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Abstract We consider a finite region of a d-dimensional lattice of nonlinear Hamiltonian
rotators, where neighbouring rotators have opposite (alternated) spins and are coupled by a
small potential of size εa, a ≥ 1/2. We weakly stochastically perturb the system in such
a way that each rotator interacts with its own stochastic thermostat with a force of order ε.
Then we introduce action-angle variables for the system of uncoupled rotators (ε = 0) and
note that the sum of actions over all nodes is conserved by the purely Hamiltonian dynamics
of the system with ε > 0. We investigate the limiting (as ε → 0) dynamics of actions for
solutions of the ε-perturbed system on time intervals of order ε−1. It turns out that the limiting
dynamics is governed by a certain autonomous (stochastic) equation for the vector of actions.
This equation has a completely non-Hamiltonian nature. This is a consequence of the fact
that the system of rotators with alternated spins do not have resonances of the first order. The
ε-perturbed system has a unique stationary measure μ̃ε and is mixing. Any limiting point of
the family {μ̃ε} of stationary measures as ε → 0 is an invariant measure of the system of
uncoupled integrable rotators. There are plenty of such measures. However, it turns out that
only one of them describes the limiting dynamics of the ε-perturbed system: we prove that a
limiting point of {μ̃ε} is unique, its projection to the space of actions is the unique stationary
measure of the autonomous equation above, which turns out to be mixing, and its projection
to the space of angles is the normalized Lebesque measure on the torus T

N . The results and
convergences, which concern the behaviour of actions on long time intervals, are uniform in
the number N of rotators. Those, concerning the stationary measures, are uniform in N in
some natural cases.
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1 Introduction

Investigation of the energy transport in crystals is one of the main problems in the non-
equilibrium statistical mechanics (see [8]). It is closely related to the derivation of autonomous
equations which describe a flow of quantities, conserved by the Hamiltonian (for example,
the flow of energy and the corresponding heat equation). In the classical setting one looks
for the energy transport in a Hamiltonian system, coupled with thermal baths which have
different temperatures. This coupling is weak in geometrical sense: the thermal baths interact
with the Hamiltonian system only through its boundary. Unfortunately, for the moment of
writing this problem turns out to be too difficult due to the weakness of the coupling. In
this case even the existence of a stationary state in the system is not clear (see [15,29], and
[13,34] for a similar problem in a deterministic setting). That is why usually one modifies
the system in order to get some additional ergodic properties. Two usual ways to achieve
that are (i) to consider a weak perturbation of the hyperbolic system of independent particles
[11,31]; (ii) to perturb each particle of the Hamiltonian system by stochastic dynamics of
order one [1,4,6,7,9,27].

In particular, in [11] the authors consider a finite region of a lattice of weakly inter-
acting geodesic flows on manifolds of negative curvature. In [27] the authors investigate
that of weakly interacting anharmonic oscillators perturbed by energy preserving stochastic
exchange of momentum between neighbouring nodes. Then in the both papers the authors
rescale the time appropriately and, tending the strength of interaction in the Hamiltonian
system to zero, show that the limiting dynamics of local energy is governed by a certain
autonomous (stochastic) equation, which turns out to be the same in the both papers.

In all works listed in (i) and (ii) above, a source of the additional ergodic properties (the
hyperbolicity of unperturbed system and the coupling of Hamiltonian system with stochastic
dynamics) stays of order one. It is natural to investigate what happens when its intensity
goes to zero. Such situation was studied in [2,3] and [5]. In [2] the authors consider the FPU-
chain with the nonlinearity replaced by energy preserving stochastic exchange of momentum
between neighbouring nodes. They investigate the energy transport under the limit when the
rate of this exchange tends to zero. In [3] the authors study a pinned disordered harmonic
chain, where each oscillator is weakly perturbed by energy preserving noise and an anhar-
monic potential. They investigate behaviour of an upper bound for the Green–Kubo conduc-
tivity under the limit when the perturbation vanishes. In [5] the authors consider an infinite
chain of weakly coupled cells, where each cell is weakly perturbed by energy preserving
noise. They formally find a main term of the Green–Kubo conductivity and investigate its
limiting behaviour when strength of the noise tends to zero.

In the present paper we weakly couple each particle of a Hamiltonain system with its own
Langevin-type stochastic thermal bath and study the energy transport when this coupling goes
to zero (note that such stochastic perturbation does not preserve the energy of the system).
So, as in the classical setting given above, we study the situation when the coupling of the
Hamiltonian system with the thermal baths is weak, but the weakness is understood in a
different, non-geometrical sense. This setting seems to be natural: one can think about a
crystal put in some medium and weakly interacting with it.

However, as in a number of works above, we have to assume the coupling of particles in
the Hamiltonian system also to be sufficiently weak. Namely, we rescale the time and let the
strength of interaction in the Hamiltonian system go to zero in the appropriate scaling with
the coupling between the Hamiltonian system and the thermal baths. We prove that under
this limit the local energy of the system satisfies a certain autonomous (stochastic) equation,
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which turns out to be mixing,1 and show that the limiting behaviour of steady states of the
system is governed by a unique stationary measure of this equation.

Since the systems of statistical physics are of very high dimension, then it is crusial
to control the dependence of the systems on their size. Our work satisfies this physical
requirement: most of results we obtain are uniform in the size of the system.

More specifically, we consider a d-dimensional lattice of N nonlinear Hamiltonian rota-
tors. The neighbouring rotators have opposite spins and interact weakly via a potential (linear
or nonlinear) of size εa , a ≥ 1/2. We couple each rotator with its own stochastic Langevin-
type thermostat of arbitrary positive temperature by a coupling of size ε. We introduce
action-angle variables for the uncoupled Hamiltonian, corresponding to ε = 0, and note that a
sum of actions is conserved by the Hamiltonian dynamics with ε > 0. That is why the actions
play for us the role of the local energy. In order to feel the interaction between rotators and
the influence of thermal baths, we consider time interval of order t ∼ ε−1. We let ε go to
zero and obtain that the limiting dynamics of actions is given by equation which describes
their autonomous (stochastic) evolution. It has completely non-Hamiltonian nature (i.e. it
does not feel the Hamiltonian interaction of rotators) and describes a non-Hamiltonian flow
of actions. Since we consider a time interval of order t ∼ ε−1, in the case a = 1/2 we have
t ∼ (Hamiltonian interaction)−2. In [11] and [27] scalings of time and of the Hamiltonian
interaction satisfy the same relation. Since the autonomous equations for energy obtained
there feel the Hamiltonian interaction, in our setting one could expect to obtain an autonomous
equation for actions which also feels it. However, it is not the case.

For readers, interested in the limiting dynamics of energy, we note that it can be easily
expressed in terms of the limiting dynamics of actions.

The system in question (i.e. the Hamiltonian system, coupled with the thermal baths) is
mixing. We show that its stationary measure μ̃ε , written in action-angle variables, converges,
as ε → 0, to the product of the unique stationary measure π of the obtained autonomous
equation for actions and the normalized Lebesgue measure on the torus T

N .
We prove that the convergence as ε → 0 of the vector of actions to a solution of the

autonomous equation is uniform in the number of rotators N . The convergence of the sta-
tionary measures is also uniform in N , in some natural cases.

We use Khasminski–Freidlin–Wentzell-type averaging technics in the form developed in
[23–25]. For a general Hamiltonian these methods are applied when the interaction potential
is of the same order as the coupling with the thermal baths, i.e. a = 1. However, we find a large
natural class of Hamiltonians such that the results stay the same even if 1/2 ≤ a < 1, i.e. when
the interaction potential is stronger. This class consists of Hamiltonians which describe lattices
of rotators with alternated spins, when neighbouring rotators rotate in opposite directions.
It has to do with the fact that such systems of rotators do not have resonances of the first
order. To apply the methods above in the case 1/2 ≤ a < 1 we kill the leading term of the
interaction potential by a global canonical transformation which is εa-close to the identity.
The resulting autonomous equation for actions has the non-Hamiltonian nature since the
averaging eliminates Hamiltonian terms.

Note that a similar (but different) problem was considered in [17] (see also Chapter 9.3
of [18]). There the authors study a system of oscillators, weakly interacting via couplings of
size ε. Each oscillator is weakly perturbed by its own stochastic Langevin-type thermostat,
also of the size ε. The authors consider time interval of order ε−1 and using the averaging
method show that under the limit ε → 0 the local energy satisfies an autonomous (stochastic)

1 I.e. the this equation has a unique stationary measure, and its solutions converge weakly in distribution to
this measure.
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Rotators with Alternated Spins 971

equation. Compare to our work, in this study the authors do not investigate the limiting (as
ε → 0) behaviour of stationary measures as well as the dependence of the results on the
number of particles in the system.

2 Set Up and Main Results

2.1 Set Up

We consider a lattice C ⊂ Z
d , d ∈ N, which consists of N nodes j ∈ C, j = ( j1, . . . , jd).

In each node we put an integrable nonlinear Hamiltonian rotator which is coupled through a
small potential with rotators in neighbouring positions. The rotators are described by complex
variables u = (u j ) j∈C ∈ C

N . Introduce the symplectic structure by the 2-form i
2

∑

j∈C
du j ∧

du j = ∑

j∈C
dx j ∧dy j , if u j = x j +iy j . Then the system of rotators is given by the Hamiltonian

equation
u̇ j = i∇ j H ε(u), j ∈ C, (2.1)

where the dot means a derivative in time t and ∇ j H ε = 2∂u j H ε is the gradient of the
Hamiltonian H ε with respect to the Euclidean scalar product · in C 	 R

2 :

for z1, z2 ∈ C z1 · z2 := Re z1 Re z2 + Im z1 Im z2 = Re z1z2. (2.2)

The Hamiltonian has the form

H ε = 1

2

∑

j∈C
Fj
(|u j |2

)+ εa

4

∑

j,k∈C:| j−k|=1

G
(|u j − uk |2

)

, (2.3)

where | j | := | j1| + · · · + | jd |, a ≥ 1/2 and Fj ,G : [0,∞) → R are sufficiently smooth
functions with polynomial bounds on the growth at infinity (precise assumptions are given
below).

We weakly couple each rotator with its own stochastic thermostat of arbitrary temperature
T j , satisfying

0 < T j ≤ C < ∞,

where the constant C does not depend on j, N , ε. More precisely, we consider the system

u̇ j = i∇ j H ε(u)+ εg j (u)+√

εT j β̇ j , u j (0) = u0 j , j ∈ C, (2.4)

where β = (β j ) j∈C ∈ C
N are standard complex independent Brownian motions. That

is, their real and imaginary parts are standard real independent Wiener processes. Initial
conditions u0 = (u0 j ) j∈C are random variables, independent from β. They are the same
for all ε. Functions g j , which we call “dissipations”, have some dissipative properties, for
example, g j (u) = −u j (see Remark 2.1 below). They couple only neighbouring rotators,
i.e. g j (u) = g j

(

(uk)k∈C:|k− j |≤1
)

.
The scaling of the thermostatic term in Eq. (2.4) is natural since, in view of the dissipative

properties of g j , the only possibility for solution of equation u̇ j = εg j (u)+εb√T j β̇ j , j ∈ C,
to stay of the order 1 for all t ≥ 0 as ε → 0 is b = 1/2.
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972 A. Dymov

The case a = 1/2 is the most difficult, so further on we consider only it, the other cases
are similar. Writing the corresponding Eq. (2.4) in more details, we obtain

u̇ j = i f j
(|u j |2

)

u j + i
√
ε

∑

k∈C:| j−k|=1

G ′ (|u j − uk |2
)

(u j − uk)+ εg j (u)+√

εT j β̇ j ,

(2.5)

u j (0) = u0 j , j ∈ C, (2.6)

where f j (x) := F ′
j (x) and the prime denotes a derivative in x .

Remark 2.1 Our principal example is the case of diagonal dissipation, when g j (u) =
−|u j |p−2u j for all j ∈ C and some p ∈ N, p ≥ 2. In particular, the linear diagonal dissipa-
tion when p = 2 and g j (u) = −u j . The diagonal dissipation does not provide any interaction
between rotators. In this case each rotator is just coupled with a Langevin-type thermostat.
The results become more interesting if we admit functions g j of a more involved structure
which not only introduces dissipation, but also provides some non-Hamiltonian interaction
between the rotators. If for the reader the presence of the non-Hamiltonian interaction seems
unnatural, he can simply assume that the dissipation is diagonal.

We impose on the system assumptions HF, HG, Hg and HI. Their exact statements are
given at the end of the section. Now we briefly summarize them. We fix some p ∈ N, p ≥ 2,
and assume that f j (|u j |2) = (−1)| j | f (|u j |2), where f (|u j |2) is separated from zero and
has at least a polynomial growth of a power p (HF). It means that the leading term of
the Hamiltonian H ε is a nonlinearity which rotates the neighbouring rotators in opposite
directions sufficiently fast. We call it the “alternated spins condition”. The function G ′(|u j |2)
is assumed to have at most the polynomial growth of the power p − 2, i.e. the interaction
term in (2.5) has the growth at most of the power p − 1 (HG). The functions g j (u) have
some dissipative properties and have the polynomial growth of the power p − 1 (Hg). The
functions f,G and g j are assumed to be sufficiently smooth. In HI we assume that the initial
conditions are “not very bad”, this assumption is not restrictive. For an example of functions
f,G and g j satisfying assumptions HF, HG and Hg, see Example 2.4. In the case a ≥ 1 the
assumptions get weaker, see Remark 2.5. In particular, the rotators are permitted to rotate in
any direction.

2.2 Main Results

For a vector u = (uk)k∈C ∈ C
N we define the corresponding vectors of actions and angles

I = I (u) = (Ik(uk))k∈C, Ik = 1

2
|uk |2 and ϕ = ϕ(u) = (ϕk(uk))k∈C, ϕk = arg uk,

where we put ϕk(0) = 0. Thus, (I, ϕ) ∈ R
N+0 × T

N , where R
N+0 = {I = (Ik)k∈C ∈ R

N :
Ik ≥ 0 ∀k ∈ C}, and uk = √

2Ikeiϕk .2 The variables (I, ϕ) form the action-angle coordinates
for the uncoupled Hamiltonian (2.3)|ε=0.

