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Abstract The Dobrushin comparison theorem is a powerful tool to bound the difference
between the marginals of high-dimensional probability distributions in terms of their local
specifications. Originally introduced to prove uniqueness and decay of correlations of Gibbs
measures, it has been widely used in statistical mechanics as well as in the analysis of algo-
rithms on random fields and interacting Markov chains. However, the classical comparison
theorem requires validity of the Dobrushin uniqueness criterion, essentially restricting its
applicability in most models to a small subset of the natural parameter space. In this paper
we develop generalized Dobrushin comparison theorems in terms of influences between
blocks of sites, in the spirit of Dobrushin–Shlosman and Weitz, that substantially extend
the range of applicability of the classical comparison theorem. Our proofs are based on the
analysis of an associated family of Markov chains. We develop in detail an application of
our main results to the analysis of sequential Monte Carlo algorithms for filtering in high
dimension.

Keywords Dobrushin comparison theorem · Gibbs measures · Filtering algorithms

1 Introduction

The canonical description of a high-dimensional random system is provided by a probability
measure ρ on a (possibly infinite) product space S = ∏i∈I S

i : each site i ∈ I represents
a single degree of freedom, or dimension, of the model. When I is the set of vertices of a
graph, the measure ρ defines a graphical model or a random field. Models of this type are
ubiquitous in statistical mechanics, combinatorics, computer science, statistics, and in many
other areas of science and engineering.
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Let ρ and ρ̃ be two such models that are defined on the same space S. We would like to
address the following basic question: when is ρ̃ a good approximation of ρ? Such questions
arise at a basic level both in understanding the properties of random systems themselves, and
in the analysis of the algorithms that are used to investigate and approximate these systems.
Of course, probability theory provides numerous methods to evaluate the difference between
arbitrary probability measures, but the high-dimensional setting brings specific challenges:
any approximation of practical utility in high dimension must yield error bounds that do
not grow, or at least grow sufficiently slowly, in the model dimension. We therefore seek
quantitative methods that allow to establish dimension-free bounds on high-dimensional
distributions.

A general method to address precisely this problem was developed by Dobrushin [5]
in the context of statistical mechanics. In the approach pioneered by Dobrushin, Lanford,
and Ruelle, an infinite-dimensional system of interacting particles is defined by its local
characteristics: for finite sets of sites J ⊂ I , the conditional distribution ρ(dx J |x I\J ) of
the configuration in J is specified given that the particles outside J are frozen in a fixed
configuration. This local description is a direct consequence of the physical parameters of
the problem. The model ρ is then defined as a probability measure (called a Gibbs measure)
that is compatible with the given system of local conditional distributions; see Sect. 2.1. This
setting gives rise to many classical questions in statistical mechanics [12,21]; for example,
the Gibbs measure may or may not be unique, reflecting the presence of a phase transition.

The Dobrushin comparison theorem [5, Theorem 3] provides a powerful tool to obtain
dimension-free estimates on the difference between the marginals of Gibbs measures ρ and
ρ̃ in terms of the single site conditional distributions ρ(dx j |x I\{ j}) and ρ̃(dx j |x I\{ j}). In its
simplified form due to Föllmer [10], this result has become standard textbook material, cf.
[12, Theorem 8.20], [21, Theorem V.2.2]. It is widely used to establish numerous properties
of Gibbs measures, including uniqueness, decay of correlations, global Markov properties,
and analyticity [11,12,21], as well as functional inequalities and concentration of measure
properties [13,15,26], and has similarly proved to be useful in the analysis of algorithms on
random fields and interacting Markov chains [2,18,22,27].

Despite this broad array of applications, the assumptions required by the Dobrushin com-
parison theorem prove to be rather stringent. This can already be seen in the easiest qualitative
consequence of this result: the comparison theorem implies uniqueness of the Gibbs mea-
sure under the well-known Dobrushin uniqueness criterion [5]. Unfortunately, this criterion
is restrictive: even in models where uniqueness can be established by explicit computation,
the Dobrushin uniqueness criterion holds only in a small subset of the natural parameter
space (see, e.g., [25] for examples). This suggests that the Dobrushin comparison theorem
is a rather blunt tool. On the other hand, it is also known that the Dobrushin uniqueness
criterion can be substantially improved: this was accomplished in Dobrushin and Shlosman
[4] by considering a local description in terms of larger blocks ρ(dx J |x I\J ) instead of the
single site specification ρ(dx j |x I\{ j}). In this manner, it is often possible to capture a large
part of or even the entire uniqueness region. The uniqueness results of Dobrushin and Shlos-
man were further generalized by Weitz [25], who developed general combinatorial criteria
for uniqueness. However, while the proofs of Dobrushin–Shlosman and Weitz also provide
some information on decay of correlations, they do not provide an analogue of the powerful
machinery for obtaining quantitative estimates on the difference between the marginal distri-
butions of different Gibbs measures ρ and ρ̃ that the Dobrushin comparison theorem yields
in its more restrictive setting.

The aim of the present paper is to fill this gap. Our main results (Theorems 2.3 and
2.9) provide a direct extension of the Dobrushin comparison theorem to the much more
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general setting considered by Weitz [25], substantially extending the range of applicability
of the classical comparison theorem. While the classical comparison theorem is an immediate
consequence of our main result (Corollary 2.4), the usual proof does not appear to extend
easily beyond the single site setting. We therefore develop a different, though certainly related,
method of proof that systematically exploits the connection of Markov chains. In particular,
our main results are derived from a more general comparison theorem for Markov chains
that is applied to a suitably defined family of Gibbs samplers, cf. Sect. 3 below.

Our original motivation for developing generalized comparison theorems was the inves-
tigation of algorithms for filtering in high dimension. Filtering—the computation of the
conditional distributions of a random dynamical system given observed data—is a problem
that arises in a wide array of applications in science and engineering. Modern filtering algo-
rithms utilize sequential Monte Carlo methods to efficiently approximate the conditional
distributions [1]. Unfortunately, such algorithms suffer heavily from the curse of dimen-
sionality, making them largely useless in complex data assimilation problems that arise in
high-dimensional applications such as weather forecasting (the state-of-the-art in such appli-
cations is still dominated by ad-hoc methods). Motivated by such problems, we have begun
to investigate in [18] a class of regularized filtering algorithms that can, in principle, exhibit
dimension-free performance in models that possess decay of correlations. For the simplest
possible algorithm of this type, dimension-free error bounds are proved in [18] by systematic
application of the Dobrushin comparison theorem.

In order to ensure decay of correlations, [18] imposes a weak interactions assumption that
is dictated by the Dobrushin comparison theorem. As will be explained in Sect. 4, however,
this assumption is unsatisfactory already at the qualitative level: it limits not only the spatial
interactions (as is needed to ensure decay of correlations) but also the dynamics in time.
Overcoming this unnatural restriction requires a generalized comparison theorem, which
provided the motivation for our main results. As an illustration of our main results, and as a
problem of interest in its own right, the application to filtering algorithms will be developed
in detail in Sect. 4.

