
+ O

( 1√
N

))
. (3.9)

In particular, the term proportional to
√

N is in precise agreement with the conjecture (3.2)
expanded to the same order. As an aside, we remark that (3.9) and (3.4) together tell us that
to leading order in N , 〈U 〉 with � = 2 and ρb = 1/π , is equal to −CN/4. This is a result
first deduced by Jancovici [16], using the relationship of the leading form of 〈U 〉 and an
average of the potential − log |�r | with respect to the bulk truncated two-point function. It
also provides strong evidence that expanding about � = 2 then taking the limit N → ∞
gives the same result as first taking the limit N → ∞, then expanding about � = 2.

The formula (3.4) also applies with the soft disk replaced by the soft cylinder; however
the analogue of (3.5) is not in the existing literature. Making use of knowledge of the exact
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Exact and asymptotic features 1153

form of the one and two-point functions for the soft cylinder geometry at � = 2 [6] we find
(see Appendix 1)

〈U1〉c
∣∣∣
�=2

= 1

2

(
− π

W 2ρb

N 3

3
− N log

(√
ρb

π

W

2

)
− N

2
− NC

2
+ 4

√
ρb

3π
W

)
+ O(1).

(3.10)
Furthermore, a more elementary computation, making only use of the one-point function
(2.11), gives

〈U2 + U3〉c
∣∣∣
�=2

= N

2
log

W

2π
+ π

6
N L2ρb + N

4
. (3.11)

Thus to first order in � − 2,

βFc
N ,� − βFc

N ,2 = (� − 2)
(

− N

2
log

√
πρb − CN

4
+ 2

√
ρb

3π
W + O(1)

)
. (3.12)

In particular, the term proportional to W is consistent with the expansion (3.3).

3.3 Exact Numerical Results for the Free Energy at � = 4, 6 and 8

Let � = 4p, p ∈ Z
+, and let μ = (μ1, . . . , μN ) be a partition of pN (N − 1) such that

2p(N − 1) ≥ μ1 ≥ μ2 ≥ · · · ≥ μN ≥ 0.

Also, let mi denote the corresponding frequency of the integer i in μ, let SN denote the set
of permutations of N , and define the corresponding monomial symmetric function by

mμ(z1, . . . , zN ) = 1∏
i mi !

∑

σ∈SN

zμ1
σ(1) · · · zμN

σ(N ).

A method based on symmetric Jack polynomials [3] gives, for small p, an efficient way to
compute the coefficients {c(N )

μ (2p)}
∏

1≤ j<k≤N

(zk − z j )
2p =

∑

μ

c(N )
μ (2p)mμ(z1, . . . , zN ).

This is significant since then we have [26]

Qd
N ,4p(1/π) = N !π N

∑

μ

(
c(N )
μ (2p)

)2

∏
i mi !

N∏

l=1

μi ! (3.13)

Similar considerations hold true for � = 4p + 2. Now we must take μ to be a partition
of (p + 1)N (N − 1) such that

(2p + 1)(N − 1) ≥ μ1 > μ2 > · · · > μN ≥ 0.

With sν(z1, . . . , zN ) denoting the Schur polynomials, we then use the anti-symmetric Jack
polynomials to expand [4]

∏

1≤ j<k≤N

(zk − z j )
2p =

∑

μ

c(N )
μ (2p + 1)sμ−δN (z1, . . . , zN ),

where δN := (N − 1, N − 2, . . . , 0). Consequently [26]

Qd
N ,4p+2(1/π) = N !π N

∑

μ

(
c(N )
μ (2p + 1)

)2 N∏

l=1

μi ! (3.14)
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Table 1 Fitting the free energy in the soft disk as specified in (3.15)

� 4 6 8

g (soft disk) −2.44972 −3.51707 −4.64639

g (sphere) −2.449884 −3.5175 −4.639

Relative difference (%) 0.007 0.012 0.16

βμ/
√

ρb 0.145938 0.232798 0.310371

Conjecture (3.2) 0.147090 0.233132 0.29418

Relative difference (%) 0.78 0.14 5.5

d −0.0244379 −0.163993 −0.353555

Using (3.13) and (3.14), we computed numerically the free energy in the soft disk for
� = 4 and 6 with N ranging from 2 to 14, and for � = 8 with N = 2 to 11. In order to test
the expansion (3.1), the data for N = 12, 13, 14 (� = 4, 6) and N = 9, 10, 11 (� = 8) is
fitted to the ansatz

βFd
N� = Nβ f (ρb, �) + βμ(�, ρb)(2π

√
N/(πρb)) + 1

12
log N + d (3.15)

The data obtained for g(�) := β f (�, ρb) − (
1 − �

4

)
log ρb, βμ(�, ρb) and d is shown in

Table 1. The results for the bulk free energy β f reproduces known numerical estimates
obtained by studying the 2dOCP in a sphere for � = 4, 6 [26] and 8 [25] within a very small
margin of error: less than 0.02 % for � = 4 and 6, and 0.16 % in the worst case � = 8. The
surface tension term βμ is compared with the conjecture (3.2) and the results give a strong
support to this conjecture as they only differ by less than 1 % for � = 4 and 6, and 5.5 % for
� = 8. We remark that experience of previous studies [26,27] has shown that the stability of
extrapolation of small N results to deteriorates as � is increased.

A more extensive numerical study can be done in the soft cylinder geometry as W and N
can be varied independently, and more numerical data can be obtained for the free energy.

Formulas analogous to (3.13) and (3.14) hold true for the soft cylinder. There the relevant
configuration integral is

Qc
N ,�(L , W ) =

∫ ∞

−∞
dy1 · · ·

∫ ∞

−∞
dyN e−�πρb

∑N
l=1(yl−L/2)2

∫ L

0
dx1 · · ·

∫ L

0
dxN

×
∏

1≤ j<k≤N

∣∣∣2 sin
π(xk − x j ) + iπ(yk − y j )

W

∣∣∣
�

. (3.16)

For � even and w j := x j + iy j we have

|2 sin π(wk − w j )|� = eπ(y j +yk )�/2(e2π iw j − e2π iwk )�/2(e−2π iw̄ j − e−2π iw̄k )�/2.

Consideration of the derivation leading to (3.13) and (3.14) we then have

Qc
N ,4p(

√
N ,

√
N ) = N N/2 N !�−N/2e−π�N 2/4

∑

μ

(
c(N )
μ (2p)

)2

∏
i mi ! eπ�

∑N
j=1(2μ j /�+1/2)2/N

(3.17)
and

Qc
N ,4p+2(

√
N ,

√
N )= N N/2 N !�−N/2e−π�N 2/4

∑

μ

(
c(N )
μ (2p + 1)

)2
eπ�

∑N
j=1(2μ j /�+1/2)2/N

. (3.18)
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More generally, if W is considered as an independent variable from N , let us define
λ = (ρbW )−1 which is a characteristic length of the problem: as shown in [6,22] the one-
body density is periodic along the y-axis with period λ when N → ∞ and W fixed. Let
W̃ = W/λ = ρbW 2 be the cylinder circumference scaled out by λ. The configuration
integral (3.16) is

Qc
N ,�(L , W )=ρ−N

b W̃ N/2 N !�−N/2e−π�N 3/(4W̃ )
∑

μ

(
c(N )
μ (�/2)

)2

∏
i mi ! eπ�

∑N
j=1(2μ j /�+1/2)2/W̃

,

(3.19)

valid for both cases � = 4p and � = 4p + 2. In the latter case
∏

i mi ! = 1 as in all the

partitions μ with c(N )
μ (2p + 1) �= 0 all frequencies are mi = 1. The free energy is given by

βFc
N ,�(W̃ ) = N

(
1 − �

4

)
log ρb − N

2

(
1 − �

2

)
log W̃ + N

2
log � − N�

2
log(2π)

+ π�N 3

3W̃
− log Qc∗

N ,�(W̃ ) (3.20)

with

Qc∗
N ,�(W̃ ) =

∑

μ

(
c(N )
μ (�/2)

)2

∏
i mi ! eπ�

∑N
j=1(2μ j /�+1/2)2/W̃

. (3.21)

We computed (3.20) numerically. The calculations are computationally intensive for large
values of N because of the immense number of partitions involved, thus we had to limit our
efforts to N varying from 2 to 14 for � = 4 and � = 6, and N from 2 to 11 for � = 8.
However, W̃ can be arbitrarily choosen without any computational increase in effort. We
choose W̃ varying from 1 to 25.9 by increments of 0.1, therefore exploring two different
types of geometries: thin cylinder (small W̃ ) and thick cylinder (large W̃ ). The free energy is
shown in Fig. 1 as a function of W̃ for various values of N . For � = 4 and 6, the free energy
exhibits a unique minimum for a particular value of W̃ = W̃ ∗ which depends on N . This is
also the case for � = 8 and N ≥ 4, however for N = 2 and 3, the free energy exhibits two
minimums. In Fig. 2, the location of the minimum W̃ ∗ is shown as a function of N . As N
increases, also does W̃ ∗. The figure shows, in the range of values of N considered, that W̃ ∗
is of the same order of magnitude that N , that is W ∗ ∝ √

N . For large N , this corresponds
to thick cylinders, thus suggesting that at a given density, thick cylinders are more stable
thermodynamically than thin cylinders. In the following sections we will be interested in the
scaling laws for thick cylinders.