The direct computation shows that the sum of actions
∑

k∈C
Ik is a first integral of the

Hamiltonian H ε for every ε > 0. That is why for our study the actions will play the role
of the local energy, and we will examine their limiting behaviour as ε → 0 instead of the
limiting behaviour of energy. Moreover, the reader, interested in the limiting dynamics of

2 Usually, for a vector from C
N , denoted by the letter u, we write its actions and angles as above, and for a

vector, denoted by v, we write them as (J, ψ), J = J (v), ψ = ψ(v).
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Rotators with Alternated Spins 973

energy, will easily express it in terms of the limiting dynamics of actions, since in view of
(2.3), the energy of a j-th rotator tends to 1

2 Fj (2I j ) as ε → 0, see Corollary 4.7 for details.
Let us write a function h(u) in the action-angle coordinates, h(u) = h(I, ϕ). Denote its

averaging in angles as

〈h〉(I ) :=
∫

TN

h(I, ϕ) dϕ.

Here and further on dϕ denotes the normalized Lebesgue measure on the torus T
N . Let

R j (I ) := 〈g j (u) · u j 〉, (2.7)

where we recall that the scalar product · is given by (2.2). It is well known that under our
assumptions a solution uε(t) of system (2.5)–(2.6) exists, is unique and is defined for all
t ≥ 0 ([21]). Let I ε(t) and ϕε(t) be the corresponding vectors of actions and angles, i.e.
I ε(t) = I (uε(t)), ϕε(t) = ϕ(uε(t)). We fix arbitrary T ≥ 0 and examine the dynamics of
actions I ε on the long-time interval [0, T/ε] under the limit ε → 0. It is useful to pass to the
slow time τ = εt , then the interval t ∈ [0, T/ε] corresponds to τ ∈ [0, T ]. We prove

Theorem 2.2 In the slow time the family of distributions of the actions D(I ε(·)) with ε → 0
converges weakly on C([0, T ],RN ) to a distribution D(I 0(·)) of a unique weak solution
I 0(τ ) of the system

d I j = (R j (I )+ T j ) dτ +√

2I j T j d˜β j , j ∈ C, (2.8)

D(I (0)) = D(I (u0)), (2.9)

where ˜β j are standard real independent Brownian motions. The convergence is uniform in
N.

The limiting measure satisfies some estimates, for details see Theorem 4.6. In order to speak
about the uniformity in N of convergence, we assume that the set C depends on the number
of rotators N in such a way that C(N1) ⊂ C(N2) if N1 < N2. The functions G, Fj and the
temperatures T j are assumed to be independent from N , while the functions g j are assumed
to be independent from N for N sufficiently large (depending on j).3 The initial conditions
u0 are assumed to agree in N , see assumption HI(ii). The uniformity of convergence of
measures through all the text is understood in the sense of finite-dimensional projections.
For example, for Theorem 2.2 it means that for any 	 ⊂ Z

d which does not depend on N
and satisfies 	 ⊂ C(N ) for all N ≥ N	, N	 ∈ N, we have 4

D
(

(I εj (·)) j∈	
)

⇀ D
(

(I 0
j (·)) j∈	

)

as ε → 0 uniformly in N ≥ N	.

Note that in the case of diagonal dissipation g j (u) = −u j |u j |p−2 Eq. (2.8) turns out to be
diagonal

d I j = (−(2I j )
p/2 + T j ) dτ +√

2I j T j d˜β j , j ∈ C. (2.10)

For more examples see Sect. 4.4.
Relation (2.8) is an autonomous equation for actions which describes their transport under

the limit ε → 0. Since it is obtained by the avergaing method we call it the averaged equation.

3 We can not assume that g j is independent from N for all N ∈ N since for small N the j-th rotator may have
fewer neighbours then for large N .
4 We recall that the weak convergence of measures is metrisable (see [12], Theorem 11.3.3), so it makes sense
to talk about its uniformity.
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974 A. Dymov

Note that the averaged equation does not depend on a precise form of the potential G. It means
that the limiting dynamics does not feel the Hamiltonian interaction between rotators and
provides a flow of actions between nodes only if the dissipation is not diagonal.

In Sect. 4.2 we investigate the limiting behaviour, as ε → 0, of averaged in time joint
distribution of actions and angles I ε, ϕε . See Theorem 4.8.

Recall that a stochastic differential equation is mixing if it has a unique stationary measure
and all solutions of this equation weakly converge to this stationary measure in distribution.
It is well known that Eq. (2.5) is mixing (see [21,35,36]). Denote its stationary measure
by μ̃ε . Denote the projections to spaces of actions and angles by �ac : C

N → R
N and

�ang : C
N → T

N correspondingly. Let

C∞ := ∪N∈NC(N ).

We will call Eq. (2.8) for the case N = ∞, i.e. with C replaced by C∞, the “averaged equation
for the infinite system of rotators”. Let R

∞ (C∞) be the space of real (complex) sequences
provided with the Tikhonov topology.

Theorem 2.3 (i) The averaged equation (2.8) is mixing.
(ii) For the unique stationary measure μ̃ε of (2.5), written in the action-angle coordinates,

we have
(�ac ×�ang)∗μ̃ε ⇀ π × dϕ as ε → 0, (2.11)

where π is a unique stationary measure of the averaged equation (2.8). If the averaged
equation for the infinite system of rotators has a unique stationary measure π∞ in the
class of measures defined on the Borelσ -algebra B(R∞) and satisfying sup

j∈C∞
〈π∞, I j 〉 <

∞, then convergence (2.11) is uniform in N.
(iii) The vector of actions I ε(τ ), written in the slow time, satisfies

lim
τ→∞ lim

ε→0
D(I ε(τ )) = lim

ε→0
lim
τ→∞ D(I ε(τ )) = π. (2.12)

We prove this theorem in Sect. 4.3. Each limiting point (as ε → 0) of the family of measures
{μ̃ε, 0 < ε ≤ 1} is an invariant measure of the system of uncoupled integrable rotators,
corresponding to (2.1)|ε=0. It has plenty of invariant measures. Theorem 2.3 ensures that
only one of them is a limiting point, and distinguishes it.

Arguing as when proving Theorem 2.3, we can show that the averaged equation for the
infinite system of rotators has a stationary measure belonging to the class of measures above,
but we do not know if it is unique. However, it can be proven that it is unique if this equation is
diagonal. In this case the convergence (2.11) holds uniformly in N . In particular, this happens
when the dissipation is diagonal. For more examples see Sect. 4.4.

Let us briefly discuss some generalizations. Assume that the power p from assumptions
HF, HG, Hg equals to 2 (so that, in particular, the interaction potential has at most a quadratic
growth). Then, if the functions g j (u) do not have dissipative properties (more precisely, if
assumption Hg(ii) below is not satisfied), Theorems 2.2 and 4.8 hold true, but Theorem 2.3
fails.

Let us now suppose that some rotators are “defective”: there exists a region CD ⊂ Z
d ,

independent from N , such that for j ∈ CD the spins are not alternated. Then theorems similar
to Theorems 2.2, 4.8, 2.3 hold for the projections of the corresponding family of measures to
the “non defective” nodes CN D := C \U (CD), where U (CD) denotes some neighbourhood of
CD in Z

d . Let us discuss the theorem, corresponding to Theorem 2.2, for the other results the
changes are similar. We show that any limiting (as ε → 0) point Q0 of the family of measures
{D((I εj (·)) j∈CN D

)

, 0 < ε ≤ 1} is a weak solution of the averaged equation (2.8)–(2.9) with
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Rotators with Alternated Spins 975

C replaced by ĈN D , where ĈN D = CN D \ U (∂CN D) and U (∂CN D) is some neighbourhood
of ∂CN D . Thus, if for j ∈ ∂ ĈN D the function R j (I ) depends on I j with j ∈ CN D \ ĈN D ,
then the averaged equation is not closed and we do not know if its weak solution is unique.
In this case we can say nothing about the uniqueness of the limiting point Q0 and about the
uniformity of convergence in N . However, if the averaged equation is diagonal (for example,
in the case of diagonal dissipation), then R j (I ) = R j (I j ), the averaged equation is closed
and has a unique weak solution. In this case the projection Q̂0 of the limiting point Q0 to
ĈN D is uniquely determined, the convergence D

(

(I εj (·)) j∈ĈN D

)

⇀ Q̂0 as ε → 0 holds and is
uniform in N . Thus, the defects have only local influence on the limiting dynamics as ε → 0.
For details see [14], Sect. 7.

2.3 Strategy

In this section we describe the main steps of proofs of Theorems 2.2 and 2.3.
First we need to obtain uniform in ε, N and time t estimates for solutions of (2.5). For

a general system of particles there is no reason why all the energy could not concentrate at
a single position, forming a kind of delta-function as N → ∞. It is remarkable that in our
system this does not happen, at least on time intervals of order 1/

√
ε, even without alternated

spins condition and in absence of dissipation. One can prove it working with the family of
norms ‖ · ‖ j,q (see Agreements 6). But for a dissipative system with alternated spins the
concentration of energy also does not happen as t → ∞. To see this, we make first one step
of the perturbation theory. The alternated spins condition provides that the system does not
have resonances of the first order. Then in Theorem 3.1 we find a global canonical change
of variables in C

N , transforming u → v, (I, ϕ) → (J, ψ), which is
√
ε-close to identity

uniformly in N and kills in the Hamiltonian the term of order
√
ε. We rewrite Eq. (2.5) in

the new variables v and call the result “v-equation” (see 3.5). Using the fact that in the new
coordinates the interaction potential has the same size as the dissipation and working with
the family of norms ‖ · ‖ j,q , we obtain desired estimates for solutions of the v-equation.

Then we pass to the limit ε → 0. In the action-angle coordinates (J, ψ) the v-equation
takes the form

d J = X (J, ψ, ε) dτ + σ(J, ψ, ε)dβ + σ(J, ψ, ε)dβ, (2.13)

dψ = ε−1Y (J, ε) dτ + . . . , (2.14)

where the term . . . and X, Y, σ are of order 1. For details see (4.2)–(4.3). So the angles rotate
fast, while the actions change slowly. The averaging principle for systems of the type (2.13)–
(2.14) was established in [16–18,20] and, more recently, in [24,25]. Our situation is similar
to that in [24,25], and we follow the scheme suggested there. Let vε(τ ) be a solution of the
v-equation, written in the slow time, and J ε(τ ) = J (vε(τ )) be the corresponding vector
of actions. We prove Theorem 4.2, stating that the family of measures D(J ε(·)) converges
weakly as ε → 0 to a distribution of a unique weak solution of the averaged in angles Eq.
(2.13)|ε=0, which has the form (2.8). To prove that this convergence is uniform in N , we use
the uniformity of estimates obtained above and the fact that the averaged equation for the
infinite system of rotators has a unique weak solution. Since the change of variables is

√
ε-

close to identity, the behaviours of actions J ε and I ε as ε → 0 coincide, and we get Theorem
2.2. The averaged equation (2.8) does not feel the Hamiltonian interaction of rotators since
the averaging eliminates the Hamiltonian terms.

The averaged equation (2.8) is irregular: its dispersion matrix is not Lipschitz continuous.
To study it we use the method of effective equation, suggested in [23],[24] (in our case its
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976 A. Dymov

application simplifies). The effective equation (see 4.35) is defined in the complex coordinates
v = (vk)k∈C ∈ C

N . If v(τ) is its solution then the actions J (v(τ )) form a weak solution
of Eq. (2.8) and vice versa (see Proposition 4.9). The effective equation is well posed and
mixing. This implies item (i) of Theorem 2.3. The proof of item (ii) is based on the averaging
technics developed in Theorem 2.2.

Note that the convergence (2.11) is equivalent to

μ̃ε ⇀ m as ε → 0, (2.15)

where m is the unique stationary measure of the effective equation, see Remark 4.13. Item
(iii) of Theorem 2.3 follows from the first two items and Theorem 2.2.

2.4 Agreements and Assumptions

Agreements

(1) We refer to item 1 of Theorem 3.1 as Theorem 3.1(1), etc.
(2) By C,C1,C2, . . . we denote various positive constants and by C(b),C1(b), . . . we

denote positive constants which depend on the parameter b. We do not indicate their
dependence on the dimension d , power p and time T which are fixed through all the
text and always indicate if they depend on the number of rotators N , times t, s, τ, . . .,
positions j, k, l,m, . . . ∈ C and small parameter ε. Constants C,C(b), . . . can change
from formula to formula.

(3) Unless otherwise stated, assertions of the type “b is sufficiently close to c” and “b
is sufficiently small/big” always suppose estimates independent from N , positions
j, k, l,m, . . . ∈ C and times t, s, τ, . . ..

(4) We use notations b ∧ c := min(b, c), b ∨ c = max(b, c).
(5) For vectors b = (bk), c = (ck), bk, ck ∈ C, we denote

a · b :=
∑

ak · bk =
∑

Re akbk .

(6) For 1/2 < γ < 1, j ∈ C and q > 0 we introduce a family of scalar products and a
family of norms on C

N as 5

(u · u1) j : =
∑

k∈C
γ |k− j |uk · u1

k,

‖u‖q
j,q : =

∑

k∈C
γ |k− j ||uk |q , where u = (uk)k∈C, u1 = (u1

k)k∈C ∈ C
N .

(7) For a metric space X by Lb(X) (Lloc(X)) we denote the space of bounded Lipschitz
continuous (locally Lipschitz continuous) functions from X to R.

(8) Convergence of measures we always understand in the weak sense.
(9) We suppose ε to be sufficiently small, where it is needed.

Assumptions

Here we formulate our assumptions. In Example 2.4 we give examples of functions Fj ,G
and g j satisfying them.

Fix p ∈ N, p ≥ 2. Assume that there exists ς > 0 such that the following holds.

5 For details see Sect. 3.1. We will fix γ , so we do not indicate the dependence on it.
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Rotators with Alternated Spins 977

HF (Alternated spins condition). For every j ∈ C and some function f we have f j =
(−1)| j | f . Function f : (−ς,∞) �→ R+ is C3-smooth and its derivative f ′ has only isolated
zeros. Moreover, for any x ≥ 0 we have

f (x) ≥ C(1 + x p/2) and | f ′(x)|x1/2 + | f ′′(x)|x + | f ′′′(x)|x3/2 ≤ C f (x).

HG Function G : (−ς,∞) �→ R is C4-smooth. Moreover, for any x ≥ 0 it satisfies

|G ′(x)|x1/2 + |G ′′(x)|x + |G ′′′(x)|x3/2 ≤ C(1 + x (p−1)/2).

Hg (i) Functions gl : C
N �→ C, l ∈ C are C2-smooth and depend on u = (uk)k∈C

only through (uk)k:|k−l|≤1. For any u ∈ C
N and l,m ∈ C they satisfy

|gl(u)|, |∂um gl(u)|, |∂um gl(u)| ≤ C

⎛

⎝1 +
∑

k:|k−l|≤1

|uk |p−1

⎞

⎠ ,

while all the second derivatives are assumed to have at most a polynomial
growth at infinity, which is uniform in l ∈ C.

