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Abstract The bootstrap percolation (or threshold model) is a dynamic process modelling the
propagation of an epidemic on a graph, where inactive vertices become active if their number
of active neighbours reach some threshold. We study an optimization problem related to it,
namely the determination of the minimal number of active sites in an initial configuration
that leads to the activation of the whole graph under this dynamics, with and without a
constraint on the time needed for the complete activation. This problem encompasses in
special cases many extremal characteristics of graphs like their independence, decycling
or domination number, and can also be seen as a packing problem of repulsive particles.
We use the cavity method (including the effects of replica symmetry breaking), an heuristic
technique of statistical mechanics many predictions of which have been confirmed rigorously
in the recent years. We have obtained in this way several quantitative conjectures on the size
of minimal contagious sets in large random regular graphs, the most striking being that 5-
regular random graph with a threshold of activation of 3 (resp. 6-regular with threshold 4)
have contagious sets containing a fraction 1/6 (resp. 1/4) of the total number of vertices.
Equivalently these numbers are the minimal fraction of vertices that have to be removed
from a 5-regular (resp. 6-regular) random graph to destroy its 3-core. We also investigated
Survey Propagation like algorithmic procedures for solving this optimization problem on
single instances of random regular graphs.

Keywords Bootstrap percolation · Optimization problems · Cavity method ·
Random graphs

1 Introduction

Models of epidemic spreadings as dynamical processes occurring on a graph appear in various
contexts besides epidemiology [15,23,34,42,63]; for instance social sciences study viral
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marketing campaigns aimed at propagating new social trends, and in economy it is crucial to
understand cascading effects potentially leading to the bankrupt of financial institutions. In
these models individual agents are located on the vertices of a graph, and their state (healthy
or contaminated for instance) evolve in time according to the state of their neighbours, the
edges of the graph representing the contacts between agents that can possibly transmit the
illness from one contaminated agent to an healthy one.

There is a great diversity in the details of these models: the dynamics can occur in contin-
uous (asynchronous) or discrete time, according to deterministic or random rules, the state
of an agent can be boolean (healthy or contaminated) or describe several levels of conta-
mination, and finally the dynamics can be monotonous or not. To precise this last point, a
dynamics is said monotonous if the states of an agent always occur in the same order in time,
for instance in the Susceptible-Infected-Recovered (SIR) model the only allowed transitions
are S→ I and I→R, a Recovered individual being immune forever, whereas in the SIS model
an agent can become infected several times in a row. In this paper we will concentrate on
a simple monotonous dynamics, that evolve deterministically in discrete time, with inactive
(Susceptible) variables becoming active (Infected) when their number of active neighbours
reach some threshold, and then remain active for ever. For this reason it is called the threshold
model, see [39] for a version introduced in sociology with an underlying complete graph,
and [27] for its first appearance in physics under the name of bootstrap percolation (on random
regular graphs).

Given one specific dynamical model there are many different questions that can be asked.
The first, a priori simplest, issue concerns the time evolution of the system from a random
initial condition, taking the initial state of each agent as an independent random variable.
For monotonous dynamics a stationary state is reached after some time, and one can wonder
whether the epidemic has invaded the whole graph (in other words whether it percolates) in
this final state. The probability of this event obviously depends on the fraction of infected
vertices in the initial condition, and this may lead to phase transitions for certain class of
graphs; see [5,11,43] for such a study of the bootstrap percolation on finite-dimensional
lattices, and [12,25,27,44–46,50,73] for various type of dynamics on random graphs. In
particular one finds for the bootstrap percolation on random regular graphs a phase transition
at some initial critical density θr (dependent on the degree of the graph and the threshold
of activation): with high probability initial conditions with a fraction θ of active vertices
(without correlations between the sites) are percolating if and only if θ > θr .

Besides these studies of the “forward” (or “direct”) time evolution, which are somehow
simplified by the independence assumption for the initial state variables, one can also for-
mulate more difficult inference and optimization questions. An example of the former type
is to infer some information on the initial state given a snapshot of the epidemic after some
time evolution [6,51,66,72]; this “inverse problem” is particularly relevant in epidemiology
in the search of the “zero patient” who triggered the spreading of an illness. For what regards
the latter type of questions, the design of an efficient vaccination campaign can indeed be
seen as an optimization problem: find the smallest set of nodes (to minimize the economical
and social cost) whose vaccination will prevent the epidemic to reach a given fraction of the
population [7]. We shall actually consider in this paper the somehow reverse optimization
problem, namely targeting a small set of initially active sites that lead to the largest possible
propagation of the contagion. This obviously makes more sense in the perspective of viral
marketing, in which it was first considered [47] than in the epidemiological one; the initial
adopters of a new product, that can be financially incited to do so, are expected to convince
most of their acquaintances and progressively the largest possible part of the population.
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From this point of view the additional constraint that the propagation should be as fast as
possible is also a relevant one.

More precisely, one can define two versions of this optimization problem: (i) given a fixed
number of initially active agents, choose them in order to maximize the number of active
agents at some fixed later time, or in the final state of the propagation; (ii) find the minimal
number of initially active agents such that all the agents are active, again after some time
or in the final state. We will concentrate on the latter version of the problem but part of our
analysis applies to both. These optimization problems are known to be hard from a (worst-
case) computational complexity point of view [28,35,47], even to approximate. Exhibiting
minimal percolating sets for bootstrap percolation on finite dimensional lattices is relatively
easy thanks to their regular structures, but more refined extremal problems are also relevant in
this case, see for instance [20,62]. The understanding of these optimization problems seems
less advanced in the case of sparse random graphs. There exist upper and lower bounds on
the size of minimal contagious sets [4,35,67], some based in particular on the expansion
properties of such graphs [31]. One particular case of the optimization problem (when the
threshold of activation is equal to the degree of the vertex minus one) is actually equivalent
to the decycling number problem of graph theory [19] (also known as minimal Feedback
Vertex Set), which was settled rigorously for 3-regular random graphs in [17] (this paper
also contains bounds for higher degrees). As this last point unveils the notion of minimal
contagious sets is connected in some special cases to many other problems in graph theory;
one way to see this connection is to picture the inactive sites of the initial condition as
particles to be put on the graph. One wants to pack as many as possible of them (to obtain a
contagious set of minimal size), yet they do have some kind of repulsive interactions because
of the constraint of complete percolation at a later time. This is particularly clear when the
threshold of activation is equal to the degree for all vertices: the problem is then exactly
equivalent to the hard-core particle model, also known as independent set or vertex cover.

The strategy we shall follow to determine the minimal size of contagious sets of sparse
random graphs will be the same as in [8,9], namely a reformulation under the form of a
statistical mechanics model which can be treated with the so-called cavity method [53–56].
This (heuristic) method yields predictions for any interacting model defined on a sparse
random graph; its use in the context of random constraint satisfaction problems led to the
discovery of a very rich phenomenology of phase transitions [48,56], with many of these
predictions later confirmed rigorously [1,3,13,30,32,57]. Let us emphasise in particular the
determination of the maximal size of independent sets of random regular graphs (which as we
saw is a problem related to the present one), for which the predictions of the cavity method
(see [14] and references therein) have been recently rigorously confirmed (for graphs of large
enough but finite degree) in [33]. Another example in the context of graph theory is the study
of matchings in random graphs, where the cavity method [75] has also been proved to be
correct [26]. The main originality of our contribution with respect to [8,9] is the use of a
more refined version of the cavity method (i.e. incorporating the effects of replica symmetry
breaking), and an analytical study of the limit where the time at which the complete activation
is required is sent to infinity.

The rest of the article is organized as follows. In Sect. 2 we define precisely the dynamics
under study, recall briefly some known results for random initial conditions, formulate the
optimization problem and propose various interpretations of it, and for the convenience of
the reader we summarize the main results to be obtained in the following. In Sect. 3 we derive
the cavity method equations, both at the replica symmetric and one step of replica symmetry
breaking level. The solution of these equations for random regular graphs is presented in
Sect. 4, which contains the main analytical results of this work. Section 5 is devoted to
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single sample numerical experiments, where we confront the analytical predictions with the
optimized initial configurations obtained with two kind of algorithms (a simple greedy one and
a more involved procedure based on message passing). We finally draw our conclusions and
present perspectives for future work in Sect. 6. The most technical parts of the computations
are deferred to two Appendices.

2 Definitions and Main Results

2.1 Definition of the Dynamics

Let us consider a graph on N vertices (or sites), G = (V, E), with the vertices labelled as
V = {1, . . . , N }, and the number of edges denoted |E | = M . The dynamical process under
study concerns the evolution of variables σ t

i on the vertices, σ t
i = 0 (resp. 1) if the vertex i is

inactive (resp. active) at time t . We shall denote σ t = (σ t
1, . . . , σ

t
N ) the global configuration

at time t . The latter is determined by the initial condition σ at the initial time, σ 0 = σ , and
then evolves subsequently in a deterministic and parallel way, in discrete time, according to
the rules:

σ t
i =

⎧
⎪⎪⎨

⎪⎪⎩

1 if σ t−1
i = 1

1 if σ t−1
i = 0 and

∑

j∈∂i
σ t−1

j ≥ li

0 otherwise

, (1)

where ∂i is the set of neighbours of i on the graph, and li is a fixed threshold for each vertex;
we will also use di = |∂i | to denote the degree of vertex i . The dynamics is monotonous
(irreversible), an active site remaining active at all later times, an inactive site i becoming
active if its number of active neighbours at the previous time crosses the threshold li . Note
that the configuration σ t at time t is a deterministic function of the initial condition σ = σ 0,
and that by monotonicity one can define the final configuration σ f = lim

t→∞ σ t , this stationary

configuration being reached in a finite number of steps for all finite graphs.
It turns out that the final configuration σ f is also the one reached by a sequential dynamics

in which at each time step only one site i with at least li active neighbours is activated; a
moment of thought reveals the independence of the final configuration with respect to the
order of the updates. σ f is indeed the smallest configuration (considering the partial order
σ ≤ σ ′ if and only if σi ≤ σ ′

i for all vertices) larger than the initial condition σ , such that
no further site can be activated. It will sometimes be useful in the following to think of this
process in a dual way, corresponding to the original presentation of bootstrap percolation
in [27], namely to consider that inactive sites are sequentially removed if they have less than
a certain number of inactive neighbours. An equivalent definition of σ f is thus given by the
inactive sites it contains, that form the largest set (with respect to the inclusion partial order)
contained in the set of inactive sites of σ , and such that in their induced graph the degree of
site i is larger or equal than di − li +1; they form thus a (generalized inhomogeneous version
of the) core of the initially inactive sites.

2.2 Reminder of the Behaviour for Random Initial Conditions on Random Regular Graphs

To put in perspective the optimization problem to be studied in this paper it is instructive to
first recall briefly some well-known results for the evolution from a random initial config-
uration [12,27]. For the sake of simplicity let us consider G to be a k + 1-random regular
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graph (i.e. a graph drawn uniformly at random among all graphs in which every vertex has
degree k + 1), with a uniform threshold for activation set to li = l for all vertices. Suppose
that the states of the vertices in the initial condition are chosen randomly, independently and
identically for each vertex, with a probability θ (resp. 1 − θ ) for a vertex to be active (resp.
inactive). The probability for one vertex i0 to be active at some time t + 1, denoted xt+1, can
be computed from the following equation:

xt+1 = θ + (1 − θ)

k+1∑

p=l

(
k + 1

p

)

x̃ p
t (1 − x̃t )

k+1−p . (2)

Indeed such a vertex was either active in the initial condition, or has seen at least l of
its neighbours activate themselves before time t , and without the participation of i0. The
probability x̃t of this last event obeys the recursive equation

x̃t+1 = θ + (1 − θ)

k∑

p=l

(
k

p

)

x̃ p
t (1 − x̃t )

k−p, (3)

with a number of participating neighbours reduced from k + 1 to k as i0 has to be supposed
inactive here. The initial condition for these equations is x0 = x̃0 = θ . In the limit t → ∞
of large times x̃t → x̃∞(θ), the smallest fixed-point in [0, 1] of the recursion (3). For each
k ≥ 2 and l with 2 ≤ l ≤ k there exists a threshold θr(k, l) such that x̃∞(θ) is equal to
1 for θ > θr , strictly smaller than 1 for θ < θr . From Eq. (2) one realizes that the same
statement applies to x∞(θ), hence θr is the threshold for complete activation (percolation)
from a Bernouilli random initial condition with probability θ for each active site. Studying
more precisely Eq. (3) one realizes that for l = k the transition is continuous (x∞(θ−

r ) = 1),
with an explicit expression for the threshold, θr(k, k) = k−1

k . For 2 ≤ l ≤ k −1 the transition
is discontinuous (x∞(θ−

r ) < 1), the threshold θr is obtained as the solution of the equations:
⎧
⎪⎨

⎪⎩

x̃r = θr + (1 − θr)
k∑

p=l

(k
p

)
x̃ p

r (1 − x̃r)
k−p

1 = (1 − θr)l
(k

l

)
x̃ l−1

r (1 − x̃r)
k−l

, (4)

where x̃r = x̃∞(θ−
r ) is the value of the fixed-point of (3) at the bifurcation where it disappears

discontinuously. For l = 2 these equations can be solved explicitly and yield

θr(k, l = 2) = 1 − (k − 1)2k−3

kk−1(k − 2)k−2 . (5)

For generic values of the parameters k, l there is no explicit expression of θr , as (4) are
algebraic equations of arbitrary degree; some numerical values of θr will be given in Table 4.
For a given value of k the threshold θr(k, l) is growing with l: if an initial condition leads to
complete activation for some parameter l it will also be activating under the less constrained
dynamics with l ′ < l.

The relevant range for the threshold parameter l in this study of random initial conditions
is 2 ≤ l ≤ k. Indeed for l = 0 after one step the configuration is completely active regardless
of σ 0, for l = 1 a single active site (per connected component) in the initial configuration
is enough to activate the whole graph, hence in these two cases θr = 0. On the other hand
if l = k + 1 one has θr = 1: any pair of adjacent inactive sites in the initial condition will
remain inactive for ever, and the number of such pairs is linear in N as soon as θ < 1.

Note that the recursion equations (2, 3) are exact if the neighbourhood up to distance t
of the vertex i0 is a regular tree of degree k + 1. The limit t → ∞ can be taken in this way
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only if the graph considered is an infinite regular tree. A rigorous proof that this reasoning is
in fact correct also for the large size limit of random regular graphs (that converge locally to
regular trees) can be found in [12].

2.3 Definition of the Optimization Problem Over Initial Conditions

Let us now come back to a general graph G with some thresholds li for vertex activation,
and consider the minimal fraction of active vertices in an initial configuration that activates
the whole graph, i.e.

θmin(G, {li }) = 1

N
min

σ

{
N∑

i=1

σi | σ f
i = 1 ∀i

}

. (6)

This corresponds to the minimal size of a contagious (or percolating) set, divided by the total
number of vertices. Following [8,9] it will turn out useful to introduce another parameter
T (a positive integer) in this optimization problem, and impose now that the fully active
configuration is reached within this time horizon T :

θmin(G, {li }, T ) = 1

N
min

σ

{
N∑

i=1

σi | σ T
i = 1 ∀i

}

. (7)

Obviously for any finite graph θmin(G, {li }, T ) decreases when T increases and has
θmin(G, {li }) as its limit for T → ∞. To turn the computation of θmin into a form more
reminiscent of statistical mechanics problems we shall introduce a probability measure over
initial configurations:

η(σ ) = 1

Z(G, {li }, T, μ, ε)
e

N∑

i=1
[μσi −ε(1−σ T

i )]
, (8)

where σ T is as above the configuration obtained after T steps of the dynamics starting from
the configuration σ = σ 0, the μ and ε are for the time being arbitrary parameters, and the
partition function Z ensures the normalization of this law. The parameter μ is a “chemical
potential” that controls the fraction of initially active vertices (if ε = 0 the measure η reduces
to the Bernouilli measure), while ε is the cost to be paid for each site i inactive at the final
time T . In particular if ε = +∞ one has

η(σ ) = 1

Z(G, {li }, T, μ, ε = +∞)
e
μ

N∑

i=1
σi

N∏

i=1

I(σ T
i = 1), (9)

with I(A) is the indicator function of the event A, the measure is thus supported by activating
initial configurations (within the time horizon T ). It is then obvious that the knowledge of Z
allows to deduce the sought-for minimal density θmin, as

θmin(G, {li }, T ) = lim
μ→−∞

1

μ

1

N
ln Z(G, {li }, T, μ, ε = +∞). (10)

Actually one can gain more information from the whole dependency of the partition function
on μ. Suppose indeed that the number of initial configurations with a fraction θ of active
vertices that activate the whole graph in T steps is, at the leading exponential order, eNs(θ),
with an entropy density s(θ) of order one with respect to N . Then this entropy density can
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be computed, in the large N limit, as a Legendre transform of the logarithm of the partition
function. More precisely, defining the free-entropy density φ as

φ(G, {li }, T, μ, ε = +∞) = 1

N
ln Z(G, {li }, T, μ, ε = +∞), (11)

the evaluation of the sum over configurations in the definition of Z via the Laplace method
yields in the large N limit:

φ(G, {li }, T, μ, ε = +∞) = sup
θ∈[θmin,1]

[μθ + s(θ)], (12)

hence s(θ) can be obtained by an inverse Legendre transform of φ(μ), with s(θ) = φ(μ)−μθ

and θ = φ′(μ).
For completeness let us also make a similar statement when ε is finite, i.e. when one does

not impose strictly the constraint of complete activation at time T . Denoting s(θ, θ ′) the
entropy density of initial configurations that have a fraction θ of initially active vertices and
that lead after T steps of evolution to a configuration with a fraction θ ′ of active sites, one
has

φ(G, {li }, T, μ, ε) = 1

N
ln Z(G, {li }, T, μ, ε) = sup

θ,θ ′
[μθ − ε (1 − θ ′) + s(θ, θ ′)]. (13)

Varying the parameters μ and ε thus allows to reconstruct the function s(θ, θ ′), and hence to
solve the optimization problem denoted (i) in the introduction, namely for a fixed value of θ

find the maximal reachable θ ′. We will mainly concentrate in the following of the paper on the
optimization problem denoted (ii) in the introduction, that is imposing the full activation of
the graph at time T (θ ′ = 1), which as explained above can be studied via the computation of
s(θ) = s(θ, θ ′ = 1) from the inverse Legendre transform of the free-entropy with ε = +∞.