As the free energy expansion (3.3) is expected to hold for large N and large W , we sought
to fit the numerical data corresponding to N > 7 and W̃ > 7 to an ansatz compatible with
(3.3) of the form

βFc
N ,� = Nβ f (�, ρb) + 2βμ(�, ρb)

√
W̃/ρb + c

N

W̃
+ d. (3.22)

The results for g(�) = β f (�, ρb) − (
1 − �

4

)
log ρb, βμ(�, ρb), c and d are shown in Table

2. The bulk free energy β f is compared to the numerical estimates obtained by studying
the 2dOCP in a sphere for � = 4, 6 [26] and 8 [25]. As it should be, the difference is very
small, less than 0.05 %. Also the universal correction c differs from the expected value π/6
only by less than 4 % in the worst case (� = 8). The numerical data again strongly supports
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F N,6
c N
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4.0

3.9

F N,8
c N

Fig. 1 Soft cylinder free energy as a function of the cylinder circumference W̃ when � = 4 (top left),
� = 6 (top right) and � = 8 (bottom). In each graph, from top to bottom, the number of particles is
N = 2, 4, 6, 8, 10, 12, 14 for � = 4 and 6, and N = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 for � = 8. These figures
show that the free energy is minimum for a particular value of the circumference W̃

Fig. 2 Location of the soft
cylinder free energy minimum

4
6
8
8

1 2 3 4 5 6 7 8 9 10 11 12 13 14
N

2

4

6

8

10

12

W

Lutsyshin’s conjecture (3.2) for the surface tension term βμ, as the relative difference between
the conjecture and the numerical data is less than 3 % in the worst case (� = 8).

In the next section, we will be interested in the scaled edge density where W̃ = N → ∞.
Notice that in that limit, the universal correction to the free energy, (π/6) W̃/N , and the O(1)

correction in (3.3) (d in 3.22) become of the same order, and give a O(1) correction to the
free energy equal to d + (π/6).
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Exact and asymptotic features 1157

Table 2 Fitting the free energy in the soft cylinder as specified in (3.22)

� 4 6 8

g (cylinder) −2.45003 −3.5180 −4.641

g (sphere) −2.449884 −3.5175 −4.639

Relative difference (%) 0.006 0.014 0.043

βμ/
√

ρb 0.146534 0.235029 0.30112

Conjecture (3.2) 0.147090 0.233132 0.29418

Relative difference (%) 0.378 0.814 2.36

c 0.525251 0.529638 0.544192

Relative difference from π/6 (%) 0.316 1.15 3.93

d −0.347216 −0.556913 −0.715804

4 Exact First Order Correction to the Scaled Edge Density at � = 2

4.1 Disk Geometry

In disk geometry, the density expanded about � = 2 has been computed to first order in
(� − 2) by Téllez and Forrester [27]. To present their result, introduce

I (k1, k2) =
∫∫

0≤t2<t1
e−t1−t2 tk1

1 tk2
2 dt1dt2

J (k1, k2) =
∫ ∞

0

∫ ∞

0
e−t1−t2 tk1

1 tk2
2 log

(
max(t1, t2)

)
dt1dt2

= ∂

∂k1
I (k1, k2) + ∂

∂k2
I (k2, k1) (4.1)

and let �(k, x), γ (k, x) denote the usual upper and lower incomplete gamma functions. The
result of [27] reads

ρd
(1)(�r;�) =ρd

(1)(�r; 2)

− (� − 2)

π
e−|z|2

{ N−1∑

k1=0

N−1∑

k2=0
k2 �=k1

|z|2k2

2k1!(k2!)2 J (k1, k2)

+
N−1∑

k1=0

N−1∑

k2=k1+1

I (k1, k2)

k1!k2!(k2 − k1)

( |z|2k2

k2! + |z|2k1

k1!
)

−
N−1∑

k1=0

N−1∑

k2=k1+1

|z|2k1γ (k2 + 1, |z|2) + |z|2k2�(k1 + 1, |z|2)
(k2 − k1)k1!k2!

−
N−1∑

k2=0

|z|2k2

2k2!
N−1∑

k1=0
k1 �=k2

γ (k1 + 1, |z|2) log(|z|2) + ∫ ∞
|z|2 e−t t k1 log tdt

k1!

−
N−1∑

k1=0

|z|2k1

2k1! (k1 + 1 − |z|2)
}

+ O(
(� − 2)2)

(4.2)
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(in the second last sum the term γ (k1 + 1, |z|2) as presented in [27] contains a typographical
error and reads with k1 in the argument instead of k1 + 1), where ρd

(1)(�r; 2) is given by (2.7).
We seek the limiting form of the O(� − 2) correction term as presented above under the

edge scaling
z := √

N − y, (4.3)

which effectively positions the neutralizing background of the plasma in the half plane y > 0.
For this task we hypothesize that in the limit N → ∞, only the large k1, k2 portion of the
sums in (4.2) contribute, allowing us to use the asymptotic expansions

γ (N − j + 1; |z|2) ∼ 1

2
�(N − j + 1)

(
1 + erf

( j − 2y
√

N√
2N

))
(4.4)

�(N − j + 1; |z|2) ∼ 1

2
�(N − j + 1)

(
1 − erf

( j − 2y
√

N√
2N

))
(4.5)

I (k1, k2) ∼ k1!k2!
2

erfc

(
k2 − k1√
2(k1 + k2)

)
. (4.6)

The first two of these are standard results while the third was derived in [27]. We remark that
the asymptotic expansion of J (k1, k2) follows by substituting (4.6) in (4.1), together with
Stirling’s formula. Thus we have

J (k1, k2) − k1!k2! log N ∼
(

1

2

1

k1
+ log

k1

N

)
I (k1, k2) +

(
1

2

1

k2
+ log

k2

N

)
I (k2, k1)

+ 1√
2(k1 + k2)

(
2√
π

)
k1!k2!e−(k1−k2)2/(2(k1+k2)). (4.7)

The rationale for the assumption concerning the dominant contribution coming from large
k1, k2 is that we expect that in the large N limit the sums in (4.2) will turn into integrals,
based on our experience with studying edge correlation functions for related models (see
e.g. [11, Proposition 15.3.3]). However, the control of the error terms was not part of our
considerations. For this reason our results in this section will be headed “Statements”. Com-
pelling evidence that these statements are in fact all correct is that the same final expression
for the scaled edge density at order (� − 2) is obtained in the case of soft cylinder geometry
(see Sect. 4.2), which result from a completely independent analysis.

With these preliminaries let us consider the scaled limit of the first double sum in (4.2)

Statement 1 For large N and with z given by (4.3) we have

e−|z|2
N−1∑

k2=0

1

2k2!
N−1∑

k1=0

( 1

2

1

k1
+ log

k1

N

)
I (k1, k2)

1

k1!k2!

∼ −1

2

1√
2π

∫ ∞

0
dt2 e−2(t2−y)2

(1 + erf t2)

+ 1√
2π

∫ ∞

0
dt2 e−2(t2−y)2

(
t2
2 erfc t2 − t2e−t2

2√
π

)

+ e−|z|2

2

N−1∑

k2=0

|z|2k2

k2!
(N − k2)

2

2N
. (4.8)
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Exact and asymptotic features 1159

Derivation. Consider the sum over k1. After substituting (4.6), breaking the sum up into
the regions k1 ∈ [0, . . . , k2 − 1] and k1 ∈ [k2, . . . , N − 1], writing

1

2
erfc

(
k2 − k1√
2(k1 + k2)

)
= 1 − 1

2
erfc

(
k1 − k2√
2(k1 + k2)

)

in the latter, and changing summation labels k1 �→ N − k1, k2 �→ N − k2 we see that

N−1∑

k1=0

( 1

2

1

k1
+ log

k1

N

)
I (k1, k2)

1

k1!k2!

∼ 1

2

N∑

k1=k2

(−k1

N

)
erfc

(k1 − k2

2
√

N

)
− 1

2

k2−1∑

k1=1

(−k1

N

)
erfc

(k2 − k1

2
√

N

)

+
N−1∑

k1=k2

( 1

2

1

k1
+ log

k1

N

)

∼ −1

2

(
1 + erf

t2
2

)
+ t2

2 erfc
t2
2

− t2e−t2
2 /4

2
√

π
− (N − k2)

2

2N
.