The remainder of this paper is organized as follows. Section 2 introduces the basic setup
and notation to be used throughout the paper, and states our main results. While the compari-
son theorem, being quantitative in nature, is already of interest in the finite setting card I < ∞
(unlike the qualitative uniqueness questions that are primarily of interest when card I = ∞),
we will develop our main results in a general setting that admits infinite-range interactions.
The proofs of the main results are given in Sect. 3. The application to filtering algorithms is
finally developed in Sect. 4.

2 Main Results

2.1 Setting and Notation

We begin by introducing the basic setting that will be used throughout this section.

Sites and Configurations

Let I be a finite or countably infinite set of sites. Each subset J ⊆ I is called a region; the
set of finite regions will be denoted as

I := {J ⊆ I : card J < ∞}.
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To each site i ∈ I is associated a measurable space S
i , the local state space. A configuration

is an assignment xi ∈ S
i to each site i ∈ I . The set of all configurations S, and the set S

J of
configurations in a given region J ⊆ I , are defined as

S :=
∏

i∈I

S
i , S

J :=
∏

i∈J

S
i .

For x = (xi )i∈I ∈ S, we denote by x J := (xi )i∈J ∈ S
J the natural projection on S

J . When
J ∩ K = ∅, we define z = x J yK ∈ S

J∪K such that z J = x J and zK = yK .

Local Functions

A function f : S → R is said to be J -local if f (x) = f (z) whenever x J = z J , that is, if
f (x) depends on x J only. The function f is said to be local if it is J -local for some finite
region J ∈ I. When I is a finite set, every function is local. When I is infinite, however, we
will frequently restrict attention to local functions. More generally, we will consider a class
of “nearly” local functions to be defined presently.

Given any function f : S → R, define for J ∈ I and x ∈ S the J -local function

f J
x (z) := f (z J x I\J ).

f is called quasilocal if it can be approximated pointwise by the local functions f J
x :

lim
J∈I

| f J
x (z)− f (z)| = 0 for all x, z ∈ S,

where limJ∈I aJ denotes the limit of the net (aJ )J∈I where I is directed by inclusion ⊆
(equivalently, aJ → 0 if and only if aJi → 0 for every sequence J1, J2, . . . ∈ I such that
J1 ⊆ J2 ⊆ · · · and

⋃
i Ji = I ). Let us note that this notion is slightly weaker than the

conventional notion of quasilocality used, for example, in [12].

Metrics

In the sequel, we fix for each i ∈ I a metric ηi on S
i (we assume throughout that ηi is

measurable as a function on S
i × S

i ). We will write ‖ηi‖ = supx,z ηi (x, z).
Given a function f : S → R and i ∈ I , we define

δi f := sup
x,z∈S:x I\{i}=z I\{i}

| f (x)− f (z)|
ηi (xi , zi )

.

The quantity δi f measures the variability of f (x) with respect to the variable xi .

Matrices

The calculus of possibly infinite nonnegative matrices will appear repeatedly in the sequel.
Given matrices A = (Ai j )i, j∈I and B = (Bi j )i, j∈I with nonnegative entries Ai j ≥ 0 and
Bi j ≥ 0, the matrix product is defined as usual by

(AB)i j =
∑

k∈I

Aik Bk j .

This quantity is well defined as the terms in the sum are all nonnegative, but (AB)i j may
possibly take the value +∞. As long as we consider only nonnegative matrices, all the usual
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rules of matrix multiplication extend to infinite matrices provided that we allow entries with
the value +∞ and that we use the convention +∞ · 0 = 0 (this follows from the Fubini–
Tonelli theorem, cf. [6, Chap. 4]). In particular, the matrix powers Ak , k ≥ 1 are well defined,
and we define A0 = I where I := (1i= j )i, j∈I denotes the identity matrix. We will write
A < ∞ if the nonnegative matrix A satisfies Ai j < ∞ for every i, j ∈ I .

Kernels, Covers, Local Characteristics

A transition kernel γ from a measurable space (�,F) to a measurable space (�′,F′) is a
map γ : � × F′ → R such that ω �→ γω(A) is a measurable function for each A ∈ F′ and
γω(·) is a probability measure for each ω ∈ �, cf. [14]. Given a probability measure μ on �
and function f on�′, we define as usual the probability measure (μγ )(A) = ∫ μ(dω)γω(A)
on�′ and function (γ f )(ω) = ∫ γω(dω′) f (ω′) on�. A transition kernel γ between product
spaces is called quasilocal if γ f is quasilocal for every bounded and measurable quasilocal
function f .

Our interest throughout this paper is in models of random configurations, described by
a probability measure μ on S. We would like to understand the properties of such models
based on their local characteristics. A natural way to express the local structure in a finite
region J ∈ I is to consider the conditional distribution γ J

x (dz J ) = μ(dz J |x I\J ) of the
configuration in J given a fixed configuration x I\J for the sites outside J : conceptually, γ J

describes how the sites in J “interact” with the sites outside J . The conditional distribution
γ J is a transition kernel from S to S

J . To obtain a complete local description of the model,
we must consider a class of finite regions J that covers the entire set of sites I . Let us call a
collection of regions J ⊆ I a cover of I if every site i ∈ I is contained in at least one element
of J (note that, by definition, a cover contains only finite regions). Given any cover J, the
collection (γ J )J∈J provides a local description of the model.

In fact, our main results will hold in a more general setting than is described above. Let
μ be a probability measure on S and γ J be transition kernel from S to S

J . We say that μ is
γ J -invariant if for every bounded measurable function f

∫

μ(dx) f (x) =
∫

μ(dx) γ J
x (dz J ) f (z J x I\J );

by a slight abuse of notation, we will also write μ f = μγ J f J . This means that if the
configuration x is drawn according to μ, its distribution is unchanged if we replace the
configuration x J inside the region J by a random sample from the distribution γ J

x , keeping
the configuration x I\J outside J fixed. Our main results will be formulated in terms of
a collection of transition kernels (γ J )J∈J such that J is a cover of I and such that μ is
γ J -invariant for every J ∈ J. If we choose γ J

x (dz J ) = μ(dz J |x I\J ) as above, then the γ J -
invariance ofμ holds by construction [14, Theorem 6.4]; however, any family of γ J -invariant
kernels will suffice for the validity of our main results.