The definitions above were valid for any graph and any choice of the activation thresholds;
we shall however be particularly interested in the case of large random regular graphs with
uniform thresholds, we thus define

θmin(k, l)= lim
N→∞ E[θmin(G, {li = l})], θmin(k, l, T )= lim

N→∞ E[θmin(G, {li = l}, T )],
(14)

where the average is over uniformly chosen regular graphs of degree k+1 on N vertices, with
the same threshold for activation l on every vertex. The fact that the limit in the definition of
θmin(k, l, T ) exists could actually be proven rigorously using the method developed in [18],
and it is expected that θmin(G, {li = l}, T ) is self-averaging (i.e. concentrates around its aver-
age in the large N limit). The existence of θmin(k, l) might be a more difficult mathematical
problem that we shall not discuss further; it is a reasonable conjecture that it coincides with
the limit of θmin(k, l, T ) when T → ∞, i.e. that the large size and large time limits commute.
We will see in Sect. 4.2.1 one argument in favour of this conjecture. Let us emphasize that
θmin(k, l) < θr(k, l), with a strict inequality. This is indeed a large-deviation phenomenon:
even if most initial configurations with density smaller than θr do not activate the whole graph
some very rare ones (with a probability exponentially small in N in the Bernouilli measure
of parameter θ < θr) are able to do so. Note also that θmin(k, l) is growing with l at fixed
k, for the same reasons as explained above in the discussion of θr . The computations of θmin

we shall present will follow the strategy explained above on an arbitrary graph, namely the
computation of a free-entropy density, that we define in the case of random regular graphs
as the quenched average over the graph ensemble,
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φ(k, l, T, μ, ε) = lim
N→∞

1

N
E[ln Z(G, {li = l}, T, μ, ε)] . (15)

2.4 Equivalence with Other Problems and Bounds

As mentioned in the introduction the problem of minimal contagious sets can be related,
for appropriate choices of the threshold parameters li , to other standard problems in graph
theory.

Consider first the case of an arbitrary graph where the thresholds li are equal to the
degrees di for all vertices. An inactive site in the initial configuration will be activated only
if it is surrounded by active vertices, and it will do so in a single step. In other words in any
percolating initial condition, whatever the time horizon T , the inactive vertices must form an
independent set (no two inactive vertices are allowed to be neighbours). For regular random
graphs one has thus θmin(k, k + 1, T ) = θmin(k, k + 1) for all T , and this quantity is equal
to 1 minus the density of the largest independent sets of a k + 1-regular random graph.

Another correspondance with previously studied models arises when T = 1, for any
choice of the thresholds li . Indeed in this case the vertex i can be inactive in a percolating
initial configuration only if its number of inactive neighbours is smaller than some value
(namely, ≤ di − li ). These generalized hard-core constraints (repulsion between inactive
vertices) correspond exactly to the so-called Biroli–Mézard (BM) model [21,70] (with the
correspondance inactive vertex ↔ vertex occupied by a particle in the BM model, and di −
li ↔ �i of the BM model). Hence for T = 1 the minimal density θmin is 1 minus the density
of a close packing of the corresponding BM model. Further specializing this T = 1 case by
setting li = 1 on each vertex leads to the constraint that every inactive site in a percolating
initial configuration has to be adjacent with at least one active site, in other words that the
active sites form a dominating set of G. The minimal density θmin is thus the domination
number (divided by N ) of G.

Consider now the thresholds of activation to be 1 less than the degrees, i.e. li = di − 1 on
all vertices, with no constraint on the time of activation (T = ∞). As explained at the end
of Sect. 2.1, the inactive vertices in the final configuration form the 2-core of the inactive
ones in the initial configuration. A percolating initial configuration must be such that this
2-core is empty, in other words the subgraph induced by the inactive sites of the initial
configuration must be acyclic (a tree or a forest), i.e. the active sites have to form a decycling
set [19] (also known as a Feedback Vertex Set), and Nθmin is the decycling number of G. This
characterization leads to the following bound for every k + 1-regular graph with thresholds
k of activation on every site,

θmin(k, k) ≥ k − 1

2k
. (16)

Indeed if A denotes the number of active vertices in a percolating initial configuration, the
N − A other vertices induces a forest, the number of edges between inactive vertices is thus
at most N − A − 1. On the other hand this number is at least k+1

2 N − (k + 1)A (the first
term being the total number of edges, and the number of edges incident to at least one active
site being at most (k + 1)A). The decycling number of random regular graphs was studied
in [17], proving in particular that the bound (16) is actually tight for 3-regular large random
graphs, i.e. θmin(2, 2) = 1/4, and it was conjectured to be also the case for 4-regular ones (i.e.
θmin(3, 3) = 1/3). An asymptotic lowerbound on θmin(k, k) for large values of k was worked
out in [41], we will come back on this result in Sect. 4.2.1. Note also that the decycling
number of arbitrary sparse random graphs was studied with physics methods in [71,76].
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For general thresholds smaller than the degrees minus one the active sites of a percolating
initial configuration must form a “de-coring” set instead of a “de-cycling” set (i.e. their
removal has to provoke the disappearance of a q-core with q > 2). A generalization of the
lower bound (16) to any k + 1-regular graph with uniform threshold l was given in [35], and
reads

θmin(k, l) ≥ 2l − k − 1

2l
. (17)

Its proof goes as follows. Consider the sequential process explained at the end of Sect. 2.1
in which at each time t a single vertex gets activated, and denote E(t) the number of edges
between active and inactive vertices after t steps of this process. By definition of the activation
rule E(t + 1) − E(t) ≤ k + 1 − 2l. If as above A denotes the number of active sites in a
percolating initial configuration, by definition E(N − A) = 0, hence E(0) ≥ (N − A)(2l −
k −1). On the other hand E(0) ≤ (k +1)A, which gives the lower bound (17) on the possible
values of A.

We should also mention an upper bound on the minimal sizes of contagious sets derived
in [4,67] for graphs of arbitrary degree distributions, which yields in the case of k +1-regular
graphs:

θmin(k, l) ≤ l

k + 2
. (18)

To conclude this discussion let us mention that the “de-coring” perspective on the minimal
contagious set problem is somehow reminiscent (even if not directly equivalent), to the
Achlioptas processes [2,69] (more precisely of their offline version [24]) where one looks
for an extremal event avoiding the appearance of an otherwise typical structure (a giant
component in the Achlioptas processes, a core in the minimal contagious set case).

2.5 Main Analytical Results

Let us draw here a more detailed plan of the rest of the paper to make its reading easier
and faster for someone not interested in the technical details of the statistical mechanics
method (who can browse quickly over the next section and jump to the results announced in
Sect. 4). In order to compute the minimal density θmin of contagious sets we shall rephrase this
problem as a statistical mechanics model and apply to it the cavity method. The latter is based
on self-consistent assumptions of various degrees of sophistication, parametrized by the so-
called level of replica symmetry breaking. We will study the first two levels of this hierarchy,
named replica symmetric (RS) and one step of replica symmetry breaking (1RSB). These two
approaches will lead to two predictions for θmin, to be denoted respectively θmin,0(k, l, T )

and θmin,1(k, l, T ). From general bounds established in the context of disordered statistical
mechanics models (first for the Sherrington-Kirkpatrick model [40,64,74] and later for some
models on sparse random graphs [36,37,65]) it is expected that the different levels of the
cavity method provide improving lower bounds on θmin, namely

θmin,0(k, l, T ) ≤ θmin,1(k, l, T ) ≤ θmin(k, l, T ). (19)

Our computation of θmin,0(k, l, T ) and θmin,1(k, l, T ) relies on the resolution of a set of
roughly 2T algebraic equations on 2T unknowns, explicit numbers will be given in Sect. 4.
We managed to perform analytically the T → ∞ limit and reduce the determination of
θmin,0(k, l) and θmin,1(k, l) (their limit when T → ∞) to a finite number of equations, that
will also be presented along with numerical results in Sect. 4. We found four particular cases
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in which the predictions of the first two levels of replica symmetry breaking coincide when
T → ∞, which led us to conjecture that they are the exact ones, namely:

θmin(2, 2) = 1

4
, θmin(3, 3) = 1

3
, θmin(4, 3) = 1

6
, θmin(5, 4) = 1

4
, (20)

all these cases saturating the lower bounds of (16, 17). The first (resp. second) equality was
actually proven (resp. conjectured) in [17]. We have also performed a large degree expansion
of the decycling number of random regular graphs, yielding the conjecture

θmin(k, k) = 1 − 2 ln k

k
− 2

k
+ O

(
1

k ln k

)

. (21)

3 Cavity Method Treatment of the Problem

3.1 Factor Graph Representation

As explained in Sect. 2.3 the central quantity to compute is the free-entropy density defined
from the partition function normalizing the probability law (8), that for completeness we shall
generalize to possibly site dependent chemical potentials μi and costs for non-activation εi :

η(σ ) = 1

Z(G, {li }, T, {μi , εi })e

N∑

i=1
[μi σi −εi (1−σ T

i )]
. (22)

This expression is not very convenient to handle directly because the variables σi have
complicated interactions under this law: σ T

i is indeed a function of all variables σ j on the
vertices j at distance smaller than T from i . A way to circumvent this difficulty and to turn
the interactions of the model into local ones has been proposed in [8,9], and we shall follow
the same approach here.

Let us first define ti (σ ) as the time of activation of site i in the dynamical process generated
by the initial configuration σ , i.e. ti (σ ) = min{t : σ t

i = 1}, with conventionally ti (σ ) = ∞
if this time is strictly greater than the time horizon T . These variables obey the following
equations:

ti (σ ) = f (σi , {t j (σ )} j∈∂i ; li ) ∀ i ∈ V, (23)

where the function f is defined as

f (σ, t1, . . . , tn; l) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if σ = 1

1 + min
l

(t1, . . . , tn) if σ = 0 and 1 + min
l

(t1, . . . , tn) ≤ T

∞ otherwise

. (24)

Here min
l

(t1, . . . , tn) is the l-th smallest ti , i.e ordering the arguments as t1 ≤ t2 ≤ · · · ≤ tn

one has min
l

(t1, . . . , tn) = tl . This translates the dynamic rules (1) in terms of the activation

times, a site i activating at the time following the first time where at least li of its neighbours are
active. In the following f (0, t1, . . . , tn; l) will be abbreviated in f (t1, . . . , tn; l). Reciprocally
one can show that if a set of {ti }i∈V verifies the condition that for all i either ti = 0 or
ti = f ({t j } j∈∂i ; li ), then they correspond to the activation times for the dynamics started
from the initial condition σ such that σi = 1 if and only if ti = 0. These two descriptions
in terms of (σ1, . . . , σN ) and (t1, . . . , tN ) are thus equivalent, yet the great advantage of the
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Fig. 1 A portion of the factor
graph corresponding to the
measure (25)

σi

σj

σk

wi

wj

wk

tij , tji

tik, tki

latter is that the conditions to enforce among the ti are local along the graph, and that they
contain in an obvious way the information on σ T

i that was lacking to deal with (22).
Finally a last twist on Eq. (22) will be to “duplicate” the activation time ti on all edges

connecting i to one of its neighbour j , introducing redundant variables ti j to be finally
constrained to be all equal to ti . Let us denote t the collective configurations of all these 2M
variables ti j , t j i on each edge 〈i, j〉 of the graph, that take values in {0, 1, . . . , T,∞}, and
consider the following probability measure on (σ , t):

η(σ , t) = 1

Z(G, {li }, T, {μi , εi })
N∏

i=1

wi (σi , {ti j , t j i } j∈∂i ), (25)

where the functions wi are defined by

wi (σi , {ti j , t j i } j∈∂i )=eμi σi e−εi I( f (σi ,{tki }k∈∂i ;li )=∞)
∏

j∈∂i

I(ti j = f (σi , {tki }k∈∂i ; li )). (26)

The above observations imply that the marginal of σ under η(σ , t) is precisely the desired
one from Eq. (22), and that in the support of the law the t are strictly constrained to be the
activation times for the dynamics starting from σ . This correspondance being one-to-one the
partition function is the same in (22) and (25). A portion of the factor graph [49] associated
to the probability law (25) is sketched in Fig. 1, with black squares representing the function
nodes (interactions) wi , black circles the variables σi , and white circles the variables ti j , t j i .
One notes that if the original graph G is a tree (resp. is locally a tree) then the corresponding
factor graph is a tree (resp. is locally a tree). This fact was the motivation for the “duplication”
of the ti variables on the surrounding edge, without it short loops of interactions would still
be present in the factor graph.

3.2 Replica Symmetric (RS) Formalism

Let us now explain how the probability law (25) and its associated normalization Z can be
handled within the cavity formalism, first at the simplest, so called Replica Symmetric (RS),
level.
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3.2.1 Single Sample Equations

If the graph G were a finite tree the factor graph associated to (25) would be a tree, hence Z and
the marginals of η could be computed exactly via the recursive equations that we are about to
write down. If the graph is only locally tree-like these equations are only approximate, they
correspond to the (loopy) Belief Propagation equations, valid under some assumptions of
long-range correlation decay under the measure η. This recursive computation of Z amounts
to introduce on each directed edge i → j of the graph a “message” ηi→ j (ti j , t j i ), which
is a normalized probability distribution over a pair of activation times. These messages
obey recursion relations of the form ηi→ j = ĝ({ηk→i }k∈∂i\ j ; li , εi , μi ), where the mapping
η = ĝ(η1, . . . , ηk; l, ε, μ) is given by

η(t, t ′) = 1

ẑiter(η1, . . . , ηk; l, ε, μ)

[

δt,0eμ
k∏

i=1

(
∑

t ′′
ηi (t

′′, 0)

)

+ e−εδt,∞
∑

t1,...,tk

η1(t1, t) . . . ηk(tk, t)I(t = f (t1, . . . , tk, t ′; l))

]

. (27)

Here and in the following unprecised summations over a time index go along {0, . . . , T,∞}.
The function ẑiter(η1, . . . , ηk; l, ε, μ) is defined by normalization, in such a way that
∑

t,t ′ η(t, t ′) = 1.
The knowledge of the messages ηi→ j on all edges of the graph allows to compute the

free-entropy density, according to the Bethe formula:

φ= 1

N
ln Z = 1

N

N∑

i=1

ln ẑsite({η j→i } j∈∂i ; li , εi , μi ) − 1

N

∑

〈i, j〉∈E

ln ẑedge(ηi→ j , η j→i ),

(28)

where the second sum runs over the (undirected) edges of the graph, and the local partition
functions are

ẑsite(η1, . . . , ηk+1; l, ε, μ) = eμ
k+1∏

i=1

(
∑

t ′
ηi (t

′, 0)

)

+
T∑

t=1

∑

t1,...,tk+1

η1(t1, t) . . . ηk+1(tk+1, t)I(t = 1 + min
l

(t1, . . . , tk+1))

+ e−ε
∑

t1,...,tk+1

η1(t1,∞) . . . ηk+1(tk+1,∞)I(min
l

(t1, . . . , tk+1) ≥ T ) (29)

ẑedge(η1, η2) =
∑

t,t ′
η1(t, t ′)η2(t

′, t) . (30)

The marginals of the law (25) can also be deduced from the messages, for instance
the probability distribution of the activation time ti for the vertex i reads η(ti ) =
η̂site({η j→i } j∈∂i ; li , εi , μi )(ti ), where
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η̂site(η1, . . . , ηk+1; l, ε, μ)(t) = 1

ẑsite(η1, . . . , ηk+1; l, ε, μ)

{

δt,0eμ
k+1∏

i=1

(
∑

t ′
ηi (t

′, 0)

)

+ (1 − δt,0 − δt,∞)
∑

t1,...,tk+1

η1(t1, t) . . . ηk+1(tk+1, t)I(t = 1 + min
l

(t1, . . . , tk+1))

+ δt,∞e−ε
∑

t1,...,tk+1

η1(t1,∞) . . . ηk+1(tk+1,∞)I(min
l

(t1, . . . , tk+1) ≥ T )

⎫
⎬

⎭
. (31)

The probability that the vertex i is active in the initial condition is then deduced as η(σi =
1) = η(ti = 0). As explained above in Eq. (13), one can deduce from the above results the
entropy density s(θ, θ ′) for initial configurations with a fraction θ of active sites leading to
a fraction θ ′ of active sites after T steps, taking μi = μ and εi = ε for all sites, with

s(θ, θ ′) = φ(μ, ε) − μθ + ε(1 − θ ′), θ = 1

N

N∑

i=1

η(ti = 0), θ ′ = 1

N

N∑

i=1

η(ti ≤ T ).

(32)

Note that the derivatives of φ with respect to μ and ε can be taken only on the explicit depen-
dence in (28), the recursion equations on the messages ηi→ j being precisely the stationarity
condition of φ with respect to the η’s.

3.2.2 A More Compact Parametrization of the Messages

Each probability distribution η(t, t ′) is a priori described by (T + 2)2 − 1 independent real
numbers (the times run over T + 2 values, including ∞, and there is a global normalization
constraint). We shall see however that a much more compact parametrization is possible,
which will be very useful for the further analytical treatment of the model. From now on we
shall assume that μi = μ and εi = ε for all vertices. To unveil these simplifications let us
first rewrite Eq. (27) more explicitly:

η(0, t ′)= 1

ẑiter
eμ

k∏

i=1

(ηi (0, 0) + ηi (1, 0) + · · · + ηi (T, 0) + ηi (∞, 0)) (33)

η(t, t ′)= 1

ẑiter

∑

t1,...,tk

η1(t1, t) . . . ηk(tk , t) I(t = 1 + min
l

(t1, . . . , tk , t ′)) for t ∈ {1, . . . , T }

(34)

η(∞, t ′) = 1

ẑiter
e−ε

∑

t1,...,tk

η1(t1, ∞) . . . ηk(tk , ∞) I(min
l

(t1, . . . , tk , t ′) ≥ T ) (35)

where in all the three cases t ′ can take any value in {0, 1, . . . , T,∞}. Now the condition
“min

l
(t1, . . . , tk, t ′) = t −1” is easily seen to be equivalent to “at least l of the time arguments

are ≤ t−1 and at most l−1 of them are ≤ t−2”. Similarly the condition “min
l

(t1, . . . , tk, t ′) ≥
T ” is equivalent to “at most l − 1 times are ≤ T − 1”. This observation allows to rewrite the
above equations under the following form:

η(0, t ′) = 1

ẑiter
eμ

k∏

i=1

(ηi (0, 0) + ηi (1, 0) + · · · + ηi (T, 0) + ηi (∞, 0)) (36)
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η(t, t ′) = 1

ẑiter

∑

I,J,K
|I |+I(t ′≤t−2)≤l−1

|I |+|J |+I(t ′≤t−1)≥l

∏

i∈I

(
t−2∑

t ′′=0

ηi (t
′′, t)

)
∏

i∈J

ηi (t − 1, t)
∏

i∈K

⎛

⎝
∑

t ′′≥t

ηi (t
′′, t)

⎞

⎠

(37)

η(∞, t ′) = 1

ẑiter
e−ε

∑

I,J
|I |+I(t ′≤T −1)≤l−1

∏

i∈I

(
T −1∑

t ′′=0

ηi (t
′′,∞)

)
∏

i∈J

⎛

⎝
∑

t ′′≥T

ηi (t
′′,∞)

⎞

⎠ (38)

where the summation in the second (resp. third) line is over the partitions I, J, K (resp. I, J ) of
{1, . . . , k}. These expressions reveal a first simplification, as already noticed in [8,9]: among
the (T + 2)2 elements of η(t, t ′) only 3T + 2 are distinct. Indeed η(0, t ′) is independent of
t ′, for a given value of t ∈ {1, . . . , T } η(t, t ′) takes at most three distinct values, whether
t ′ ≥ t , t ′ = t − 1, or t ′ ≤ t − 2 and finally η(∞, t ′) takes two values whether t ′ ≤ T − 1 or
t ′ ≥ T . There is however a further simplification to perform: in the right hand sides of the
above equations the ηi ’s always appear under the form of particular linear combinations. In
particular the elements under the diagonal of the matrices ηi , i.e. ηi (t, t ′) with t ≥ t ′, always
intervene under the form