In the last line t2 := k2/
√

N , and this line is obtained from the line before by regarding the
first two sums as Riemann sums, and by calculating the leading behaviour of the third sum.

Now performing the sum over k2, using the asymptotic expression

e−|z|2 |z|2k2

k2!
∣∣∣
k2 �→N−k2

∼ e−2y2+2t2 y−t2
2 /2

√
2π N

in the first two sums, which are again Riemann sums, and changing variables gives (4.8). �

Statement 2 For large N and with z given by (4.3) we have

e−|z|2
N−1∑

k2=0

1

2k2!
N−1∑

k1=0

( 1

2

1

k2
+ log k2

) I (k2, k1)

k1!k2!

∼ e−|z|2
( N−1∑

k2=0

|z|2k2

4k2! +
N−1∑

k2=0

|z|2k2

2k2! (k2 − N ) +
N−1∑

k2=0

|z|2k2

4k2!
(k2 − N )2

N

)
.

Derivation. The derivation follows analogous reasoning to that of Statement 1.
Substituting the final term on the RHS of (4.7) in the first double sum of (4.2) leads

immediately to a Riemann sum and so its leading asymptotic behaviour is readily obtained.
Combining this with the results of Statements 1 and 2, and taking into consideration too that
the terms k2 = k1 in the first term of (4.2) are to be excluded, gives the following form of
the leading behaviour.

Statement 3 For large N and with z given by (4.3) we have

e−|z|2
N−1∑

k1=0

N−1∑

k2=0
k2 �=k1

|z|2k2

2k1!(k2!)2 J (k1, k2)

∼ −e−|z|2

2

N−1∑

k=1

( 1√
πk

+ log k
) |z|2k

k!
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− 1

4
e−|z|2

N−1∑

k1=0

|z|2k1

k1! + (2
√

N y + y2)
e−|z|2

2

N−1∑

k1=0

|z|2k1

k1!

+ 1√
2π

∫ ∞

0
dt2 e−2(t2−y)2

t2
(e−t2

2√
π

− t2erfc t2
)

+ N log Ne−|z|2
N−1∑

k2=0

|z|2k2

2k2! .

The scaled large N form of the second and third terms in (4.2) follows upon substituting
(4.4)–(4.6) as appropriate, and observing that Riemann sums result.

Statement 4 For large N and with z given by (4.3) we have

e−|z|2
N−1∑

k1=0

N−1∑

k2=k1+1

I (k1, k2)

k1!k2!(k2 − k1)

( |z|2k2

k2! + |z|2k1

k1!
)

− e−|z|2
N−1∑

k1=0

N−1∑

k2=k1+1

|z|2k1γ (k2 + 1, |z|2) + |z|2k2�(k1 + 1, |z|2)
(k2 − k1)k1!k2!

∼ − 1√
2π

∫ ∞

0
dt1

∫ t1

0
dt2

1

t1 − t2

(
e−2(t1−y)2

(
erf(t1 − t2) + erf

(√
2(t2 − y)

))

+ e−2(t2−y)2
(

erf(t1 − t2) − erf
(√

2(t1 − y)
)))

.

Regarding the final double sum in (4.2) we first observe

−
N−1∑

k2=0

|z|2k2

2k2!
N−1∑

k1=0

γ (k2 + 1, |z|2) log |z|2 + ∫ ∞
|z2| e−t t k1 log tdt

k1!

= − N

2
log |z|2

N−1∑

k2=0

|z|2k2

k2! −
N−1∑

k2=0

|z|2k2

2k2!
N−1∑

k1=0

∫ ∞
|z|2 e−t t k1 log t

|z|2 dt

k1! . (4.9)

The saddle point method can be used to obtain the asymptotic form of the sum over k1 on
the RHS. Doing this shows that a Riemann sum results. Furthermore, the resulting integral
can be exactly evaluated. Taking into consideration too that the term k1 = k2 is excluded in
the final double sum in (4.2) we obtain the following result.

Statement 5 For large N and with z given by (4.3) we have

− e−|z|2
N−1∑

k2=0

|z|2k2

2k2!
N−1∑

k1=0

γ (k2 + 1, |z|2) log |z|2 + ∫ ∞
|z2| e−t t k1 log tdt

k1!

∼
(

log N + 2y√
N

− y2

N

)
e−|z|2

N−1∑

k1=0

|z|2k1

2k1!

− 1

4

(
1 + erf(

√
2y)

){ ye−2y2

√
2π

+
(1

4
+ y2

)(
1 + erf(

√
2y)

)}
.
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Substituting the results of Statements 1 to 5 in (4.2), and using too the fact that

e−|z|2
N−1∑

k=0

|z|2k

k! = �(N ; |z|2)
�(N )

∼ 1

2
(1 + erf(

√
2y))

gives the sought scaled limit of the O(
(� − 2)

)
correction to the edge scaled density

ρ
edge
(1) (y;�).

Statement 6 We have

ρ
edge
(1) (y;�) := lim

N→∞ ρ
edge
(1) ((0,

√
N − y);�) = ρ

edge
(1) (y; 2)− (� − 2)

π
A(y)+O(

(� − 2)2)
,

(4.10)
where

ρ
edge
(1) (y; 2) = 1

2π
erfc(−√

2y) (4.11)

and A(y) = A1(y) + A2(y) + A3(y) + A4(y) with

A1(y) = − 1

2
√

2π

∫ ∞

0
e−2(t−y)2

erfc t dt

A2(y) = 1√
2π

∫ ∞

0
e−2(t−y)2

t
(e−t2

√
π

− terfc t
)

dt

A3(y) = 1

4

(
1 + erf(

√
2y)

)(
− ye−2y2

√
2π

+ (1

4
+ y2)(

1 − erf(
√

2y)
))

A4(y) = − 1√
2π

∫ ∞

0
dt1

∫ t1

0
dt2

1

t1 − t2

×
(

e−2(t1−y)2
(

erf(t1 − t2) + erf
(√

2(t2 − y)
))

+ e−2(t2−y)2
(

erf(t1 − t2) − erf
(√

2(t1 − y)
)))

.

A plot of A(y) can be found in [5, Fig. 2]. We also remark that generally the length scale
for the one component plasma is determined entirely by the background density (recall (2.5)),
which here is ρb = 1/π .

4.2 Cylinder Geometry

The leading order correction to the density at � = 2 in the soft cylinder geometry for finite
N for a droplet with mean density N/(LW ) = ρb is

ρc
(1)(y;�) = ρc

(1)(y; 2)

− (� − 2)

{
− 1

2
∂y

(
yρc

(1)(y; 2)
)

− 1

16πρb
∂2

yρc
(1)(y; 2)

+
√

π

W 2

∑

0≤a �=b<N

e−2πρb(y−ka)2
[√

2F
(√

πρb(ka −kb)
)−F

(√
2πρb(y−kb)

)]

+ 1

W 2
√

2ρb

∑

0≤a �=b<N

e−2πρb(y−ka)2

ka − kb
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×
[
erf

(√
2πρb(y − kb)

)
− erf

(√
πρb(ka − kb)

)] }

+ O (
(� − 2)2)

. (4.12)

Here kn ≡ n
Wρb

, F(x) ≡ x (1 + erf(x)) + e−x2
/
√

π , and the particle density at � = 2 is
given by (2.11).

The y coordinate here is chosen such that one edge of the droplet is at y = 0 for all
N , making it a natural parameterization for studying the limiting edge density. Indeed, the
limiting edge density for the soft disk (4.10) is recovered in the limit N , W, L → ∞ for
fixed y and L/W = O(1). The droplet for � = 2 occupies the region 0 ≤ x ≤ W and
0 ≤ y ≤ L , and the leading correction is localized to distances on the order of the magnetic
length lB = (2πρb)

−1/2 from each edge when W � lB . We remark that in the thin cylinder
limit W ∼ lB , the correction develops oscillatory features which extend into the bulk.

The derivation of (4.12) closely mirrors that of the leading order correction for the disk
geometry presented in Ref. [27], with only minor changes reviewed below. Writing the
correction as ρc

(1)(y;�) = ρc
(1)(y; 2)− (�−2)

2 〈ρ̂(�r)U 〉T where U is the total potential energy
of the plasma, and the truncated average is taken with the Boltzmann factor at � = 2, we get

〈ρ̂(�r)U 〉T = 2πρb y2ρc
(1)(�r) + 2πρb

∫

�

d2�r2

[
ρc

(2)(�r , �r2) − ρc
(1)(�r)ρc

(1)(�r2)
]

y2
2

+ 2
∫

�

d2�r2ρ
c
(2)(�r , �r2)v(�r , �r2)

+
∫ ∫

�×�

d2�r2d2�r3

[
ρc

(3)(�r , �r2, �r3) − ρc
(1)(�r)ρc

(2)(�r2, �r3)
]
v(�r2, �r3),

v(z, z′) = − log |e2π i z̄/W − e2π i z̄′/W |, and the domain of integration � := {(x, y)|x ∈
[0, W ), y ∈ R}. The form of the “potential” and neutralizing background potential is chosen
to emphasize the analogy with the disk geometry. To relate this back to the 2D Coulomb
plasma on a cylinder, note that replacing v(z, z′) → 	(z, z′) in the expression above, and
translating coordinates y → y−L(N−1)/2N , will leave the left hand side 〈ρ̂U 〉T unchanged.