(ii) (Dissipative condition) There exists a constant Cg > 0, independent from N , such
that for any j ∈ C and 1/2 < γ < 1 sufficiently close to one, for any (uk)k∈C ∈ C

N

(g(u) · u) j ≤ −Cg‖u‖p
j,p + C(γ ), where g := (gl)l∈C,

and the scalar product (·) j and the norm ‖ · ‖ j,p are defined in Agreements.6. Recall that
they depend on γ .

HI (i) For some constant α0 > 0, independent from N , and every j ∈ C we have

E eα0|u0 j |2 ≤ C.

(ii) The initial conditions u0 = uN
0 agree in N in the sense that there exists a C

∞-valued
random variable u∞

0 = (u∞
0 j ) j∈C∞ satisfying for any N ∈ N the relation

D
(

(uN
0 j ) j∈C(N )

)

= D
(

(u∞
0 j ) j∈C(N )

)

.

In what follows, we suppose the assumptions above to be held.

Example 2.4 As an example of functions f and G satisfying conditions HF and HG, we
propose f (x) = 1 + xk for any N � k ≥ p/2, and G(x) = Ĝ(

√
x + ς) for any constant

ς > 0 and any C4-smooth function Ĝ : R+ �→ R satisfying

|Ĝ ′(x)| + |Ĝ ′′(x)| + |Ĝ ′′′(x)| ≤ C(1 + x p−1) for all x ≥ √
ς.

The simpliest example of functions gl satisfying assumption Hg is the diagonal dissipation
gl(u) = −ul |ul |p−2. As an example of functions gl providing non-Hamiltonian interaction
between rotators, we propose gl(u) = −ul |ul |p−2 + g̃l(u), where g̃l satisfies Hg(i) and
|̃gl(u)| ≤ ˜C

∑

k:|k−l|≤1
|uk |p−1 + C , where the constant ˜C satisfies6

˜C < 1
8d(2d+1)2

For more examples see Sect. 4.4.

Remark 2.5 In the case a ≥ 1 assumptions HF and HG simplify.
HF’-HG’. Functions f j ,G : (−ς,∞) �→ R are C1- and C4-smooth correspondingly,

f ′
j have only isolated zeros and |G ′(x)|x1/2 ≤ C(1 + x (p−1)/2) for any x ≥ 0.

6 This constant is not optimal, one can improve it.
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978 A. Dymov

3 Preliminaries

3.1 Norms

Since
∑

j∈C
|u j |2 is conserved by the Hamiltonian flow, it would be natural to work in the

l2-norm. However, the l2-norm of solution of (2.5) diverges as N → ∞. To overcome this
difficulty and obtain uniform in N estimates for the solution, we introduce the family of lq -
weighted norms with exponential decay: for each q > 0 and every j ∈ C, for v = (vk)k∈C ∈
C

N we set

‖v‖ j,q =
(
∑

k∈C
γ |k− j ||vk |q

)1/q
, where the constant 1/2 < γ < 1 will be chosen later.

Similar norms were considered, for example, in [10], Sect. 3.12. Define the family of l2-
weighted scalar products on C

N ,

(v1 · v2) j =
∑

k∈C
γ |k− j |v1

k · v2
k ,

corresponding to the norms ‖v‖2
j := ‖v‖2

j,2 = (v · v) j . It is easy to see that the Holder

inequality holds: for any m, n > 0, satisfying m−1 + n−1 = 1, we have

|(v1 · v2) j | ≤ ‖v1‖ j,m‖v2‖ j,n . (3.1)

Moreover, since for any m ≥ n we have |vk |n ≤ |vk |m + 1, then we get

‖v‖n
j,n ≤ ‖v‖m

j,m +
∑

k∈C
γ | j−k| ≤ ‖v‖m

j,m + C(γ ) for m ≥ n, (3.2)

where the constant C(γ ) does not depend on N since the geometrical series converges.

3.2 The Change of Variables

Consider the complex variables v = (v j ) j∈C ∈ C
N and the corresponding vectors of actions

and angles (J, ψ) ∈ R
N+0 × T

N . Define a vector B := (β, β)T ∈ C
2N , where β is a complex

N -dimensional Brownian motion as before and T denotes the transposition. Recall that by
〈·〉 we denote the averaging in angles, see Appendix 2 for its properties. Let ∇ := (∇ j ) j∈C
and g := (g j ) j∈C .

Theorem 3.1 There exists a C2-smooth
√
ε-close to identity canonical change of variables

of C
N , transforming u → v, (I, ϕ) → (J, ψ) such that the Hamiltonian H ε in the new

coordinates takes the form

Hε(J, ψ) = H ε
0 (J )+ εH2(J, ψ)+ ε

√
εH ε

>(J, ψ), (3.3)

where

H ε
0 (v) = 1

2

∑

j∈C
Fj
(|v j |2

)+
√
ε

4

∑

| j−k|=1

〈

G(|v j − vk |2)
〉

(3.4)

is C4-smooth and the functions H2(v) and H ε
>(v) are C2-smooth. System (2.5)–(2.6) written

in v-variables has the form

v̇ = i∇ H ε
0 (v)+ εi∇ H2(v)+ εg(v)+ ε

√
εrε(v)+ √

εW ε(v)Ḃ, (3.5)

v(0) = v(u0) =: v0, (3.6)
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Rotators with Alternated Spins 979

where rε = (rεj ) j∈C : C
N �→ C

N is a continuous vector-function and W ε is a new dispersion

matrix. The latter has the size N × 2N and consists of two blocks, W ε = (W ε1,W ε2),

so that W ε Ḃ = W ε1β̇ + W ε2β̇. The blocks have the form W ε1,2 = (W ε1,2
kl )k,l∈C , where

W ε1
kl = √

Tl∂ul vk , W ε2
kl = √

Tl∂ul vk . Moreover, for any j ∈ C and 1/2 < γ < 1 we have

1. |(i∇ H2 · v) j | ≤ (1 − γ )C‖v‖p
j,p + C(γ ).

2. a.∇ j H2 depends only onvn such that |n− j | ≤ 2, and |∇ j H2| ≤ C
∑

n:|n− j |≤2
|vn |p−1+C.

b. For any q ≥ 1 we have ‖rε‖q
j,q ≤ C(γ, q)+ C(q)‖v‖q(p−1)

j,q(p−1).

3. The functions d1,2
kl , defined as in (5.33), satisfy |d1

kl − δklTk |, |d2
kl | ≤ C

√
ε for all

k, l ∈ C.
4. We have |u j − v j | ≤ C

√
ε and |I j − J j | ≤ C

√
ε.

Further on we will usually skip the upper index ε. If γ = 1, then the norm ‖u‖ j =
( ∑

j∈C
|u j |2

)1/2 is the first integral of the Hamiltonian H ε. Consequently, the norm ‖u‖ j with

γ close to one is an approximate integral of the Hamiltonian flow. Item 1 of Theorem 3.1
means that the change of variables preserves this property in the order ε, modulo constant
C(γ ). This is crucial for deriving of uniform in N estimates for solutions of (3.5).

In Eq. (2.5) all functions, except the rotating nonlinearity i f j (|u j |2)u j , have at most a
polynomial growth of a power p − 1. Item 2 affirms, in particular, that this property is
conserved by the transformation.

The proof of the theorem is technically rather complicated. Since the potential G is not
a differentiable function of actions, we have to work in the v-coordinates despite that the
transformation is constructed in the action-angle variables. This rises some difficulties since
the derivative ofψ j with respect to v j have a singularity when v j = 0. Moreover, we have to
work in rather inconvenient norms ‖ · ‖ j,q and estimate not only Poisson brackets, but also
non-Hamiltonian terms of the v-equation. The sketch of the proof is given in Sect. 5.3. For
the complete proof see [14], Section 6.

Let us briefly explain why the alternated spins condition HF provides that system (2.5) does
not have resonances of the first order. Writing equation (2.5) in the action-angle coordinates,
we find that the angles satisfy ϕ̇ j ∼ f j (|u j |2), j ∈ C. It is not difficult to see that the interaction
potential G(|u j −uk |2)depends on the angles only through their differenceϕ j −ϕk , see (5.28).
Due to assumption HF, the corresponding combination of rotation frequences is separated
from zero. Indeed, f j − fk = 2(−1)| j | f , where we recall that the function f is assumed to
be strictly positive.

3.3 Estimates for Solution

System (3.5)–(3.6) has a unique solution since system (2.5)–(2.6) does. Let us denote it by
v(t) = (vk(t))k∈C .

Lemma 3.2 For any 1/2 < γ < 1 sufficiently close to one there exists α = α(γ ) > 0 such
that for all j ∈ C, t ≥ 0 and ε sufficiently small we have

E sup
s∈[t,t+1/ε]

eα‖v(s)‖2
j < C(γ ). (3.7)

Let us emphasize that estimate (3.7) holds uniformly in N , j, t and ε sufficiently small.
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980 A. Dymov

Corollary 3.3 There exists α > 0 such that for any m > 0, t ≥ 0, j ∈ C and ε sufficiently
small we have

E sup
s∈[t,t+1/ε]

eα|v j (s)|2 < C, E sup
s∈[t,t+1/ε]

|r j (v(s))|m < C(m),

where r = (r j ) j∈C is the reminder in (3.5).

Proof of Corollary 3.3 Fix any γ and α such that (3.7) holds true. By the definition of ‖ · ‖2
j

we have |v j |2 ≤ ‖v‖2
j , so Lemma 3.2 implies the first inequality. Let us prove the second

one. Without loss of generality we assume that m ≥ 2. Theorem 3.1(2b) implies

|r j |m ≤ ‖r‖m
j,m ≤ C(γ,m)+ C(m)‖v‖m(p−1)

j,m(p−1) ≤ C(γ,m)+ C(m, κ)eκ‖v‖
2
j,m(p−1) (3.8)

for any κ > 0. Using that 2/m(p − 1) ≤ 1 and the Jensen inequality, we get

eκ‖v‖
2
j,m(p−1) ≤ e

κ
∑

k∈C
γ

2| j−k|
m(p−1) |vk |2

≤
∑

k∈C
γ

2| j−k|
m(p−1) (C(γ ))−1eκC(γ )|vk |2 , (3.9)

where C(γ ) = ∑

k∈C
γ

2| j−k|
m(p−1) . Choosing κ in such a way that κC(γ ) ≤ α and combining (3.8),

(3.9) and the first estimate of the corollary, we get the desired inequality. ��
Proof of Lemma 3.2 Step 1. Take some 1/2 < γ < 1 and 0 < α1 < 1. Further on we present
only formal computation which could be justified by standard stopping-time arguments (see,

e.g., [19]). Applying the Ito formula in complex coordinates (see Appendix 1) to eα1‖v‖2
j and

noting that i∇ j H0 · v j = 0 since H0 depends on v only through J (v), we get

d

ds
eα1‖v(s)‖2

j = 2α1εe
α1‖v‖2

j

(

(i∇ H2 · v) j + (g · v) j + √
ε(r · v) j +

∑

k∈C
γ | j−k|d1

kk

+α1

∑

k,l∈C
γ | j−k|+| j−l|(vkvld

1
kl + Re(vkvld

2
kl)
)

)

+ 2α1
√
εṀs, (3.10)

where we recall that d1,2
kl are calculated in (5.33), and the martingal

Ms :=
s
∫

s0

eα1‖v‖2
j (v · W d B) j for some s0 < s. (3.11)

First we estimate (r · v) j . Theorem 3.1(2b) implies

‖r‖ j,p/(p−1) ≤ (

C‖v‖p
j,p + C(γ )

)(p−1)/p ≤ C1‖v‖p−1
j,p + C1(γ ).

Then, the Holder inequality (3.1) with m = p/(p − 1) and n = p, jointly with (3.2) implies

|(r · v) j | ≤ ‖r‖ j,p/(p−1)‖v‖ j,p ≤ C1‖v‖p
j,p + C1(γ )‖v‖ j,p ≤ C2(γ )(‖v‖p

j,p + 1). (3.12)

Secondly we estimate Ito’s term. By Theorem 3.1(3) we get
∣

∣

∣

∣

∣

∑

k∈C
γ | j−k|d1

kk

∣

∣

∣

∣

∣

≤ C(γ ). (3.13)
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Note that
∑

k,l∈C
γ | j−k|+| j−l||vk ||vl | ≤

∑

k,l∈C
γ | j−k|+| j−l|(|vk |2 + |vl |2) ≤ C(γ )‖v‖2

j .

Consequently, due to Theorem 3.1(3), we have
∣

∣

∣

∣

∣

∣

∑

k,l∈C
γ | j−k|+| j−l|(vlvkd1

kl + Re(vkvld
3
kl)
)

∣

∣

∣

∣

∣

∣

≤
∑

k∈C
γ 2| j−k|Tk |vk |2 + √

εC(γ )‖v‖2
j

≤ (

C + √
εC1(γ )

)‖v‖2
j

≤ (

C + √
εC1(γ )

)‖v‖p
j,p + C2(γ ), (3.14)

where we have used (3.2). Now Theorem 3.1(1), assumption Hg(ii), (3.12), (3.13) and (3.14),
applied to (3.10), imply that for γ sufficiently close to one we have

d

ds
eα1‖v‖2

j ≤ 2α1εe
α1‖v‖2

j

(

−(Cg−(1−γ )C−α1C−√
εC(γ )

)‖v‖p
j,p+C1(γ )

)

+2α1
√
εṀs .

(3.15)
We take 1/2 < γ < 1 sufficiently close to one, then choose α1(γ ) > 0 and ε0(γ ) > 0,
sufficiently small, in such a way that

� := Cg − (1 − γ )C − α1C − √
ε0C(γ ) > 0. (3.16)

For any constant C there exists a constant C1 such that for all x ≥ 0 we have

2α1eα1x (−�x + C) ≤ −eα1x + C1.

Consequently, (3.15) jointly with (3.2) implies that for ε < ε0 we have

d

ds
eα1‖v(s)‖2

j ≤ −εeα1‖v(s)‖2
j + εC(γ )+ 2α1

√
εṀs . (3.17)

Fixing s0 = 0 (which is defined in 3.11), taking expectation and applying the Gronwall–
Bellman inequality to (3.17), we have

E eα1‖v(s)‖2
j ≤ E eα1‖v0‖2

j e−εs + C(γ ).

Due to assumption HI(i) and Theorem 3.1, we have E eα1|v0 j |2 ≤ C for all j ∈ C. Then the

Jensen inequality implies that E eα1‖v0‖2
j ≤ C(γ ), if α1 is sufficiently small. Thus we obtain

E eα1‖v(s)‖2
j ≤ C(γ ) for all s ≥ 0 and j ∈ C. (3.18)

Step 2. We fix the parameters γ andα1 as above. Accordingly, the constants, which depend
only on them, will be denoted just C,C1, . . ..