∑
t≥t ′ η(t, t ′). This allows to reduce further the number of relevant

linear combinations of elements of the η’s. A convenient parametrization of the messages η

is thus provided by the numbers at for t ∈ {0, 1, . . . , T } and bt for t ∈ {1, . . . , T }, defined
by:

eμat = η(0, 0)
∑

t ′ η(t ′, t)
, eμbt = η(0, 0)

∑t
t ′=0 η(t ′, t)

= η(0, 0)
∑t

t ′=0 η(t ′, t ′′)
∀t ′′ ≥ t . (39)

One can consistently extend these definitions with b0 = 0, and it will be useful to adopt
the convention e−μb−1 = 0 in order to simplify some expressions. Let us denote h =
(a0, a1, . . . , aT , bT −1, . . . , b1) the vector of 2T reals encoding in this way a matrix η; h will
be called a cavity field in the following (note that we excluded bT which disappears from the
final expressions). The recursion relations (36–38) should now be transformed into a relation
between cavity fields, i.e. h = g(h1, . . . , hk), with hi = (a(i)

0 , a(i)
1 , . . . , a(i)

T , b(i)
T −1, . . . , b(i)

1 ).
Inserting the definitions (39) into the Eqs. (36–38) leads to the explicit form for g,

e−μat = 1 + e−μ
T∑

t ′=1

∑

I,J,K
|I |+I(t ′≥t+2)≤l−1

|I |+|J |+I(t ′≥t+1)≥l

P t ′(h1, . . . , hk; I, J, K ) + e−μ−ε

×
∑

I,J,K
|I |+|J |+I(t≤T −1)≤l−1

PT (h1, . . . , hk; I, J, K )

e−μbt = 1 + e−μ
t∑

t ′=1

×
∑

I,J,K
|I |≤l−1

|I |+|J |≥l

Pt ′(h1, . . . , hk; I, J, K ) (40)
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where we defined

Pt (h1, . . . , hk; I, J, K ) = e
μ

k∑

i=1
a(i)

0 ∏

i∈I

e−μb(i)
t−2

∏

i∈J

(e−μb(i)
t−1 − e−μb(i)

t−2)

×
∏

i∈K

(e−μa(i)
t − e−μb(i)

t−1) . (41)

It can be checked that for T = 1 and ε = +∞ these equations correspond, as they should, to
the one of the Biroli–Mézard model (see Eqs. (108, 109) of [70]). One can also express the
partial partition functions ẑsite and ẑedge in terms of these fields. It will be more convenient
to factor out a common part in the site and edge contributions to the free-entropy. Denoting
r(η) = ∑

t η(t, 0), we define zedge as:

zedge(h1, h2) = ẑedge(η1, η2)

r(η1)r(η2)
(42)

= eμ(a(1)
0 +a(2)

0 )

{

e−μ(a(1)
T +a(2)

T ) +
T −1∑

t=0

[(
e−μa(1)

t − e−μa(1)
t+1

)
e−μb(2)

t

+ e−μb(1)
t

(
e−μa(2)

t − e−μa(2)
t+1

)]
}

,

where the explicit expression is obtained from Eq. (30). Similarly, exploiting Eq. (29), we
get for the site term (factoring also a contribution from the chemical potential):

zsite(h1, . . . , hk+1; l, ε;μ) = e−μ ẑsite(η1, . . . , ηk+1; l, ε;μ)

r(η1) . . . r(ηk+1)
(43)

= 1 + e−μ
T∑

t=1

∑

I,J,K
|I |≤l−1

|I |+|J |≥l

Pt (h1, . . . , hk+1; I, J, K ) + e−μ−ε

×
∑

I,J,K
|I |+|J |≤l−1

PT (h1, . . . , hk+1; I, J, K )

where as above in the summations I, J, K denotes a partition of {1, . . . , k + 1}.
To summarize the results of this reparametrization, on a given graph one has cavity

fields hi→ j on each directed edge, obeying the Belief Propagation equations hi→ j =
g({hk→i }k∈∂i\ j ), with the g defined in Eq. (40), and the Bethe free-entropy density is com-
puted from these cavity fields according to

φ = μ + 1

N

∑

i

ln zsite({h j→i } j∈∂i ; li , ε, μ) − 1

N

∑

〈i, j〉∈E

ln zedge(hi→ j , h j→i ), (44)

with zsite and zedge defined in Eqs. (43) and (42) respectively. Note that the factors r introduced
in the definitions of zsite and zedge compensate because in the expression of the Bethe free-
energy of Eq. (28) the messages on each directed edge appear exactly once in the site term
and once in the edge term. The marginals of the law η(σ , t) can also be computed from
the cavity fields h, in particular from the expression (31) one obtains the marginal of one
activation time from the incident cavity fields as
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ηsite(h1, . . . , hk+1; l, ε;μ)(t) = 1

zsite(h1, . . . , hk+1; l, ε;μ)

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δt,0 + (1 − δt,0 − δt,∞)e−μ
∑

I,J,K
|I |≤l−1

|I |+|J |≥l

Pt (h1, . . . , hk+1; I, J, K )

+ δt,∞ e−μ−ε
∑

I,J,K
|I |+|J |≤l−1

PT (h1, . . . , hk+1; I, J, K )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (45)

3.2.3 Random (Regular) Graphs

The replica symmetric cavity method, for generic models defined on sparse random graphs,
postulates the asymptotic validity of the above computations, exact on finite trees, thanks to
the local convergence of random graphs to trees and an assumption of correlation decay at
large distance. The order parameter is then a probability distribution over cavity fields, the
randomness arising from the fluctuations of the degrees of the vertices in the graph and/or
the randomness in the local interactions.

In the case of random regular graphs with no disorder in the coupling the situation is even
simpler, as one can look for a “factorized” solution with all cavity fields equal. In particular
for the model at hand on a k + 1 random regular graph, with the same threshold of activation
l for all vertices, the RS prediction for the typical free-entropy density in the thermodynamic
limit defined in Eq. (15) reads

φ(k, l, T, μ, ε) = μ + ln (zsite(h, . . . , h)) − k + 1

2
ln
(
zedge(h, h)

)
, (46)

which is easily obtained from (44) noting that 2M = (k + 1)N in a regular graph. The field
h is the fixed-point solution of the cavity recursion (40),

h = g(h, . . . , h). (47)

The marginal law for the activation time is obtained from (45) by setting all the fields to h,
which allows finally to compute the entropy density from the Legendre inverse transform
discussed in (13).

We shall discuss the results obtained from this RS prediction in the next Section, more
explicit formulas for the RS equation in this case, along with some technical details on
their resolution being displayed in the Appendix 1. One can however anticipate that in some
regime of parameters the RS hypothesis will be violated. This is for instance known for
T = 1, ε = +∞, which corresponds to the Biroli–Mézard model; it was indeed shown
in [70] that for large negative values of μ the predictions of the RS ansatz are unphysical, the
frustration arising from the contradictory constraints of putting as few active vertices in the
initial condition as possible while imposing that all vertices become active at a latter time
induces long-range correlations between variables that are incompatible with the RS ansatz.
This limit μ → −∞ being the interesting case for the computations of the minimal density
of contagious sets, we shall now see how to include the effects of replica symmetry breaking
in this model.
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3.3 One Step of Replica Symmetry Breaking (1RSB) Formalism

The long-range correlation decay assumption underlying the RS cavity method breaks down
for models with too much frustration. In this case one has to picture the configuration space as
fractured into pure states, or clusters, that we shall index here by γ , such that the correlation
decay assumption only holds for the Gibbs–Boltzmann probability law restricted to one
pure-state. The partition function restricted to a given pure-state is denoted Zγ , in such a
way that Z = ∑

γ Zγ . The replica symmetry breaking version of the cavity method then
postulates some properties of this decomposition into pure states, which are compatible with
the local convergence of the graph under study to a tree. In the first non-trivial version of the
RSB formalism, so called one-step RSB (1RSB), one assumes the existence of a complexity
function, also called configurational entropy in the context of glasses, �(φ), such that the
number of pure states with an internal free-entropy density φγ = 1

N ln Zγ close to some
value φ is, at the leading exponential order, eN�(φ). The computation of �(φ) is performed
via the 1RSB potential with a parameter m (known as the Parisi breaking parameter), related
to � through a Legendre transform structure [58]:

�(m) = 1

N
ln
∑

γ

Zm
γ = sup

φ

[�(φ) + m φ]. (48)

The function �(φ) can be reconstructed in a parametric way varying m, with

�(φint(m)) = �(m) − mφint(m), φint(m) = �′(m), (49)

φint(m)denoting the internal free-entropy density of the clusters selected by the corresponding
value of m. The value m = 1 plays a special role in this approach, as it corresponds a priori
to the original computation of the free-entropy density of the model. However a so-called
condensation (or Kauzmann) transition can occur, signaled by the vanishing of the complexity
� associated to m = 1. In this case the Gibbs–Boltzmann measure is dominated by a sub-
exponential number of pure-states, corresponding to a parameter ms < 1 with �(ms) = 0.
In the following paragraphs we shall derive the 1RSB equations and the expression of the
1RSB potential for the model under study, before discussing the concrete results for random
regular graphs in the next Section.

3.3.1 Single Sample Equations

Let us first discuss the 1RSB formalism with the basic messages represented in terms of the
matrices η(t, t ′). In the RS description one had a message ηi→ j on each directed edge of the
graph, solution of the recurrence equations ηi→ j = ĝ({ηk→i }k∈∂i\ j ; li , ε, μ), see Eq. (27).
At the 1RSB level one introduces instead a distribution P̂i→ j (η) on each directed edge, the
randomness being over the choice of the pure-state γ with a weight proportional to Zm

γ . These

distributions are thus found to obey the recurrence equations P̂i→ j = Ĝ[{P̂k→i }k∈∂i\ j ],
where P̂ = Ĝ(P̂1, . . . , P̂k) means

P̂(η)= 1

Ẑiter(P̂1, . . . , P̂k)

∫

d P̂1(η1). . .d P̂k(ηk) δ(η− ĝ(η1, . . . , ηk)) ẑiter(η1, . . . , ηk)
m,

(50)
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with ĝ and ẑiter defined in Eq. (27), and Ẑiter normalizes the distribution P̂ . The 1RSB potential
�(m) defined above is then computed from the solution of these equations, according to

�(m) = 1

N

N∑

i=1

ln Ẑsite({P̂j→i } j∈∂i ; li , εi , μi ) − 1

N

∑

〈i, j〉∈E

ln Ẑedge(P̂i→ j , P̂j→i ), (51)

where

Ẑsite(P̂1, . . . , P̂k+1) =
∫

d P̂1(η1) . . . P̂k+1(ηk+1) ẑsite(η1, . . . , ηk+1)
m, (52)

Ẑedge(P̂1, P̂2) =
∫

d P̂1(η1)P̂2(η2) ẑedge(η1, η2)
m (53)

are weighted averages, over the pure-states distribution, of the site and edge contributions to
the free-entropy defined in (29, 30). Similarly the marginal distribution of an activation time
can be computed as a weighted average of the RS expression in the various pure-states, i.e.

η(t) = 1

Ẑsite(P̂1, . . . , P̂k+1)

∫

d P̂1(η1) . . . P̂k+1(ηk+1) η̂site(η1, . . . , ηk+1)(t)

ẑsite(η1, . . . , ηk+1)
m . (54)

Note that the derivative �′(m), which plays an important role to compute the complexity
from Eq. (49), can be taken in (51) on the explicit dependence on m only, the recursion
relations on the P̂i→ j being the stationarity conditions of (51) with respect to the P̂’s.

As we have seen in the discussion of the RS cavity method the matrices η can be parame-
trized in a more economic way by the fields h (vectors of 2T real numbers). The expressions
of the 1RSB quantities can also be rewritten using this parametrization. After a few lines of
algebra one finds that the potential �(m) reads

�(m) = μm +
N∑

i=1

ln Zsite({Pj→i } j∈∂i ; li , ε, μ) −
∑

〈i, j〉∈E

ln Zedge(Pi→ j , Pj→i ), (55)

with

Zsite(P1, . . . , Pk+1) =
∫

dP1(h1) . . . Pk+1(hk+1) zsite(h1, . . . , hk+1)
m, (56)

Zedge(P1, P2) =
∫

dP1(h1)P2(h2) zedge(h1, h2)
m, (57)

the weighted averages of the quantities defined in (42, 43). The field distributions Pi→ j (h)

are solutions of the recurrence equations Pi→ j = G({Pk→i }k∈∂i\ j ), where the mapping
P = G(P1, . . . , Pk) is given explicitly by

P(h)= 1

Ziter(P1, . . . , Pk)

∫

dP1(h1) . . . dPk(hk) δ(h−g(h1, . . . , hk))ziter(h1, . . . , hk)
m .

(58)

Ziter is a normalizing factor ensuring that the left hand side is a probability distribution, g is
the function defined in Eq. (40), and the reweighting factor reads

ziter(h1, . . . , hk) = e−μ ẑiter(η1, . . . , ηk)r(ĝ(η1, . . . , ηk))

r(η1) . . . r(ηk)
= e−μa0(h1,...,hk ), (59)

the last equality following from Eqs. (36, 39).
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3.3.2 Random Regular Graphs

For the reasons explained in the context of the RS ansatz in Sect. 3.2.3 one can look for a
simple factorized solution of the 1RSB equations in the case of a k +1 regular random graph
with all thresholds of activation equal to l. In this case one has to find a distribution P(h)

solution of

P(h) = 1

Ziter

∫

dP(h1) . . . dP(hk) δ(h − g(h1, . . . , hk)) ziter(h1, . . . , hk)
m, (60)

where m ∈ [0, 1] is the Parisi breaking parameter and the functions g and ziter are the ones
defined in Eqs. (40, 59). The 1RSB potential is then computed as

�(m) = μm + ln

(∫

dP(h1) . . . dP(hk+1) zsite(h1, . . . , hk+1)
m
)

− k + 1

2
ln

(∫

dP(h1)dP(h2) zedge(h1, h2)
m
)

, (61)

with the functions zsite, zedge defined in Eqs. (42, 43). As already mentioned above �′(m)

can be computed by taking into account only the explicit dependence on m of (61).

3.4 “Energetic” 1RSB Formalism

Even within the simplified case of the factorized ansatz for regular graphs the 1RSB equations
are relatively complicated, as they involve the resolution of a distributional equation on P(h).
However we are ultimately interested in a particular limit for the computation of the minimal
density of contagious sets, namely the case where ε = +∞ (to take into account only the
fully activating configurations), and in the limit μ → −∞ (to select the initial configurations
with the minimal number of active sites). It turns out that a simplified version of the 1RSB
formalism can be devised in this case, corresponding to the “energetic” version of the 1RSB
cavity method, first developed in [55,56], see in particular Sect. 5 of [70] for such a treatment
of the related Biroli–Mézard model. This simplified treatment amounts to take simultaneously
the limit m → 0 and μ → −∞, with a fixed finite value of a new parameter y = −μm. To
explain the meaning of this limit let us rewrite more explicitly the expression of the 1RSB
potential of Eq. (48) in the case ε = +∞, introducing the complexity �(s, θ) counting
the (exponential) number of clusters containing a number of order eNs of activating initial
configurations with a fraction θ of active sites, hence with a free-entropy density φ = μθ +s:

�(m) = sup
θ,s

[�(s, θ) + m(μθ + s)] . (62)

In the limit m → 0, μ → −∞ with y = −μm this function becomes

�e(y) = sup
θ

[�e(θ) − yθ ], �e(θ) = sup
s

�(s, θ) . (63)

The “energetic” complexity �e(θ) can thus be computed via an inverse Legendre transform
of the potential �e(y),

�e(θ(y)) = �e(y) + yθ(y), θ(y) = −�′
e(y) . (64)

As we shall see the “energetic” 1RSB cavity equations leading to the computations of �e(y)

are much simpler than the initial 1RSB ones at finite values of μ and m. The price to pay for
this simplification is the loss of information on the entropy of the clusters when going from
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�(s, θ) to �e(θ). However this is not a problem for the determination of θmin: its estimate at
the 1RSB level, to be denoted θmin,1, is the smallest value of θ with �e(θ) ≥ 0. Indeed the
least dense activating configurations have to be in some pure states, whatever their entropy.

3.4.1 Simplification of the Cavity Field Recursion (Warning Propagation Equations)

We want to simplify the Eq. (40) giving h = g(h1, . . . , hk) with ε = +∞ and in the limit
μ → −∞. First let us make some remarks, valid when ε = +∞ for any value of μ. From
the definition (39) of the fields bt , or from their expressions in (40), it is obvious that

e−μbT ≥ e−μbT −1 ≥ · · · ≥ e−μb1 ≥ e−μb0 = 1. (65)

One can also notice that for ε = +∞ one has, for any μ, the equality aT = bT : this appears
both from the definition (39) of the fields, as η(∞, t) = 0 when ε = +∞, and from the
recursion relations (40), the last term in the first line of (40) disappearing when ε = +∞. To
continue the above chain of inequalities let us first compute from (40)

e−μaT −1 − e−μaT = e
−μ+μ

k∑

i=1
a(i)

0 ∑

I,J
|I |=l−1

∏

i∈I

e−μb(i)
T −1

∏

i∈J

(
e−μb(i)

T − e−μb(i)
T −1

)
, (66)

where I, J forms a partition of {1, . . . , k}. This shows that e−μaT −1 ≥ e−μaT = e−μbT ,

because in the right-hand side e−μb(i)
T ≥ e−μb(i)

T −1 . These inequalities can then be continued
by recurrence, as for t ∈ {0, . . . , T − 2} one obtains from (40)

e−μat − e−μat+1 = e
−μ+μ

k∑

i=1
a(i)

0 ∑

I,J
|I |=l−1

∏

i∈I

e−μb(i)
t

(
∏

i∈J

(e−μa(i)
t+1 − e−μb(i)

t )

−
∏

i∈J

(e−μa(i)
t+2 − e−μb(i)

t )

)

, (67)

hence

e−μa0 ≥ a−μa1 ≥ · · · ≥ e−μaT −1 ≥ e−μaT

= e−μbT ≥ e−μbT −1 ≥ · · · ≥ e−μb1 ≥ e−μb0 = 1, (68)

and for any μ ≤ 0:

a0 ≥ a1 ≥ · · · ≥ aT −1 ≥ aT = bT ≥ bT −1 ≥ · · · ≥ b1 ≥ b0 = 0 . (69)

Let us now take the limit μ → −∞ in the Eq. (40), assuming that at and bt have finite
limits. Treating (40) at the leading exponential order one obtains

at = max

⎛

⎜
⎜
⎜
⎝

0, max
t ′∈[1,T ]

max
I,J,K

|I |+I(t ′≥t+2)≤l−1
|I |+|J |+I(t ′≥t+1)≥l

St ′(h1, . . . , hk; I, J, K )

⎞

⎟
⎟
⎟
⎠

, (70)

bt = max

⎛

⎜
⎜
⎜
⎝

0, max
t ′∈[1,t]

max
I,J,K

|I |≤l−1
|I |+|J |≥l

St ′(h1, . . . , hk; I, J, K )

⎞

⎟
⎟
⎟
⎠

, (71)
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where

St (h1, . . . , hk; I, J, K )=1−
∑

i∈I

(a(i)
0 −b(i)

t−2)−
∑

i∈J

(a(i)
0 − b(i)

t−1)−
∑

i∈K

(a(i)
0 − a(i)

t ). (72)

Now from the inequalities (69) it appears that St ≤ 1, hence that the a’s and b’s belong
to the interval [0, 1]. It is however natural to assume that they are integers, as in the limit
μ → −∞ they can be interpreted as differences between number of particles in constrained
groundstate configurations (see [55,70] for more details). Within this ansatz the a’s and b’s
can only be equal to 0 or 1; using in addition the inequalities (69) one realizes that the fields
h can only take 2T + 1 possible values, that we shall call At for t ∈ {0, 1, . . . , T − 1}
and Bt for t ∈ {0, 1, . . . , T }. These are defined as follows; At denotes the case where
a0 = · · · = at = 1, all the other a’s and b’s vanishing. For t ∈ {2, . . . , T }, Bt means that
b1 = · · · = bt−1 = 0, all the other a’s and b’s being equal to 1. Finally B1 corresponds to
the case where all a’s and b’s are equal to 1, and B0 to the case where they all vanish. Note
that one can consistently extend these definitions to AT = BT , as by definition aT = bT .