At � = 2 in the soft cylinder geometry, the correlation functions needed to calculate the
correction have the structure [6]

ρc
(�)(�r1, �r2, . . . , �r�) = ρ�

b det
(
K (�ri , �r j )

)
1≤i, j≤�

, (4.13)

where

K (�r1, �r2) = 1

W

√
2

ρb

N−1∑

n=0

e2π in(x1−x2)/W e−πρb(y1−kn)2−πρb(y2−kn)2
, (4.14)

and kn is defined above. Explicit evaluation of the correction is further facilitated by expanding
the “potential” in a Fourier series in the periodic direction

v(z, z′) = −2π

W
max(y, y′) +

∞∑

m=1

1

m
cos

(
2πm

W
(x − x ′)

)
e−2πm|y−y′|/W . (4.15)

After some lengthy calculations, analogous to those detailed above in the soft disk case
and therefore omitted, the same limiting edge density (4.10) as found for the soft disk is
reclaimed.
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5 Large Deviation and Asymptotic Edge Density Outside the Droplet for General �

5.1 Introductory Remarks

By definition a one-component plasma system consists of a smeared out, charge neutralizing
background, and N mobile charges. In the large N limit the leading order density of mobile
charges must coincide with the density of the background; if not the charge imbalance would
create an electric field, and the system would not be in equilibrium.

We are interested in the situation that the mobile particles are free to move throughout
the plane (soft disk) or cylinder, and furthermore that the potential they experience is the
continuation of that inside of the neutralizing background. Furthermore, scaled variables
are to be used so that the leading support of the background is independent of N . In this
setting for one-component log-gas systems on the line, Gaussian fluctuation formulas for
linear statistics valid for general coupling have recently been used to calculate the leading
(exponentially small in N ) density outside of the neutralizing background [12,13]. We seek
to do the same for the two-dimensional one-component plasma, in scaled soft disk or cylinder
geometry.

In the scaled soft disk, with the support of the leading density the unit disk, and the one
body test function a(�r) smooth on this domain, the appropriate Gaussian fluctuation formula
reads [10]

〈 N∏

l=1

eika(�rl )
〉

∼
N→∞ eikμN e−k2σ 2/2(1 + o(1)) (5.1)

where, with � the unit disk

μN =
∫

�

a(�r)ρ(1)(�r) d�r , (5.2)

σ 2 = σ 2
bulk + σ 2

surface, (5.3)

with

σ 2
bulk = 1

2π�

∫

�

((∂a

∂x

)2 + (∂a

∂y

)2
)

dxdy (5.4)

and

σ 2
surface = 2

�

∞∑

n=1

nana−n, a(�r)|r=1 =
∞∑

n=−∞
aneinθ . (5.5)

Rigorous proofs of (5.1) in the case � = 2 have been given in [2,20].
Consideration of the derivation of (5.1) for the scaled soft disk geometry given in [10]

implies that for the scaled cylinder, with the leading support of the density confined to say
the unit square, (5.1) again holds true. Of course in (5.2) and (5.4), � is now the unit square
on the cylinder, and in (5.2) ρ(1)(�r) is the corresponding particle density. Furthermore, the
boundary of � now consists of two components: y = 0 and y = 1, so (5.3) should be
modified to read

σ 2 = σ 2
bulk + σ 2

surface,0 + σ 2
surface,1 (5.6)

with

σ 2
surface, j = 2

�

∞∑

n=1

na( j)
n a( j)

−n , a(�r)|y= j =
∞∑

n=−∞
a( j)

n e2π inx . (5.7)
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5.2 Exact Asymptotics for � = 2 and � = 2 + ε (ε 
 1)

First we compute the large deviation form of the density in disk geometry for � = 2, or
equivalently the asymptotic large N form of the density outside the leading support.

Lemma 2 In disk geometry for � = 2 we have, for r > 1,

ρ
N ,d
(1) (

√
Nr) ∼ e−N (r2−1)e2N log r

π(2π N )1/2(r2 − 1)
. (5.8)

Proof From the definition, simple manipulation and use of integration by parts show that for
z � a � 1,

�(a + 1; z) ∼ e−z za+1

z − a
.

Using this and Stirling’s formula in (2.7) gives (5.8). �
We next present the analogous formula in the case of cylinder geometry.

Lemma 3 In cylinder geometry for � = 2, we have for y < 0

ρ
N ,c
(1) (

√
N y) ∼

√
2

N
e−2π N y2

(
e2πy

1 − e4πy
− π

2N

d2

dy2

e2πy

1 − e4πy

)
. (5.9)

Proof A minor rewrite of (2.11) in the case ρb = 1, W = √
N shows

ρ
N ,c
(1) (

√
N y) =

√
2

N
e−2π N y2

N−1∑

a=0

e4πy(a+1/2)e−2π(a+1/2)2/N .

Expanding the final exponential in powers of 1/N gives, upon recalling y < 0,

ρ
N ,c
(1) (

√
N y) ∼

√
2

N
e−2π N y2

N−1∑

a=0

e4πy(a+1/2)

(
1 − 2π(a + 1/2)2

N
+ O(1/N 2)

)
.

Extending the upper terminal of the summation to infinity gives (5.9).
Let us denote the RHS of (5.8) by ρ̃

N ,d
(1) (

√
Nr). We see that

lim
N→∞ ρ̃

N ,d
(1) (

√
Nr)|r=1−y/

√
N = e−2y2

(2π)3/2|y|. (5.10)

Using analogous notation, it follows from (5.9) that

lim
N→∞

1

π
ρ̃

N ,c
(1) (

√
N y)

∣∣∣
y �→y/

√
N

= e−2y2

(2π)3/2|y| (5.11)

(the factor of 1
π

on the LHS of (5.11) accounts for the change in the measure ydy) thus
reproducing the same scaled form. We see from (4.11) that this scaled form is precisely the
y → −∞ asymptotic form of (4.11),

ρ
edge
(1) (y; 2) ∼

y→−∞
e−2y2

(2π)3/2|y| . (5.12)
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In the next subsection, the Gaussian fluctuation formula (5.1) will be used to compute
ρ̃

(N ),c
(1) (

√
N y) and ρ̃

N ,d
(1) (

√
Nr) for general � > 0. By scaling as in (5.11) and (5.10) respec-

tively we find that the same scaled form results, and this scaled form is expected to be
y → −∞ asymptotic form of ρ

edge
(1) (y;�). A test on this latter prediction is to expand it

about � = 2 to first order in ε := � − 2, and compare it with the exact expansion of the
y → −∞ asymptotic form of ρ

edge
(1) (y;�) as computed from (4.10). �

Lemma 4 With ε := � − 2 and ρ
edge
(1) (y;�) − ρ

edge
(1) (y; 2) := − ε

π
A(y) + O(ε2), A(y) as in

(4.10), we have

A(y) ∼
y→−∞ |y| e−2y2

(2π)1/2 . (5.13)

Proof A detailed consideration of the y → −∞ asymptotic form of A(y) is given in Appen-
dix 4. To leading order one has that A(y)∼y→−∞ A3(y). But

A3(y) ∼
y→−∞

y2

2
erfc(

√
2|y|),

thus implying (5.13) �
Finally, to complete the discussion of exact asymptotics, we present the asymptotes inside

the droplet. First, we need the following lemma.

Lemma 5 The antisymmetric part of A(y) as in (4.10), denoted by Aa(y) = 1
2 (A(y)

− A(−y)), obeys the ordinary differential equation

A′′
a(y) + 4y A′

a(y) =
(

2y2 − 1

2

) (
erf(

√
2/3y) − erf(

√
2y)

)
+

√
6√
π

ye−2y2/3. (5.14)

Proof This follows most readily by noting that the LHS is equivalent to e−2y2
∂y

(
e2y2

∂y Aa(y)
)
, and applying this operation in the sequence implied to Aa . Details of this com-

putation are presented in Appendix 5. �
Lemma 6 With ε := � − 2 and ρ

edge
(1) (y;�) − ρ

edge
(1) (y; 2) := − ε

π
A(y) + O(ε2), A(y) as in

(4.10), we have that inside the droplet,

A(y) ∼
y→∞ − 1

2
√

π

(
3

2

)5/2 e−2y2/3

y3 . (5.15)

Proof Expanding the RHS of Eq. (5.14) for large y gives

A′′
a(y) + 4y A′

a(y) ∼
y→∞

2
√

3√
2π

e−2y2/3

y
,

which admits the asymptotic solution

Aa(y) = − 1

4
√

π

(
3

2

)5/2 (
1 + O (

y−1)) e−2y2/3

y3 .