Now we will prove (3.7). Take any 0 < α < α1/2 and fix s0 = t . Integrating inequality
(3.17) with α1 replaced by α over the interval t ≤ s ≤ t + 1/ε and using (3.18), we have

E sup
s∈[t,t+1/ε]

eα‖v(s)‖2
j ≤ E eα‖v(t)‖2

j + C + 2α
√
εE sup

s∈[t,t+1/ε]
Ms

≤ C1 + 2α
√
εE sup

s∈[t,t+1/ε]
Ms . (3.19)

Now we turn to the martingal part. The definition of Ms implies

sup
s∈[t,t+1/ε]

Ms ≤
∑

k∈C
sup

s∈[t,t+1/ε]
Mks,
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982 A. Dymov

where Mks =
s
∫

t
eα‖v‖2

j γ | j−k|vk · (W d B)k . The Doob–Kolmogorov inequality implies that

E sup
s∈[t,t+1/ε]

Mks ≤ CE
√[Mk]t+1/ε ≤ C

√

E [Mk]t+1/ε,

where [Mk]s denotes the quadratic variation of Mks . Similarly to (5.36), we obtain

[Mk]t+1/ε =
t+1/ε
∫

t

e2α‖v‖2
j γ 2| j−k|S J

kk ds ≤ C(κ)γ | j−k|
t+1/ε
∫

t

e2(α+κ)‖v‖2
j
(|d1

kk | + |d2
kk |
)

ds

for any κ > 0, where S J
kk is defined in (5.35). Take 0 < κ < α1/2 −α. Then, using Theorem

3.1(3) and (3.18), we get

E sup
s∈[t,t+1/ε]

Ms ≤C
∑

k∈C

√

E [Mk]t+1/ε ≤ C(κ)
∑

k∈C
γ | j−k|/2

⎛

⎝

t+1/ε
∫

t

E e2(α+κ)‖v‖2
j ds

⎞

⎠

1/2

≤ C1(κ)√
ε
.

Now (3.7) follows from (3.19). ��

4 The Limiting Dynamics

In this section we investigate the limiting (as ε → 0) behaviour of system (2.5). We prove
Theorems 4.6, 4.8 and 2.3 which are our main results.

4.1 Averaged Equation

Here we prove Theorem 4.6, which describes the limiting dynamics of actions on long time
intervals of order ε−1. In the slow time τ = εt system (3.5)–(3.6) has the form

dv j = (ε−1i∇ j H0 + i∇ j H2 + g j + √
εr j ) dτ + (W d B) j , v j (0) = v0 j , j ∈ C. (4.1)

Let us write Eq. (4.1) in the action-angle variables J = J (v), ψ = ψ(v). Due to (5.34) and
the equalities i∇ j H0 · v j = 0 and i∇ j H0 · iv j

|v j |2 = ∂J j H0, we have

d J j = AJ
j dτ + v j · (W d B) j , (4.2)

dψ j =
(

ε−1 ∂H0

∂ J j
+ Aψj

|v j |2
)

dτ + iv j

|v j |2 · (W d B) j , j ∈ C, (4.3)

where

AJ
j := A j ·v j +d1

j j , Aψj := A j ·(iv j )−Im(v jv
−1
j d2

j j ), A j := i∇ j H2+g j +√
εr j , (4.4)

and d1,2
j j are calculated in (5.33). In view of (3.4), Proposition 5.9 implies that

for each j ∈ C the function ∂J j H0 is C1−smooth with respect to J = (Jk)k∈C . (4.5)
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Theorem 3.1(a), 3 jointly with Corollary 3.3 implies that for all j, k, l ∈ C and every m > 0
we have

E sup
0≤τ≤T

(|A j | + |AJ
j | + |Aψj | + |S J

kl |
)m ≤ C(m), (4.6)

where S J
kl is the element of the diffusion matrix for Eq. (4.2) with respect to the real Brownian

motion; it is calculated in (5.35).
Note that the quadratic vatriations of the martingales from the r.h.s. of (4.2) and (4.3) are

calculated in (5.36).
Let vε(τ ) be a solution of (4.1). Then J ε(τ ) := J (vε(τ )), ψε(τ ) := ψ(vε(τ )) satisfy

(4.2)–(4.3). Due to estimate (4.6) and slow equation (4.2), using Arzela–Ascoli theorem, we
get

Proposition 4.1 The family of measures {D(J ε(·)), 0 < ε ≤ 1} is tight on C([0, T ], R
N ).

Let Q0 be a weak limiting point of D(J ε(·)):
D(J εk (·)) ⇀ Q0 as k → ∞ on C([0, T ], R

N ), (4.7)

where εk → 0 as k → ∞ is a suitable sequence. Now we are going to show that the
limiting point Q0 does not depend on the sequence (εk) and is governed by the main order
in ε of the averaging of Eq. (4.2). Let us begin with writing down this equation. Since
by Theorem 3.1(3) we have d1

j j = T j + O(
√
ε), the main order of the drift of Eq. (4.2)

is i∇ j H2 · v j + g j (v) · v j + T j . Since for any real-valued C1-smooth function h(v) we
have i∇ j h · v j = −∂ψ j h, then periodicity of the function h with respect to ψ j implies
〈i∇ j h ·v j 〉 = 0. So that, in particular, 〈i∇ j H2 ·v j 〉 = 0. Thus the main order of the averaged
drift takes the form

〈i∇ j H2 · v j + g j (v) · v j + T j 〉 = R j (J )+ T j , (4.8)

where R j is defined in (2.7). Proposition 5.8 jointly with Theorem 3.1(3) implies that the main
order of the diffusion matrix of (4.2) with respect to the real Brownian motion (Re βk, Im βk)k
is diag(Tk |vk |2)k∈C = diag(2Tk Jk)k∈C . It does not depend on angles, so the averaging does
not change it. Choose its square root as diag(

√
2Tk Jk)k∈C . Then in the main order the aver-

aging of Eq. (4.2) takes the form

d J j = (R j (J )+ T j ) dτ +√

2J j T j d˜β j , j ∈ C, (4.9)

where ˜β j are independent standard real Brownian motions. The averaged equation (4.9) has
a weak singularity: its dispersion matrix is not Lipschitz continuous. However, its drift is
regular: Proposition 5.9 implies that

for each j ∈ C the function R j is C1− smooth with respect to J = (Jk)k∈C . (4.10)

Theorem 4.2 The measure Q0 is a law of the process J 0(·) which is a unique weak solution
of the averaged equation (4.9) with the initial conditions D(J (0)) = D(I (u0)). Moreover,

D(J ε(·)) ⇀ D(J 0(·)) as ε → 0 on C([0, T ],RN ), (4.11)

This convergence is uniform in N. For all j ∈ C we have

E sup
τ∈[0,T ]

e2α J 0
j (τ ) < C and

T
∫

0

P (J 0
j (τ ) < δ) dτ → 0 as δ → 0, (4.12)

where the latter convergence is uniform in N.
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Proof The proof of convergence (4.11) follows a scheme suggested in [24,25] while the
latter works use the averaging method developed in [18,20]. Main difficulties of our situa-
tion compared to [20] are similar to those in [24,25] and manifest themselves in the proof
of Lemma 4.4 below. Equation (4.3) has a singularity when Jk = 0, and for J , such that
the rotating frequencies ∂J j H0 are rationally dependent, system (4.2)–(4.3) enters into res-
onant regime. To overcome these difficulties we note that singularities and resonances have
Lebesgue measure zero and prove the following lemma, which affirms that the probability of
the event that actions J ε for a long lime belong to a set of small Lebesgue measure is small.
A similar idea was used in [16,17], where was established the stochastic averaging principle
for different systems with weak resonances ([16,17]) and singularities ([17]). See also [18],
Chapters 9.2 and 9.3.

Let 	 ⊂ Z
d be independent from N and satisfies	 ⊂ C(N ) for N ≥ N	. Denote by M

the number of nodes in 	. Further on we assume that N ≥ N	. (4.13)

Lemma 4.3 Let J ε := (J εk )k∈	 and a set Eε ∈ R
M+0 be such that its Lebesgue measure

|Eε| → 0 as ε → 0. Then

T
∫

0

P
(

J ε(τ ) ∈ Eε
)

dτ → 0 as ε → 0 uniformly in N. (4.14)

The proof of Lemma 4.3 is based on Krylov’s estimates (see [22]) and the concept of local
time. It follows a scheme suggested in [32] (see also [26], Section 5.2.2).

Another difficulty, which is the principal difference between our case and those of all
works mentioned above, is that we need to establish the uniformity in N of the convergence
(4.11). For this purpose we use the uniformity of estimates and convergences of Corollary
3.3 and Lemmas 4.3, 4.4, and the fact that the averaged equation for the infinite system of
rotators has a unique weak solution (in a suitable class).

Now let us formulate the following averaging lemma which is the main tools of the proof
of the theorem.

Lemma 4.4 Take a function P ∈ Lloc(C
N ) which depends on v = (v j ) j∈C ∈ C

N only
through (v j ) j∈	 ∈ C

M . Let it has at most a polynomial growth at infinity. Then, writing
P(v) in the action-angle coordinates P(v) = P(J, ψ), we have

E sup
τ∈[0,T ]

∣

∣

∣

∣

∣

∣

τ
∫

0

P(J ε(s), ψε(s))− 〈P〉(J ε(s)) ds

∣

∣

∣

∣

∣

∣

→ 0 as ε → 0 uniformly in N .

Similarly one can prove that

E sup
τ∈[0,T ]

∣

∣

∣

∣

∣

∣

τ
∫

0

P(J ε(s), ψε(s))− 〈P〉(J ε(s)) ds

∣

∣

∣

∣

∣

∣

2

→ 0 as ε → 0 uniformly in N. (4.15)

We establish Lemmas 4.3 and 4.4 in Sect. 5.
Now we will prove that Q0 is a law of a weak solution of (4.9). It sufficies to show (see

[19], Chapter 5.4) that for any j, k, l ∈ C the processes

Z j (τ ) := J j (τ )−
τ
∫

0

(R j (J (s))+ T j ) ds, Zk Zl(τ )− 2δklTk

τ
∫

0

Jk(s) ds (4.16)
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are square-integrable martingales with respect to the measure Q0 and the natural filtration of
σ -algebras in C([0, T ],RN ). We establish it for the first process, for the second the proof is
similar, but one should use (4.15) (for the first one we do not need this). Consider the process

K εk
j (τ ) := J εk

j (τ )−
τ
∫

0

(R j (J
εk (s))+ T j ) ds. (4.17)

Then, according to (4.2),

K εk
j (τ ) = Mεk

j (τ )+�
εk
j (τ ),

where Mεk
j is a martingal and by (4.8) we have

�
εk
j (τ ) =

τ
∫

0

(

(i∇ j H2+g j )·vεk
j −〈(i∇ j H2+g j )·vεk

j 〉+√
εr j ·vεk

j +(d1
j j −T j )

)

ds. (4.18)

Due to Corollary 3.3 and Theorem 3.1(3), we have

E sup
0≤τ≤T

|r j · vεk
j | ≤ C, |d1

j j − T j | ≤ C
√
ε. (4.19)

Then, applying Lemma 4.4, we get

E sup
0≤τ≤T

|�εk
j (τ )| → 0 as εk → 0. (4.20)

Consequently,
lim
εk→0

D
(

K εk
j (·)

)= lim
εk→0

D
(

Mεk
j (·)

)

(4.21)

in the sense that if one limit exists then the another exists as well and the two are equal.
Due to (4.7) and the Skorokhod Theorem, we can find random processes Lεk (τ ) and L(τ ),

0 ≤ τ ≤ T , such that D
(

Lεk (·)) = D
(

J εk (·)), D
(

L(·)) = Q0 and

Lεk → L in C([0, T ],RN ) as εk → 0 a.s.

Then by (4.17) the left-hand side limit in (4.21) exists and equals

L j (τ )−
τ
∫

0

(R j (L(s))+ T j ) ds. (4.22)

Due to (4.6), the family of martingales {Mεk
j , k ∈ N} is uniformly square integrable.

Due to (4.21), they converge in distribution to the process (4.22). Then the latter is a square
integrable martingal as well. Thus, each limiting point Q0 is a weak solution of the averaged
equation (4.9).

Since the initial conditions u0 are independent from ε, Theorem 3.1(4) implies that
D(J (0)) = D(I (u0)). In [38] Yamada and Watanabe established the uniqueness of a weak
solution for an equation with a more general dispersion matrix then that for (4.9), but with a
Lipschitz-continuous drift. Their proof can be easily generalized to our case by the stopping
time arguments. We will not do this here since in Proposition 4.5 we will consider more
difficult infinite-dimensional situation.

The uniqueness of a weak solution of (4.9) implies that all the limiting points (4.7) coincide
and we obtain the convergence (4.11). The first estimate in (4.12) follows from Corollary 3.3
and the second one follows from Lemma 4.3.
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986 A. Dymov

Now we will prove the uniformity in N of the convergence (4.11). Recall that it is under-
stood in the sense that for any 	 ⊂ Z

d as in (4.13) we have

D
(

(J εj (·)) j∈	
)

⇀ D
(

(J 0
j (·)) j∈	

)

as ε → 0 on C([0, T ],RM ) uniformly in N . (4.23)

It is well known that the weak convergence of probability measures on a separable metric
space is equivalent to convergence in the dual-Lipschitz norm, see Theorem 11.3.3 in [12].
Analysing the proof of this theorem, we see that in order to establish the uniformity in N of
the convergence (4.23) with respect to the dual-Lipschitz norm, it suffices to show that for
any bounded continuous functional h : (J j (·)) j∈	 ∈ C([0, T ],RM ) �→ R, we have

E h(J ε) → E h(J 0) as ε → 0 uniformly in N , (4.24)

where we have denoted h(J ) := h
(

(J j (·)) j∈	
)

. In order to prove (4.24), first we pass to the

limit N → ∞. Recall that C∞ = ∪N∈NC(N ). Denote J ε,N = (J ε,Nj ) j∈C∞ , where

J ε,Nj :=
{

J εj , if j ∈ C = C(N ),
0, if j ∈ C∞ \ C. (4.25)

Using the uniformity in N of estimate (4.6), we get that the family of measures
{

D(J ε,N (·)), 0 < ε ≤ 1, N ∈ N

}

is tight on a space C([0, T ],R∞). Take any limiting point Q∞
0 such that D(J εk ,Nk (·)) ⇀ Q∞

0
as εk → 0, Nk → ∞. Recall that the initial conditions u0 satisfy HI(ii). Denote the vector
of actions corresponding to u∞

0 by I ∞
0 = I (u∞

0 ) ∈ R
∞
0+.