Remark 2.1 The idea that the collection (γ J )J∈J provides a natural description of high-
dimensional probability distributions is prevalent in many applications. Statistical mechanical
models are usually defined in terms of such a family: to this end, one fixes a priori a family
of transition kernels (γ J )J∈I, called a specification, that describes the local characteristics
of the model. The definition of γ J is done directly in terms of the parameters of the problem
(the potentials that define the physical interactions). A measure μ on S is called a Gibbs
measure for the given specification if μ(dz J |x I\J ) = γ J

x (dz J ) for every J ∈ I, cf. [12,21].
The construction of Gibbs measures from specifications is not essential for the validity or
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applicability of our results, however: for example, in the application in Sect. 4 the model
is defined by certain conditional distributions of a high-dimensional Markov chain, and the
collection (γ J )J∈J is merely a device that is used in the proof. For this reason, we have not
phrased our results in terms of Gibbs measures, but rather in the more general setting of a
probability measure together with a family of invariant kernels.

2.2 Main Result

Let ρ and ρ̃ be probability measures on the space of configurations S. Our main result,
Theorem 2.3 below, provides a quantitative bound on the difference between ρ and ρ̃ in
terms of their local characteristics. Before we can state our results, we must first introduce
some basic notions. Our terminology is inspired by Weitz [25].

As was explained above, the local description of a probability measure ρ on S will be
provided in terms of a family of transition kernels. We formalize this as follows.

Definition 2.1 A local update rule for ρ is a collection (γ J )J∈J where J is a cover of I , γ J

is a transition kernel from S to S
J and ρ is γ J -invariant for every J ∈ J.

In order to compare two measures ρ and ρ̃ on the basis of their local update rules (γ J )J∈J

and (γ̃ J )J∈J, we must quantify two separate effects. On the one hand, we must understand
how the two models differ locally: that is, we must quantify how γ J

x and γ̃ J
x differ when

acting on the same configuration x . On the other hand, we must understand how perturbations
to the local update rule in different regions interact: to this end, we will quantify the extent
to which γ J

x and γ J
z differ for different configurations x, z. Both effects will be addressed by

introducing a suitable family of couplings. Recall that a probability measure Q on a product
space � × � is called a coupling of two probability measures μ, ν on � if its marginals
coincide with μ, ν, that is, if Q( · ×�) = μ and Q(�× · ) = ν.

Definition 2.2 A coupled update rule for (ρ, ρ̃) is a collection (γ J , γ̃ J , Q J , Q̂ J )J∈J, where
J is a cover of I , such that the following properties hold:

1. (γ J )J∈J and (γ̃ J )J∈J are local update rules for ρ and ρ̃, respectively.
2. Q J

x,z is a coupling of γ J
x , γ

J
z for all J ∈ J, x, z ∈ S with card{i : xi 
= zi } = 1.

3. Q̂ J
x is a coupling of γ J

x , γ̃
J

x for all J ∈ J, x ∈ S.

We can now state our main result.

Theorem 2.3 Let J be a cover of I , let (wJ )J∈J be a family of strictly positive weights, and
let (γ J , γ̃ J , Q J , Q̂ J )J∈J be a coupled update rule for (ρ, ρ̃). Define

Wi j := 1i= j

∑

J∈J:i∈J

wJ ,

Ri j := sup
x,z∈S:

x I\{ j}=z I\{ j}

1

η j (x j , z j )

∑

J∈J:i∈J

wJ Q J
x,zηi ,

a j :=
∑

J∈J: j∈J

wJ

∫ ∗
ρ̃(dx) Q̂ J

x η j

for i, j ∈ I . Assume that γ J is quasilocal for every J ∈ J, and that

Wii ≤ 1 and lim
n→∞
∑

j∈I

(I − W + R)ni j (ρ ⊗ ρ̃)η j = 0 for all i ∈ I. (1)
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Then we have

|ρ f − ρ̃ f | ≤
∑

i, j∈I

δi f Di j W −1
j j a j where D :=

∞∑

n=0

(W −1 R)n,

for any bounded measurable quasilocal function f such that δi f < ∞ for all i ∈ I .

Remark 2.2 While it is essential in the proof that γ J and γ̃ J are transition kernels, we do not
require that Q J and Q̂ J are transition kernels in Definition 2.2, that is, the couplings Q J

x,z

and Q̂ J
x need not be measurable in x, z. It is for this reason that a j are defined in terms of an

outer integral rather than an ordinary integral [23]:
∫ ∗

f (x) ρ(dx) := inf

{∫

g(x) ρ(dx) : f ≤ g, g is measurable

}

.

When x �→ Q̂ J
x η j is measurable this issue can be disregarded. In practice measurability will

hold in all but pathological cases, but may not always be trivial to prove. We therefore allow
for nonmeasurable couplings for sake of technical convenience, so that it is not necessary to
check measurability when applying Theorem 2.3.

The proof of Theorem 2.3 will be given in Sects. 3.1–3.3. At the heart of the proof lies
a general but rather elementary comparison theorem for the invariant measures ρ and ρ̃ of
two given Markov kernels G and G̃, which is proved in Sect. 3.1. If

∑
J wJ < ∞, then ρ, ρ̃

are invariant for G ∝ ∑J wJγ
J and G̃ ∝ ∑J wJ γ̃

J by construction, and the application
of the general comparison theorem of Sect. 3.1 is straightforward. In this case, an essentially
complete proof is obtained in Sect. 3.2. The main complication in Theorem 2.3 is that we
have not assumed summability of the weights; the analysis of the general case is performed
in Sect. 3.3.

In the remainder of this section, we formulate a number of special cases and extensions
of Theorem 2.3. A detailed application is developed in Sect. 4.

2.3 The Classical Comparison Theorem

The original comparison theorem of Dobrushin [5, Theorem 3] and its formulation due to
Föllmer [10] correspond to the special case of Theorem 2.3 where the cover J = Js := {{i} :
i ∈ I } consists of single sites. For example, the main result of [10] follows readily from
Theorem 2.3 under a mild regularity assumption. To formulate it, recall that the Wasserstein
distance dη(μ, ν) between probability measures μ and ν on a measurable space � with
respect to a measurable metric η is defined as

dη(μ, ν) := inf
Q(·×�)=μ
Q(�×·)=ν

Qη,

where the infimum is taken over probability measures Q on�×� with the given marginals
μ and ν. We now obtain the following (cf. [10] and [11, Remark 2.17]).

Corollary 2.4 ([10]) Assume S
i is Polish and ηi is lower-semicontinuous for all i ∈ I . Let

(γ {i})i∈I and (γ̃ {i})i∈I be local update rules for ρ and ρ̃, respectively, and let

Ci j := sup
x,z∈S:

x I\{ j}=z I\{ j}

dηi (γ
{i}
x , γ

{i}
z )

η j (x j , z j )
, b j :=

∫ ∗
ρ̃(dx) dη j (γ

{ j}
x , γ̃

{ j}
x ).
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Assume that γ {i} is quasilocal for every i ∈ I , and that

lim
n→∞
∑

j∈I

Cn
i j (ρ ⊗ ρ̃)η j = 0 for all i ∈ I.