Since the density decays like e−2y2
outside the droplet, the dominant contribution

to the large y behavior of Aa(y) must come from the interior asymptote, implying
A(y)∼y→∞ 2Aa(y) and thus (5.15). �
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5.3 Gaussian Fluctuation Formula Predictions

We will consider first the soft disk 2dOCP. To specify the particle density, we require the
configuration integral (3.7). In terms of this notation, for the system with background density
ρb = 1/π and N + 1 particles, we have

ρ
N+1,d
(1) (�r) = (N + 1)

e−(�/2)r2

Qd
N+1,�(1/π)

∫

R2
d �r1 · · ·

∫

R2
d �rN e−(�/2)

∑N
j=1 �r j

2

×
N∏

l=1

|�r − �rl |�
∏

1≤ j<k≤N

| �rk − �r j |�

= (N + 1)e−(�/2)r2 Qd
N ,�(1/π)

Qd
N+1,�(1/π)

〈 N∏

l=1

|�r − �rl |�
〉

ÎQd
N ,�(1/π)

, (5.16)

where ÎQ
d
N ,�(ρb) refers to the PDF corresponding to the integrand of Qd

N ,�(ρb). Furthermore,

changing variables �rl �→ √
N �rl in (5.16) shows

ρ
N+1,d
(1) (

√
N + 1�r) = (N + 1)N�N/2e−(N+1)�r2/2

Qd
N ,�(1/π)

Qd
N+1,�(1/π)

×
〈 N∏

l=1

∣∣∣
√

N + 1

N
�r − �rl

∣∣∣
�〉

ÎQd
N ,�(N/π)

. (5.17)

We recognise the average in (5.16) as an example of the LHS of (5.1) with

k = −i�, a(�rl) = log
∣∣∣
√

N + 1

N
�r − �rl

∣∣∣. (5.18)

Our task then is to compute μN and σ 2 appearing in the RHS of (5.1), as specified by
(5.2)–(5.5).

Lemma 7 For the soft disk with ρb = N/π , a(�rl) as in (5.18), and with r > 1 we have

μN = N log r + 1

2
+ o(1) (5.19)

σ 2
bulk = σ 2

surface = −1

2
log

(
1 − 1

r2

)
. (5.20)

Proof Let ρ
N ,g
(1) (r) denote the global density in the soft disk plasma system with ρb = N/π .

Generally the global density for log-potential system refers to the density that results from
scaling the variables so that the leading order support is a finite domain. We know from [30],
[27, below (5.16) and (5.17)] that this has the large N form

ρ
N ,g
(1) (r) = N

π
χ0<r<1 + 1

2π�

(
1 − �

4

)
1

r
δ′(r − 1) + o(1), (5.21)

where χJ = 1 for J true, χJ = 0 otherwise. Substituting in (5.2), (5.19) results after an
elementary calculation.

Choosing, without loss of generality, �r = (r̃ , 0), r̃ :=
√

N+1
N r and �rl = (x, y) in the

definition (5.18) of a(�rl) and substituting in (5.4) shows after some simple computation and
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the introduction of polar coordinates, that

σ 2
bulk = 1

2π�

∫ 1

0
d R R

∫ 2π

0
dθ

1

(r̃ − Reiθ )(r̃ − Re−iθ )

= − 1

2�
log

(
1 − 1

r̃2

)
. (5.22)

In relation to the computation of σ 2
surface, similarly without loss of generality we can write

a(�rl) = log r̃ + log
∣∣∣1 − �rl

r̃

∣∣∣

thus telling us

an = a−n = 1

2nr̃n
, (n �= 0).

Consequently

σ 2
surface = 1

2�

∞∑

n=1

1

nr̃2n
= − 1

2�
log

(
1 − 1

r̃2

)
. (5.23)

Adding together (5.22) and (5.23) gives

σ 2 = − 1

�
log

(
1 − 1

r̃2

)
. (5.24)

�
Now substituting the result of Lemma 9 in the RHS of (5.1) with k as in (5.18) we see that

〈 N∏

l=1

∣∣
√

N + 1

N
�r − �rl

∣∣�
〉

ÎQd
N ,�(N/π)

= exp

(
N� log r + �

2
− �

2
log

(
1 − 1

r2

)
+ o(1)

)
.

(5.25)
With regards to the large N form of the ratio of partition functions in (5.17) we note from

the explicit form of the Boltzmann factor (2.5) that the dimensionless free energy is given by

βFN (�, ρb)|ρb=1/π = − log
1

N ! Qd
N ,� + �

2

( N 2

2
log N − 3N 2

4

)
. (5.26)

The free energy for the 2dOCP is extensive [23] and thus for large N

βFN+1(�, ρb) − βFN (�, ρb) = β f (�, ρb) + o(1), (5.27)

(recall 3.1). Substituting (5.26) in (5.27) shows

log
(N + 1)Qd

N ,�(1/π)

Qd
N+1,�(1/π)

= −�

2

(
(N + 1

2
) log N − N

) + β f (�, 1/π) + o(1). (5.28)

Substituting (5.25) and (5.28) in (5.161) gives our sought large deviation formula.

Proposition 1 For the soft disk 2dOCP with ρb = 1/π and corresponding dimensionless
free energy per particle β f (�, ρb) we have for r > 1

ρ
N ,d
(1) (

√
Nr) = eβ f (�,1/π)

N�/4 e−(N�/2)(r2−1) exp
(
N� log r − �

2
log(r2 − 1) + o(1)

)
. (5.29)
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For � = 2 we can check (5.29) against the exact result (5.8). Thus for � = 2 we read off
from (2.6) that β f (2, 1/π) = 1

2 log(1/2π3). Substituting this in (5.29) with � = 2 indeed
reclaims (5.8).

We now turn our attention to deriving the analogue of Proposition 2 for cylinder geometry.
With ρb = N/LW the appropriate configuration integral is (3.16), and analogous to (5.17),
in a system of (N + 1) particles the corresponding particle density can be written

ρ
(N+1),c
(1) (y) = (N + 1)

Qc
N ,�(L , W )

Qc
N+1,�(L , W )

e−�πρb(y−W/2)2

×
〈 N∏

j=1

∣∣2 sin
π

L

(
x j + i(y − y j )

)∣∣�
〉

Î Q
c
N ,�(L ,W )

. (5.30)

And if we further specialize to the case that ρb = 1, L = W = √
N + 1 (5.30) can be

rewritten, upon simple changes of variables

ρ
(N+1),c
(1) (

√
N + 1 y) = N

(
1 + 1

N

)N Qc
N ,�(

√
N ,

√
N )

Qc
N+1,�(

√
N + 1,

√
N + 1)

e−�π(N+1)(y−1/2)2

×
〈 N∏

l=1

e−�π(yl−1/2)2 ∣∣2 sin
(
πxl + π i(y − yl)

)∣∣�
〉

Î Q
c
N ,�(1,1)

.

(5.31)

The average in (5.31) is an example of the LHS of (5.1) with

k = −i�, a(�rl) = −π(yl − 1

2
)2 + log 2

∣∣ sin π
(
xl + i(yl − y)

)∣∣. (5.32)

We seek the corresponding values of μN and σ 2 on the RHS of (5.1).

Lemma 8 Let

M2 = 1

π�

(
1 − �

4

)
. (5.33)

For the soft cylinder with ρb = N, L = W = 1 and a(�rl) as in (5.32) with y < 0 we have

μN = Nπ
( 5

12
− y

) − π M2 + o(1) (5.34)

σ 2
bulk = 1

2�
log

1 − e−4π(1−y)

1 − e−4πy
− 4π

3�
(5.35)

σ 2
surface,0 = − 1

2�
log(1 − e−4πy) (5.36)

σ 2
surface,1 = − 1

2�
log(1 − e−4π(1−y)). (5.37)

Proof To be able to deduce (5.34) correct up to the o(1) term, we require the correction
term to the global density in the soft cylinder system with ρb = N , L = W = 1. This is
undertaken in Appendix 2 where it is shown

ρ
N ,g
b

(
(x, y)

) = Nχx,y∈[0,1] + M2

4

(
δ′′(y) + δ′′(1 − y)

) + o(1), (5.38)

where M2 is given by (5.33). Note that as for the soft disk case (5.21), the correction term
has the simple dependence on � as given in (5.33), and furthermore is supported entirely
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on the boundary of the plasma. Now substituting this and the expression for a(�rl) (5.32) in
(5.2), (5.34) results after an elementary calculation.