Proposition 4.5 The measure Q∞
0 is a law of the process J 0,∞(τ ) which is a unique weak

solution of the averaged equation for the infinite system of rotators

d J j = (R j (J )+ T j ) dτ +√

2J j T j d˜β j , j ∈ C∞, D(J (0)) = D(I ∞
0 ), (4.26)

Moreover, D(J ε,N (·)) ⇀ D(J 0,∞(·)) as ε → 0, N → ∞ on C([0, T ],R∞).

Before proving this proposition we will establish (4.24). Proposition 4.5 implies

E h(J ε) → E h(J 0,∞) as ε → 0, N → ∞. (4.27)

In view of convergence (4.11) which is already proven for every N , (4.27) implies that
E h(J 0) → E h(J 0,∞) as N → ∞. Consequently, for all δ > 0 there exist N1 ∈ N and
ε1 > 0, such that for every N ≥ N1, 0 ≤ ε < ε1, we have

|E h(J ε)− E h(J 0,∞)| < δ/2.

Then, for N and ε as above,

|E h(J ε)− E h(J 0)| ≤ |E h(J ε)− E h(J 0,∞)| + |E h(J 0,∞)− E h(J 0)| < δ. (4.28)

Choose ε2 > 0 such that for every 0 < ε < ε2 and N < N1 we have

|E h(J ε)− E h(J 0)| < δ. (4.29)

Then, due to (4.28), (4.29) holds for all N and ε < ε1 ∧ε2. Thus, we obtain (4.24). The proof
of the theorem is completed. ��
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Proof of Proposition 4.5 To prove that Q∞
0 is a law of a weak solution of (4.26), it suf-

fices to show that the processes (4.16) are square-integrable martingales with respect to the
measure Q∞

0 and the natural filtration of σ -algebras in C([0, T ],R∞) (see [39]). The proof
of that literally coincides with the corresponding proof for the finite-dimensional case, one
should just replace the limit εk → 0 by εk → 0, Nk → ∞ and the space C([0, T ],RN )

by C([0, T ],R∞). Estimate of Corollary 3.3 joined with Fatou’s lemma implies that the
obtained weak solution belongs to the desired class of processes. To prove that the weak
solution is unique, it suffices to show that the pathwise uniqueness of solutions holds (see
[30,39]). Let J (τ ) and Ĵ (τ ) be two solutions of (4.26), defined on the same probability space,
corresponding to the same Brownian motions and initial conditions, distributed as I ∞

0 , and
satisfying the first estimate from (4.12). Let w(τ) := J (τ ) − Ĵ (τ ). Following literally the
proof of Theorem 1 in [38], for every j ∈ C∞ and any τ ≥ 0 we get the estimate

E |w j (τ )| ≤ E

τ
∫

0

|R j (J (s))− R j ( Ĵ (s))| ds. (4.30)

Define for R > 0 and q > 0 a stopping time

τR = inf{τ ≥ 0 : ∃ j ∈ C∞ satisfying J j (τ ) ∨ Ĵ j (τ ) ≥ R(| j |q + 1)}.
For any τ ≥ 0 we have

P (τR ≤ τ) ≤
∑

j∈C∞
P

(

sup
0≤s≤τ

J j (s) ≥ R(| j |q + 1)

)

+
∑

j∈C∞
P

(

sup
0≤s≤τ

Ĵ j (s) ≥ R(| j |q + 1)

)

≤ C
∑

j∈C∞
e−2αR(| j |q+1) → 0 as R → ∞. (4.31)

For L ∈ N denote |w|L := ∑

| j |≤L
e−| j ||w j |. Using the Taylor expansion, it is possible to

show that, in view of (4.10) and assumption Hg(i), the derivatives ∂Jk R j (J ) have at most
a polynomial growth of some power m > 0, which is uniform in j, k ∈ C∞. Since for any
τ < τR and k ∈ C∞ satisfying |k| ≤ L + 1 we have Jk(τ ), Ĵk(τ ) ≤ R((L + 1)q + 1), then
estimate (4.30) implies

E |w(τ ∧ τR)|L ≤ C
∑

| j |≤L

e−| j |E
τ∧τR
∫

0

(

1 +
∑

k:|k− j |≤1

(Jk + Ĵk)
m
)

∑

k:|k− j |≤1

|w j | ds

≤ C(R)(L + 1)mqE

τ∧τR
∫

0

(

|w|L + e−L
∑

|k|=L+1

|wk |
)

ds

≤ C1(R)(L + 1)mq

τ
∫

0

(

E |w(s ∧ τR)|L + e−L Ld−1) ds,

where we used E
∑

|k|=L+1
|wk | ≤ C Ld−1. Applying the Gronwall–Bellman inequality, we

obtain

E |w(τ ∧ τR)|L ≤ Ld−1e−L+C1(R)(L+1)mqτ .
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Choosing q < 1/m, we obtain that E |w(τ ∧ τR)|L → 0 as L → ∞ and, consequently,
E |w j (τ ∧ τR)| = 0 for all j ∈ C∞. Sending R → ∞, in view of (4.31) we get that
E |w j (τ )| = 0 for any τ ≥ 0 and j ∈ C∞. ��

Let us now investigate the dynamics in the original (I, ϕ)-variables. Let uε(τ ) be a solution
of (2.5)–(2.6), written in the slow time and I ε(τ ) = I (uε(τ )) be the corresponding vector of
actions. By Theorems 3.1(4) and 4.2 we have

lim
ε→0

D(I ε(·)) = lim
ε→0

D(J ε(·)) = Q0 on C([0, T ],RN ).

Since the estimate of Theorem 3.1(4) and the convergence (4.11) are uniform in N , then the
convergence D(I ε(·)) ⇀ Q0 is also uniform in N . Thus, we get

Theorem 4.6 The assertion of Theorem 2.2 holds. Moreover, for any j ∈ C

E sup
τ∈[0,T ]

e2α I 0
j (τ ) < C and

T
∫

0

P (I 0
j (τ ) < δ) dτ → 0 as δ → 0, (4.32)

where the latter convergence is uniform in N.

Let us define a local energy of a j-th rotator as

H ε
j (u) = 1

2
Fj (|u j |2)+

√
ε

4

∑

k:| j−k|=1

G(|u j − uk |2).

Consider the vectors Ĥ ε(u) := (H ε
j (u)) j∈C and F̂(I ) := 1

2 (Fj (2I j )) j∈C .

Corollary 4.7 Let I 0(τ ) be a unique weak solution of system (2.8)–(2.9). Then

D
(

Ĥ ε(uε(·)))⇀ D
(

F̂(I 0(·))) as ε → 0 on C([0, T ],RN ),

uniformly in N.

Proof The second estimate of Theorem 3.1(4) implies that the process uε satisfies the first
estimate of Corollary 3.3. Since the potential G has at most a polynomial growth, we get

lim
ε→0

D
(

Ĥ ε(uε(·))) = lim
ε→0

D
(

F̂(I ε(·))) on C([0, T ],RN ) (4.33)

in the sense that if one limit exists then another one exists as well and the two are equal.
Moreover, if one convergence holds uniformly in N then another one also holds uniformly
in N . It remains to note that, due to Theorem 4.6, we have D

(

F̂(I ε(·)))⇀ D
(

F̂(I 0(·))) as
ε → 0 uniformly in N . ��
4.2 Joint Distribution of Actions and Angles

Here we prove Theorem 4.8, which describes the limiting joint dynamics of actions and
angles. Let, as usual, uε(τ ) be a solution of (2.5)–(2.6), written in the slow time, and
let I ε(τ ) = I (uε(τ )), ϕε(τ ) = ϕ(uε(τ )). Denote by μετ = D(I ε(τ ), ϕε(τ )) the law of

uε(τ ) in action-angle coordinates. For any function h(τ ) ≥ 0 satisfying
T
∫

0
h(τ ) dτ = 1, set

με(h) :=
T
∫

0
h(τ )μετ dτ . Moreover, denote m0(h) :=

T
∫

0
h(τ )D(I 0(τ )) dτ , where I 0(τ ) is a

weak solution of (2.8)–(2.9).
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Theorem 4.8 For any continuous function h as above, we have

με(h) ⇀ m0(h)× dϕ as ε → 0 uniformly in N .

Proof Let us first consider the case h = (τ2 − τ1)
−1

I[τ1,τ2], where I[τ1,τ2] is an indicator
function of the interval [τ1, τ2]. Take a set 	 as in (4.13) and a function P ∈ Lb(R

N × T
N )

which depends on (I, ϕ) = (I j , ϕ j ) j∈C ∈ R
N × T

N only through (I j , ϕ j ) j∈	. Let us first
treat the case when the function P(u) := P(I, ϕ)(u) belongs to Lloc(C

N ) (this can fail since
the vector-function ϕ(u) has a discontinuity when u j = 0 for some j ∈ C, so the function
P(u)may be also discontinuous there). Let vε(τ ) be a solution of (4.1) and J ε(τ ), ψε(τ ) be
the corresponding vectors of actions and angles. Due to Theorem 3.1(4), we have

τ2
∫

τ1

〈μετ , P〉 dτ = E

τ2
∫

τ1

P(uε(τ )) dτ is close to E

τ2
∫

τ1

P(vε(τ )) dτ uniformly in N .

Due to Lemma 4.4, the integral E

τ2
∫

τ1

P(vε(τ )) dτ is close to E

τ2
∫

τ1

〈P〉(J ε(τ )) dτ uniformly

in N . Due to Theorem 4.2, the last integral is uniformly in N close to

E

τ2
∫

τ1

〈P〉(J 0(τ )) dτ = E
∫

TN

τ2
∫

τ1

P(J 0(τ ), ϕ) dτdϕ = (τ2 − τ1)〈m0(h)× dϕ, P〉.

If the function P(u) /∈ Lloc(C
N ), we approximate it by functions Pδ(u) ∈ Lloc(C

N ),

Pδ(u) = P(u)kδ([I (u)]), [I (u)] := min
j∈	 I j (u),

where the function kδ is smooth, 0 ≤ kδ ≤ 1, kδ(x) = 0 for x ≤ δ and kδ(x) = 1 for x ≥ 2δ.
Then we let δ → 0 as ε → 0 and use the estimate of Lemma 4.3 and (4.12).

In the case of a continuous function h, we approximate it by piecewise constant functions.
��

4.3 Stationary Measures

In this section we prove Theorem 2.3 which describes the limiting behaviour of a stationary
regime of (2.5).

4.3.1 The effective equation and proof of Theorem 2.3(i)

The averaged equation (4.9) is irregular: its dispersion matrix is not Lipschitz continuous, so
we do not know if (4.9) is mixing or not. We are going to lift it to so-called effective equation
which is regular and mixing.

Let us define an operator �θ : v = (v j ) j∈C ∈ C
N �→ C

N of rotation by an angle
θ = (θ j ) j∈C ∈ T

N , i.e. (�θv) j = v j eiθ j . We rewrite the function R j from (2.7) as

R j (J ) = 〈g j (v) · v j 〉 =
∫

TN

g j (�θv) · (eiθ j v j ) dθ = K j (v) · v j , (4.34)
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where K j (v) :=
∫

TN

e−iθ j g j (�θv) dθ and dθ is a normalized Lebesgue measure on the torus

T
N . Consider the effective equation

dv j = K j (v) dτ +√

T j dβ j , j ∈ C, (4.35)

where β j , as usual, are standard complex independent Brownian motions. It is well known
that a stochastic equation of the form (4.35) has a unique solution which is defined globally
(see [21]), and that it is mixing (see [21,35,36]). The following proposition explains the role
of the effective equation.

Proposition 4.9 (i) Let v(τ), τ ≥ 0 be a weak solution of the effective equation (4.35) and
J (τ ) = J (v(τ )) be the corresponding vector of actions. Then J (τ ), τ ≥ 0 is a weak
solution of the averaged equation (4.9).

(ii) Let J 0(τ ), τ ≥ 0 be a weak solution of the averaged equation (4.9). Then for any vector
θ = (θ j ) j∈C ∈ T

N there exists a weak solution v(τ) of the effective equation (4.35)
such that

D(J (v(·))) = D(J 0(·)) on C([0,∞),RN ) and v j (0) =
√

2J 0
j (0)e

iθ j , j ∈ C.
(4.36)

Proof (i) Due to (4.34) and (4.35), the actions J (τ ) satisfy

d J j = (R j (J )+ T j ) dτ +√

T jv j · dβ j , j ∈ C. (4.37)

The drift and the diffusion matrix of Eq. (4.37) coincide with those of the averaged equa-
tion (4.9). Consequently, J (τ ) is a solution of the (local) martingale problem associated
with the averaged equation (see [19], Proposition. 5.4.2). So, due to [19], Proposition
5.4.6, we get that J (τ ) is a weak solution of the averaged equation (4.9).

(ii) Let v(τ) be a solution the effective equation with the initial condition as in (4.36). Then,
due to (i), the process J (τ ) := J (v(τ )) is a weak solution of the averaged equation and
J (0) = J 0(0). Since the weak solution of the averaged equation is unique, we obtain
that D(J (·)) = D(J 0(·)). Consequently, v(τ) is the desired process.

��
Let m be the unique stationary measure of the effective equation. Denote the projections

to the spaces of actions and angles by �ac : v ∈ C
N �→ R

N+0 � I and �ang : v ∈ C
N �→

T
N � ψ correspondingly. Denote

π := �ac∗m. (4.38)

Corollary 4.10 The averaged equation (4.9) is mixing, and π is its unique stationary mea-
sure. More precisely, for any its solution J (τ ) we have D(J (τ )) ⇀ π as τ → ∞.

Corollary 4.10 implies Theorem 2.3(i).

Proof First we claim that π is a stationary measure of the averaged equation. Indeed, take a
stationary distributed solution ṽ(τ ) of the effective equation, D(̃v(τ )) ≡ m. By Proposition
4.9(i), the process J (̃v(τ )) is a stationary weak solution of the averaged equation. It remains
to note that (4.38) implies D

(

J (̃v(τ ))
) ≡ π.