Then we have

|ρ f − ρ̃ f | ≤
∑

i, j∈I

δi f Di j b j where D :=
∞∑

n=0

Cn,

for any bounded measurable quasilocal function f such that δi f < ∞ for all i ∈ I .

If Q{i}
x,z, Q̂{i}

x are minimizers in the definition of dηi (γ
{i}
x , γ

{i}
z ), dηi (γ

{i}
x , γ̃

{i}
x ), respec-

tively, and if we let J = Js andw{i} = 1 for all i ∈ I , then Corollary 2.4 follows immediately
from Theorem 2.3. For simplicity, we have imposed the mild topological regularity assump-
tion on S

i and ηi to ensure the existence of minimizers [24, Theorem 4.1] (when minimizers
do not exist, it is possible to obtain a similar result by using near-optimal couplings). Note
that when ηi (x, z) = 1x 
=z is the trivial metric, the Wasserstein distance reduces to the total
variation distance

dη(μ, ν) = 1

2
‖μ− ν‖ := 1

2
sup

f :‖ f ‖≤1
|μ f − ν f | when η(x, z) = 1x 
=z,

and an optimal coupling exists in any measurable space [5, p. 472]. Thus in this case no
regularity assumptions are needed, and Corollary 2.4 reduces to the textbook comparison
theorem that appears, e.g., in [12, Theorem 8.20] or [21, Theorem V.2.2].

While the classical comparison theorem of Corollary 2.4 follows from our main result,
it should be emphasized that the single site assumption J = Js is a significant restriction.
The general statement of Theorem 2.3 constitutes a crucial improvement that substantially
extends the range of applicability of the comparison method, as we will see below and in
Sect. 4. Let us also note that the proofs in [5,10], based on the “method of estimates,” do not
appear to extend easily beyond the single site setting.

2.4 Alternative Assumptions

The key assumption of Theorem 2.3 is (1). The aim of the present section is to obtain useful
alternatives to assumption (1) that are easily verified in practice.

We begin by defining the notion of a tempered measure [11, Remark 2.17].

Definition 2.5 A probability measure μ on S is called x	-tempered if

sup
i∈I

∫

μ(dx) ηi (xi , x	i ) < ∞.

In the sequel x	 ∈ S will be considered fixed and μ will be called tempered.

It is often the case in practice that the collection of metrics is uniformly bounded, that is,
supi ‖ηi‖ < ∞. In this case, every probability measure on S is trivially tempered. However,
the restriction to tempered measures may be essential when the spaces S

i are noncompact
(see [5, Sect. 5] for an illuminating example).

Let us recall that a norm ‖ · ‖ defined on an algebra of square (possibly infinite) matrices
is called a matrix norm if ‖AB‖ ≤ ‖A‖ ‖B‖. We also recall that the matrix norms ‖ · ‖∞ and
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‖ · ‖1 are defined for nonnegative matrices A = (Ai j )i, j∈I as

‖A‖∞ := sup
i∈I

∑

j∈I

Ai j , ‖A‖1 := sup
j∈I

∑

i∈I

Ai j .

The following result collects various alternatives to (1). It is proved in Sect. 3.4.

Corollary 2.6 Suppose that ρ and ρ̃ are tempered. Then the conclusion of Theorem 2.3
remains valid when the assumption (1) is replaced by one of the following:

1. card I < ∞ and D < ∞.
2. card I < ∞, R < ∞, and ‖(W −1 R)n‖ < 1 for some n ≥ 1, matrix norm ‖ · ‖.
3. supi Wii < ∞ and ‖W −1 R‖∞ < 1.
4. supi Wii < ∞, ‖RW −1‖∞ < ∞, and ‖(RW −1)n‖∞ < 1 for some n ≥ 1.
5. supi Wii < ∞,

∑
i ‖ηi‖ < ∞, and ‖RW −1‖1 < 1.

6. supi Wii < ∞, there exists a metric m on I such that sup{m(i, j) : Ri j > 0} < ∞ and
supi
∑

j e−βm(i, j) < ∞ for all β > 0, and ‖RW −1‖1 < 1.

The conditions of Corollary 2.6 are closely related to the uniqueness of Gibbs measures.
Suppose that the collection of quasilocal transition kernels (γ J )J∈J is a local update rule
for ρ. It is natural to ask whether ρ is the unique measure that admits (γ J )J∈J as a local
update rule (see Remark 2.1). We now observe that uniqueness is a necessary condition for
the conclusion of Theorem 2.3. Indeed, let ρ̃ be another measure that admits the same local
update rule. If (1) holds, we can apply Theorem 2.3 with γ̃ J = γ J and a j = 0 to conclude
that ρ̃ = ρ. In particular,

∑
j (I − W + R)ni j → 0 in Theorem 2.3 implies uniqueness in the

class of tempered measures.
Of course, the point of Theorem 2.3 is that it provides a quantitative tool that goes far

beyond qualitative uniqueness questions. It is therefore interesting to note that this single
result nonetheless captures many uniqueness conditions that appear in the literature. In Corol-
lary 2.6, Condition 3 is precisely the “influence on a site” condition of Weitz [25, Theorem
2.5] (our setting is even more general in that we do not require bounded-range interactions).
Conditions 5 and 6 constitute a slight strengthening of the “influence of a site” condition of
Weitz [25, Theorem 2.7] under summable metric or subexponential graph assumptions, in
the spirit of the classical uniqueness condition of Dobrushin and Shlosman [4]. In the finite
setting with single site updates, Condition 2 is in the spirit of [8] and Condition 4 is in the
spirit of [7].

On the other hand, we can now see that Theorem 2.3 provides a crucial improvement
over the classical comparison theorem. The single site setting of Corollary 2.4 corresponds
essentially to the original Dobrushin uniqueness regime [5]. It is well known that this setting
is restrictive, in that it captures only a small part of the parameter space where uniqueness of
Gibbs measures holds. It is precisely for this reason that Dobrushin and Shlosman introduced
their improved uniqueness criterion in terms of larger blocks [4], which in many cases allows
to capture a large part of or even the entire uniqueness region; see [25, Sect. 5] for examples.
The generalized comparison Theorem 2.3 in terms of larger blocks can therefore be fruitfully
applied to a much larger and more natural class of models than the classical comparison
theorem. This point will be further emphasized in the context of the application in Sect. 4.

Remark 2.3 The “influence of a site” condition ‖RW −1‖1 < 1 that appears in Corollary 2.6
is slightly stronger than the corresponding condition of Dobrushin–Shlosman [4] and Weitz
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[25, Theorem 2.7]. Writing out the definition of R, our condition reads

‖RW −1‖1 = sup
j∈I

W −1
j j

∑

i∈I

sup
x,z∈S:

x I\{ j}=z I\{ j}

1

η j (x j , z j )

∑

J∈J:i∈J

wJ Q J
x,zηi < 1,

while the condition of [25, Theorem 2.7] (which extends the condition of [4]) reads

sup
j∈I

W −1
j j sup

x,z∈S:
x I\{ j}=z I\{ j}

1

η j (x j , z j )

∑

i∈I

∑

J∈J:i∈J

wJ Q J
x,zηi < 1.