It remains to determine the value of h = g(h1, . . . , hk) in this μ → −∞ limit, when all
the fields h1, . . . , hk belong to the set {A0, A1, . . . , AT −1, AT = BT , BT −1, . . . , B1, B0}
of “hard fields”, or Warning Propagation messages. Some algebra, sketched in Appendix 1,
leads to:

g(Bt1 , . . . , Btn , Atn+1 , . . . , Atk )

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

B1+min
l

(t1,...,tn) if n ≥ l and min(tn+1, . . . , tk) ≥ 1 + min
l

(t1, . . . , tn)

Amin(tn+1,...,tk )−1 if n ≥ l − 1 and

1 + min
l−1

(t1, . . . , tn) ≤ min(tn+1, . . . , tk) ≤ min
l

(t1, . . . , tn)

B0 otherwise

(73)

where t1, . . . , tn ∈ {0, . . . , T −1} and tn+1, . . . , tk ∈ {0, . . . , T }. We assumed conventionally
that min

l
(t1, . . . , tl−1) = ∞.

The Eq. (73) can be given a very intuitive interpretation. The messages h ∈
{A0, . . . , AT −1, B0, . . . , BT } can be interpreted as “warnings” sent from one vertex of the
graph to one of its neighbours, with the following meanings. A vertex i sends a message
hi→ j = Bt to one of its neighbour j to say: “if j is kept inactive at all times the configuration
of i and of its sub-tree (the one rooted at i and excluding j) leads to complete activation of the
sub-tree within the time horizon T , and i activates itself at time t”. In particular hi→ j = B0

means that i is activated in the initial configuration. On the contrary i sends the message
hi→ j = At to j to express: “the complete activation of i and its sub-tree requires that j
becomes activated at time t”. The rules of Eq. (73) for the combination of these messages
are then obtained by finding the configuration compatible with them, containing the minimal
number of active sites in the initial configuration (because of the μ → −∞ limit):

• if strictly less than l −1 incoming messages are of the type Bti , with ti ∈ {0, . . . , T −1},
the central site i will never have more than l active neighbours (even with the participation
of the receiving site j) if it is initially inactive, hence the only way for i to be active at
time T is to be active in the initial configuration, which implies hi→ j = B0.

• if at least l of the incoming messages are of the type Bti , with ti ∈ {0, . . . , T − 1}, say
(Bt1 , . . . , Btn ), the central site i will become active at time t = 1 + min

l
(t1, . . . , tn),

without the “help” of the activation of the site j receiver of the message. This situation
thus leads to a message of type Bt , at the condition that all other incoming messages
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of type {A0, . . . , AT } do not require the activation of the central site i at a time strictly
earlier than t = 1 + min

l
(t1, . . . , tn).

• the participation of the activation of the receiving site j is required at some time t when
the above condition is not fulfilled, i.e. when the incoming messages (Atn+1 , . . . , Atk )

require the activation of the central site at some time tact = min(tn+1, . . . , tk) < 1 +
min

l
(t1, . . . , tn). This mechanism is possible if at time tact − 1 already l − 1 of the

neighbours sending messages of type B are active, i.e. it requires min
l−1

(t1, . . . , tn) ≤
tact − 1. The “help” needed from the receiving site is that it is active at some time before
tact − 1; in the limit μ → −∞ the least dense configurations, and thus the least stringent
constraint on the time of activation is privileged, hence the message sent in this case is
hi→ j = Atact−1.

• all cases not fulfilling one of the conditions above require that i is active in the initial
configuration to be active at time T , hence the message sent is hi→ j = B0.

3.4.2 Energetic 1RSB Single Sample Equations

Within this ansatz the 1RSB distributions P(h) greatly simplify, as they are supported on the
discrete set h ∈ {A0, A1, . . . , AT −1, AT = BT , BT −1, . . . , B1, B0}. We shall denote pt the
weight in P(h) of the event h = At , and similarly qt for h = Bt (with again the convention
pT = qT to simplify notations), i.e.

P(h) =
T −1∑

t=0

pt δ(h − At ) +
T∑

t=0

qt δ(h − Bt ). (74)

The 1RSB recursion relation (58) now reduces to a recursion between these finite-
dimensional vectors of probabilities; inserting the definition (74) in the right hand side of
(58) and exploiting the combination rule (73) between hard fields, one obtains the following
limit for the recursion relation P = G[P1, . . . , Pk]:

pt = 1

Z [P1, . . . , Pk]ey p̃t , p̃t =
∑

I,J,K
|I |=l−1
|J |≥1

∏

i∈I

(
t∑

t ′=0

q(i)
t ′

)
∏

i∈J

p(i)
t+1

∏

i∈K

×
⎛

⎝
T∑

t ′=t+1

q(i)
t ′ +

T −1∑

t ′=t+2

p(i)
t ′

⎞

⎠ for t ∈ {0, . . . , T − 1}

qt = 1

Z [P1, . . . , Pk]eyq̃t , q̃t =
∑

I,J,K
|I |≤l−1

|I |+|J |≥l

∏

i∈I

×
(

t−2∑

t ′=0

q(i)
t ′

)
∏

i∈J

q(i)
t−1

∏

i∈K

(
T∑

t ′=t

q(i)
t ′ +

T −1∑

t ′=t

p(i)
t ′

)

for t ∈ {1, . . . , T }

q0 = 1

Z [P1, . . . , Pk]

[

1 −
T −1∑

t=0

p̃t −
T∑

t=1

q̃t

]

,

Z [P1, . . . , Pk] = 1 + (ey − 1)

[
T −1∑

t=0

p̃t +
T∑

t=1

q̃t

]

(75)
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the reweighting term of Eq. (59) becoming indeed ziter(h1, . . . , hk)
m = eya0(h1,...,hk ), hence

the factor ey multiplying the probabilities of all warnings except B0; this is indeed the only
case where an active site has to be inserted in the initial configuration.

To compute the 1RSB potential we have to study the limit of the contribution of site and
edge terms in the limit μ → −∞, m → 0. We have from Eq. (43)

zsite(h1, . . . , hk+1)
m →exp

⎡

⎢
⎢
⎢
⎣

y max

⎛

⎜
⎜
⎜
⎝

0, max
t∈[1,T ] max

I,J,K
|I |≤l−1

|I |+|J |≥l

St (h1, . . . , hk+1; I, J, K )

⎞

⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎦

,

(76)

which can be simplified following the same reasoning than the one which led to (73). This
yields

Zsite(P1, . . . , Pk+1) → 1 + (ey − 1)

T∑

t=1

∑

I,J,K
|I |≤l−1

|I |+|J |≥l

∏

i∈I

(
t−2∑

t ′=0

q(i)
t ′

)
∏

i∈J

q(i)
t−1

∏

i∈K

(
T∑

t ′=t

q(i)
t ′ +

T −1∑

t ′=t

p(i)
t ′

)

, (77)

where I, J, K is a partition of {1, . . . , k +1}. This expression can be interpreted intuitively in
terms of the warnings defined above; the factor multiplying (ey −1) is indeed the probability
of complete activation, at time t ∈ {1, . . . , T }, for an initially empty site receiving messages
(h1, . . . , hk+1) from its neighbours, with their respective distributions P1, . . . , Pk+1. As a
matter of fact, for its activation to occur at time t at least l neighbours must have activated
without any help from the central site at time t − 1, no more than l − 1 must be active at
time t − 2 (otherwise the activation time would be strictly less than t), and the neighbours
sending messages of type At ′ should not require activation at a time t ′ < t .

For the edge term we obtain from Eq. (42)

zedge(h1, h2)
m → exp

[

−y min
t∈[0,T ] min((a(1)

0 − b(1)
t ) + (a(2)

0 − a(2)
t ), (a(1)

0 − a(1)
t ) + (a(2)

0 − b(2)
t ))

]

, (78)

hence

Zedge(P1, P2) → e−y + (1 − e−y)
[(

T∑

t=0

q(1)
t

)(
T∑

t=0

q(2)
t

)

+
T −1∑

t=0

p(1)
t

t∑

t ′=0

q(2)

t ′ +
T −1∑

t=0

p(2)
t

t∑

t ′=0

q(1)

t ′

]

. (79)

One can interpret the factor multiplying (1 − e−y) as the probability of complete activation
when two messages (h1, h2) drawn with the probabilities P1, P2 are sent in the two opposite
directions of an edge.

Let us summarize the main findings of this subsection. In the limit μ → −∞, m → 0 with
y = −μm the 1RSB formalism simplifies in the following way. The cavity field distributions
Pi→ j (h) have now a discrete support with 2T possible values, each of them is thus described
by a (normalized) vector of 2T probabilities denoted {pt , qt }. These vectors are solutions of
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recurrence equations of the form Pi→ j = G({Pk→i }k∈∂i\ j ), the mapping G being defined in
Eq. (75). The energetic limit of the 1RSB potential is then computed as

�e(y) = −y + 1

N

N∑

i=1

ln
(Zsite({Pj→i } j∈∂i )

) − 1

N

∑

〈i, j〉
ln
(Zedge(Pi→ j , Pj→i )

)
, (80)

with the expression of Zsite and Zedge given in Eqs. (77, 79). This expression of �e is
variational, its derivative with respect to y (which is needed in the computation of the inverse
Legendre transform in (64)) can be taken on the explicit dependence only.

3.4.3 Random Regular Graphs

For the reasons already exposed in the context of the RS and of the full 1RSB cavity formalism
a factorized solution of the energetic 1RSB equations can be searched for when dealing with
random k + 1 regular graphs with a constant threshold of activation l. One has thus a single
vector of probabilities P = ({pt , qt }), fixed-point solution of Eq. (75), from which the
energetic 1RSB potential is obtained as

�e(y) = −y + ln (Zsite(P, . . . , P)) − k + 1

2
ln
(Zedge(P, P)

)
, (81)

with Zsite and Zedge defined in Eqs. (77, 79).

4 Results of the Cavity Method for Random Regular Graphs

We shall present now the results of the resolution of the cavity equations for random regular
graphs of degree k + 1, with an activation threshold equal to l for all vertices. In all this
discussion it will be understood that ε = +∞, i.e. we only consider initial configurations
that activate the whole graph in T steps. We will first present in Sect. 4.1 the results for finite
values of T , which are qualitatively the same for all values of k, l and T ; the behaviour of
the replica symmetric cavity method are first displayed, then we turn to the effects of replica
symmetry breaking, in particular in the “energetic” limit to compute the minimal density of
initially active sites in activating configurations. In a second part (Sect. 4.2) we shall discuss
the limit T → ∞, in which some further analytical computations can be performed. In this
case several qualitatively distinct phenomena emerge, depending on the values of k and l.

4.1 Finite T Results

4.1.1 Replica Symmetric Formalism

The technical details of the resolution of the RS equation h = g(h, . . . , h), where g is given
in Eq. (40), and of the computation of the free-entropy density, are deferred to the Appendix 1.
From a numerical point of view it is an easy task, as it corresponds essentially to the resolution
of a set of 2T equations on 2T unknowns. Let us discuss the numerical results obtained in
this way. On the left panel of Fig. 2 we display the curve θ(μ) of the average fraction of
initially active sites as a function of the chemical potential μ; the curve is for k = l = 2
and T = 3, the qualitative features are independent of these precise values. This function is
increasing as it should, and reaches a finite limit when μ → −∞, that would be the candidate
value for θmin if the RS computation was correct in this limit. This however cannot be true,
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Fig. 2 The density of initially active sites θ (left panel) and the entropy s (right panel) as a function of the
chemical potential μ, computed from the replica symmetric cavity equations, for k = l = 2 and T = 3
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Fig. 3 The RS entropy s(θ) of configurations with a fraction θ of initially active sites able to activate
completely the graph within time T , for k = l = 2 (left panel) and k = 3, l = 2 (right panel). The curve
labelled “random” is the binary entropy function −θ ln θ − (1 − θ) ln(1 − θ) that counts all configurations
with such an initial density. The curves in the limit T → ∞ are computed analytically, from Eq. (82) for the
left panel and (101) for the right panel, see Sect. 4.2 for a further discussion of this limit

as revealed from the computation of the entropy, displayed in the right panel of Fig. 2: for
μ < μs=0 the RS entropy becomes negative, which is a certain indication of the inadequacy
of the RS theory in this regime. In Fig. 3 we display the results for the entropy s(θ) of the
number of configurations with a fraction θ of initially active sites, for the regime of positive
entropies where the RS prediction cannot be ruled out at once (for the cases k = l = 2
and k = 3, l = 2). For increasing values of T these curves converge to a limit, this will be
further discussed in Sect. 4.2.1. The numerical values of the chemical potential and of the
fraction of active sites at the point of entropy cancellation, which would be the best guess
from the RS computation of the value of θmin, denoted respectively μs=0 and θmin,0, can be
found for various values of T in the Tables 1, 2, and 3 for the cases k = l = 2, k = l = 3
and k = 3, l = 2 respectively. For T = 1 they reproduce, as they should, the results of the
Biroli–Mézard model given in [70].

4.1.2 1RSB Results

As we have seen above the hypothesis underlying the RS computation must go wrong when μ

is decreased towards −∞, as the entropy computed within the RS scheme becomes negative
for μ < μs=0; a 1RSB computation is thus required to investigate the limit μ → −∞ and
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Table 1 Numerical results from the cavity computations at finite T for k = l = 2; the results in the limit
T → ∞ are explained in Sect. 4.2

RS 1RSB Energetic 1RSB

T μs=0 θmin,0 μd θd μc θc ys θmin,1

1 −7.403996 0.422251 −6.49 0.4292 −6.69 0.4275 5.563433 0.424257

2 −11.374979 0.325742 −9.89 0.3291 −11.23 0.3260 10.826348 0.325882

3 −17.292682 0.289093 −13.7 0.2922 −17.28 0.2890 17.232166 0.289097

4 −24.936318 0.271564 −20.9 0.2731 −24.93 0.2715 24.933659 0.271564

5 −34.966263 0.262167 −31.3 0.2628 −34.63 0.2622 34.966225 0.262167

6 −49.901175 0.256844 49.901175 0.256844

7 −74.984724 0.253779 74.984724 0.253779

8 −120.79085 0.252036 120.79085 0.252036

10 −378.44778 0.250553 378.44778 0.250553

15 −1.069 × 104 0.250018 1.069 × 104 0.250018

20 −3.4 × 105 0.250000 3.4 × 105 0.250000

∞ −∞ 1
4 +∞ 1

4

Table 2 Numerical results from the cavity computations at finite T for k = l = 3; the results in the limit
T → ∞ are explained in Sect. 4.2

RS 1RSB Energetic 1RSB

T μs=0 θmin,0 μd θd μc θc ys θmin,1

1 −6.113951 0.479455 −5.35 0.4906 −5.39 0.4900 4.644980 0.482712

2 −8.175902 0.397326 −7.38 0.4027 −7.95 0.3988 7.485437 0.397922

3 −10.381917 0.366187 −8.63 0.3725 −10.33 0.3663 10.077681 0.366291

4 −13.140888 0.351221 −9.59 0.3583 −13.11 0.3513 13.037666 0.351234

5 −17.249334 0.343205 −10.3 0.3507 −17.36 0.3432 17.232334 0.343206

6 −24.322138 0.338721 24.321721 0.338721

7 −35.739653 0.336191 35.739653 0.336191

8 −54.198587 0.334760 54.198587 0.334760

∞ −∞ 1
3 +∞ 1

3

hence the properties of the least dense activating initial conditions, in particular their density
θmin.

We have thus solved numerically the 1RSB equations (60) using population dynam-
ics methods [54], i.e. representing P(h) as a weighted sample of fields hi . This method
has become fairly standard and we shall not give more details on the procedure, see for
instance [53,54] for detailed presentations. In the particularly important m = 1 case we used
a version of this procedure, inspired by the tree reconstruction problem, that allows to get
rid of the reweighting terms in (60) and is thus much more precise and efficient numerically,
see [52,61] for more technical details.

The results of these investigations follow the usual pattern encountered in constraint
satisfaction problems [48]: for large enough values of μ (i.e. for dense enough initial config-
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Table 3 Numerical results from the cavity computations at finite T for k = 3, l = 2; the results in the limit
T → ∞ are explained in Sect. 4.2

RS 1RSB Energetic 1RSB

T μs=0 θmin,0 μd θd μc θc ys θmin,1

1 −7.730059 0.362794 −7.06 0.3681 −7.38 0.3654 6.778540 0.363813

2 −10.21534 0.236821 −9.16 0.2416 −10.12 0.2372 9.873120 0.237009

3 −11.90150 0.182272 −10.38 0.1875 −11.85 0.1824 11.72892 0.182338

4 −13.03158 0.151659 −11.45 0.1563 −13.00 0.1517 12.92114 0.151693

5 −13.80059 0.132014 −12.47 0.1354 −13.78 0.1321 13.71834 0.132036

6 −14.33193 0.118324 14.26439 0.118341

7 −14.70251 0.108237 14.64332 0.108251

8 −14.96150 0.100498 14.90729 0.100510

10 −15.26375 0.089415 15.21429 0.089425

15 −15.42086 0.074242 15.37163 0.074251

20 −15.27922 0.066569 15.22489 0.066579

30 −14.85174 0.058995 14.78367 0.059008

∞ −12.72072 0.046283 12.54796 0.046328

Fig. 4 The complexity at m = 1
as a function of the chemical
potential μ, for k = l = 2 and
T = 1. The function is defined
for μ < μd ≈ −6.49, the
complexity being positive for
μ > μc ≈ −6.69

μ

Σ

-6.4-6.6-6.8-7-7.2-7.4-7.6

0.01

0.005

0

-0.005

-0.01

-0.015
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urations) there is no non-trivial solution of the 1RSB equation with m = 1; decreasing μ a
non-trivial solution appears discontinuously at a threshold μd (the “dynamic” transition). Its
complexity (or configurational entropy) � is positive in an interval μ ∈ [μc, μd], which thus
corresponds to a “dynamic 1RSB phase” with an exponential number of clusters contributing
to the Gibbs measure, see Fig. 4 for an illustration in the case T = 1. The numerical values of
μd and μc (as well as the associated densities of initially active sites θd and θc), can be found
for several values of T in the Tables 1, 2, and 3. For the values of μ in the interval [μc, μd]
the thermodynamic predictions of the RS computations are correct. Note that in all the cases
we investigated (k = 2, 3, 2 ≤ l ≤ k and T ≤ 5) we always found a discontinuous transition
with μc < μd; we cannot rule out the possibility that for other values of the parameters the
replica symmetry breaking transition is continuous with μc = μd (as happens for instance
in the independent set problem at low degrees [14]).
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Fig. 5 Study of the condensed phase for k = l = 2 and T = 1. Left panel complexity as a function of m for
μ = −7.5 < μc, the complexity vanishes for ms ≈ 0.84. Right panel Parisi parameter ms as a function of
−1/μ, departing from 1 for μ < μc; the dashed line corresponds to the linear behaviour −μms = 5.56 that
fits the μ → −∞ limit

Lowering further the chemical potential, i.e. in the regime μ < μc, the complexity at
m = 1 becomes negative. This is thus a true replica symmetry breaking phase with only a
sub-exponential number of clusters contributing to the Gibbs measure; μc corresponds to the
“condensation” transition. In this phase the thermodynamic properties of the model differ
from the RS prediction and are given by the properties of the clusters selected by the static
value of the Parisi parameter, ms(μ), for which the complexity vanishes. This value can be
determined by computing the complexity as a function of m, for a fixed value of μ, see left
panel of Fig. 5 for an example.