The key to deriving (5.35)–(5.37) from the definitions (5.4) and (5.7) is the Fourier expan-
sion

log 2
∣∣ sin π

(
X + i(Y − y)

)∣∣ = π |Y − y| − 1

2

∞∑

p=−∞
p �=0

1

|p|e2π i X p−2π |Y−y||p| (5.39)

(cf. (4.15)). The calculation then becomes elementary. �
Substituting the result of Lemma 10 in the RHS of (5.1) with k as in (5.32) we obtain the

large N expansion

〈 N∏

l=1

e−�π(yl−1/2)2 ∣∣2 sin
(
πxl + π i(y − yl)

)∣∣� 〉
Î Q

c
N ,�(1,1)

= e−Nπ�y

(1 − e4πy)�/2 e5�Nπ/12−π�M2−2π�/3+o(1). (5.40)

Furthermore, analogous to (5.28) we can make use of (2.8) and (5.58) to deduce that

(N + 1)
Qc

N ,�(
√

N ,
√

N )

Qc
N+1,�(

√
N + 1,

√
N + 1)

=
( 2π√

N + 1

)�/2(
1 + 1

N

)−N�/4
e−�(N+ 1

2 )π/6eβ f (�,1)+o(1). (5.41)

Substituting (5.40) and (5.41) in (5.31), then replacing N + 1 by N , we obtain the desired
large deviation formula. �
Proposition 2 For the soft cylinder 2dOCP with ρb = 1, L = W = √

N and corresponding
dimensionless free energy per particle β f (�, ρb) we have for y < 0

ρ
N ,c
(1) (

√
N y) =

( 2π√
N

)�/2
eβ f (�,1)+o(1) e−�π N y2+�πy

(1 − e4πy)�/2 . (5.42)

For � = 2 we can check (5.42) against the exact result (5.9), upon using the fact that for
� = 2, β f (�, 1) = 1

2 log( 1
2π2 ) (recall (2.6)), and agreement is found. In Appendix 3 theory

relating to the term o(1) in (5.29) for y → −∞ is presented, giving its value as

π(1 − 2�)/(6N ) + o(1/N ) (5.43)

in that limit. This furthermore suggests this term for general y to also have leading behaviour
proportional to 1/N . The validity of (5.43) and the latter claim is verified at � = 2 by
inspection of (5.9).

The scaled limits of the large deviation formulas, already computed in (5.10) and (5.11)
in the case � = 2, can now be computed for general � > 0 for both the soft disk and cylinder
(this asymptotic form is also reported in [30], up to the O(1) term).

Corollary 1 In an analogous notation to that used on the LHS of (5.10) and (5.11) we have

lim
N→∞ ρ̃

N+1,d
(1) (

√
Nr)|r=1−y/

√
N = lim

N→∞
1

π
ρ̃

N ,c
(1) (

√
N y)|y �→y/

√
π N

= eβ f (�,1/π) e−�y2

(2|y|)�/2 . (5.44)
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Proof This is immediate from Proposition 2 and 3, together with a simple scaling which
shows [1] (see also (5.58) below)

β f (�, ρb) = (1 − �

4
) log ρb + g(�).

�
In keeping with the discussion of Sect. 5.2 we expect that (5.44) is the leading y → −∞

asymptotic form of the edge density profile, for general � > 0 and with ρb = 1/π . In
addition to the check on this result for � = 2, we see that the leading y → −∞ form of
(5.44) expanded to first order in ε = � − 2 is precisely that obtained in Lemma 8.
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Appendix 1

The purpose of this appendix is to derive (3.10).
According to the definitions, for general � in soft cylinder geometry

〈U1〉c = −1

2

∫ W

0
dx1

∫ W

0
dx2

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2 log 2

∣∣∣ sin
π((x1 − x2) + i(y1 − y2))

W

∣∣∣

× ρ(2)(�r1, �r2), (5.45)

where �r j = (x j , y j ). Generalizing (2.11), we know that for � = 2 [6]

ρ(2)(�r1, �r2) = ρ(1)(�r1)ρ(1)(�r2) + ρT
(2)(�r1, �r2)

where ρ(1)(�r) is given by (2.11) and

ρT
(2)(�r1, �r2)=−2ρb

W 2 e−π(y1−y2)2
N−1∑

q1=0

exp
{
− 2πρb

( y1+y2

2
− q1+1/2

Wρb

)2+2π iq1
(x1−x2)

W

}

×
N−1∑

q2=0

exp
{

− 2πρb

( y1 + y2

2
− q2 + 1/2

Wρb

)2 − 2π iq2
(x1 − x2)

W

}

(the case l = 2 of (4.13)). Our task then is to compute some explicit multiple integrals.
Making use of the Fourier expansion (5.39), elementary calculations show

− 1

2

∫ W

0
dx1

∫ W

0
dx2

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2 log 2

∣∣∣ sin
π((x1 − x2) + i(y1 − y2))

W

∣∣∣ρT
(2)(�r1, �r2)

= − 1

π

N−1∑

l=1

N − l

l

∫ ∞

−∞
dy1 e−y2

1

∫ ∞

y1+√
2π/ρbl/W

dy2 e−y2
2 + N

W
√

ρb
(5.46)

and

− 1

2

∫ W

0
dx1

∫ W

0
dx2

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2 log 2

∣∣∣ sin
π((x1 − x2) + i(y1 − y2))

W

∣∣∣

× ρ(1)(�r1)ρ(1)(�r2)
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= − π

W 2ρb

N−1∑

l=1

(N − l)l + 2

W

N−1∑

l=1

(N − l)
l

Wρb

∫ ∞

−∞
dy1 e−y2

1

∫ ∞

y1+√
2π/ρbl/W

dy2 e−y2
2

− 1

W
√

ρb

N−1∑

l=1

(N − l)e−πl2/ρbW 2
. (5.47)

This reduces our task to analyzing certain one-dimensional sums in the large N limit.
The first sum in (5.47) is elementary, and we have

N−1∑

l=1

(N − l)l = N (N 2 − 1)/6. (5.48)

For the remaining sums, the leading and first order correction for large N can be obtained by
making use of the trapezoidal rule

N∑

k=1

f (kh) = 1

h

∫ Nh

0
f (x) dx −

( f (0) − f (Nh)

2

)
+ O(h2). (5.49)

In this regards, the portion of the first summation in (5.46),

− N

π

N−1∑

l=1

1

l

∫ ∞

−∞
dy1 e−y2

1

∫ ∞

y1+√
2π/ρbl/W

dy2 e−y2
2

requires preliminary manipulation, since a literal application of (5.49) is not possible. This
is due to the corresponding f (x) not being integrable about x = 0. Thus we write

N−1∑

l=1

1

l

∫ ∞

−∞
dy1 e−y2

1

∫ ∞

y1+√
2π/ρbl/W

dy2 e−y2
2

=
K∑

l=1

1

l

{ ∫ ∞

−∞
dy1 e−y2

1

∫ ∞

y1+√
2π/ρbl/W

dy2 e−y2
2 −

∫ ∞

−∞
dy1 e−y2

1

∫ ∞

y1

e−y2
2

}

+
( ∫ ∞

−∞
dy1 e−y2

1

∫ ∞

y1

e−y2
2

) K∑

l=1

1

l

+
N∑

l=K+1

1

l

∫ ∞

−∞
dy1 e−y2

1

∫ ∞

y1+√
2π/ρbl/W

dy2 e−y2
2 , (5.50)

where K =
[
W

√
2π
ρb

]
.

With HK denoting the harmonic numbers, it is a standard result that

K∑

l=1

1

l
=: HK = log K + C + 1

2K
+ O

( 1

K 2

)
. (5.51)
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The remaining sums in (5.50) can all be analyzed using (5.49). Doing this and combining
with (5.51) shows

− 1

π

N−1∑

l=1

1

l

∫ ∞

−∞
dy1 e−y2

1

∫ ∞

y1+√
2π/ρbl/W

dy2 e−y2
2

= − N

2
log

(√
ρb

2

W

2

)
− NC

4
− N

2W
√

ρb
+

√
ρb

2π
W + O(1) (5.52)

and

2

W

N−1∑

l=1

(N − l)
l

Wρb

∫ ∞

−∞
dy1 e−y2

1

∫ ∞

y1+√
2π/ρbl/W

dy2 e−y2
2 − 1

W
√

ρb

N−1∑

l=1

(N − l)e−πl2/ρbW 2

=
( N

4
− 1

3π
W

√
ρb

)
+

(
− N

2
− N

2W
√

ρb
+

√
ρbW

2π

)
+ O(1). (5.53)

Substituting (5.52) in (5.46), (5.53) and (5.48) in (5.47), and using these results to evaluate
the RHS of (5.45) gives (3.10).