The latter is slightly weaker as the sum over sites i appears inside the supremum over
configurations x, z. While the distinction between these conditions is inessential in many
applications, there do exist situations in which the weaker condition yields an essential
improvement, see, e.g., [25, Sect. 5.3]. In such problems, Theorem 2.3 is not only limited
by the stronger uniqueness condition but could also lead to poor quantitative bounds, as the
comparison bound is itself expressed in terms of the uniform influence coefficients Ri j . It
could therefore be of interest to develop comparison theorems that are able to exploit the finer
structure that is present in the weaker uniqueness condition. In fact, the proof of Theorem
2.3 already indicates a natural approach to such improved bounds. However, the resulting
comparison theorems are necessarily nonlinear in that the action of the matrix R is replaced
by a nonlinear operator R. The nonlinear expressions are somewhat difficult to handle in
practice, and as we do not at present have a compelling application for such bounds we do
not pursue this direction here. However, for completeness, we will briefly sketch how such
bounds can be obtained in Remark 3.1 below.

2.5 A One-Sided Comparison Theorem

As was discussed in Sect. 2.1, it is natural in many applications to describe high-dimensional
probability distributions in terms of local conditional probabilities of the form μ(dz J |x I\J ).
This is in essence a static picture, where we describe the behavior of each local region J
given that the configuration of the remaining sites I\J is frozen. In models that possess
dynamics, this description is not very natural. In this setting, each site i ∈ I occurs at a given
time τ(i), and its state is only determined by the configuration of sites j ∈ I in the past
and present τ( j) ≤ τ(i), but not by the future. For example, the model might be defined
as a high-dimensional Markov chain whose description is naturally given in terms of one-
sided conditional probabilities (see, e.g., [9] and the application in Sect. 4). It is therefore
interesting to note that the original comparison theorem of Dobrushin [5] is actually more
general than Corollary 2.4 in that it is applicable both in the static and dynamic settings. We
presently develop an analogous generalization to Theorem 2.3.

For the purposes of this section, we assume that we are given a function τ : I → Z that
assigns to each site i ∈ I an integer index τ(i). We define

I≤k := {i ∈ I : τ(i) ≤ k}, S≤k := S
I≤k ,

and for any probability measure ρ on S we denote by ρ≤k the marginal on S≤k .

Definition 2.7 A one-sided local update rule for ρ is a collection (γ J )J∈J where

1. J is a cover of I such that mini∈J τ(i) = maxi∈J τ(i) =: τ(J ) for every J ∈ J.
2. γ J is a transition kernel from S≤τ(J ) to S

J .
3. ρ≤τ(J ) is γ J -invariant for every J ∈ J.
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The canonical example of a one-sided local update rule is to consider the one-sided
conditional distributions γ J

x (dz J ) = ρ(dz J |x I≤τ(J )\J ). This situation is particularly useful
in the investigation of interacting Markov chains or probabilistic cellular automata, cf. [5,9],
where τ( j) denotes the time index of the site j and we condition only on the past and present,
but not on the future.

Definition 2.8 A one-sided coupled update rule for (ρ, ρ̃) is a collection of transition kernels
(γ J , γ̃ J , Q J , Q̂ J )J∈J such that the following hold:

1. (γ J )J∈J and (γ̃ J )J∈J are one-sided local update rules for ρ and ρ̃, respectively.
2. Q J

x,z is a coupling of γ J
x , γ

J
z for J ∈ J, x, z ∈ S≤τ(J ) s.t. card{i : xi 
= zi } = 1.

3. Q̂ J
x is a coupling of γ J

x , γ̃
J

x for J ∈ J, x ∈ S≤τ(J ).

We can now state a one-sided counterpart to Theorem 2.3.

Theorem 2.9 Let (γ J , γ̃ J , Q J , Q̂ J )J∈J be a one-sided coupled update rule for (ρ, ρ̃) and
let (wJ )J∈J be a family of strictly positive weights. Define the matrices W and R and the
vector a as in Theorem 2.3. Assume that γ J is quasilocal for every J ∈ J,

∑

j∈I

Di j (ρ ⊗ ρ̃)η j < ∞ for all i ∈ I where D :=
∞∑

n=0

(W −1 R)n, (2)

and that (1) holds. Then we have

|ρ f − ρ̃ f | ≤
∑

i, j∈I

δi f Di j W −1
j j a j

for any bounded measurable quasilocal function f such that δi f < ∞ for all i ∈ I .

Note that the result of Theorem 2.9 is formally the same as that of Theorem 2.3, except
that we have changed the nature of the update rules used in the coefficients. We also require a
further assumption (2) in addition to assumption (1) of Theorem 2.3, but this is not restrictive
in practice: in particular, it is readily verified that the conclusion of Theorem 2.9 holds under
any of the conditions of Corollary 2.6.

3 Proofs

3.1 General Comparison Principle

The proof of Theorem 2.3 is derived from a general comparison principle for Markov chains
that will be formalized in this section. The basic idea behind this principle is to consider two
transition kernels G and G̃ on S such that ρG = G and ρ̃G̃ = ρ̃. One should think of G as
the transition kernel of a Markov chain that admits ρ as its invariant measure, and similarly
for G̃. The comparison principle of this section bounds the difference between the invariant
measures ρ and ρ̃ in terms of the transition kernels G and G̃. In the following sections, we
will apply this principle to a specific choice of G and G̃ that is derived from the coupled
update rule.

We first recall a standard notion in the analysis of high-dimensional Markov chains [9]
(note that our indices are reversed as compared to the definition in [9]).
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Definition 3.1 (Vi j )i, j∈I is a Wasserstein matrix for a transition kernel G on S if

δ j G f ≤
∑

i∈I

δi f Vi j

for every j ∈ I and bounded and measurable quasilocal function f .

We now state our general comparison principle.

Proposition 3.2 Let G and G̃ be transition kernels on S such that ρG = ρ and ρ̃G̃ = ρ̃,
and let Qx be a coupling between the measures Gx and G̃x for every x ∈ S. Assume that G
is quasilocal, and let V be a Wasserstein matrix for G. Then we have

|ρ f − ρ̃ f | ≤
∑

i, j∈I

δi f N (n)
i j

∫ ∗
ρ̃(dx) Qxη j +

∑

i, j∈I

δi f V n
i j (ρ ⊗ ρ̃)η j ,

where we defined

N (n) :=
n−1∑

k=0

V k,

for any bounded and measurable quasilocal function f and n ≥ 1.

Theorem 2.3 will be derived from this result. Roughly speaking, we will design the kernel
G such that V = I − W + R is a Wasserstein matrix; then assumption (1) implies that the
second term in Proposition 3.2 vanishes as n → ∞, and the result of Theorem 2.3 reduces
to some matrix algebra (as will be explained below, however, a more complicated argument
is needed to obtain Theorem 2.3 in full generality).