Now we claim that any solution J 0(τ ) of the averaged equation converges in distribution
to π as τ → ∞. For some θ ∈ T

N take v(τ) from Proposition 4.9(ii). Due to the mixing
property of the effective equation, D(v(τ )) ⇀ m as τ → ∞ and, consequently, D(J 0(τ )) =
D(J (v(τ ))) ⇀ �ac∗m = π as τ → ∞. ��
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Proof of Theorem 2.3(ii). First we will show that

�ac∗μ̃ε ⇀ π as ε → 0. (4.39)

We will work in the v-variables. Note that Eq. (4.1) is mixing since it is obtained by a C2-
smooth time independent change of variables from Eq. (2.5), which is mixing. Denote by ν̃ε

its unique stationary measure. Due to Theorem 3.1(4) to establish (4.39) it suffices to show
that

�ac∗ν̃ε ⇀ π as ε → 0. (4.40)

Let ṽε(τ ) be a stationary solution of Eq. (4.1), D(̃vε(τ )) ≡ ν̃ε , and ˜J ε(τ ) = J (̃vε(τ )) be
the corresponding vector of actions. Similarly to Proposition 4.1 we get that the set of laws
{D(˜J ε(·)), 0 < ε ≤ 1} is tight in C([0, T ],RN ). Let ˜Q0 be its limiting point as εk → 0.
Obviously, it is stationary in τ . The same arguments that was used in the proof of Theorem
4.2 imply

Proposition 4.11 The measure ˜Q0 is a law of the process ˜J 0(τ ), 0 ≤ τ ≤ T , which is a
stationary weak solution of the averaged equation (4.9).

Since π is the unique stationary measure of the averaged equation, we have D(˜J 0(τ )) ≡ π .
Consequently, we get (4.40) which implies (4.39).

Let ũε(τ ) be a stationary solution of Eq. (2.5) and ˜I ε(τ ), ϕ̃ε(τ ) be the corresponding
vectors of actions and angles. By the same reason as in Theorem 4.8, we have

μ̃ε(h) ⇀ m̃0(h)× dϕ as ε → 0, (4.41)

where μ̃ε(h) and m̃0(h) are defined as με(h) and m0(h), but with the processes I ε(τ ), ϕε(τ )
and I 0(τ ) replaced by the processes ˜I ε(τ ), ϕ̃ε(τ ) and ˜J 0(τ ) correspondingly. Since a sta-
tionary regime does not depend on time, we get (2.11):

D(˜I ε(τ ), ϕ̃ε(τ )) ⇀ π × dϕ as ε → 0. (4.42)

Assume now that the averaged equation for the infinite system of rotators (4.26) has a
unique stationary measure π∞ in the class of measures satisfying sup

j∈C∞
〈π∞, J j 〉 < ∞. Let

us define ˜J ε,N as in (4.25), but with J ε replaced by ˜J ε . The set of laws {D(˜J ε,N (·)), 0 <
ε ≤ 1, N ∈ N} is tight in C([0, T ],R∞). Let ˜Q∞

0 be its limiting point as εk → 0, Nk → ∞.
Similarly to Proposition 4.5 we get

Proposition 4.12 The measure ˜Q∞
0 is a law of the process ˜J 0,∞(τ ), 0 ≤ τ ≤ T , which is a

stationary weak solution of Eq. (4.26), satisfying the first estimate from (4.12) for all j ∈ C∞.

Thus, we obtain that a marginal distribution of the measure ˜Q∞
0 as τ = const is a stationary

measure of Eq. (4.26) from the class of measures above. So that it coincides with π∞ and
we have D(˜J ε,N (τ )) ⇀ π∞ as ε → 0, N → ∞. Then, arguing as in Theorem 4.2, we get
that the convergence (4.40) is uniform in N . As in the proof of Theorem 4.8, this implies that
the convergence (4.41) and, consequently, the convergence (4.42) are also uniform in N .
Proof of Theorem 2.3(iii) Due to the mixing property of (2.5), we have D(I ε(τ )) ⇀ �ac∗μ̃ε
as τ → ∞. Then item (ii) of the theorem implies that �ac∗μ̃ε ⇀ π as ε → 0. On the
other hand, Theorem 4.6 implies that D(I ε(τ )) ⇀ D(I 0(τ )) as ε → 0 for any τ ≥ 0,
where I 0(τ ) is a weak solution of Eqs. (2.8)–(2.9). Then item (i) of the theorem implies that
D(I 0(τ )) ⇀ π as τ → ∞. The proof of the theorem is completed. ��
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Remark 4.13 It is possible to show that the effective equation is rotation invariant: if v(τ)
is its weak solution, then for any ξ ∈ T

N we have that �ξv is also its weak solution. Since
it has the unique stationary measure m, we get that m is rotation invariant. Consequently,
�ang∗m = dϕ. That is why the convergence (2.15) is equivalent to (2.11).

4.4 Examples

1. Consider a system with linear dissipation, i.e. p = 2 and g j (u) = −u j + ∑

k:|k− j |=1
b jkuk ,

where b jk ∈ C. If |b jk | are sufficiently small uniformly in j and k then assumption Hg is
satisfied (see Example 2.4). Since

〈

uk · u j
〉 = 0 for k �= j , we have R j (I ) = −2I j . Then

the averaged equation (2.8) turns out to be diagonal and takes the form

d I j = (−2I j + T j )dτ +√

2T j I j d˜β j , j ∈ C. (4.43)

The unique stationary measure of (4.43) is

π(d I ) =
∏

j∈C

2

T j
IR+(I j )e

−2I j /T j d I j .

The averaged equation for the infinite system of rotators is diagonal and, consequently, has
a unique stationary measure. Thus, the convergence (2.11) holds uniformly in N .

2. Let d = 1 and C = {1, 2, . . . , N }. Put for simplicity p = 4 and choose

g j (u) = 1

4

(

|u j+1|2u j − |u j−1|2u j − |u j |2u j

)

,

where 1 ≤ j ≤ N , u0 = uN+1 := 0. By the direct computation one can verify that g j

satisfies the condition Hg. We have R j (I ) = 〈

g j (u) · u j
〉 = I j+1 I j − I j−1 I j − I 2

j , and the
averaged equation (2.8) takes the form

d I j =
(1

2
(2I j+1 I j − 2I j−1 I j )− I 2

j + T j

)

dτ +√

2I j T j d˜β j .

Its r.h.s. consists of two parts:

d I j/dτ = ˜∇�( j)+ Ter( j),

where �( j) := 2I j+1 I j , ˜∇�( j) := 1
2 (�( j)−�( j − 1)) is the discrete gradient of �, and

Ter( j) := −I 2
j + T j +√

2I j T j d˜β j/dτ . Analogically to the concept of the flow of energy

(see [8], Section 5.2) we call the function�( j) the flow of actions. The term˜∇�( j) describes
the transport of actions through the j-th site while the term Ter( j) can be considered as an
input of a (new) stochastic thermostat interacting with the j-th node. In the same way one
can treat the case p = 2q , where q ∈ N, q > 2.

5 Auxiliary Propositions

In this section we prove Lemmas 4.3, 4.4 and sketch Theorem 3.1.
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5.1 Proof of Lemma 4.3

For the brevity of notations we skip the index ε everywhere, except the set Eε . Let us rewrite
(4.2) for k ∈ 	 as an equation with real noise

dJ = AJ dτ + σ dβ̂, where J := (Jk)k∈	, AJ := (AJ
k )k∈	, (5.1)

σ is M × 2N matrix with real entires and β̂ = (Re βk, Im βk)k∈C . Denote by a = (akl)k,l∈	
the diffusion matrix for (5.1), divided by two, a := 1

2σσ
T . It is M × M-matrix with real

entires akl = S J
kl/2, k, l ∈ 	, where S J

kl is calculated in (5.35). Then Theorem 3.1(3) implies
that

|akl − Tkδkl
|vk |2

2
| ≤ C

√
ε|vk ||vl |. (5.2)

Step 1. For R > 0 denote by τR the stopping time

τR = inf{τ ≥ 0 : ‖J (τ )‖RM ∨ ‖AJ (τ )‖RM ≥ R},
where ‖ · ‖RM stands for the Euclidean norm in R

M , J (τ ) = J (v(τ )), AJ (τ ) = AJ (v(τ )),
and v(τ) is a solution of (4.1). A particular case of Theorem 2.2.2 in [22] provides that

E

τR∧T
∫

0

e
−

τ
∫

0
‖AJ (s)‖

RM ds
IEε (J (τ ))(det a(τ ))1/M dτ ≤ C(R,M)|Eε|1/M , (5.3)

where a(τ ) = a(v(τ )). Denote the event �ν(τ) = {det a(τ ) < ν}. We have

T
∫

0

P (J (τ ) ∈ Eε) dτ= E

T
∫

0

IEε (J (τ )) dτ ≤E

τR∧T
∫

0

IEε (J (τ ))I�ν (J (τ ))
(det a(τ )

ν

)1/M
dτ

+
T
∫

0

P (�ν(τ))dτ + T P (τR < T ) =: Y1 + Y2 + Y3. (5.4)

Due to (5.3),

Y1 ≤ eT R

ν1/M
E

τR∧T
∫

0

e
−

τ
∫

0
‖AJ (s)‖

RM ds
IEε (J (τ ))(det a(τ ))1/M dτ ≤ C(R,M)

( |Eε|
ν

)1/M
.

(5.5)
Take ν = √|Eε|. Choosing R sufficiently large and ε sufficiently small, we can make the
terms Y1 and Y3 arbitrary small uniformly in N . Indeed, for Y1 this follows from (5.5), while
for Y3 this follows from Corollary 3.3 and estimate (4.6). So, to finish the proof of the lemma
it remains to show that if ν(ε) → 0 with ε → 0 then

Y2 =
T
∫

0

P (�ν(τ)) dτ → 0 when ε → 0 uniformly in N . (5.6)

Step 2. The rest of the proof is devoted to the last convergence. Note that by (5.2)

det a =
∏

k∈	
(Tk Jk)+ √

ε�1,
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where E sup
0≤τ≤T

|�1| ≤ C by Corollary 3.3. The constant C does not depend on N because

the dimension M does not depend on it. Then

P (�ν) ≤ P
(
∏

k∈	
(Tk Jk) < ν + √

ε|�1|
) ≤

∑

k∈	
P
(

Jk < T −1
k (ν + √

ε|�1|)1/M).

Thus, to establish (5.6), it is sufficient to show that

T
∫

0

P
(

√

J j (τ ) < δ
)

dτ → 0 when δ → 0 uniformly in N and ε sufficiently small. (5.7)

Step 3. To prove the last convergence we use the concept of the local time. Let h ∈ C2(R)

and its second derivative has at most polynomial growth at the infinity. We consider the
process hτ := h(J j (τ )). Then, by the Ito formula,

dhτ = Ah dτ + σ hdβ̂,

where

Ah = h′(J j )A
J
j + h′′(J j )a j j = h′(J j )(A j · v j + d1

j j )+ h′′(J j )a j j ,

and the 1 × 2N -matrix σ h(τ ) = (σ h
k (τ )) is out of the interest.

Due to Theorem 3.1(3) and (5.2), for sufficiently small ε we have

d1
j j ≥ 7

8
T j , |a j j | ≤ 3J j

2
T j . (5.8)

Let �τ (b, ω) be the local time for the process hτ . Then for any Borel set G ⊂ R we have

T
∫

0

IG(hτ )
∑

k

|σ h
k |2 dτ = 2

∞
∫

−∞
IG(b)�T (b, ω) db.

On the other hand, denoting (hτ − b)+ := max(hτ − b, 0), we have

(hT − b)+ = (h0 − b)+ +
T
∫

0

I(b,∞)(hτ )σ
hdβ̂ +

T
∫

0

I(b,∞)(hτ )A
h dτ +�T (b, ω).

Consequently,

E

T
∫

0

IG(hτ )
∑

k

|σ h
k |2 dτ=2E

∞
∫

−∞
IG(b)

⎛

⎝(hT − b)+−(h0 − b)+−
T
∫

0

I(b,∞)(hτ )A
h dτ

⎞

⎠ db.

The left-hand side is non negative, so

E

∞
∫

−∞
IG(b)

T
∫

0

I(b,∞)(hτ )A
h dτdb ≤ E

∞
∫

−∞
IG(b)

(

(hT − b)+ − (h0 − b)+
)

db. (5.9)

Let us apply relation (5.9) with G = (ξ1, ξ2), ξ2 > ξ1 > 0 and a function h(x) ∈ C2(R) that
coincides with

√
x for x ≥ ξ1 and vanishes for x ≤ 0. Due to Corollary 3.3, the right-hand
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side of (5.9) is bounded by (ξ2 − ξ1)C . Then

E

ξ2
∫

ξ1

T
∫

0

I(b,∞)(
√

J j )

⎛

⎝

A j · v j + d1
j j

2
√

J j
− a j j

4
√

J 3
j

⎞

⎠ dτdb ≤ (ξ2 − ξ1)C. (5.10)

In view of estimate (4.6) we have

E

ξ2
∫

ξ1

T
∫

0

|A j · v j |
2
√

J j
dτdb ≤ (ξ2 − ξ1)C .

Moving this term to the right-hand side of (5.10), applying (5.8) and sending ξ1 to 0+, we
get

E

ξ2
∫

0

T
∫

0

I(b,∞)(
√

J j )J
−1/2
j dτdb ≤ Cξ2.

Note that

E

ξ2
∫

0

T
∫

0

I(b,∞)(
√

J j )J
−1/2
j dτdb ≥ 1

δ
E

ξ2
∫

0

T
∫

0

I(b,δ)(
√

J j ) dτdb

= 1

δ

ξ2
∫

0

T
∫

0

P (b <
√

J j < δ) dτdb.

Consequently,

1

ξ2

ξ2
∫

0

T
∫

0

P (b <
√

J j < δ) dτdb ≤ Cδ.

Tending ξ2 → 0+ we obtain that

T
∫

0

P
(

0 <
√

J j < δ
)

dτ → 0 when δ → 0 uniformly in N and ε sufficiently small.

Step 4. To establish (5.7) it remains to show that

T
∫

0

P
(|v j (τ )| = 0) dτ = 0 for all N , j ∈ C and ε sufficiently small. (5.11)

Writing a j-th component of Eq. (4.1) in the real coordinates vx
j := Re v j and vy

j := Im v j ,
we obtain the following two-dimensional system:

dvx
j = Re ˜A j dτ + Re(W d B) j , dvy

j = Im ˜A j dτ + Im(W d B) j , (5.12)

where ˜A j := ε−1i∇ j H0 + i∇ j H2 + g j + √
εr j . By the direct computation we get that the

diffusion matrix for (5.12) with respect to the real Brownian motion (Re βk, Im βk)k∈C is

a j :=
(

d1
j j + Re d2

j j Im d2
j j

Im d2
j j d1

j j − Re d2
j j

)

.
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Theorem 3.1(3) implies that for ε sufficiently small, det a j (τ ) is separated from zero uni-
formly in τ . For R > 0 define a stopping time

τ̃R = inf{τ ≥ 0 : |v j (τ )| ∨ |˜A j (τ )| ≥ ε−1 R}.
Then, similarly to (5.4) and (5.5), we have

E

T
∫

0

I[0,δ)(|v j (τ )|) dτ ≤ Ceε
−1T RE

τ̃R∧T
∫

0

e
−

τ
∫

0
|˜A j (s)| ds

I[0,δ)(|v j (τ )|)(det a j (τ ))1/2 dτ

+ T P (̃τR < T ) ≤ C(R, ε−1)
√
δ + T P (̃τR < T ). (5.13)

Letting first δ → 0 and then R → ∞ while ε is fixed, we arrive at (5.11). ��
5.2 Proof of Lemma 4.4

For the purposes of the proof we first introduce some notations. For events �1, �2 and a
random variable ξ we denote

E�1 ξ := E (ξI�1
) and P �1(�2) := P (�2 ∩ �1).