To compute the minimal density θmin(T ) one has to take the limit μ → −∞; we have
introduced above in Sect. 3.4 a simplifying ansatz in this limit, assuming in particular a
finite value of −μm. To check the consistency of this ansatz we solved the complete 1RSB
equations for T = 1 and several values of μ large and negative. The Parisi parameter ms is
plotted as a function of −1/μ in the right panel of Fig. 5; in the limit μ → −∞ one obtains
indeed a linear behaviour, corresponding to a finite limit of −μms.

4.1.3 Energetic 1RSB Results

We turn now to the results obtained via the energetic 1RSB cavity method, i.e. taking simul-
taneously the limits μ → −∞ and m → 0 with a finite value for y = −μm. The equations
to solve in this case amounts to find the fixed point of Eq. (75), from which one obtains
the 1RSB potential (81) and the energetic complexity �e(θ) from the Legendre transform
structure explained in (64), as a parametric plot varying the parameter y. The computational
complexity of this problem is drastically reduced compared to the complete 1RSB equations:
as in the RS case one has a set of (roughly) 2T equations on 2T real unknowns, instead of
an equation on a probability distribution of fields. More technical details on the procedure to
solve these equations can be found in Appendix 1.

Figure 6 displays the energetic complexity �e(θ) for a few values of T , in the cases
k = l = 2 and k = 3, l = 2. The expert reader will notice that we restricted the range of y
used in this plot to the so-called physical branch, in such a way that �e is a concave function
of θ . The most important characteristics of these curves are the values of θmin,1 where the
complexity vanishes, and the corresponding values ys of the parameter y; these are reported
for several values of T in the last columns of the Tables 1, 2, and 3. Indeed θmin,1 is the
1RSB prediction for θmin, as it corresponds to the smallest density of active sites in initial
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Fig. 6 The complexity �e(θ) obtained from the energetic 1RSB cavity formalism, for k = l = 2 (left panel)
and k = 3, l = 2 (right panel); see Sect. 4.2 for explanations on the T → ∞ result

configurations belonging to clusters with a non-negative complexity. For T = 1 these values
can be successfully cross-checked with the results of the Biroli–Mézard model [70], and the
parameter ys agrees with the fit of −μms(μ) in the limit μ → −∞ obtained from the full
1RSB equations (cf. right panel of Fig. 5).

4.2 The Large T Limit

The limit case T → ∞ is particularly interesting as it corresponds to the original influence
maximization problem with no constraint on the time taken to activate the whole graph. This
limit can be performed analytically for the RS and energetic 1RSB formalism; the technical
details of these computations can be found in Appendix section “The Large T Limit”, we
present here the results of these analytical simplifications. It turns out that the case k = l is
qualitatively different from the case k > l, we shall thus divide this section according to this
distinction.

4.2.1 The Case k = l

Let us first recall that when k = l the dynamics from a random initial configuration of
density θ has a continuous transition at θr(k, k) = k−1

k (see Sect. 2.2); we also saw in
Sect. 2.4 that minimal contagious sets (with no constraint on the activation time) correspond
to minimal decycling sets, which led to the bound θmin(k, k) ≥ k−1

2k = θr(k,k)
2 . In the rest of

this subsection we shall for simplicity abbreviate θr(k, k) by θr .
As suggested by the left panel of Fig. 3 in the case k = l = 2, the RS entropy s(θ) converges

to a limit curve when T → ∞. This limit curve can actually be computed analytically for
all k; we defer the details of the computation to Appendix section “Asymptotics for l = k”
and only state here the properties of this limit curve. For θ ≥ θr it coincides with the binary
entropy function −θ ln θ − (1−θ) ln(1−θ); this is a posteriori obvious. Indeed by definition
of θr typical configurations in this density range do activate the whole graph, hence the
number of activating initial configurations coincide (at the leading exponential order) with
the total number of configurations of this density. A non-trivial portion of the limit curve
arises in the density range [θr/2, θr], where it is given by

s(θ)=−k

2
(2θ − θr) ln(2θ − θr)+kθ ln θ+(1 − θ) ln(k − 1) − k + 1

2
ln

(
k − 1

k

)

. (82)
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This function has the same value and the same first derivative than the binary entropy function
in θr , while at the lower limit θr/2 of its range of definition it has an infinite derivative with
a finite value

s(θr/2) = ln k − k − 1

2k
ln(k − 1) − k − 1

2
ln 2 . (83)

The parametric plot of s(θ) also contains a vertical segment for θ = θr/2, from −∞ to the
value given in (83).

The complexity �e(θ) of the energetic 1RSB formalism also converges to a limit curve
when T → ∞, as shown in Fig. 6 and obtained analytically in Appendix section “Asymptotics
for l = k”. This limit curve has the same vertical segment in θr/2 from −∞ to the value
(83); the non-trivial part of the curve is given in a parametrized form as follows:

�e (̃λ) = ln Zsite (̃λ) − k + 1

2
ln Zedge (̃λ) − y(̃λ)(1 − θ (̃λ)) , (84)

θ (̃λ) = 1 − ey(̃λ)

ey(̃λ) − 1

Zsite (̃λ) − 1

Zsite (̃λ)
− k + 1

2

1

ey(̃λ) − 1

1 − Zedge (̃λ)

Zedge (̃λ)
, (85)

where λ̃ is the positive parameter along the curve, the Parisi parameter

y(̃λ) = ln

(
(1 + λ̃)k − k λ̃k−1 − λ̃k

(k − 1) λ̃k

)

, (86)

is the slope of the tangent to the curve �e(θ), and

Zsite (̃λ) = 1 + (k + 1 + λ̃)((1 + λ̃)k−1 − k λ̃k−1)

(k − 1)(1 + λ̃)k
, (87)

Zedge (̃λ) = λ̃

1 + λ̃

(

1 + (1 + λ̃)k−1 − λ̃k−1

(1 + λ̃)k − k λ̃k−1 − λ̃k

)

. (88)

When λ̃ → 0+ this part of the curve connects with the vertical segment in θr/2. The large
values of λ̃ yield a non-concave branch of �e that has to be discarded.

Depending on the value of k qualitatively different behaviours emerge from the analysis
of the RS entropy and 1RSB energetic complexity:

• For k = l = 2 the entropy of the endpoint in θr/2 given in (83) is strictly positive (it is
equal to (ln 2)/2); moreover the energetic complexity curve converges, in the T → ∞
limit, to a vertical segment (the non-trivial part parametrized by λ̃ is convex and has
thus to be discarded). This leads to the conclusion that θmin = θr/2 = 1/4 in this
case, saturating the lowerbound of (16), and recovering the rigorous result of [17] on
the decycling number of 3-regular graphs. This is a reassuring evidence in favour of the
validity of the approach, in particular on the interversion of the T → ∞ and N → ∞
limit. It would be an even more challenging computation to determine the limit of θd

and θc as T diverges; we are however tempted to conjecture that they both go to 1/4
and that the effects of replica symmetry breaking are irrelevant in this limit. A numerical
argument in favour of this conjecture will be presented in Sect. 5, where it is shown that
a simple greedy algorithm is able to find contagious sets of these densities. Assuming
this is true, the expression (82) would give for k = 2 the typical (quenched) entropy
of the decycling sets of 3-regular random graphs in their non-trivial regime of densities
[1/4, 1/2]. Note that the coincidence of the RS entropy and 1RSB energetic complexity
at θmin is reminiscent of the phenomenology discussed for the matching problem in [75],
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which might suggest that the minimal density activating configurations are at a large
Hamming distance in configuration space one from the other.

• For k = l = 3 the expression (83) of the entropy in θr/2 is still positive (equal to
ln 3 − (4/3) ln 2), hence the endpoint of the non-trivial part of both the RS entropy and
the 1RSB complexity curves occurs in θmin,0 = θmin,1 = θr/2 = 1/3, saturating again
the bound (16). This leads to the conclusion that θmin = 1/3 in this case, as was also
conjectured in [17]. However, at variance with the previous case, the energetic complexity
curve has a non-trivial part for θ > θmin, as shown in the left panel of Fig. 7. We thus
expect that the limits of θd and θc when T → ∞ are strictly greater than 1/3, hence that
simple algorithms would have difficulties to find the minimal contagious sets (see Sect. 5
for a numerical check of this statement), and that the RS entropy (82) is incorrect for
some regime of densities close to 1/3.

• Finally when k = l ≥ 4 the entropy in (83) is negative, the cancellation of s occurs at
a value θmin,0 strictly between θr/2 and θr , see the right panel of Fig. 7. The energetic
complexity vanishes on its non-trivial part parametrized by λ̃, at a value θmin,1 slightly
larger than θmin,0, see Table 4 for some numerical values. Whether θmin,1 should be taken
as a conjectured exact value for θmin or simply as a lowerbound is dubious and might
depend on the value of k. Indeed one should test the stability of the 1RSB ansatz against
further levels of replica symmetry breaking. This computation is in principle doable along
the lines of [59,60,70], but has not been performed yet. It is however relatively easy to
set up an asymptotic expansion at large k of the thresholds θmin,0 and θmin,1 from the
expressions (82, 84). One finds that the first terms of the expansion are equal at the RS
and 1RSB level, it is thus natural to conjecture that they are indeed the correct expansion
of θmin, namely

θmin(k, k) = 1 − 2 ln k

k
− 2

k
+ O

(
1

k ln k

)

. (89)

This conjecture is in agreement with the rigorous lowerbound proven in [41],

θmin(k, k) ≥ 1 − 2 ln k

k
− 4 − 2 ln 2

k
+ o

(
1

k

)

. (90)

It can also be compared with the asymptotic expansion in the case l = k + 1 [38] where
the inactive vertices have to form an independent set of the graph:

θmin(k, k + 1) = 1 − 2 ln k

k
+ 2 ln ln k

k
+ 2 ln 2 − 2

k
+ o

(
1

k

)

. (91)

The third term of this expansion is of a larger order; indeed the condition imposed on the
graph induced by the inactive vertices is much more stringent when l = k + 1 (it has to
be made of isolated vertices) with respect to the case l = k (it only has to be acyclic).

Let us mention at this point that θmin(T ), the minimal density of initial configuration
percolating within T steps of the dynamics, reaches its asymptotic value θmin as T → ∞
with different finite T corrections in the various cases listed above. The analysis of Appendix
section “Asymptotics for l = k” shows that for k = l = 2 (resp. k = l = 3) these corrections
are of order 2−T (resp. 3−T ), which is in agreement with a numerical fit of the data in Table 1
(resp. Table 2). On the contrary for k = l ≥ 4 these corrections are only polynomially small
in T .

Finally, we could also compute analytically the distribution of activation times, within the
RS formalism, for the initial configurations with a non-trivial density θ of active vertices in
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Fig. 7 The RS entropy s(θ) and energetic 1RSB complexity �e(θ) in the T → ∞ limit, for k = l = 3
(left panel) and k = l = 4 (right panel). The binary entropy function is also plotted for comparison (the RS
entropy coincides with it for θ ≥ θr). The physical part of the complexity extends on a small range of θ , on
which it is only slightly smaller than the RS entropy, the inset allows to see this small difference at the end of
the domain of definition of �e

Table 4 The predictions of the RS and energetic 1RSB cavity method in the T → ∞ limit

k l θr μs=0 θmin,0 ys θmin,1

2 2 1
2 −∞ 1

4 ∞ 1
4

3 2 0.111111 −12.720727 0.046283 12.547960 0.046328

3 3 2
3 −∞ 1

3 ∞ 1
3

4 2 0.050781 −9.633812 0.013108 9.125975 0.013258

4 3 0.275158 −∞ 1
6 ∞ 1

6

4 4 3
4 −14.904539 0.378463 14.883293 0.378465

5 2 0.029096 −9.499859 0.005715 8.891066 0.005820

5 3 0.165116 −12.395257 0.076228 12.333754 0.076247

5 4 0.397212 −∞ 1
4 ∞ 1

4

5 5 4
5 −9.786306 0.422619 9.647302 0.422695

6 2 0.018854 −9.675930 0.003098 9.026488 0.003166

6 3 0.112870 −10.396651 0.042825 10.234248 0.042894

6 4 0.269022 −16.484079 0.150054 16.480311 0.150055

6 5 0.486312 −40.532392 0.300090 40.532392 0.300090

6 6 5
6 −8.403727 0.460014 8.191036 0.460228

the interval [θr/2, θr]. Their cumulative distribution function Pt = η(ti ≤ t) obtained from
the marginals of the law (25) reads in the T → ∞ limit with t kept fixed:

Pt+1 = θ + (2θ − θr)(1 − θr)

θr
wk+1

t + (1 − θr)(k + 1)wk
t

(
θ

θr
− 2θ − θr

θr
wt

)

, (92)

where wt is a series defined recursively by

w0 = θr , wt+1 = θr + (1 − θr)w
k
t . (93)

Examples of this cumulative distribution are displayed in Fig. 8. As explained above the
predictions of the RS cavity method are not expected to be correct for θ < θc; in the particular
case k = l = 2 we however expect this result to be true down to θ = θmin = 1/4. Note that Pt
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Fig. 8 The integrated distribution of activation times (92) for percolating initial conditions of density θ ∈
[θr/2, θr]. The curves are presented in the case k = l = 2

goes to 1 when t → ∞, in other words in the limit T → ∞ the support of the distribution of
activation times does not scale with T and remains of order 1. One can also check that when
θ = θr , the prediction Pt of (92) coincides, as it should, with the distribution of activation
times for random initial conditions of density θr given in Eq. (2); to see this one can notice
that wt is equal to the series x̃t defined in Eq. (3) for the study of random initial conditions,
when k = l and θ = θr . At the lower limit of the interval of density, θ = θr/2, one obtains
instead a simple expression,

Pt+1 = θr

2
+ (k + 1)

1 − θr

2
wk

t . (94)

A straightforward analysis of (92, 93) reveals that for all θ < θr the cumulative distribution
Pt reaches 1 with corrections of order 1/t , in other words the probability Pt − Pt−1 that a
vertex activates precisely at time t has a power-law tail with exponent −2. On the contrary
the random initial conditions of density θr have 1 − Pt of order 1/t2, hence the exponent of
the tail is −3; random initial conditions with θ > θr have instead an exponentially decaying
tail for their distribution of activation times.

4.2.2 The Case k > l

We shall now turn to a description of the limit as T → ∞ of the RS and energetic 1RSB results
when k > l, with again the technical details relegated in the Appendix section “Asymptotics
for l < k”. The RS entropy s(θ) coincides with the binary entropy function for θ ≥ θr , for
exactly the same reasons as explained above in the case k = l (here and in the rest of this
subsection we denote θr the threshold θr(k, l)). The non-trivial part of s(θ) and �e(θ) are
obtained in a parametric way, with unfortunately rather long expressions that we shall now
progressively describe. We keep implicit below the dependency of all quantities on k and l
when there is no risk of confusion.

This parametrization is given in terms of a real λ in the range ]0, λr], where this upper
limit is expressed in terms of the threshold θr for activation from a random initial condition
as λr = (1 − θr)θ

k−1
r . We need first to introduce some auxiliary functions û(λ), v̂(λ), u∗(λ)
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and v∗(λ). The first two are given explicitly as

û(λ) =
(

1 − θr

λ

) 1
k−1

, v̂(λ) = x̃r

(
1 − θr

λ

) 1
k−1

, (95)

where we recall that x̃r is the fixed-point of Eq. (3) at the bifurcation θr , see also (4). The last
one, v∗(λ), is defined as the smallest positive solution of

v = 1 + λ

k∑

p=l

(
k

p

)(

λl

(
k

l

))− k−p
k−l

v
p(k−1)−k(l−1)

k−l , (96)

then u∗(λ) can be deduced as the solution of

1 = λl

(
k

l

)

v∗(λ)l−1(u∗(λ) − v∗(λ))k−l with u∗(λ) ≥ v∗(λ) . (97)

One can check that u∗(λ) ≥ û(λ) ≥ v̂(λ) ≥ v∗(λ) on the interval λ ∈]0, λr], and that
u∗ = û = 1/θr and v∗ = v̂ = x̃r/θr in λ = λr . We then define two functions Fsite(λ) and
Fedge(λ) through

Fsite(λ) = λ

u∗

⎡

⎣ûk+1 + (k + 1)

k∑

p=l

(
k

p

)[
l − 1

k − l
Ip−1 − Ip

]
⎤

⎦ (98)

Fedge(λ) = 1

u∗

[

(̂u − v̂)2 + 2u∗v∗ − v2∗ + 2λl

(
k

l

)

Il−1

]

(99)

where for clarity we kept implicit the λ dependency of û, v̂, u∗ and v∗, and we introduced

Ip =
(

λl

(
k

l

))−k−p
k−l

∫ v̂

v∗
dv v

p(k−1)−k(l−1)
k−l ,=

(

λl

(
k

l

))−k−p
k−l

(100)

×

⎧
⎪⎨

⎪⎩

ln
(

v̂
v∗

)
if p= l − 1 and k =2l−1 ,

k−l
(p+1)(k−1)−(k+1)(l−1)

(

v̂
(p+1)(k−1)−(k+1)(l−1)

k−l − v
(p+1)(k−1)−(k+1)(l−1)

k−l∗
)

otherwise .