To prove Proposition 3.2 we require a simple lemma.

Lemma 3.3 Let Q be a coupling of probability measures μ, ν on S. Then

|μ f − ν f | ≤
∑

i∈I

δi f Qηi

for every bounded and measurable quasilocal function f .

Proof Let J ∈ I. Enumerate its elements arbitrarily as J = { j1, . . . , jr }, and define Jk

= { j1, . . . , jk} for 1 ≤ k ≤ r and J0 = ∅. Then we can evidently estimate

| f J
x (z)− f J

x (z̃)| ≤
r∑

k=1

| f J
x (z

Jk z̃ J\Jk )− f J
x (z

Jk−1 z̃ J\Jk−1)| ≤
∑

j∈J

δ j f η j (z j , z̃ j ).

As f is quasilocal, we can let J ↑ I to obtain

| f (z)− f (z̃)| ≤
∑

i∈I

δi f ηi (zi , z̃i ).

The result follows readily as |μ f − ν f | ≤ ∫ | f (z)− f (z̃)| Q(dz, dz̃). ��

We now proceed to the proof of Proposition 3.2.
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Proof (Proposition 3.2) We begin by writing

|ρ f − ρ̃ f | = |ρGn f − ρ̃G̃n f |

≤
n−1∑

k=0

|ρ̃G̃n−k−1Gk+1 f − ρ̃G̃n−k Gk f | + |ρGn f − ρ̃Gn f |

=
n−1∑

k=0

|ρ̃GGk f − ρ̃G̃Gk f | + |ρGn f − ρ̃Gn f |.

As G is assumed quasilocal, Gk f is quasilocal, and thus Lemma 3.3 yields

|ρ̃GGk f − ρ̃G̃Gk f | ≤
∫

ρ̃(dx) |Gx Gk f − G̃x Gk f |

≤
∫ ∗

ρ̃(dx)
∑

j∈I

δ j G
k f Qxη j

≤
∑

i, j∈I

δi f V k
i j

∫ ∗
ρ̃(dx) Qxη j .

Similarly, as ρ ⊗ ρ̃ is a coupling of ρ, ρ̃, we obtain by Lemma 3.3

|ρGn f − ρ̃Gn f | ≤
∑

j∈I

δ j G
n f (ρ ⊗ ρ̃)η j ≤

∑

i, j∈I

δi f V n
i j (ρ ⊗ ρ̃)η j .

Thus the proof is complete. ��
3.2 Gibbs Samplers

To put Proposition 3.2 to good use, we must construct kernels G and G̃ for which ρ and ρ̃
are invariant, and that admit tractable estimates for the quantities in the comparison theorem
in terms of the coupled update rule (γ J , γ̃ J , Q J , Q̂ J )J∈J and weights (wJ )J∈J. To this
end, we will use a standard construction called the Gibbs sampler: at each time, we draw
a region J ∈ J with probability vJ ∝ wJ , and then apply the transition kernel γ J to the
current configuration. This defines a transition kernel G for which ρ is G-invariant (as ρ
is γ J -invariant for every J ∈ J). The construction for G̃ is identical. As will be explained
below, this is not the most natural construction for the proof of our results; however, it will
form the basis for further computations.

We fix throughout this section a coupled update rule (γ J , γ̃ J , Q J , Q̂ J )J∈J for (ρ, ρ̃) and
weights (wJ )J∈J satisfying the assumptions of Theorem 2.3. Let v = (vJ )J∈J be nonnegative
weights such that

∑
J vJ ≤ 1. We define the Gibbs samplers

Gv
x (A) :=

⎛

⎝1 −
∑

J∈J

vJ

⎞

⎠ 1A(x)+
∑

J∈J

vJ

∫

1A(z
J x I\J ) γ J

x (dz J ),

G̃v
x (A) :=

⎛

⎝1 −
∑

J∈J

vJ

⎞

⎠ 1A(x)+
∑

J∈J

vJ

∫

1A(z
J x I\J ) γ̃ J

x (dz J ).

Evidently Gv and G̃v are transition kernels on S, and ρGv = ρ and ρ̃G̃v = ρ̃ by construction.
To apply Proposition 3.2, we must establish some basic properties.
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Lemma 3.4 Assume that γ J is quasilocal for every J ∈ J. Then Gv is quasilocal.

Proof Let f : S → S be a bounded and measurable quasilocal function. It evidently suffices
to show that γ J f J is quasilocal for every J ∈ J. To this end, let us fix J ∈ J, x, z ∈ S, and
J1, J2, . . . ∈ I such that J1 ⊆ J2 ⊆ · · · and

⋃
i Ji = I . Then we have

γ J
z Ji x I\Ji

i→∞−−−→ γ J
z setwise

as γ J is quasilocal. On the other hand, we have

f J
z Ji x I\Ji

i→∞−−−→ f J
z pointwise

as f is quasilocal. Thus by [19, Proposition 18, p. 270] we obtain

γ J
z Ji x I\Ji

f J
z Ji x I\Ji

i→∞−−−→ γ J
z f J

z .

As the choice of x, z and (Ji )i≥1 is arbitrary, the result follows. ��
Lemma 3.5 Assume that γ J is quasilocal for every J ∈ J, and define

W v
i j := 1i= j

∑

J∈J:i∈J

vJ ,

Rv
i j := sup

x,z∈S:
x I\{ j}=z I\{ j}

1

η j (x j , z j )

∑

J∈J:i∈J

vJ Q J
x,zηi .

Then V v = I − W v + Rv is a Wasserstein matrix for Gv.

Proof Let f : S → S be a bounded measurable quasilocal function, and let x, z ∈ S be
configurations that differ at a single site card{i ∈ I : xi 
= zi } = 1. Note that

γ J
x f J

x = (γ J
x ⊗ δx I\J ) f, γ J

z f J
z = (γ J

z ⊗ δz I\J ) f.

As Q J
x,z is a coupling of γ J

x and γ J
z by construction, the measure Q J

x,z ⊗ δx I\J ⊗ δz I\J is a
coupling of γ J

x ⊗ δx I\J and γ J
z ⊗ δz I\J . Thus Lemma 3.3 yields

|γ J
x f J

x − γ J
z f J

z | ≤
∑

i∈I

δi f (Q J
x,z ⊗ δx I\J ⊗ δz I\J )ηi

=
∑

i∈J

δi f Q J
x,zηi +

∑

i∈I\J

δi f ηi (xi , zi ).