Let us emphasize that in these definitions we consider an expectation and a probability
on the complement of �1. By κ(r), κ1(r), . . . we denote various functions of r such that
κ(r) → 0 as r → ∞. By κ∞(r) we denote functions κ(r) such that κ(r) = o(r−m) for each
m > 0. We write κ(r) = κ(r; b) to indicate that κ(r) depends on a parameter b. Functions
κ∞(r), κ(r), κ(r; b), . . . never depend on N and may depend on ε only through r , and we
do not indicate their dependence on the dimension d , power p and time T . Moreover, they
can change from formula to formula.

Step 1. For the brevity of notation we skip the index ε. Denote by ˜	 the neighbourhood
of radius 1 of 	:

˜	 := {n ∈ C
∣

∣ there exists k ∈ 	 satisfying |n − k| ≤ 1}. (5.14)

Fix R > 0. Set

�R =
{

max
k∈˜	

sup
0≤τ≤T

|Jk(τ )| ∨ |Aψk (τ )| ≥ R

}

. (5.15)

Due to Corollary 3.3 and estimate (4.6),

P (�R) ≤ κ∞(R). (5.16)

The polynomial growth of the function P implies

E�R
sup

τ∈[0,T ]

∣

∣

∣

∣

∣

∣

τ
∫

0

P(J (s), ψ(s)) ds

∣

∣

∣

∣

∣

∣

≤ κ∞(R),

and the function 〈P〉(J (s)) satisfies a similar relation. Thus it is sufficient to show that for
any R ≥ 0

U := E�R sup
τ∈[0,T ]

∣

∣

∣

∣

∣

∣

τ
∫

0

P(J (s), ψ(s))− 〈P〉(J (s)) ds

∣

∣

∣

∣

∣

∣

→ 0 as ε → 0 uniformly in N .
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For this purpose we consider a partition of the interval [0, T ] to subintervals of length ν by
the points

τl = τ0 + lν, 0 ≤ l ≤ L , L = [T/ν] − 1,

where the (deterministic) initial point τ0 ∈ [0, ν) will be chosen later. Choose the diameter
of the partition as

ν = ε7/8.

Denote

ηl =
τl+1
∫

τl

P(J (s), ψ(s))− 〈P〉(J (s)) ds.

Then

U ≤ E�R

L−1
∑

l=0

|ηl | + νC(R).

Denote Y (J ) = (Yk(J ))k∈C := (

∂Jk H0(J )
)

k∈C ∈ R
N and Y (τ ) := Y (J (τ )). (5.17)

We have

|ηl | ≤
∣

∣

∣

∣

∣

∣

τl+1
∫

τl

P
(

J (s), ψ(s)
)− P

(

J (τl), ψ(τl)+ ε−1Y (τl)(s − τl)
)

ds

∣

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

∣

τl+1
∫

τl

P
(

J (τl), ψ(τl)+ ε−1Y (τl)(s − τl)
)− 〈P〉(J (τl)

)

ds

∣

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

∣

τl+1
∫

τl

〈P〉(J (τl)
)− 〈P〉(J (s)

)

ds

∣

∣

∣

∣

∣

∣

=: Y1
l + Y2

l + Y3
l . (5.18)

Step 2. In the next proposition we will introduce “bad” events, outside of which actions are
separated from zero, change slowly, and the rotation frequencies Y (J (τl)) are not resonant.
We will choose the initial point τ0 in such a way that probabilities of these events will be
small, and it will be sufficient to estimate Y1

l ,Y
2
l ,Y

3
l only outside these events. Recall that

˜	 is defined in (5.14).

Proposition 5.1 There exist events Fl , 0 ≤ l ≤ L − 1, such that outside Fl ∪�R

(i) ∀k ∈ 	 sup
τl≤τ≤τl+1

Jk(τ ) ≥ 1

2
ε1/24, (i i) ∀k ∈ ˜	 sup

τl≤τ≤τl+1

|Jk(τ )− Jk(τl)| ≤ ν1/3,

(i i i)
∣

∣

∣

1

ε−1ν

∫ ε−1ν

0
P
(

J (τl), ψ(τl)+ Y (τl)s
)

ds − 〈P〉(J (τl)
)

∣

∣

∣ ≤ κ(ε−1; R),

where the function κ is independent from 0 ≤ l ≤ L − 1. There exists τ0 such that

L−1
L−1
∑

l=0

P �R (Fl) ≤ κ(ε−1; R). (5.19)
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Before proving this proposition we will finish the proof of the lemma. Outside �R we have
Y i

l ≤ νC(R) ≤ C1(R)/L . Fix τ0 as in Proposition 5.1. Then from (5.19) we obtain

L−1
∑

l=0

(E�R −EFl∪�R )Y i
l ≤ C(R)

L

L−1
∑

l=0

P �R (Fl)≤C(R)κ(ε−1; R)=κ1(ε
−1; R), i =1, 2, 3.

Thus, it is sufficient to show that for any R ≥ 0 we have

L−1
∑

l=0

EFl∪�R (Y1
l + Y2

l + Y3
l ) → 0 as ε → 0 uniformly in N .

Step 3. Now we will estimate each term Y i
l outside the “bad” event Fl ∪�R .

Terms Y1
l . We will need the following

Proposition 5.2 For every k ∈ 	 and each 0 ≤ l ≤ L − 1, we have

P Fl∪�R

(

sup
τl≤τ≤τl+1

|ψk(τ )− (

ψk(τl)+ ε−1Yk(τl)(τ − τl)
)| ≥ ε1/24

)

≤ κ∞(ε−1), (5.20)

where the function κ∞ is independent from k, l.

Proof Let us denote the event in the left-hand side of (5.20) by �. According to (4.3),

P Fl∪�R (�) ≤ P Fl∪�R

⎛

⎝ε−1 sup
τl≤τ≤τl+1

∣

∣

∣

∣

∣

∣

τ
∫

τl

Yk(s)− Yk(τl) ds

∣

∣

∣

∣

∣

∣

≥ 1

3
ε1/24

⎞

⎠

+ P Fl∪�R

⎛

⎝ sup
τl≤τ≤τl+1

∣

∣

∣

∣

∣

∣

τ
∫

τl

Aψk
|vk |2 ds

∣

∣

∣

∣

∣

∣

≥ 1

3
ε1/24

⎞

⎠

+ P Fl∪�R

⎛

⎝ sup
τl≤τ≤τl+1

∣

∣

∣

∣

∣

∣

τ
∫

τl

ivk

|vk |2 · (W d B)k

∣

∣

∣

∣

∣

∣

≥ 1

3
ε1/24

⎞

⎠

=: P Fl∪�R (�1)+ P Fl∪�R (�2)+ P Fl∪�R (�3).

�1 : Due to (4.5), Yk(J ) ∈ Lloc(R
N ). Since it depends on J only through Jn with n satisfying

|n − k| ≤ 1, we get

P Fl∪�R (�1) ≤ P Fl∪�R

(

max
n:|n−k|≤1

sup
τl≤τ≤τl+1

|Jn(τ )− Jn(τl)| ≥ C(R)ε1+1/24ν−1

)

.

If ε is sufficiently small, we have C(R)ε1+1/24ν−1 > ν1/3 (recall that ν = ε7/8). Then, due
to Proposition 5.1(ii), we get

P Fl∪�R (�1) = 0 for ε � 1.

�2 : Proposition 5.1.i implies

P Fl∪�R (�2) ≤ P Fl∪�R

(

sup
τl≤τ≤τl+1

|Aψk | ≥ 1

3
ε1/24+1/24ν−1

)

= 0 for ε � 1,

since outside �R we have |Aψk | ≤ R, in view of (5.15).
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�3 : In view of (5.36), the Burkholder-Davis-Gandy inequality jointly with Theorem
3.1(3), and Proposition 5.1(i) imply that

EFl∪�R sup
τl≤τ≤τl+1

∣

∣

∣

∣

∣

∣

τ
∫

τl

ivk

|vk |2 · (Wkd B)

∣

∣

∣

∣

∣

∣

2m

≤C(m)EFl∪�R

⎛

⎝

τl+1
∫

τl

1

|vk |2 ds

⎞

⎠

m

≤C(m)νmε−m/24,

for any m > 0. From Chebyshev’s inequality it follows that

P Fl∪�R (�3) ≤ C(m)νmε−m(1/24+2/24) for any m > 0.

Thus, P Fl∪�R (�3) = κ∞(ε−1). ��
Estimates (i) and (ii) of Proposition 5.1 imply that outside Fl ∪�R , for any k ∈ 	

sup
τl≤τ≤τl+1

∣

∣|vk(τ )| − |vk(τl)|
∣

∣ ≤
√

2|Jk(τ )− Jk(τl)|√
Jk(τ )+ √

Jk(τl)
≤ ν1/3ε−1/48 = ε13/48. (5.21)

Since P ∈ Lloc(C
N ), then Proposition 5.2 and (5.21) imply that

P Fl∪�R

(

Y1
l ≥ νC(R)(ε1/24 + ε13/48)

) ≤ κ∞(ε−1).

Then we get

EFl∪�R Y1
l ≤ νC(R)(ε1/24 + ε13/48)+ νC(R)κ∞(ε−1) = νκ(ε−1; R).

Terms Y2
l . Put ŝ := ε−1(s − τl). Then Proposition 5.1(iii) implies that outside Fl ∪�R

Y2
l = ν

∣

∣

∣

∣

∣

∣

∣

1

ε−1ν

ε−1ν
∫

0

P
(

J (τl), ψ(τl)+ Y (τl)ŝ
)

dŝ − 〈P〉(J (τl)
)

∣

∣

∣

∣

∣

∣

∣

≤ νκ(ε−1; R).

Terms Y3
l . Proposition 5.9(i) jointly with (5.21) implies that outside Fl ∪�R we have

Y3
l ≤ νC(R)ε13/48.

Step 4. Summing by l, taking the expectation and noting that Lν ≤ T , we get

L−1
∑

l=0

EFl∪�R

(

Y1
l + Y2

l + Y3
l

) ≤ L
(

νκ(ε−1; R)+ νC(R)ε13/48) → 0 as ε → 0,

uniformly in N . The proof of the lemma is complete. ��
Proof of Proposition 5.1 We will construct the set Fl as a union of three parts. The first two
are El := ∪k∈	Ek

l and Ql := ∪k∈˜	Qk
l , where

Ek
l := {Jk(τl) ≤ ε1/24}, Qk

l :=
{

sup
τl≤τ≤τl+1

|Jk(τ )− Jk(τl)| ≥ ν1/3

}

. (5.22)

Outside Ql we have (ii) and, if ε is small, outside El ∪ Ql we get (i): for every k ∈ 	

sup
τl≤τ≤τl+1

Jk(τ ) ≥ ε1/24 − ν1/3 ≥ 1

2
ε1/24, if ε � 1.
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1000 A. Dymov

Now we will construct the event�ε,Rl , which will form the third part of Fl . Let us accept
the following notation:

for a vector Z = (Z j ) j∈C ∈ R
N we denote + Z	 := (Z j ) j∈	 ∈ R

M .

For any fixed J ∈ R
N+0 the function P(J, ψ) is Lipschitz-continuous in angles ψ ∈ T

N .
From [33] it follows that the Fourier series of a Lipschitz-continuous function of ψ ∈ T

N

converges uniformly in ψ . Then, using standard method (e.g., see in [28]), we obtain that for
every δ > 0 and R′ > 0 there exists a Borel set Eδ,R

′ ⊂ {x = (xk)k∈	 ∈ R
M : ‖x‖RM ≤ R′}

with the Lebesgue measure |Eδ,R′ | ≤ δ, such that for any Z = (Zk)k∈C ∈ R
N satisfying

Z	 /∈ Eδ,R
′

and ‖Z	‖RM ≤ R′, we have
∣

∣

∣

∣

1

t

∫ t

0
P(J, ψ + Zs) ds − 〈P〉(J )

∣

∣

∣

∣

≤ κ(t; J, δ, R′), (5.23)

for all ψ ∈ T
N . Moreover, since P ∈ Lloc(C

N ), then we can choose the function κ to be
independent from J for J ∈ B	R , where

B	R :=
{

J = (Jk)k∈C ∈ R
N
0+ : max

k∈	 Jk ≤ R

}

,

i.e. κ = κ(t; R, δ, R′). The rate of convergence in (5.23) depends on δ. Choose a function
δ = δ(ε), such that δ(ε) → 0 as ε → 0 so slow that

∣

∣

∣

∣

∣

1

ε−1ν

∫ ε−1ν

0
P(J, ψ + Zs) ds − 〈P〉(J )

∣

∣

∣

∣

∣

≤ κ(ε−1; R, R′) (5.24)

for all J ∈ B	R , ψ ∈ T
N and Z as above.

Let us choose R′ = R′(R) = sup
�R

sup
0≤τ≤T

‖Y	(τ)‖RM . Let

�
ε,R
l := {Y	(τl) ∈ Eδ(ε),R

′(R)}.
Then outside �ε,Rl ∪ �R we get Y	(τl) /∈ Eδ(ε),R

′(R) and ‖Y	(τl)‖RM ≤ R′(R). Since

outside �R we have J (τl) ∈ B	R , then, due to (5.24), outside �ε,Rl ∪�R we get (iii).

Let Fl := El ∪ Ql ∪�ε,Rl . Then outside Fl ∪�R items (i), (ii) and (iii) hold true.

Now we will estimate the probabilities of El , Ql and �ε,Rl .

Proposition 5.3 (i) We have P (Ql) ≤ κ∞(ν−1), where κ∞ is independent from l.
(ii) There exists an initial point τ0 ∈ [0, ν) such that

L−1
L−1
∑

l=0

P �R (El ∪�ε,Rl ) = κ(ε−1; R).

Propositions 5.3 implies (5.19):

L−1
L−1
∑

l=0

P �R (Fl) ≤ κ
(

ε−1; R
)+ κ∞

(

ν−1) = κ1
(

ε−1; R
)

.