We can finally give the parametric form of the RS entropy s(θ):

s(λ) = ln(1 + Fsite(λ)) − k + 1

2
ln

(
Fedge(λ)

u∗(λ)

)

+ μ(λ)(1 − θ(λ)) ,

θ(λ) = 1

1 + Fsite(λ)
,

μ(λ) = − ln(λ u∗(λ)k) , (101)

where μ(λ) is the opposite of the derivative of s(θ) in the point θ(λ). Thanks to the values
û, v̂, u∗ and v∗ assume in λr this curve joins the binary entropy function in θr with a continuous
slope.
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Fig. 9 The RS entropy s(θ) and energetic 1RSB complexity �e(θ) in the T → ∞ limit, for k = 3, l = 2,
from the analytical formulas given in (101, 102)

Similarly the 1RSB entropic complexity �e(θ) is obtained parametrically as

�e(λ)= ln

(

1+
(

1− 1

λ u∗(λ)k−1

)

Fsite(λ)

)

− k+1

2
ln

(
1+(λ u∗(λ)k−1−1) Fedge(λ)

λ u∗(λ)k −u∗(λ)+1

)

−y(λ)(1 − θ(λ)) ,

θ(λ) =
1 − 1

λ u∗(λ)k Fsite(λ)

1 +
(

1 − 1
λ u∗(λ)k−1

)
Fsite(λ)

− k + 1

2

1 − 1
u∗(λ)

Fedge(λ)

1 + (λ u∗(λ)k−1 − 1)Fedge(λ)
,

y(λ) = ln(λ u∗(λ)k − u∗(λ) + 1) , (102)

with y(λ) giving the slope of the tangent of �e(θ) in the point θ(λ).
An example of the limit for the RS entropy can be found in the right panel of Fig. 3 for

k = 3, l = 2, along with some finite T curves, and a similar plot for the energetic complexity
is displayed in the right panel of Fig. 6. The entropy and energetic complexity for this case
in the limit are compared in Fig. 9. The values θmin,0 and θmin,1 where s(θ) and �e(θ) vanish
are easily determined numerically from the above representation, and are collected in Table 4
for various values of k and l. For most of the cases one finds θmin,1 to be slightly larger than
θmin,0; as explained above the exactness of this 1RSB prediction has still to be assessed from
a computation of the stability with respect to further replica symmetry breaking.

There are however two special cases which stand on a different footing, namely (k, l) =
(4, 3) and (k, l) = (5, 4). Indeed in these two cases one has the same phenomenology than
for k = l = 3, namely a coincidence of θmin,0 and θmin,1 due to a vertical segment in the
curves s(θ) and �e(θ) extending to positive values. This phenomenon can be understood by
studying the limit λ → 0 of the above representation of these curves. After some algebra
one finds indeed that for k < 2l − 1,

lim
λ→0

θ(λ) = 2l − k − 1

2l
, lim

λ→0
s(λ) = lim

λ→0
�e(λ) = k + 1

2l
ln

(
ll

(l − 1)l−1

(
k

l

))

−k − 1

2
ln

(
2l

2l − k − 1

)

, (103)
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Fig. 10 An example of the cumulative distribution of activation times for k = 3, l = 2, obtained with the
numerical resolution of the RS equations for a large but finite value of T = 400, with a parameter λ = 0.005,
corresponding to an initial density of active sites of 0.089. The two horizontal lines corresponds to P(s = 0+)

and P(s = 1−) from Eq. (104), delimiting the fraction of vertices that activate within a finite time after the
beginning of the process (resp. before its end)

the limiting value for θ being valid both for the RS (101) and 1RSB (102) expressions. It
turns out that for k = 4, l = 3 and k = 5, l = 4, the latter expression for the entropy s and
complexity �e is strictly positive, hence the simple predictions 1/6 and 1/4 for θmin in these
two cases respectively, that saturate the lowerbound of (17). We did not find any other values
of k, l that produce the same phenomenon.

Finally the distribution of activation times in the RS formalism exhibits a very different
pattern with respect to the case k = l (see Fig. 10 for an illustration). As a matter of fact, in
the limit T → ∞ the activation times t of the vertices have to be divided in three categories,
each of them comprising a finite fraction of the N vertices: (i) t = O(1) (ii) t = O(T )

(iii) t = T − O(1). The category (ii) of vertices can be described by a scaling function
for the cumulative distribution, P(s) = Pt=sT , with s ∈]0, 1[ a reduced time. One has
P(s = 0+) > 0 and 1 − P(s = 1−) > 0, these two numbers representing the fractions
of vertices of type (i) and (iii) respectively. They can be computed following the techniques
of the Appendix section “Asymptotics for l < k”, yielding for initial configurations with a
fraction θ(λ) < θr of active vertices:

P(s = 0+) = θ + θ
λ

u∗

k+1∑

p=l

(
k + 1

p

)

v
p∗ (u∗ − v∗)k+1−p ,

1 − P(s = 1−) = θ
λ

u∗

(
1 − θr

λ

) k+1
k−1

⎡

⎣1 −
k+1∑

p=l

(
k + 1

p

)

x̃ p
r (1 − x̃r)

k+1−p

⎤

⎦ . (104)

5 Algorithmic Results

We shall present in this Section the results of numerical experiments performed on finite size
random regular graphs, for which we have constructed explicitly some activating initial con-
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figurations. We have used two strategies to do so, one based on a simple greedy heuristic, the
other inspired by the results of the cavity method. Both of them build iteratively a percolating
initial configuration, starting from the configuration with all vertices inactive, and adding one
active vertex at a time (another route would be to start from the all active configuration and
sequentially reduce the number of active vertices, but we did not investigate this alternative
strategy). We shall denote τ the number of addition steps performed by the algorithm, and
σ(τ) the initial configuration considered at this point (that contains by definition τ active
vertices). The configuration denoted σ T (τ ) (resp. σ f (τ )) is thus the configuration obtained
after T (resp. an infinite) number of steps of the dynamics defined in (1) from the initial con-
figuration σ(τ); we will denote |σ T (τ )| the number of active vertices in this configuration.
The algorithm stops when this number reaches N , as σ(τ) is then the first percolating initial
configurations encountered. The difference in the two algorithms to be presented below lies
in the rule used to choose which additional active vertex to add in the initial configuration in
a step τ → τ + 1.

5.1 A Greedy Algorithm

Let us first consider the case of a finite time horizon T , i.e. the problem of finding an initial
configuration σ with σ T the fully active configuration and σ containing the smallest possible
number of active vertices. The simplest strategy is to choose at each time step τ → τ + 1 the
inactive vertex of σ(τ) whose activation leads to the largest possible value of |σ T (τ + 1)|,
and stop at the first time τ such that σ T (τ ) is the fully active configuration. This can be
immediately generalized to the case T = ∞ by including at each time step the vertex whose
activation increases most |σ f (τ +1)|; this version of the greedy procedure was actually a tool
in the rigorous bounds on θmin for graphs with good expansion properties of [31]. If several
vertices lead to the same increase the ties can be broken arbitrarily. The time complexity
of the greedy algorithm is a priori cubic in the number N of vertices: a linear number of
steps τ → τ + 1 have to be performed before finding a percolating initial configuration.
For each of these steps a number of order N of candidate new configurations σ(τ + 1)

have to be considered, the computation of σ T (τ + 1) requiring itself a linear number of
operations for each configuration. It is however easy to reduce significantly this complexity
when T = ∞. As explained at the end of Sect. 2.1, in this case the final configuration of the
dynamical process can be obtained sequentially, regardless of the order of the activations.
By monotonicity the configuration σ f (τ + 1) can be computed by adding one active vertex
to σ f (τ ) (instead of σ(τ)) and determining the number (of order 1) of additional activations
that can be triggered by this addition. This reduces the total complexity to a quadratic scaling
with N .

In Fig. 11 we plot the fraction of active vertices in the configuration σ T (τ ) as a function of
the density τ/N of the active vertices in the initial configuration obtained after τ steps of this
greedy procedure; when the curve reaches 1 we have thus obtained an initial configuration
that percolates within T steps (note that the part of the curve for smaller τ corresponds
to the alternative optimization problem labelled (i) in the introduction). The density of the
contagious sets reached in this way are summarized in Table 5; as expected these densities
are strictly greater than the prediction θmin,1 of the 1RSB cavity method, and also than
the ones reached by more involved message-passing algorithms (see the discussion in next
subsection).

One can clearly see a qualitative difference between the cases k = l and k > l in the two
panels of Fig. 11: in the latter case as T gets larger the last active vertices added in the initial
configuration before finding a percolating one provoke a very steep increase in the final size
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Fig. 11 The density of active vertices in the configuration σ T (τ ) after τ steps of the greedy algorithm, for
k = l = 2 (left panel) and k = 3, l = 2 (right panel). Each curve corresponds to a single run of the algorithm
on a graph of N = 104 vertices

Table 5 The density of (finite time) contagious sets reached by the greedy and message-passing algorithms,
compared to the predictions of the cavity method for their minimal size

k = l = 2 k = 3, l = 2
T θmin,1 θsp θmaxsum [10] θgreedy θmin,1 θsp θmaxsum [10] θgreedy

1 0.424257 0.426 0.427 0.482 0.363813 0.366 0.370 0.426

2 0.325882 0.328 0.330 0.376 0.237009 0.240 0.243 0.291

3 0.289097 0.291 0.293 0.335 0.182338 0.185 0.190 0.233

4 0.271564 0.273 0.275 0.311 0.151693 0.156 0.164 0.197

5 0.262167 0.263 0.266 0.296 0.132036 0.142 0.146 0.174

7 0.253779 0.257 0.278 0.108251 0.127 0.125 0.144

10 0.250553 0.251 0.265 0.089425 0.108 0.119

The data for the algorithmic results correspond to averages over ten graphs of size N = 104

of the activated set. As said above the greedy procedure can easily be generalized to T = ∞;
the density of the smallest contagious sets constructed in this way are presented in Table 6
for various values of k and l. As these results demonstrate the greedy algorithm is able, in
all cases we investigated, to find contagious sets with a density strictly smaller than θr , the
density above which typical uncorrelated configurations are percolating. However in general
the density reached by this simple procedure is strictly greater than the prediction θmin,1 of
the cavity method for their minimal size; this is in agreement with the interpretation of the
replica symmetry breaking creating metastable states that trap simple local search procedures
and prevent them from reaching global optima of the cost function landscape in which the
search moves. The only exception is the case k = l = 2, for which the minimal density 1/4
(corresponding to the decycling number of 3-regular random graphs [17]) is actually reached
by the greedy procedure; this result is in line with the analysis of Sect. 4.2.1, which revealed
a disappearance of the RSB phase in the large T limit for this peculiar case.

Further information on the minimal contagious sets produced by the greedy algorithm
with T = ∞ can be obtained from the distribution of the activation times of the vertices
they induce, which are plotted in Fig. 12. Of course as the graphs under study are finite
the support of these distributions is bounded; in all cases we investigated we found that the
time to reach total activation from these initial configurations scales logarithmically with the
number of vertices of the graph (see also Fig. 13 for a comparison between two different
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Table 6 The density of (infinite time) contagious sets reached by the greedy algorithm, compared to the
predictions of the cavity method

k l θr θmin,1 θgreedy

2 2 1
2

1
4 0.250

3 2 0.111111 0.046328 0.070

3 3 2
3

1
3 0.387

4 4 3
4 0.378465 0.482

5 5 4
5 0.422695 0.551

The algorithm was run on ten graphs of size N = 104, the last column is the average over these repetitions.
Experiments with graphs of different sizes revealed a very clear 1/N dependency of the finite-size corrections
of θgreedy in the cases with k = l. We could not get such a clear dependency when k > l, slower finite-size
corrections might be at play in these cases
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Fig. 12 The “numerical” curves represent the distribution of activation times for the least dense activating
initial configurations found by the greedy algorithm for T = ∞, for k = l = 2 (left panel) and k = 3,
l = 2 (right panel). In both cases the graph studied contained N = 8 × 104 vertices, in the left panel the
complete activation is reached in 93 steps, in the right one it takes 367 steps. For comparison in the left panel
the analytical prediction is plotted both for T = ∞ (see Eq. (94)) and for T = 93, in the right panel the
analytical curve corresponds to T = 367

sizes of the graph). The qualitative difference between the cases k = l and k > l expected
from the discussion of the T → ∞ limit of Sect. 4.2 is indeed apparent on these curves; in
the latter case a finite fraction of the vertices are activated at the very end of the dynamical
process. However the activation time distributions induced by the configurations produced
by the greedy algorithm are not in quantitative agreement with the RS analytical predictions
(with a value of T and θ chosen to fit the numerical ones). A possible explanation for this
discrepancy is that the greedy algorithm is a very “out-of-equilibrium” algorithm, hence the
configurations it reaches are not the typical ones of the “equilibrium” measure (8).

5.2 Survey Propagation

The second algorithmic procedure we investigated is based on the insight provided by the
statistical mechanics analysis on the structure of the configuration space of the problem; it
corresponds indeed to the Survey Propagation algorithm introduced in [56] for the analysis
of random satisfiability problem (and more precisely to its variant introduced in [16] for
the energy minimization in the unsatisfiable phase of such problems). An idealized thought
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Fig. 13 The distribution of activation times for the least dense activating initial configurations found by the
greedy algorithm for T = ∞, for k = 3, l = 2, and two different sizes N of the graph. For N = 4 × 104 the
complete activation took place after T = 248 steps, while for N = 8 × 104 it occured at T = 367

experiment for the construction of minimal contagious sets would be to sequentially assign
the values of the σi according to their marginal probabilities in the law (8), with ε = +∞ and
μ = −∞; the exact determination of such marginals is in general a very hard computational
tasks, and in practice one has to content oneself with approximations provided for instance
by message passing procedures. This is the road we have followed here, by implementing
the single-sample energetic 1RSB equations (75), i.e. assigning to each directed edge i → j
of the graph under study a vector Pi→ j of 2T probabilities. At each step τ of the algorithm
the Eq. (75) are iterated several times to look for a global solution of these equations; the
presence of τ active (decimated) vertices in the current configuration σ(τ) is implemented
as a boundary condition in these equations, easily seen to be Pi→ j (h) = δ(h − B0) for the
outgoing messages from an activated vertex i . The information contained in such a solution
of the 1RSB equations can be a priori exploited in several ways; we chose to compute, for
each vertex i not yet activated, the quantity

Wi = 1 − ∂

∂y
ln Zsite({Pj→i } j∈∂i ) + 1

2

∑

j∈∂i

∂

∂y
ln Zedge(Pi→ j , Pj→i ) , (105)

i.e. the contribution of the site i to the derivative of the potential �e given in Eq. (80). This
number measures indeed the tendency of i to be active in all configurations belonging to
the clusters considered in the energetic 1RSB formalism. Accordingly we choose the vertex
i with the largest value of Wi to be the new active vertice to be added to σ(τ) in order to
form σ(τ + 1). For simplicity we fixed the value of y in the whole procedure to the value
ys determined analytically, that leads to a vanishing complexity before the decimation; we
also tried to recompute this value of y during the course of the decimation but did not obtain
significant improvement of the performances in the cases considered.

The values of the density of the percolating initial configurations we managed to construct
in this way are presented in Table 5 for the two cases k = l = 2 and k = 3, l = 2, for several
(relatively small) values of T . The results are better than the simple greedy algorithm, and in
most of the cases also than the maxsum replica-symmetric algorithm [8–10], but in some cases
deviate significantly from the prediction θmin,1 for the density of minimal contagious sets.
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An analytical understanding of the performances of such decimation procedures is actually
a challenging open problem (see [29,68] for partial results in the simpler case of the Belief-
Propagation guided decimation). We did not study much larger values of T because we faced
in this case convergence issues for the iterations of the Eqs. (75), that a simple damping did
not seem to alleviate efficiently. A pragmatic, even if not completely satisfactory, position
we adopted for the results at T ≥ 4 for the case k = 3, l = 2, was to ignore somehow
the convergence problems, stopping the iterations of (75) after a time fixed beforehand, and
computing the value of Wi from these unconverged messages. As Table 5 demonstrates this
attitude is not unreasonable as the densities reached are still better than the one of the greedy
algorithm (yet can get worse than the maxsum procedure [8–10]).

6 Conclusions and Perspectives

In this paper we have continued the study initiated in [8,9] of the minimal contagious sets for
the bootstrap percolation (or threshold model) dynamics on random graphs. We have shown
the importance of taking into account the phenomenon of replica symmetry breaking in the
determination of the minimal density θmin of active vertices in percolating initial conditions,
and could simplify analytically the equations determining θmin in the limit T → ∞ where the
constraint on the time to reach a complete activation of the graph disappears. Reformulating
the problem as the minimal number of vertices to be removed in a graph in order to destroy
some specific subgraphs (its cycles or more generically its q-core) we recovered a previously
known result for the decycling number of 3-regular random graphs [17] as well as a conjecture
for 4-regular ones [17], and proposed new quantitative conjectures for the sizes of the minimal
“de-coring” sets for all pairs of degree of the graph and minimal degree of the targeted core.
These take a particularly simple rational form for the removal of the 3-core in 5- and 6-
regular random graphs.

Let us sketch now some possible directions for future study. A first project would be to test
the stability of the 1RSB ansatz we used to compute θmin,1, to assess for which values of (k, l)
this number should be expected to be the exact value θmin and not only a lowerbound. This
computation should be doable following the techniques of [59,60,70] for all finite T , and
might even be simplified in the large T limit. By analogy with the independent set problem
which is a marginal case of the problem investigated here one could surmise to find that the
1RSB ansatz is stable for large enough values of the degree k (and maybe also of the threshold
l). This is also the regime where one can hope to see a mathematically rigorous proof of these
predictions, as recently obtained for the independent sets in [33]. Asymptotic expansions of
θmin,0(k, l) and θmin,1(k, l) in the large k limit for k > l should also be performed, considering
either l fixed in this limit, l proportional to k, or k − l fixed.

For the sake of concreteness and simplicity we presented explicit results only for regular
random graphs, however we gave the intermediate equations of the RS and 1RSB cavity
method under a form that can be directly applied to any sparse random graph ensembles with
arbitrary prescribed degree distribution, and possibly fluctuating thresholds for activation.
The latter could naturally be correlated with the degree of the vertices, triggering for instance
the activation if the fraction of active neighbours reaches some fixed proportion (instead of a
fixed number). It would be interesting to see how the results presented here are qualitatively
modified by the local fluctuations in the graph structure, which would be particularly severe
in the case of power-law tails in the degree distribution.

We also concentrated exclusively in this paper on the problem of optimizing the number of
initially active vertices, imposing that all vertices are active at a later time. The variant of this
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problem where one puts a constraint on the maximal number of active vertices allowed in the
initial configuration and try to maximize the level of activation at a later time is also relevant,
in particular for applications to real-world situations. At the RS level we have sketched how
to do this by controlling the parameter ε (the cost to be paid for finally inactive vertices) that
we kept arbitrary in the first steps of the computations, a systematic study and the inclusion
of the effects of replica symmetry breaking remains to be done.