Appendix 2

Consider the soft cylinder with leading order density profile in the y-direction ρ̃b =
ρbχ0<y<W . For large W , n ∈ Z

+, we see that

∫ ∞

−∞
(y − W/2)2n(ρ

N ,c
(1) (y) − ρ̃b)dy ∼ 2n(2n − 1)

2

( W

2

)2n−2
M̃2,

M̃2 :=
∫ ∞

−∞
y2(ρ

N ,c
(1) (y) − ρ̃b)dy.

A readily verifiable consequence is that to leading order

ρ(1)(y) − ρ̃b = M̃2

4

(
δ′′(W − y) + δ′′(y)

)
. (5.54)

We observe that the RHS of (5.54), multiplied by the measure dy, is independent of W if we
scale y �→ W y, x �→ W x , 1

W M̃2 �→ M2, where

M2 :=
∫ ∞

−∞
y2(ρ

N ,c
(1) (y)|L=W=1 − Nχ0<y<1)dy (5.55)

Thus (5.38) follows, provided we can show that M2 has the evaluation (5.33).
For this latter task we observe from the explicit formula for the partition function implied

by (2.8) that

W
∂

∂W
log Z N ,�(W, L) = −π�ρbW 2

3
N + �πρb

〈 N∑

l=1

y2
l

〉

Î QN ,�(W,L)

.
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Changing variables xl �→ xl/L , yl �→ yl/L and setting W = L this reads

W
∂

∂W
log Z N ,�(W, L)|W=L = −π�N 2

3
+ �π N

〈 N∑

l=1

y2
l

〉

Î QN ,�(1,1)

=
∫ ∞

−∞
y2(ρ

N ,c
(1) (y)|L=W=1 − Nχ0<y<1)dy =: M2. (5.56)

Thus we seek an independent computation of the LHS of (5.56).
To provide such a computation, we first observe

W
∂

∂W
= −ρb

∂

∂ρb
. (5.57)

Next we note that scaling in disk geometry together with the expected universality of the
leading large N behaviour of the partitions in disk and cylinder geometries implies that for
large N

Z N ,�(W, L)|ρb=N/W L ∼ eN (�/4−1) log ρb+Ng(�)+O(
√

N ) (5.58)

for some g(�). Substituting (5.57) and (5.58) in the LHS of (5.56) gives (5.33)

Appendix 3

In this appendix, we study the behavior of the density in the cylinder when y → −∞ for
finite N and W , when �/2 is an integer. We will consider first N and W as independent
variables. Let W̃ = ρbW 2 and ỹ = ρbW y be the rescaled lengths by the characteristic
length 1/(ρbW ). Considerations leading to the configuration integral (3.19) can be extended
to obtain the density profile [22]

ρ
N ,c
(1) (y) = ρb

√
�

W̃

(N−1)�/2∑

l=0

ac
l exp

[
−2π�

W̃

(
ỹ − N + 1

2
+ 2l

�

)2
]

(5.59)

with

ac
l = 1

Qc∗
N ,�

∑

μ | l∈μ

(c(N )
μ (�/2))2
∏

i mi ! eπ�
∑N

j=1(2μ j /�+1/2)2/W̃
, (5.60)

where the sum runs over all partitions which include l. If ỹ → −∞, then

ρ
N ,c
(1) (y) ∼

y→−∞ ρb

√
�

W̃
e−π�(ỹ−1/2)2/W̃ ac

(N−1)�/2. (5.61)

To compute ac
(N−1)�/2, one needs to consider in (5.60) all the partitions μ with c(N )

μ (�/2) �= 0
and μ1 = (N − 1)�/2. The partition μ̃ = (μ2, μ3, . . . , μN ) is a partition of �(N − 1)(N −
2)/4 with �(N − 2)/2 ≤ μ2 ≤ · · · ≤ μN , and due to a factorization property satisfied by
the coefficients of the partitions [4], one has

c(N )

((N−1)�/2,μ̃)
(�/2) = c(N−1)

μ̃
(�/2) . (5.62)
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Therefore μ̃ corresponds to a partition for a system with N −1 particles (this is not surprising
as taking y → ∞ effectively removes that particle; see a similar argument in [14]). Then

ac
(N−1)�/2 = Qc∗

N−1,�(W̃ )

Qc∗
N ,�(W̃ )

eπ�(N−1/2)2
, (5.63)

and using (3.20), this leads to

ρ
N ,c
(1) (y) ∼

y→−∞ ρb

(
2π√

W̃

)�/2

e−π�(ỹ2−ỹ)/W̃

× exp

[
β[Fc

N ,�(W̃ ) − Fc
N−1,�(W̃ )] −

(
1 − �

4

)
log ρb − π�

3W̃

]
. (5.64)

Now, consider the limit N → ∞, and W̃ → ∞, but with N and W̃ independent. Using the
universal properties of the free energy (3.22), we have

ρ
N ,c
(1) (y) ∼

y→−∞ ρb

(
2π√

W̃

)�/2

e−π�(ỹ2−ỹ)/W̃

× exp

[
β f (�, 1) + (1 − 2�)

π

6W̃
+ o(1/N ) + o(1/W̃ )

]
. (5.65)

Notice that in the difference Fc
N ,�(W̃ ) − Fc

N−1,�(W̃ ), as W̃ is kept fixed, the surface tension
terms in (3.22) cancel out, leading to a next order correction of order O(1/N ) instead of a
naively expected O(1/

√
N ). In the scaled edge W̃ = N → ∞ and ỹ �→ N y this can be

compared to (5.42). Indeed if one takes y → −∞ in (5.42), then (5.65) is recovered. The
o(1) term in (5.42) for y → −∞ should be (5.43).

As an illustration of the results, for � = 4, Fig. 3 shows a plot of the numerically computed

log(ρ
N ,c
(1) (

√
N y)/ρ̃

N ,c
(1) (

√
N y)) + β f (�, 1),

for various values of N = W̃ confirming the expected behavior as y → −∞. In the plot,
ρ̃

N ,c
(1) denotes the right hand side of (5.42).

In Fig. 4, the value of the limit of log(ρ
N ,c
(1) (y)/ρ̃

N ,c
(1) (

√
N y)) + β f (�, 1) as y → −∞ is

plotted against 1/N , showing indeed a linear behavior as expected

lim
y→−∞ log

ρ
N ,c
(1) (y)

ρ̃
N ,c
(1) (

√
N y)e−β f (�,1)

= β f (�, 1) + π

6
(1 − 2�)

1

N
+ o(1/N ) . (5.66)

Very similar figures are obtained for � = 6 and 8 (not shown). Doing a numerical regres-
sion of Fig. 4 provides an alternative way to obtain numerically g(�) = β f (�, 1), and verify
the 1/N finite size correction. Table 3 shows the values obtained for g(�) and the 1/N cor-
rection for � = 4, 6, 8, and compares them to the estimations of free energy per particle on
the sphere [26] and the expected value π(1−2�)/6 of the 1/N correction. As this method for
estimating the free energy per particle relies on fitting an expression with 1/N corrections,
it seems as equally reliable as the one used in [26] for the 2dOCP on the sphere when the
universal log N correction is subtracted to the free energy.

Similar considerations can be done for the soft disk. The density profile is [26]

ρd
(1)(r) = (�/2)ρbe−π�ρbr2/2

(N−1)�/2∑

l=0

ad
l (�πρbr2/2)l , (5.67)
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Fig. 3 Exact numerically computed density profile in the soft cylinder compared to the scaled form (5.42).
From bottom to top, W 2 = N = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
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Fig. 4 Numerical value of the LHS of (5.66) as a function of N (red dots) and a linear regression done with
values of N > 7 (blue dashed line) (Color figure online)

with

ad
l = N !π N

Qd
N ,�(ρb) l!