In particular, we obtain

|Gv f (x)− Gv f (z)| ≤
(

1 −
∑

J∈J

vJ

)

| f (x)− f (z)| +
∑

J∈J

vJ |γ J
x f J

x − γ J
z f J

z |

≤
(

1 −
∑

J∈J

vJ

)∑

i∈I

δi f ηi (xi , zi )

+
∑

J∈J

vJ

(∑

i∈J

δi f Q J
x,zηi +

∑

i∈I\J

δi f ηi (xi , zi )

)

=
∑

i∈I

δi f {1 − W v
i i } ηi (xi , zi )+

∑

i∈I

δi f
∑

J∈J:i∈J

vJ Q J
x,zηi .
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Now suppose that x I\{ j} = z I\{ j} (and x 
= z). Then by definition
∑

J∈J:i∈J

vJ Q J
x,zηi ≤ Rv

i j η j (x j , v j ),

and we obtain

|Gv f (x)− Gv f (z)|
η j (x j , z j )

≤ δ j f {1 − W v
j j } +
∑

i∈I

δi f Rv
i j .

Thus V v = I − W v + Rv satisfies Definition 3.1. ��
Using Lemmas 3.4 and 3.5, we can now apply Proposition 3.2.

Corollary 3.6 Assume that γ J is quasilocal for every J ∈ J. Then

|ρ f − ρ̃ f | ≤
∑

i, j∈I

δi f N v(n)
i j av

j +
∑

i, j∈I

δi f (I − W v + Rv)ni j (ρ ⊗ ρ̃)η j

for every n ≥ 1 and bounded and measurable quasilocal function f , where

N v(n) :=
n−1∑

k=0

(I − W v + Rv)k

and the coefficients (av
j ) j∈I are defined by av

j :=∑J∈J: j∈J vJ
∫ ∗
ρ̃(dx) Q̂ J

x η j .

Proof Let G = Gv, G̃ = G̃v, V = I −W v+Rv in Proposition 3.2. The requisite assumptions
are verified by Lemmas 3.4 and 3.5, and it remains to show that there is a coupling Qx of
Gx and G̃x such that

∫ ∗
ρ̃(dx) Qxη j ≤ a j for every j ∈ I . But

Qx g :=
(

1 −
∑

J∈J

vJ

)

g(x, x)+
∑

J∈J

vJ

∫

Q̂ J
x (dz J , dz̃ J ) g(z J x I\J , z̃ J x I\J )

is easily verified to satisfy the necessary properties. ��
In order for the Gibbs sampler to make sense, the weights vJ must be probabilities. This

imposes the requirement
∑

J vJ ≤ 1. If we were to assume that
∑

J wJ ≤ 1, we could
apply Corollary 3.6 with vJ = wJ . Then assumption (1) guarantees that the second term in
Corollary 3.6 vanishes as n → ∞, which yields

|ρ f − ρ̃ f | ≤
∑

i, j∈I

δi f Ni j a j with N :=
∞∑

k=0

(I − W + R)k .

The proof of Theorem 2.3 would now be complete after we establish the identity

N =
∞∑

k=0

(I − W + R)k =
∞∑

k=0

(W −1 R)k W −1 = DW −1.

This simple matrix identity will be proved in the next section. The assumption that the weights
wJ are summable is restrictive, however, when I is infinite: in Theorem 2.3 we only assume
that Wii ≤ 1 for all i , so we cannot set vJ = wJ .

When the weights w j are not summable, it is not natural to interpret them as probabil-
ities. In this setting, a much more natural construction would be to consider a continuous
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time counterpart of the Gibbs sampler called Glauber dynamics. To define this process, one
attaches to each region J ∈ J an independent Poisson process with rate wJ , and applies
the transition kernel γ J at every jump time of the corresponding Poisson process. Thus wJ

does not represent the probability of selecting the region J in one time step, but rather the
frequency with which region J is selected in continuous time. Once this process has been
defined, one would choose the transition kernel G to be the transition semigroup of the con-
tinuous time process on any fixed time interval. Proceeding with this construction we expect,
at least formally, to obtain Theorem 2.3 under the stated assumptions.

Unfortunately, there are nontrivial technical issues involved in implementing this
approach: it is not evident a priori that the continuous time construction defines a well-
behaved Markov semigroup, so that it is unclear when the above program can be made
rigorous. The existence of a semigroup has typically been established under more restric-
tive assumptions than we have imposed in the present setting [17]. In order to circumvent
such issues, we will proceed by an alternate route. Formally, the Glauber dynamics can be
obtained by an appropriate scaling limit of discrete time Gibbs samplers. We will also utilize
this scaling, but instead of applying Proposition 3.2 to the limiting dynamics we will take the
scaling limit directly in Corollary 3.6. Thus, while our intuition comes from the continuous
time setting, we avoid some technicalities inherent in the construction of the limit dynamics.
Instead, we now face the problem of taking limits of powers of infinite matrices. The requisite
matrix algebra will be worked out in the following section.

Remark 3.1 Let us briefly sketch how the previous results can be sharpened to obtain a
nonlinear comparison theorem that could lead to sharper bounds in some situations. Assume
for simplicity that

∑
J wJ ≤ 1. Then V = I − W + R is a Wasserstein matrix for G by

Lemma 3.5. Writing out the definitions, this means δ(G f ) ≤ δ( f )V where

(βV ) j =
∑

i∈I

βi sup
x,z∈S:

x I\{ j}=z I\{ j}

{

1i= j

(

1 −
∑

J :i∈J

wJ

)

+ 1

η j (x j , z j )

∑

J :i∈J

wJ Q J
x,zηi

}

(here we interpret β = (βi )i∈I and δ( f ) = (δi f )i∈I as row vectors). However, from the
proof of Lemma 3.5 we even obtain the sharper bound δ(G f ) ≤ V[δ( f )] where

V[β] j := sup
x,z∈S:

x I\{ j}=z I\{ j}

∑

i∈I

βi

{

1i= j

(

1 −
∑

J :i∈J

wJ

)

+ 1

η j (x j , z j )

∑

J :i∈J

wJ Q J
x,zηi

}

is defined with the supremum over configurations outside the sum. The nonlinear operator V
can now be used much in the same way as the Wasserstein matrix V . In particular, following
the identical proof as for Proposition 3.2, we immediately obtain

|ρ f − ρ̃ f | ≤
∑

j∈I

n−1∑

k=0

Vk[δ( f )] j

∫ ∗
ρ̃(dx) Qxη j +

∑

j∈I

Vn[δ( f )] j (ρ ⊗ ρ̃)η j ,

where Vk denotes the kth iterate of the nonlinear operator V. Proceeding along these lines,
one can develop nonlinear comparison theorems under Dobrushin–Shlosman type conditions
(see Remark 2.3). The nonlinear expressions are somewhat tedious to handle, however, and
we do not develop this idea further in this paper.
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3.3 Proof of Theorem 2.3

Throughout this section, we work under the assumptions of Theorem 2.3. The main idea of
the proof is the following continuous scaling limit of Corollary 3.6.