Finally we believe that the message passing procedure inspired by the energetic 1RSB
equations presented in Sect. 5.2 would be worth investigated further. One should try to study
(and cure) the convergence issues that arise for larger values of T , maybe changing the way
the information provided by the messages is used. One could in particular exploit them in a
softer way by implementing a reinforcement technique [8,9] instead of a direct decimation.
A more extensive comparison with the maxsum message passing procedure studied in [8,9]
could also be interesting.
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Appendix 1: The Limit µ → −∞ of the Fields Recursion

We justify here the Eq. (73) for the recursion h = g(h1, . . . , hk) between “hard fields”
hi ∈ {A0, A1, . . . , AT −1, AT = BT , BT −1, . . . , B1, B0}. We can first notice that in Eqs. (70,
71) the (constrained) maximum over the partitions I, J, K of St is always reached for |I |+|J |
and |I | as small as possible (because a(i)

t ≥ b(i)
t−1 ≥ b(i)

t−2), which allows to rewrite

at = max

⎛

⎜
⎝0, max

t ′∈[1,T ]
max
J,K

|J |=l−I(t ′≥t+1)

St ′(h1, . . . , hk; ∅, J, K )

⎞

⎟
⎠ , (106)

bt = max

⎛

⎝0, max
t ′∈[1,t]

max
J,K

|J |=l

St ′(h1, . . . , hk; ∅, J, K )

⎞

⎠ , (107)

where J, K forms a partition of {1, . . . , k}. In addition one realizes that

max
J,K

|J |=l

St (h1, . . . , hk; ∅, J, K ) = 1

⇔
(

k∑

i=1

I(hi ∈ {A0, . . . , At−1})=0 and
k∑

i=1

I(hi ∈ {B0, . . . , Bt−1}) ≥ l

)

, (108)
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which by logical negation leads to

max
J,K

|J |=l

St (h1, . . . , hk; ∅, J, K ) ≤ 0

⇔
(

k∑

i=1

I(hi ∈ {A0, . . . , At−1}) ≥ 1 or
k∑

i=1

I(hi ∈ {B0, . . . , Bt−1}) ≤ l − 1

)

. (109)

Combining these logical rules leads after a short reasoning to

g(h1, . . . , hk) = At ⇔ (at = 1 and at+1 = 0) (110)

⇔

⎧
⎪⎨

⎪⎩

∑k
i=1 I(hi ∈ {B0, . . . , Bt }) = l − 1

and
∑k

i=1 I(hi ∈ {A0, . . . , At }) = 0

and
∑k

i=1 I(hi = At+1) ≥ 1

, (111)

and

g(h1, . . . , hk) = Bt ⇔ (bt = 1 and bt−1 = 0) (112)

⇔

⎧
⎪⎨

⎪⎩

∑k
i=1 I(hi ∈ {B0, . . . , Bt−1}) ≥ l

and
∑k

i=1 I(hi ∈ {B0, . . . , Bt−2}) ≤ l − 1

and
∑k

i=1 I(hi ∈ {A0, . . . , At−1}) = 0

. (113)

Considering the various possible cases leading to a field of type At or Bt yields finally (73).

Appendix 2: Technical Details on the Resolution of the Factorized RS and Energetic
1RSB Equations

We shall present in this Appendix the details of the RS and energetic 1RSB cavity equations in
the particular case of random k +1 regular graphs with an uniform threshold l of activations.
It turns out that despite their different interpretations these two version of the cavity method
can be treated in an unified way. We thus begin by introducing this common formulation,
then we unveil the simplifications that arise in the case l = k, before finally discussing the
limit T → ∞, both in the case l = k and l < k.

Common Formulation

RS Cavity Method

Consider the fixed-point RS equation h = g(h, . . . , h), with g defined in Eq. (40); alter-
natively we saw in Eqs. (66, 67) an expression for the differences e−μat − e−μat+1 . Setting
hi = h in the right-hand sides of these equations, and using the identity

∑

I,J,K
|I |≤l−1

|I |+|J |≥l

f (I, J, K ) =
∑

I,J,K
|I |+|J |≥l

f (I, J, K ) −
∑

I,J,K
|I |≥l

f (I, J, K ) , (114)
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for any function f of a partition I, J, K , allows to show the equivalence of the fixed-point
equation on h = (a0, . . . , aT , bT −1, . . . , b1) with:

e−μat − e−μat+1 = e−μ+μka0

(
k

l − 1

)

e−μ(l−1)bt

×
[(

e−μat+1 −e−μbt
)k−l+1−

(
e−μat+2 − e−μbt

)k−l+1
]

, (115)

e−μbt+1 − e−μbt = e−μ+μka0

k∑

p=l

(
k

p

)

×
[

e−μpbt
(

e−μat+1 −e−μbt
)k−p −e−μpbt−1

(
e−μat+1 − e−μbt−1

)k−p
]

.

(116)

These equations are valid for t ∈ {0, . . . , T − 1}, with the boundary conditions e−μb−1 = 0,
b0 = 1, aT = bT , aT +1 = bT −1. The thermodynamic quantities can also be simplified in
this factorized case, the site contribution to the RS free-entropy reading from Eq. (43):

zsite = 1 + e−μ+μ(k+1)a0

T∑

t=1

k+1∑

p=l

(
k + 1

p

)

[

e−μpbt−1
(

e−μat − e−μbt−1
)k+1−p − e−μpbt−2

(
e−μat − e−μbt−2

)k+1−p
]

, (117)

while the edge contribution of Eq. (42) becomes

zedge = e2μa0

[

e−2μaT + 2
T −1∑

t=0

(
e−μat − e−μat+1

)
e−μbt

]

. (118)

Let us introduce some new notations and define a change of parameters on the unknowns
at , bt , as ut = e−μat , vt = e−μbt . We also define a new parameter λ, with λ = e−μ+μka0 . In
terms of these new quantities the above set of equations becomes

ut − ut+1 = D(ut+1, vt ) − D(ut+2, vt ) , (119)

vt+1 − vt = S(ut+1, vt ) − S(ut+1, vt−1) , (120)

with v−1 = 0, v0 = 1, uT = vT , uT +1 = vT −1, and

D(u, v) = λ

(
k

l − 1

)

vl−1(u − v)k−l+1 , S(u, v) = λ

k∑

p=l

(
k

p

)

v p(u − v)k−p. (121)

In other words the u’s and v’s are solutions of a set of polynomial equations, and as such
should be viewed as a function of λ and T (and of course of k and l). They also obey, on top
of the boundary conditions, the inequalities u0 ≥ u1 ≥ · · · ≥ uT = vT ≥ vT −1 ≥ · · · v1 ≥
v0 = 1. The chemical potential μ has disappeared from this set of equations, but actually
it is now implicitly a function of λ and T , as from the definition of λ one recovers μ with
μ = − ln(λuk

0).
For future use we emphasize here an identity between the derivatives of D and S and

introduce a new function C(u, v):

C(u, v) = ∂ D

∂u
= ∂S

∂v
= λl

(
k

l

)

vl−1(u − v)k−l . (122)
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Let us also rewrite the thermodynamic quantities in terms of these new variables. The
expressions (117) and (118) become

zsite = 1 + Fsite , zedge = 1

u0
Fedge , (123)

where we introduced the two functions

Fsite(λ, T )= λ

u0

T∑

t=1

k+1∑

p=l

(
k + 1

p

)[
v

p
t−1(ut −vt−1)

k+1−p −v
p
t−2(ut −vt−2)

k+1−p
]
,

(124)

Fedge(λ, T )= 1

u0

[

v2
T +2

T −1∑

t=0

(ut −ut+1)vt

]

. (125)

We emphasize here the dependency on λ and T , which was kept implicit in the ut and vt ’s.
One has then the final expressions of all RS thermodynamic quantities as:

φ = μ + ln(zsite) − k + 1

2
ln(zedge), μ = − ln(λuk

0), s = φ − μθ, θ = 1

zsite
. (126)

One can also express the probability distribution of the activation times in terms of these new
variables. Denoting Pt the cumulative distribution, i.e. the probability that the activation time
of one vertex is smaller or equal than t , one has from Eq. (45):

Pt = 1

zsite
[1 + Fsite(λ, T, t)] , (127)

where we defined

Fsite(λ, T, t) = λ

u0

t∑

t ′=1

k+1∑

p=l

(
k + 1

p

)[
v

p
t ′−1(ut ′ −vt ′−1)k+1−p − v

p
t ′−2(ut ′ − vt ′−2)k+1−p

]
.

(128)

One can check that, as it should, P0 = θ the fraction of initially active sites (summations
over empty sets being equal to zero by convention), and PT = 1 (as ε = +∞ all vertices are
active at the final time).

Energetic 1RSB Cavity Method

We now turn to a similar study of the energetic 1RSB equations in the factorized case, namely
the determination of the normalized vector of probabilities P = (p0, . . . , pT −1, qT , . . . , q0),
solution of the fixed-point equation P = G(P, . . . , P), with the mapping G defined in
Eq. (75).

Let us first note that in general the normalization Z [P1, . . . , Pk] of (75) can be expressed
in terms of q0,

Z = 1 + (ey − 1)(1 − Zq0) ⇒ ey

Z
= 1 + q0(e

y − 1) . (129)
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This remark allows to rewrite the fixed-point equation P = G(P, . . . , P) as

pt = (1 + q0(e
y − 1))

(
k

l − 1

)(
t∑

t ′=0

qt ′

)l−1

×
⎡

⎢
⎣

⎛

⎝
T∑

t ′=t+1

qt ′ +
T −1∑

t ′=t+1

pt ′

⎞

⎠

k−l+1

−
⎛

⎝
T∑

t ′=t+1

qt ′ +
T −1∑

t ′=t+2

pt ′

⎞

⎠

k−l+1
⎤

⎥
⎦,

qt = (1 + q0(e
y − 1))

k∑

p=l

(
k

p

)

×
⎡

⎢
⎣

(
t−1∑

t ′=0

qt ′

)p ( T∑

t ′=t

qt ′ +
T −1∑

t ′=t

pt ′

)k−p

−
(

t−2∑

t ′=0

qt ′

)p
⎛

⎝
T∑

t ′=t−1

qt ′ +
T −1∑

t ′=t

pt ′

⎞

⎠

k−p
⎤

⎥
⎦,

where in the first line t ∈ {0, . . . , T − 1} and in the second t ∈ {1, . . . , T }. These two sets of
equations are supplemented by the normalization condition q0+· · ·+qT + pT −1+· · ·+ p0 =
1.

The site and edge contributions of the energetic 1RSB potential, defined in (77, 79),
become in the factorized case:

Zsite = 1 + (ey − 1)

T∑

t=1

k+1∑

p=l

(
k + 1

p

)

×
⎡

⎢
⎣

(
t−1∑

t ′=0

qt ′

)p ( T∑

t ′=t

qt ′ +
T −1∑

t ′=t

pt ′

)k+1−p

−
(

t−2∑

t ′=0

qt ′

)p
⎛

⎝
T∑

t ′=t−1

qt ′ +
T −1∑

t ′=t

pt ′

⎞

⎠

k+1−p
⎤

⎥
⎦,

Zedge = e−y + (1 − e−y)

⎡

⎣

(
T∑

t=0

qt

)2

+ 2
T −1∑

t=0

pt

t∑

t ′=0

qt ′

⎤

⎦.

Now let us change variables and trade the unknowns pt , qt for some variables ut , vt , and
the parameter y for some parameter λ, according to

ut = 1

q0

(
T∑

t ′=0

qt ′ +
T −1∑

t ′=t

pt ′

)

, vt = 1

q0

t∑

t ′=0

qt ′ , λ = (1 + q0(e
y − 1))qk−1

0 . (130)

Inserting these definitions in the above equations one realizes that the quantities ut and vt are
solutions of exactly the same set of Eqs. (119, 120) defined in the RS case, and obey the same
boundary conditions and inequalities. From the solution of these equations, for a given value
of the parameter λ, one recovers the parameter y noting that by the normalization condition
one has u0 = 1/q0, hence y = ln(λuk

0 − u0 + 1). The expressions of Zsite and Zedge within
this parametrization are easily obtained from the above equations and read:

Zsite = 1 +
(

1 − 1

λuk−1
0

)

Fsite , Zedge = 1 + (λuk−1
0 − 1)Fedge

λuk
0 − u0 + 1

, (131)
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with the same functions Fsite and Fedge defined in Eqs. (124, 125) for the RS case. One has
finally an expression for the thermodynamic quantities of the energetic 1RSB formalism as

�e = −y + ln Zsite − k + 1

2
ln Zedge, y = ln(λuk

0 − u0 + 1), �e = �e + yθ, (132)

where θ is here the opposite of the derivative of �e with respect to y, which after a short
computation reads

θ = 1 − ey

ey − 1

Zsite − 1

Zsite
− k + 1

2

1

ey − 1

1 − Zedge

Zedge
(133)

=
1 − 1

λuk
0

Fsite

1 +
(

1 − 1
λuk−1

0

)

Fsite

− k + 1

2

1 − 1
u0

Fedge

1 + (λuk−1
0 − 1)Fedge

.

Simplifications for l = k

In the case l = k further simplifications arise. Indeed the function S(u, v) defined in (121)
is in this case independent of u, and the Eqs. (119, 120) can be rewritten as:

v0 = 1 , (134)

vt = 1 + λ vk
t−1 for t ∈ {1, . . . , T } , (135)

uT −1 = vT + λk vk−1
T −1 (vT − vT −1) , (136)

ut = ut+1 + λk vk−1
t (ut+1 − ut+2) for t ∈ {0, . . . , T − 2}. (137)

This set of equations is particularly simple to solve, and admits a single solution for each
value of λ. One can indeed compute by recurrence the value of the vt for increasing values
of t from 0 to T , then deduce the value of uT −1, and finally by a downward recurrence the
values of ut for t from T − 2 to 0. The thermodynamic observables are then deduced from
(126) in the RS case or (132) in the energetic 1RSB case, where the site contributions can be
simplified from (124), yielding

Fsite(λ, T ) = λ

u0

[

vk+1
T −1 + (k + 1)

T∑

t=1

(ut − ut+1)v
k
t−1

]

. (138)

These simplifications can also be performed for the function (128) giving the distribution of
activation times, which reads in the case k = l:

Fsite(λ, T, t)= λ

u0

[

vk+1
t−1 +(k + 1)vk

t−1(ut+1 − vt−1)+(k + 1)

t∑

t ′=1

(ut ′ − ut ′+1)v
k
t ′−1

]

.

(139)

Numerical Resolution for l < k

In the case l < k we did not find a simple change of variables on the unknowns ut , vt that
would put the system of Eqs. (119, 120) in the triangular form that appeared naturally when
k = l and led to a direct resolution by successive substitutions. We therefore resorted to the
Newton-Raphson iterative method for solving (119, 120), taking care of choosing a good
initial condition for the iterations to be convergent. This guess on the solution was provided
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by analytical asymptotic expansions, either in the limit λ → 0 or with T → ∞ (see next
paragraph). Depending on the values of λ and T we found either 0, 1 or 2 relevant solutions
of (119, 120), but this multi valuedness has no physical meaning and comes only from the
arbitrary choice of the parametrization in terms of λ. Indeed there is a single solution for
each value of the chemical potential μ (or y in the energetic 1RSB formalism).

The Large T Limit

In the rest of this Appendix we shall justify analytically the claims made in Sects. 4.2.1 and
4.2.2 on the behaviour of the RS and energetic 1RSB solutions as T goes to infinity.

The Trivial Solution

As anticipated in Sect. 4, in the large T limit the portion of the curve s(θ) corresponding to
θ > θr should coincide with the entropy −θ ln θ−(1−θ) ln(1−θ) counting all configurations
with a fraction θ of initially active sites, as such configurations are typically activating (see
the reminder on random initial configurations of Sect. 2.2). Let us see how to prove this
statement. A moment of thought, considering for instance the form of the RS equations at
ε = 0, reveals that this situation should correspond to a solution of (119, 120) with ut = ũ,
independently of t . This ansatz is indeed consistent with Eq. (119), and with this substitution
Eq. (120) becomes

vt+1 = 1 + S(̃u, vt ) . (140)

This last equation is a simple recursion on the v’s, with the initial value v0 = 1. For the
boundary condition uT = vT , uT +1 = vT −1 to be asymptotically (when T → ∞) verified
one has to impose the values of ũ and λ such that the vt solution of (140) converge to ũ when
t → ∞, in other words that the smallest fixed point solution v ≥ 1 of v = 1 + S(̃u, v)

is precisely equal to ũ. The condition ũ = 1 + S(̃u, ũ) imposes the following relationship
between ũ and λ, ũ = 1 + λũk . Using this condition one can then rewrite (140) as

vt+1

ũ
= 1

ũ
+
(

1 − 1

ũ

) k∑

p=l

(
k

p

)(vt

ũ

)p (
1 − vt

ũ

)k−p
. (141)

Comparing this equation with (3) one realizes that by definition of θr , all the values of ũ in
the interval [1, 1/θr[ are such that the condition vt → ũ is fulfilled (with the value of λ fixed
by ũ = 1 + λũk). Let us now compute the RS thermodynamic quantities associated with
this solution. As the ut are independent of t the summation in Eq. (124) can be performed
with a telescopic identity, and yields after a short computation Fsite = ũ − 1. Similarly
one sees easily from (125) that Fedge = ũ for this solution. This gives indeed the function
s(θ) = −θ ln θ − (1 − θ) ln(1 − θ) for θ > θr upon replacing in the expression of the
RS thermodynamic potential (cf. Eq. (126)). In addition the cumulative distribution Pt of
activation times defined in Eq. (127) coincides on this solution with the series xt of Eq. (2)
obtained as the activation time cumulative distribution of a random initial condition.

In the following we shall describe the non-trivial part of the resolution of the RS and
energetic 1RSB equations in the large T limit, i.e. in the RS case the part of the curve s(θ)

for θ < θr . The cases l = k and l < k are technically rather different, we shall thus divide
the discussion according to this distinction.
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Fig. 14 A graphical representation of the recursion vt+1 = 1 + λvk
t (here for k = 2). The dashed straight

line corresponds to vt+1 = vt , the three solid curves are, from bottom to top, for λ < λc, λ = λc and λ > λc

Asymptotics for l = k

As explained in Sect. 1 in the case l = k the equations on vt decouple, these quantities become
independent of T and are solutions of the recurrence vt+1 = 1+λvk

t . A straightforward study
of this equation (see Fig. 14 for an illustration) reveals the existence of a critical value λc such
that vt converges to a finite value when t → ∞ if λ ≤ λc, while it diverges when λ > λc.
This critical parameter and the associated fixed-point vc of the recurrence are solution of the
equations:

vc = 1 + λcv
k
c , 1 = λck vk−1

c , (142)

which are easily solved and yield λc = (k−1)k−1

kk , vc = k
k−1 .