��
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Proof of Proposition 5.3 (i) Let us take ρ >
√
ν. Then, due to (4.2), for any k ∈ ˜	

P

(

sup
τl≤τ≤τl+1

|Jk(τ )− Jk(τl)| ≥ ρ

)

≤ P

⎛

⎝ sup
τl≤τ≤τl+1

∣

∣

∣

∣

∣

∣

τ
∫

τl

AJ
k ds

∣

∣

∣

∣

∣

∣

≥ ρ/2

⎞

⎠

+P

⎛

⎝ sup
τl≤τ≤τl+1

∣

∣

∣

∣

∣

∣

τ
∫

τl

vk · (W d B)k

∣

∣

∣

∣

∣

∣

≥ ρ/2

⎞

⎠

=: P (�1)+ P (�2).

Due to estimate (4.6), we have

P (�1) ≤ P

(

ν sup
τl≤τ≤τl+1

|AJ
k | ≥ ρ/2

)

≤ κ∞
(

ν−1) .

In view of (5.36), the Burkholder–Davis–Gundy inequality jointly with (4.6) implies

E sup
τl≤τ≤τl+1

∣

∣

∣

∣

∣

∣

τ
∫

τl

vk · (W d B)k

∣

∣

∣

∣

∣

∣

2m

≤ C(m)E

⎛

⎝

τl+1
∫

τl

S J
kk ds

⎞

⎠

m

≤ C1(m)ν
m, (5.25)

for every m > 0. Consequently, P (�2) ≤ C(m)νmρ−2m . Choosing ρ = ν1/3 we get
P (�2) ≤ κ∞(ν−1). It remains to sum up the probabilities by k ∈ ˜	.

(ii) Denote A(τ ) := (E ∪ �ε,R)(τ ), where the last set is defined similarly to El ∪ �ε,Rl
but at the moment of time τ instead of τl . Recall that Y	(J ) depends on J only through
J˜	 := (Jk)k∈˜	. Denote by ˜M the number of nodes in ˜	 and let

Eε,RJ := {

J
˜	 ∈ R

˜M+0 : Y	(J ) ∈ Eδ(ε),R
′(R) and Jk ≤ R ∀k ∈ ˜	

}

.

In view of assumption HF which states that the functions f ′
j have only isolated zeros, it is not

difficult to show that the convergence |Eδ(ε),R′(R)| → 0 as ε → 0 implies that |Eε,RJ | → 0

as ε → 0. Note that �R ∩�ε,R(τ ) ⊂ {J˜	(τ) ∈ Eε,RJ }. Then Lemma 4.3 implies

T
∫

0

P �R

(

A(τ )
)

dτ ≤
T
∫

0

P �R

(

E(τ )
)

dτ +
T
∫

0

P
(

J
˜	(τ) ∈ Eε,RJ

)

dτ → 0 as ε → 0,

uniformly in N . It remains to note that there exists a deterministic point τ0 ∈ [0,∞) such
that

T
∫

0

P �R

(

A(τ )
)

dτ ≥
ν
∫

0

L−1
∑

l=0

P �R

(

A(lν + s)
)

ds

≥ ν

L−1
∑

l=0

P �R

(

A(lν + τ0)
) ≥ T (L + 1)−1

L−1
∑

l=0

P �R

(

A(τl)
)

.

��
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5.3 Proof of Theorem 3.1

The proof of the theorem is rather long and technical, so that we only sketch it. For the
complete proof see [14], Section 6. Let

˜F(J ) := 1

2

∑

j∈C
Fj (|v j |2) and ˜G(J, ψ) := 1

4

∑

| j−k|=1

G(|v j − vk |2).

Introduce for functions h1, h2 : (J, ψ) ∈ R
N+0 × T

N �→ R their Poisson bracket as7

{h1, h2} =
∑ ∂h1

∂ψ j

∂h2

∂ J j
− ∂h2

∂ψ j

∂h1

∂ J j
.

We find the canonical transformation as the time-1-map � of the Hamiltonian flow Xs√
ε�

given by the Hamiltonian
√
ε�. The Taylor expansion provides

Hε(J, ψ) = H ε ◦ �(J, ψ) = ˜F(J )+ √
ε
(

˜G(J, ψ)+ {

˜F,�
}

(J, ψ)
)

+ O(ε). (5.26)

We wish to choose the function � in such a way that the homological equation holds

˜G(J, ψ)+ {

˜F,�
}

(J, ψ) = 〈˜G〉(J ). (5.27)

The potential G depends only on the difference of angles:

G(|v j − vn |2) = G
(

|√2J j e
i(ψ j −ψn) −√

2Jn |2
)

=: G(J j , Jn, ψ j − ψn). (5.28)

Using the Fourier’s expansion, we see that the function

� =
∑

| j−n|=1

� jn, where � jn := 1

4

ψ j −ψn
∫

0
G0(J j , Jn, θ) dθ

f j − fn
and G0 := G − 〈G〉,

(5.29)
satisfies (5.27). Due to the alternated spins condition HF, the denominator of (5.29) is sepa-
rated from zero.

The main ingredient of the further proof is the following proposition which affirms, in
particular, the C2-smoothness of the transformation in u → v variables.

Proposition 5.4 The function �(v) is C3-smooth. Let a, b, c ∈ {v, v}. Then for every
k, l,m ∈ C, satisfying the relation |k − l| ≤ 1 and l = m, we have

∣

∣

∣

∣

∂�

∂ψk

∣

∣

∣

∣

,

∣

∣

∣

∣

∂�

∂ak

∣

∣

∣

∣

,

∣

∣

∣

∣

∂2�

∂ak∂bl

∣

∣

∣

∣

,

∣

∣

∣

∣

∂3�

∂ak∂bl∂cm

∣

∣

∣

∣

≤ C.

For other k, l,m ∈ C the second and the third derivatives are equal to zero.

Taking the next order of the Taylor expansion in (5.26) and using (5.27), we get (3.3):

Hε(J, ψ) = ˜F(J )+ √
ε〈˜G〉(J )+ ε

2

{〈˜G〉 + ˜G,�
}

+ε
√
ε

2

(

{

˜G,�
}

2 +
∫ 1

0
(1 − s)2

{

H ε,�
}

3 ◦ Xs√
ε�

ds

)

=: H ε
0 (J )+ εH2(J, ψ)+ ε

√
εH ε

>(J, ψ), (5.30)

7 The Poisson brackets correspond to the symplectic structure i
2
∑

j∈C
dv j ∧ dv j , written in the action-angle

coordinates.
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Rotators with Alternated Spins 1003

where {h,�}k := {. . . {h,�},�, . . . , �} denotes the Poisson bracket with � taken k times.
Proposition 5.9 implies that H ε

0 (v) is C4-smooth, while Proposition 5.4 provides that H(v)
and H ε

2 (v) are C2-smooth. Then, due to (5.30), H ε
>(v) is also C2-smooth.

Let vs := Xs
−√

ε�
(u) and J s := J (vs) (in particular, v = X1

−√
ε�
(u) = v1 and J =

J (v) = J 1). Then we have

vs
j = u j − √

ε

s
∫

0

i∇ j�
∣

∣

vτ
dτ, J s

j = I j + √
ε

s
∫

0

∂ψ j�
∣

∣

vτ
dτ, 0 ≤ s ≤ 1. (5.31)

Proposition 5.4 jointly with (5.31) immediately imply item 4 of the theorem.

Denote by Id the identity matrix of the size N × N , by
∂vs

∂u
the matrix of the same size

with the elements
(∂vs

∂u

)

jk
= ∂vs

j

∂uk
, j, k ∈ C and define the matrix

∂vs

∂u
in the same way.

Using (5.31), we obtain the following corollary of Proposition 5.4.

Corollary 5.5 For every j ∈ C, q > 0 and 0 ≤ s ≤ 1, we have
∥

∥

∥

∂vs

∂u
− Id

∥

∥

∥

j,q
,

∥

∥

∥

∂vs

∂u

∥

∥

∥

j,q
≤ C

√
ε,

where ‖ · ‖ j,q denotes the operator norm corresponding to the norm ‖ · ‖ j,q on C
N .

Applying Ito’s formula in complex coordinates to v, we get

v̇ = i∇Hε(v)+ ε
∂v

∂u
g(u)+ ε

∂v

∂u
g(u)+ ε

∑

k∈C
Tk

∂2v

∂uk∂uk
+ √

εW ε Ḃ, (5.32)

where B = (β, β)T and the dispersion matrix W ε has the size N × 2N and consists of two

N × N blocks W ε = (W ε1,W ε2), where W ε1 := ∂v

∂u
diag (

√

T j ), W ε2 := ∂v

∂u
diag (

√

T j ).

In view of Theorem 3.1(4), Corollaries 5.5, 5.31 and Proposition 5.4, we have

g(u)− g(v),
∂v

∂u
− Id,

∂v

∂u
,
∑

k∈C
Tk

∂2v

∂uk∂uk
∼

√
ε.

Denote

rε := i∇ H ε
> + ε−1/2

(

(

g(u)− g(v)
)+

(

∂v

∂u
− Id

)

g(u)+ ∂v

∂u
g(u)+

∑

k∈C
Tk

∂2v

∂uk∂uk

)

.

Substituting this relation to (5.32), we arrive at (3.5).
Item 3 of the theorem follows from the definition of the matrices W ε1,W ε2, Corollary 5.5

and the fact that if for a matrix A = (Akl)k,l∈C and some q > 0 we have ‖A‖ j,q ≤ C0 with
the same constant C0 for all j ∈ C then |Akl | ≤ C0 for every k, l ∈ C. Item 2 follows from
assumptions HG,Hg, Proposition 5.4 and Corollary 5.5 by tedious computation. The proof
of item 1 is based on the following simple proposition.

Proposition 5.6 Let the function h(ψ) = h
(

(ψk)k∈C
)

be C1-smooth and depends onψ only
through the differences of the neighbouring components: h((ψ j ) j∈C) = h((θkn)k,n:|k−n|=1),

where θkn = ψk − ψn. Then
∣

∣

∣

∣

∣

∑

k∈C
γ | j−k|∂ψk h

∣

∣

∣

∣

∣

≤ 2(1 − γ )
∑

|k−n|=1

γ | j−k||∂θkn h|.
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1004 A. Dymov

Since for any real C1-smooth function h(v) we have (i∇kh) · vk = −∂ψk h, the inequality
of item 1 of the theorem is equivalent to | ∑

k∈C
γ | j−k|∂ψk H2| ≤ (1 − γ )C‖v‖p

j,p + C(γ ).

Noting that H2 satisfies Proposition 5.6, and using that ∂θkn H2 depends only on vm such that
m satisfies |m − k| ∧ |m − n| ≤ 1, we get the desired estimate by the direct computation. ��
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Appendix 1: The Ito Formula in Complex Coordinates

Let {�, F, P ; Ft } be a filtered probability space and v(t) = (vk(t)) ∈ C
N be a complex

Ito process on this space of the form

dv = b dt + W d B.

Here b(t) = (bk(t)) ∈ C
N ; B = (β, β)T , T denotes the transposition and β = (βk) ∈ C

N ,
βk are standard independent complex Brownian motions; the N × 2N -matrix W consists
of two blocks (W1,W2), so that W d B = W 1 dβ + W 2 dβ, where W 1,2(t) = (W 1,2

kl (t))

are N × N matrices with complex entires. The processes bk(t), W 1,2
kl (t) are Ft -adapted and

assumed to satisfy usual growth conditions, needed to apply the Ito formula. Let

d1
kl :=

(

W 1W 1T + W 2W 2T
)

kl
and d2

kl :=
(

W 2W 1T + W 1W 2T
)

kl
. (5.33)

Denote by (W d B)k the k-th element of the vector W d B.

Proposition 5.7 Let h : C
N → R be a C2-smooth function. Then

dh(v(t))

2
=
∑

k

∂h

∂vk
· bk dt+

∑

k,l

(

∂2h

∂vk∂vl
d1

kl +Re
( ∂2h

∂vk∂vl
d2

kl

)

)

dt+
∑

k

∂h

∂vk
· (W d B)k .

Proof The result follows from the usual (real) Ito formula. ��

Consider the vectors of actions and angles J = J (v) ∈ R
N
0+ and ψ = ψ(v) ∈ T

N . Using
formulas ∂vkψk = (2ivk)

−1 and ∂vkψk = −(2ivk)
−1, by Proposition 5.7 we get

d Jk = (bk · vk + d1
kk) dt + d M J

k , dψk = bk · (ivk)− Im(vkv
−1
k d2

kk)

|vk |2 dt + d Mψ
k , (5.34)

where the martingales M J
k (t) :=

t
∫

t0
vk · (W d B)k and Mψ

k =
t
∫

t0

ivk
|vk |2 · (W d B)k for some

t0 < t . By the direct computation we obtain

Proposition 5.8 The diffusion matrices for the J - and ψ-equations in (5.34) with respect to
the real Brownian motion (Re βk, Im βk) have the form S J = (S J

kl) and Sψ = (Sψkl ), where

S J
kl = Re(vkvl d

1
kl + vkvl d

2
kl) and Sψkl = Re(vkvld

1
kl − vkvld

2
kl)(|vk ||vl |)−2. (5.35)
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The quadratic variations of M J
k and Mψ

k take the form

[M J
k ]t =

t
∫

t0

S J
kk ds and [Mψ

k ]t =
t
∫

t0

Sψkk ds. (5.36)

Appendix 2: Averaging

Consider a complex coordinates v = (v j ) ∈ C
N and the corresponding vectors of actions

J = J (v) and angles ψ = ψ(v). Consider a function P : C
N �→ R and write it in action-

angle coordinates, P(v) = P(J, ψ). Its averaging

〈P〉 :=
∫

TN

P(J, ψ) dψ

is independent of angles and can be considered as a function 〈P〉(v) of v, or as a function
〈P〉((|v j |) j

)

of (|v j |) j , or as a function 〈P〉(J ) of J .

Proposition 5.9 Let P ∈ Lloc(C
N ). Then

(i) Its averaging 〈P〉 ∈ Lloc(R
N+0) with respect to (|v j |).

(ii) If P is C2s -smooth then 〈P〉 is C2s -smooth with respect to v and Cs-smooth with respect
to J .

Proof (i) Is obvious.
(ii) The first assertion is obvious. To prove the second consider the function P̂ : x ∈

R
N �→ R, P̂(x) := 〈P〉|v=x . Then P̂(x) = 〈P〉(J ), where J j = x2

j /2. The function P̂ is

C2s-smooth and even in each x j . Any function of finitely many arguments with this property
is known to be a Cs- smooth function of the square arguments x2

j (see [37]). ��
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