∑

μ | l∈μ

(c(N )
μ (�/2))2
∏

i mi !
N−1∏

j=1

μ j ! . (5.68)

The leading behavior of the density as r → ∞ is given by

ρd
(1)(r) ∼

y→−∞ (�/2) ρb e−π�ρbr2/2 ad
(N−1)�/2(πρb�r2/2)(N−1)�/2 . (5.69)
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Table 3 Estimation of the free energy g(�) = β f (�, 1) per particle obtained from (5.66)

� 4 6 8

g (cylinder) −2.449893 −3.5168 −4.641

g (sphere) −2.449884 −3.5175 −4.639

Relative difference (%) 0.00037 0.020 0.04

1/N correction −3.665103757 −5.767068913 −7.842621261

Exact value: π(1 − 2�)/6 −3.665191429 −5.759586532 −7.853981634

Relative difference (%) 0.00239 0.130 0.145

Linear regressions where done with 8 ≤ N ≤ 14 for � = 4 and 6, and with 7 ≤ N ≤ 11 for � = 8

Again, the coefficient ad
(N−1)�/2 is related to the ratio of two partition functions with N and

N − 1 particles

ad
(N−1)�/2 = Nπ

Qd
N−1,�(ρb)

Qd
N ,�(ρb)

. (5.70)

Using (3.1), we find

ρd
(1)(r) ∼

y→−∞
πρb

N�/4 exp

[
− N�

2

(
πρbr2

N
− 1

)] (
πρbr2

N

)(N−1)�/2

× exp

[
β f (�, ρb) −

(
1 − �

4

)
log(πρb) + βμ(�, ρb)

√
π√

ρb N
+ (1 − �)

1

12N
+ o(1/N )

]

(5.71)

In the scaled edge, with r �→ √
Nr and ρb = 1/π , taking r → ∞ in (5.29) reproduces

(5.71), but here the o(1) has non zero O(1/
√

N ) corrections — except for � = 2 when
βμ(�, ρb) vanishes — as opposed to the soft cylinder geometry.

Appendix 4

In this appendix we present a detailed derivation of the exterior asymptotes of A(y) as in
(4.10). From Proposition 1, A(y) can be written as a sum of four terms, each of which is
analyzed separately below.

Lemma 9 The asymptotic expansion of A1(y) outside the droplet is

A1(y) ∼
y→−∞ −1

8

e−2y2

√
2π |y| + 1

16π
√

2

e−2y2

y2 + 1

32
√

2π |y|3 e−2y2 + O(y−4e−2y2
).

Proof This asymptotic expansion can be obtained by differentiating A1(−|y|) with respect
to |y|, and integrating from |y| to ∞, with the result

A1(−|y|) = −1

8
erfc(

√
2|y|) + 1

2
√

6π

∫ ∞

|y|
dt e−2t2/3erfc(2t/

√
3),

= −1

8
erfc(

√
2|y|) + 1

16π
√

2

e−2y2

y2 + O(y−4e−2y2
).
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The second line is obtained by expanding the complementary error function in the inte-
grand for large t , and integrating by parts. The result follows by keeping the next to leading
order term in the large |y| expansion of the first term. �

This can be used to show the following.

Lemma 10 The leading order asymptote of A2(y) outside the droplet is

A2(y) ∼
y→−∞ O

(
y−2e−2y2

)
.

Proof Applying a sequence of integration by parts, we can rewrite A2(y) in terms of A1(y)

as

A2(y) = − 1

4
√

2π
ye−2y2 + 1

4
√

2π
e−2y2 + 3

4
√

6π
ye−2y2/3erfc(−2y/

√
3)

+
(

1

2
+ 2y2

)
A1(y).

Using the asymptotic expansion for A1(−|y|) above, only the term with a pre-exponential
factor of O(y−2) remains. �

Next, we consider the leading asymptote of A3(y). This follows by a straightforward
expansion for large −y � 1.

Lemma 11 The leading asymptote of A3(y) outside the droplet is

A3(y) ∼
y→−∞

1

2
√

2π
|y|e−2y2 + O

(
y−3e−2y2

)
.

Proof After replacing the error functions appearing in A3(y) with their large |y| asymptotic
expansions, this result follows by straightforward algebra.

Lemma 12 The asymptote of A4(y) outside the droplet is

A4(y) ∼
y→−∞

1

4
√

2π

log |y|
|y| e−2y2 + 1

4
√

2π

(
C
2

+ log 2

)
e−2y2

|y| + O
(

y−2e−2y2
)
.

Proof Using the fact that the integrand is symmetric in its arguments t1 and t2, we can rewrite
A4(y) for y < 0 as

A4(−|y|) = − 1√
2π

∫ ∞

0
dt1

∫ ∞

0
dt2

e−2(t1+|y|)2

t1 − t2

(
erf(t1 − t2) + erf

(√
2(t2 + |y|))

)
.

After a change of variables,

A4(−|y|) = − 1√
2π

∫ ∞

|y|
dt1

∫ ∞

|y|
dt2

e−2t2
1

t1 − t2

(
erf(t1 − t2) + erf

(√
2t2

))

∼ − 1√
2π

∫ ∞

|y|
dt1

∫ ∞

|y|
dt2

e−2t2
1

t1 − t2

(
erf(t1 − t2) + 1 − e−2t2

2√
2π t2

)
.

Integrating over t2 this reads

A4(−|y|) ∼ − 1√
2π

∫ ∞

|y|
dt1e−2t2

1

(
log(t1 − |y|) + C

2
+ log 2 −

∫ |y|−t1

0

erf(t)

t
dt

)
.
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We can expand the last integral as an asymptotic series in (|y| − t1). The leading term is
2(|y| − t1)/

√
π , which, upon integrating with respect to t1, becomes

∫ ∞

|y|
dt1e−2t2

1 (|y| − t1) = O
(

y−2e−2y2
)

. (5.72)

The first term in parentheses can be similarly developed as an asymptotic series. A change
of variables x = t1 − |y|, followed by a rescaling x = ξ/|y|, makes the Gaussian factor

exp
(−2(x + |y|)2

) = e−2y2
exp

(
− 2ξ2

y2 − 4ξ
)

. After a Laurent expansion in (ξ/y)2, the

integral becomes

∫ ∞

|y|
dt1e−2t2

1 log(t1 − |y|) = e−2y2

y

∫ ∞

0
dξ log(ξ/y)e−4ξ

(
1 − 2ξ2

y2 + 2ξ4

y4 + . . .

)

= − log |y|
4|y| e−2y2 − 2

(
C
2

+ log(2)

)
1

4|y|e−2y2

+ O
(

log y

y3 e−2y2
)

. (5.73)

The next term can be evaluated easily and its large distance asymptote reads

∫ ∞

|y|
dt1e−2t2

1

(
C
2

+ log 2

)
∼

(
C
2

+ log 2

)
e−2y2

4|y| . (5.74)

Combining (5.72), (5.73), and (5.74) gives the stated asymptote. �

This exhaustive analysis demonstrates that the leading asymptote outside indeed arises
from A3(y), and moreover

A(y) ∼
y→−∞

1

2
√

2π
|y|e−2y2 + 1

4
√

2π

log |y|
|y| e−2y2 + 1

4
√

2π

(
C − 1

2
+ log 2

)
e−2y2

|y|
+O

(
y−2e−2y2

)
. (5.75)

Appendix 5

In this appendix we present a more detailed proof of equation (5.14) in Lemma 5. A direct
computation of the LHS for the antisymmetric parts of A1(y), A2(y) and A3(y) gives

3∑

i=1

(
A′′

i,a(y) + 4y A′
i,a(y)

) =
(

2y2 + 1

2

) (
erf(

√
2/3y) − erf(

√
2y)

)
+

√
6√
π

ye−2y2/3.

(5.76)

For A4(y), we write the LHS as e−2y2
∂y

(
e2y2

∂y Aa,4(y)
)

, and carry out the operations in

the sequence implied. First, the antisymmetric part must be written in a suitable form. Taking
advantage of the symmetry of the integrand and changing variables, the double integral can

123



Exact and asymptotic features 1179

be written as

A4(y) = − 1

2
√

2π

∫ ∞

−y

∫ ∞

−y
dt1dt2 F(t1, t2),

F(t1, t2) = 1

t1 − t2

(
e−2t2

1

(
erf(t1 − t2) + erf

(√
2t2

))

+ e−2t2
2

(
erf(t1 − t2) − erf

(√
2t1

)))
.

Using the fact that limy→∞ A4(y) = 0, this can be written equivalently as

A4(y) = 1

2
√

2π

∫ ∞

−∞
dt1

∫ −y

−∞
dt2 F(t1, t2) + 1

2
√

2π

∫ −y

−∞
dt1

∫ ∞

−y
dt2 F(t1, t2)

= 1√
2π

∫ ∞

−∞
dt1

∫ −y

−∞
dt2 F(t1, t2) − 1

2
√

2π

∫ −y

−∞
dt1

∫ −y

−∞
dt2 F(t1, t2)

= 1√
2π

∫ ∞

−∞
dt1

∫ −y

−∞
dt2 F(t1, t2) + A4(−y),

and thus

Aa,4(y) = 1

2
√

2π

∫ ∞

−∞
dt1

∫ −y

−∞
dt2 F(t1, t2).

From this, we apply the LHS to get

e−2y2
∂y

(
e2y2

∂y Aa,4(y)
)

= −
√

2√
π

∫ ∞

−∞
dx e−2(x−y)2

(
erf(x) − erf

(√
2y

))

= erf(
√

2y) − erf(
√

2y/
√

3).

Combining this with (5.76) proves the lemma.
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