The case λ < λc corresponds actually to the trivial solution already discussed above,
let us thus consider the alternative situation, λ > λc. The divergence of vt is then actually
very steep, with a double exponential form. Indeed when vt � 1 the recurrence becomes
approximately vt+1 ≈ λvk

t , which reveals that (ln ln vt )/t converges to ln k. As u0 ≥ vT one
also has a divergence of u0 with T in this regime; from (126) (resp. (132)) this implies that
the chemical potential μ of the RS formalism (resp. the parameter y of the energetic 1RSB
one) go to −∞ (resp. +∞), i.e. that the parametric curve s(θ) (resp. �e(θ)) has a vertical
tangent in this regime. Furthermore we shall prove now that the corresponding density θ of
initially active sites converges to (k − 1)/(2k) (both in the RS and energetic 1RSB cases),
hence this branch corresponds to a vertical segment. This is actually a consequence of the
following statement on the behaviour of the functions Fsite and Fedge of Eqs. (138, 125):

∀λ > λc , lim
T →∞ Fsite(λ, T ) = k + 1

k − 1
, lim

T →∞ Fedge(λ, T ) = 2k

k − 1
, (143)

as can be easily deduced from the expressions of θ given in (123, 126) and (133), along with
the divergence of u0 in the latter case. To prove the claim of Eq. (143), let us first note that,
iterating (137), one obtains
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ut − ut+1 = (u0 − u1)
1

kt

1

(λvk−1
0 )(λvk−1

1 ) . . . (λvk−1
t−1 )

(144)

= (u0 − u1)
1

kt

v1v2 . . . vt−1

(v1 − 1)(v2 − 1) . . . (vt − 1)
, (145)

where we used (135) to go from the first to the second line. We can thus write

ut − ut+1 = (u0 − u1)
1

kt
αt

1

vt
, (146)

where we introduced the sequence αt (note its independence on T ) as

αt =
t∏

t ′=1

vt ′

vt ′ − 1
, α0 = 1. (147)

We also have, in terms of this series,

u0 − u1 = kT 1

αT
vT (vT − vT −1) . (148)

Using these relations, along with the representation u0 = vT +∑T −1
t=0 (ut − ut+1), allows to

rewrite the definition of (125) as:

Fedge =
αT

1
kT

vT
vT −vT −1

+ 2
T −1∑

t=0
αt

1
kt

αT
1

kT
1

vT −vT −1
+

T −1∑

t=0

αt
vt

1
kt

. (149)

The sum in the denominator can be transformed by noting that, from the definition of αt ,
αt/vt = αt − αt−1. This yields

Fedge =
αT

1
kT

vT
vT −vT −1

+ 2
T −1∑

t=0
αt

1
kt

αT
1

kT
1

vT −vT −1
+ 1

kT αT −1 + k−1
k

T −1∑

t=0
αt

1
kt

. (150)

Notice now that αt has a finite limit when t → ∞, thanks to the divergence of vt (for the
limit of αt to exists it is actually enough that vt � t). Hence the summations in the above
equation converge when T → ∞ thanks to the exponentially decaying factor 1/kt , and all
other terms in the numerator and denominator are neglectible in this limit. This proves the
limit 2k/(k − 1) for Fedge (one could also compute the main correction, of order k−T , from
this expression). The statement on Fsite is proved with similar manipulations, that brings
from (138) to the expression (exact for all T ),

Fsite =
αT

1
kT

vT −1(vT −1)
vT (vT −vT −1)

+ k+1
k

T −1∑

t=0
αt

1
kt

αT
1

kT
1

vT −vT −1
+ 1

kT αT −1 + k−1
k

T −1∑

t=0
αt

1
kt

. (151)

As above the limit T → ∞ can now be taken safely, the converging summations being the
only non-vanishing terms of the numerator and denominator, hence the convergence of Fsite

to (k + 1)/(k − 1), with corrections of order k−T . These corrections actually contribute to
the non-trivial dependence on λ of s and �e (which are both finite) in this regime; we did not
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push their determination further, and merely observe here that their order k−T explains the
statement on the finite T corrections to θmin for k = l = 2 and k = l = 3 made in Sect. 4.2.1.

We have just seen that in the T → ∞ limit the cases λ < λc and λ > λc describe,
respectively, the trivial branch θ > θr of the RS entropy and its vertical segment at θr/2. To
describe the range [θr/2, θr] of non-trivial densities of initially active sites one has thus to
investigate a regime where λ is in a T -dependent scaling window around λc.

Let us denote ṽt the solution of the recursion right at the critical point, i.e. ṽt+1 = 1+λcṽ
k
t ,

with ṽ0 = 1. This series converges to vc, with an asymptotic behaviour which is easily found
to be

ṽt = vc − 2k

(k − 1)2

1

t
+ O

(
1

t2

)

. (152)

Now if λ = λc + δ, with an infinitesimal positive value of δ, the solution vt of the recursion
vt+1 = 1+λvk

t spends a time of order δ−1/2 around the avoided fixed-point vc before crossing
over to the doubly exponentially growing regime investigated above (this is a general feature
of such recursive equations in the neighbourhood of a bifurcation, see for instance [22]). It
is thus natural to investigate the scaling window parametrized by λ̂ as

λ = λc + 2π2 (k − 1)k−2

kk−1

λ̂2

T 2 , (153)

the numerical prefactor and the square on λ̂ being chosen to simplify the following
expressions. One can then look for a solution of the recurrence equation under the form
vt = vc + 1

T V (t/T ), with V (s) a scaling function. Expanding at the leading order in T one
obtains a differential equation on V ,

V ′(s) = 2π2kλ̂2

(k − 1)2 + (k − 1)2

2k
V (s)2 . (154)

The latter can be integrated into

V (s) = − 2k

(k − 1)2

πλ̂

tan(πλ̂s)
, (155)

the constant in the solution of the differential equation being obtained by a matching argument
between the regime s → 0 and the large t asymptotics of the critical series ṽt given in (152).
Note that this form is only valid for λ̂ < 1, otherwise one enters the regime where vT diverges
with T . One can furthermore assume a similar scaling ansatz for the ut , introducing a scaling
function U (s) under the form ut = vc + U (t/T ). Inserting these forms in Eq. (137) yields
a differential equation on U ,

U ′′(s)
U ′(s)

= − (k − 1)2

k
V (s) , (156)

which is integrated in

U ′(s) = B sin2(πλ̂s) , U (s) = A + B

2

(

s − sin(2πλ̂s)

2πλ̂

)

, (157)

with A and B two constants of integration. These can be fixed by imposing the boundary
conditions uT = vT and uT +1 = vT −1, which translates here in U (1) = V (1)/T and
U ′(1) = −V ′(1)/T . Solving these equations yield A and B; considering in particular u0

= vc + U (0) one obtains, at the leading order in a large T expansion,
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u0 = vc + 1

T

λ̂2

sin4(πλ̂)

(

1 − sin(2πλ̂)

2πλ̂

)
π2k

(k − 1)2 − 1

T

λ̂

tan(πλ̂)

2πk

(k − 1)2 . (158)

One realizes at this point that for any fixed λ̂ < 1, the limit of u0 coincides with vc, in
other words we are describing in this regime the end of the trivial branch, with θ ≈ θr .
To describe the non-trivial regime of densities [θr/2, θr] one has thus to further refine the
scaling window, taking now λ̂ approaching 1 in a T -dependent way. The inspection of (158)
reveals that the correct scaling that allows to obtain a non-trivial limit of u0 corresponds to
λ̂ = 1 − O(T −1/4). We shall thus set

λ̂ = 1 − 1√
π

(
λ̃

(k − 1)T

) 1
4

, (159)

with λ̃ > 0 the new parameter describing this scale, the numerical prefactor being cho-
sen for convenience. After a short computation one obtains the limit as T → ∞ of the
thermodynamic quantities in this scaling regime of λ as

u0 (̃λ) = k

k − 1

1 + λ̃

λ̃
, Fsite (̃λ) = 1

k − 1

k + 1 + λ̃

1 + λ̃
, Fedge (̃λ) = k

k − 1

2 + λ̃

1 + λ̃
, (160)

the last two expressions being obtained by inserting the scaling ansatz on ut and vt in the
definitions (125, 138); at the lowest order one can actually replace the vt ’s by vc there. This
yields a parametric representation of the thermodynamic quantities of the RS (resp. energetic
1RSB) formalism in terms of λ̃, by inserting these last results in Eq. (126) (resp. (132,
133)). In the RS case one can check that λ̃ → 0 corresponds to θ → θr/2, while λ̃ → ∞
yields θ → θr , hence this scaling regime allows to cover the desired range [θr/2, θr] for the
densities of initially active sites. It is furthermore possible to invert the relation θ (̃λ), which
yields finally the formula (82) announced in the main text for the entropy of activating initial
configurations of density in the non-trivial interval [θr/2, θr]. In the energetic 1RSB case this
last step does not seem possible and the final result (84) is presented in a form parametrized
by λ̃. We did not embark in a systematic study of the finite T corrections in this regime, it is
however clear that they are polynomially small in T , which justifies the statement made in
Sect. 4.2.1 on the corrections to θmin(T ) for k = l ≥ 4.

Let us finally justify the results presented at the end of Sect. 4.2.1 on the distribution of
activation times. Assuming a finite value of t , the expression of (139) becomes in the regime
parametrized by λ̃:

Fsite (̃λ, t) = λc

u0 (̃λ)

[
ṽk+1

t−1 + (k + 1)̃vk
t−1(u0 (̃λ) − ṽt−1)

]
, (161)

the last summation in (139) yielding a subdominant correction of order 1/T . Note that
Fsite (̃λ, t) tends to Fsite (̃λ) as t → ∞, which means that the support of the distribution
of the activation times does not scale with T in this regime. The expression (92) for the
cumulative distribution of activation times follows then easily from its generic definition
given in Eq. (127), upon expressing all the quantities depending on λ̃ as a function of the
corresponding θ . In the main text we introduced for clarity the series wt = θr ṽt , to allow for
an easier comparison with the distribution of activation times from a random initial condition.
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Asymptotics for l < k

Let us now discuss the solution of the set of Eqs. (119, 120) in the limit T → ∞, in the case
l < k, and justify the statements made in Sect. 4.2.2; as we shall see their behaviour and the
method of study is qualitatively different compared to the case l = k.

We shall first rephrase Eqs. (119, 120) as a single recursive equation, by introducing a
four-dimensional vector wt defined by

wt =

⎛

⎜
⎜
⎝

ut

ut+1

vt

vt−1

⎞

⎟
⎟
⎠ . (162)

The recursive equations (119, 120) on the ut ’s and vt ’s become a single recursion on wt , of
the form wt+1 = R(wt ) where the function R is given by

R

⎛

⎜
⎜
⎝

u
u+
v

v−

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

u+
E(u, u+, v)

v + S(u+, v) − S(u+, v−)

v

⎞

⎟
⎟
⎠ . (163)

The function S was defined in (121), while E(u, u+, v) is given implicitly as
D(E(u, u+, v), v) = D(u+, v) + u+ − u, with the function D of (121). Inverting this
relation one obtains an explicit expression of E :

E(u, u+, v) = v +
(

(u+ − v)k−l+1 + 1

λ
( k

l−1

)
u+ − u

vl−1

) 1
k−l+1

. (164)

We have thus a representation of the time evolution of w as the flow of a discrete dynamical
system in a four-dimensional space. The boundary conditions on the ut ’s and vt ’s translate
into conditions on the allowed values of w0 and wT . The former must indeed lie in the
two-dimensional manifold with v = 1 and v− = 0, while the latter is restricted to the two-
dimensional manifold defined by u = v and u+ = v−. When T → ∞, for a fixed value of
λ, the solution wt of the recursion wt+1 = R(wt ) must find a way to go infinitely slowly
from the first manifold at t = 0 to the second one at t = T → ∞. It must in consequence
remains as close as possible to the fixed points of the evolution map R.

The study of the equation w = R(w) is very simple and shows that these fixed points span
the two-dimensional subspace with u = u+, v = v−. One can then compute the Jacobian
matrix of R on such a fixed-point, and realizes that this matrix has two eigenvalues equal
to 1 (corresponding to the invariance of the fixed-point subspace under u → u + δu and
v → v+δv), and two eigenvalues C(u, v) and 1/C(u, v), where C is the function defined in
(122). All the fixed points have thus an unstable direction, except the one-dimensional set of
fixed points obeying the further condition C(u, v) = 1, which constitutes a line of marginal
fixed points. In the T → ∞ limit the solution wt is thus expected to remain close to this line,
otherwise the flow along the unstable directions forbid to go from one boundary manifold at
t = 0 to the other one at t = T � 1. This analysis is corroborated by the numerical results
presented in Fig. 15, where we show the solution ut , vt determined numerically for some
large but finite value of T . In particular the right panel demonstrate that for most values of t
(i.e. excluding both t finite and T − t finite in the large T limit), the couple (ut , vt ) falls on
the marginal fixed-point line C(u, v) = 1.
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Fig. 15 The solution of the Eqs. (119, 120) for k = 3, l = 2, with λ = 0.005 and T = 400. Left panel the
solid curves are ut (top) and vt (bottom) as functions of t ; the dashed horizontal lines correspond, from top to
bottom, to u∗, û, v̂ and v∗, solutions of (166, 167). Right panel parametric plot of the same data, with symbols
instead of lines to appreciate the discreteness in t . Dashed line is the solution of the equation C(u, v) = 1,
almost superimposed with most of the points (vt , ut ). The arrows point to the beginning (v∗, u∗) and end
(̂v, û) of the scaling regime along the curve C(u, v) = 1

More precisely, the solution ut , vt can be described in the large T limit by two scaling
functions U (s) and V (s), function of a rescaled time s = t/T ∈]0, 1[, such that at the leading
order,

ut = U

(
t

T

)

, vt = V

(
t

T

)

. (165)

Inserting this ansatz in the Eqs. (119, 120), one realizes that the condition C(U (s), V (s)) = 1,
that we obtained intuitively above, is indeed precisely what is needed to enforce (119, 120) at
the leading order in the large T limit. Note that the explicit dependency of U and V on s can
be determined from the sub-dominant corrections in this limit; however we shall not need it
in what follows. It will indeed be enough to compute the value of U and V for t small and t
close to T , i.e. for s around 0 and 1. As revealed by the numerical data presented in Fig. 15,
the matching between the scaling regime described by the functions U, V (i.e. for s strictly
between 0 and 1) and the boundary conditions at t = 0 and t = T affects the series vt but
not ut . In other words, for t finite while T → ∞ one has ut → u∗ = U (0) independently
of t , where u∗ is some (λ dependent) constant still to be determined, while vt converges
to the solution of the recursion vt+1 = vt + S(u∗, vt ) − S(u∗, vt−1) obtained from (120)
by replacing ut by its limit u∗. Equivalently one has in this regime vt+1 = 1 + S(u∗, vt ).
When t → ∞ (after the large T limit) this series vt converges to v∗ = V (0), the smallest
fixed-point solution of this recursion on v; for this behaviour to match the beginning of the
scaling regime (i.e. s → 0) one must impose simultaneously

C(u∗, v∗) = 1 , and v∗ = 1 + S(u∗, v∗) . (166)

The first equation allows to express u∗ as a function of v∗; replacing in the second one leads
to the single equation on v∗ given in Eq. (96), while (97) is nothing but an explicit version
of the condition C(u∗, v∗) = 1. A similar reasoning in the regime T − t finite reveals that
U (1) = û and V (1) = v̂ have to obey

C (̂u, v̂) = 1 , and v̂ = S(̂u, v̂) + û − S(̂u, û) . (167)

It is easy to check that the expressions of û and v̂ given in (95) are indeed solutions of these
two equations, using the equations on θr and x̃r of Eq. (4). By definition for λ ∈]0, λr] one
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Fig. 16 The functions u∗, û, v̂ and v∗ (from top to bottom) solutions of Eqs. (166, 167) as a function of λ

for k = 3, l = 2. The upper two and lower two curves meet in λ = λr . When λ → 0 the upper three curves
diverge, while v∗ converges to l/(l − 1)

has u∗ ≥ û ≥ v̂ ≥ v∗, see Fig. 16 for a representation of the solution of the Eqs. (166, 167)
as a function of λ. In λr , where one recovers the trivial solution studied in Appendix section
“The Trivial Solution”, one has u∗ = û = 1/θr and v∗ = v̂ = x̃r/θr .

Let us now deduce the value of Fsite and Fedge in the large T limit from the above
characterization of the behaviour of the ut ’s and vt ’s. From Eq. (125) one has in this limit

lim
T →∞ Fedge(λ, T ) = 1

u∗

[

û2 − 2
∫ 1

0
ds U ′(s)V (s)

]

, (168)

the matching regimes of t finite and T − t finite having neglectible contributions to the
summation. The integral above can be computed even if we have not determined the time-
dependency of the scaling functions U (s) and V (s): using ds U ′(s) = du and the condition
C(U (s), V (s)) = 1, one has

−
∫ 1

0
ds U ′(s)V (s) =

∫ u∗

û
du v(u) = u∗v∗ − û v̂ +

∫ v̂

v∗
dv u(v) , (169)

where u(v) (resp. v(u)) is the solution of C(u(v), v) = 1 (resp. C(u, v(u)) = 1). The
equation C(u(v), v) = 1 can be explicitly solved into

u(v) = v +
(

λl

(
k

l

))− 1
k−l

v− l−1
k−l . (170)

This allows to compute the integral in (169) and to obtain (99).
We shall now compute similarly the limit of Fsite that was defined in Eq. (124). In that

equation we shall exploit the fact that ut −ut+1 is of order 1/T to perform the approximation

(ut − vt−2)
k+1−p = (ut−1 − vt−2)

k+1−p + (k + 1 − p)

(ut − ut−1)(ut−1 − vt−2)
k−p + O

(
1

T 2

)

. (171)
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Within this approximation the first term leads to a telescopic summation, we then get

Fsite ∼ λ

u0

k+1∑

p=l

(
k + 1

p

)

×
[

v
p
T −1(uT −vT −1)

k+1−p −(k+1 − p)

T∑

t=1

v
p
t−2(ut − ut−1)(ut−1 − vt−2)

k−p

]

(172)

As uT = vT −1 + O(1/T ) in the first summation only the term p = k + 1 survives; the
second term can be rearranged as above in terms of integrals of the scaling functions, namely

lim
T →∞ Fsite(λ, T ) = λ

u∗

⎡

⎣ûk+1 − (k + 1)

k∑

p=l

(
k

p

)∫ 1

0
ds U ′(s)V (s)p(U (s) − V (s))k−p

⎤

⎦

(173)

= λ

u∗

⎡

⎣ûk+1 + (k + 1)

k∑

p=l

(
k

p

)∫ u∗

û
du v(u)p(u − v(u))k−p

⎤

⎦ (174)

= λ

u∗

⎡

⎣ûk+1 + (k + 1)

k∑

p=l

(
k

p

)∫ v̂

v∗
dv (−u′(v))v p(u(v) − v)k−p

⎤

⎦ (175)

Inserting the expression of u(v) given in Eq. (170) yields easily to the value of Fsite written
in (98). The parametric representations of s(θ) and �e(θ) given in Sect. 4.2.2 are then direct
consequences of Eqs. (126, 132, 133).

For what concerns the distribution of activation times, one has in the regime t = sT with
s ∈]0, 1[ the following limit for the function Fsite defined in (128):

lim
T →∞ Fsite(λ, T, t = sT ) = λ

u∗

⎡

⎣
k+1∑

p=l

(
k + 1

p

)

V (s)p(U (s) − V (s))k+1−p

− (k + 1)

k∑

p=l

(
k

p

)∫ s

0
ds′ U ′(s′)V (s′)p(U (s′) − V (s′))k−p

⎤

⎦.

(176)

Studying the limit s → 0+ and s → 1− of this expression leads to the expressions (104)
for the fraction of vertices which activate at the very beginning and at the very end of the
process.
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