Proposition 3.7 Let t > 0. Define the matrices

N :=
∞∑

k=0

(I − W + R)k, V [t] :=
∞∑

k=0

tke−t

k! (I − W + R)k .

Then we have, under the assumptions of Theorem 2.3,

|ρ f − ρ̃ f | ≤
∑

i, j∈I

δi f Ni j a j +
∑

i, j∈I

δi f V [t]
i j (ρ ⊗ ρ̃)η j

for every bounded measurable quasilocal function f such that δi f < ∞ for all i ∈ I .

Proof Without loss of generality, we will assume that f is a local function (so that only
finitely many δi f are nonzero). The extension to quasilocal f follows readily by applying
the local result to f J

x and letting J ↑ I as in the proof of Lemma 3.3.
As the cover J is at most countable (because I is countable), we can enumerate its elements

arbitrarily as J = {J1, J2, . . .}. Define the weights vr = (vr
J )J∈J as

vr
J :=
{
wJ when J = Jk for k ≤ r,
0 otherwise.

For every r ∈ N, the weight vector uvr evidently satisfies
∑

J uvr
J ≤ 1 for all u > 0

sufficiently small (depending on r ). The main idea of the proof is to apply Corollary 3.6 to
the weight vector v = (t/n)vr , then let n → ∞, and finally r → ∞.

Let us begin by considering the second term in Corollary 3.6. We can write

(I − W (t/n)vr + R(t/n)vr
)n =
((

1 − t

n

)

I + t

n
(I − W vr + Rvr

)

)n

=
n∑

k=0

(
n

k

)(

1 − t

n

)n−k( t

n

)k

(I − W vr + Rvr
)k

= E[(I − W vr + Rvr
)Zn ],

where we defined the Binomial random variables Zn ∼ Bin(n, t/n). The random variables
Zn converge weakly as n → ∞ to the Poisson random variable Z∞ ∼ Pois(t). To take the
limit of the above expectation, we need a simple estimate.

Lemma 3.8 Let (c j ) j∈I be any nonnegative vector. Then
∑

j∈I

(I − W vr + Rvr
)ki j c j ≤ 2k max

0≤�≤k

∑

j∈I

(I − W + R)�i j c j

for every i ∈ I and k ≥ 0.

Proof As Rv is nondecreasing in v we obtain the elementwise estimate

I − W vr + Rvr ≤ I + R ≤ I + (I − W + R),
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where we have used Wii ≤ 1. We therefore have

∑

j∈I

(I − W vr + Rvr
)ki j c j ≤

∑

j∈I

(I + {I − W + R})ki j c j

=
k∑

�=0

(
k

�

)∑

j∈I

(I − W + R)�i j c j ,

and the proof is easily completed. ��

Define the random variables

Xn = g(Zn) with g(k) =
∑

i, j∈I

δi f (I − W vr + Rvr
)ki j (ρ ⊗ ρ̃)η j .

Then Xn → X∞ weakly by the continuous mapping theorem. On the other hand, applying
Lemma 3.8 with c j = (ρ ⊗ ρ̃)η j we estimate g(k) ≤ C2k for some finite constant C < ∞
and all k ≥ 0, where we have used (1) and that f is local. As

lim sup
u→∞

sup
n≥1

E[2Zn 12Zn ≥u] ≤ lim
u→∞ u−1 sup

n≥1
E[4Zn ] = lim

u→∞ u−1e3t = 0,

it follows that the random variables (Xn)n≥1 are uniformly integrable. We therefore conclude
that E[Xn] → E[X∞] as n → ∞ (cf. [14, Lemma 4.11]). In particular,

lim
n→∞
∑

i, j∈I

δi f (I − W (t/n)vr + R(t/n)vr
)ni j (ρ ⊗ ρ̃)η j =

∑

i, j∈I

δi f V r [t]
i j (ρ ⊗ ρ̃)η j ,

where

V r [t] =
∞∑

k=0

tke−t

k! (I − W vr + Rvr
)k .

Now let r → ∞. Note that W vr ↑ W and Rvr ↑ R elementwise and, as in the proof of
Lemma 3.8, we have I − W vr + Rvr ≤ I + (I − W + R) elementwise where

∞∑

k=0

∑

i, j∈I

tke−t

k! δi f {I + (I − W + R)}k
i j (ρ ⊗ ρ̃)η j

≤ et sup
�≥0

∑

i, j∈I

δi f (I − W + R)�i j (ρ ⊗ ρ̃)η j

is finite by (1) and as f is local. We therefore obtain by dominated convergence

lim
r→∞ lim

n→∞
∑

i, j∈I

δi f (I − W (t/n)vr + R(t/n)vr
)ni j (ρ ⊗ ρ̃)η j =

∑

i, j∈I

δi f V [t]
i j (ρ ⊗ ρ̃)η j .

That is, the second term in Corollary 3.6 with v = (t/n)vr converges as n → ∞ and r → ∞
to the second term in statement of the present result.
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It remains to establish the corresponding conclusion for the first term in Corollary 3.6,
which proceeds much along the same lines. We begin by noting that

1

n

n−1∑

k=0

(I − W (t/n)vr + R(t/n)vr
)k = 1

n

n−1∑

k=0

((

1 − t

n

)

I + t

n
(I − W vr + Rvr

)

)k

= 1

n

n−1∑

k=0

k∑

�=0

(
k

�

)(

1 − t

n

)k−�( t

n

)�
(I − W vr + Rvr

)�

=
n−1∑

�=0

p(n)� (I − W vr + Rvr
)�,

where we have defined

p(n)� = 1

n

n−1∑

k=�

(
k

�

)(

1 − t

n

)k−�( t

n

)�

= 1

t

∫ t

�t/n

(�sn/t�
�

)(

1 − t

n

)�sn/t�−�( t

n

)�
ds

for � < n. An elementary computation yields

n−1∑

�=0

p(n)� = 1 and p(n)�
n→∞−−−→ p(∞)

� = 1

t

∫ t

0

s�e−s

�! ds.

We can therefore introduce {0, 1, . . .}-valued random variables Yn with P[Yn = �] = p(n)�
for � < n, and we have shown above that Yn → Y∞ weakly and that

1

n

n−1∑

k=0

(I − W (t/n)vr + R(t/n)vr
)k = E[(I − W vr + Rvr

)Yn ].

The first term in Corollary 3.6 with v = (t/n)vr can be written as

∑

i, j∈I

δi f
n−1∑

k=0

(I − W (t/n)vr + R(t/n)vr
)ki j a(t/n)vr

j = t E[h(Yn)],

where we have defined

h(k) =
∑

i, j∈I

δi f (I − W vr + Rvr
)ki j avr

j .

We now proceed essentially as above. We can assume without loss of generality that

sup
�≥0

∑

i, j∈I

δi f (I − W + R)�i j a j < ∞,

as otherwise the right-hand side in the statement of the present result is infinite and the
estimate is trivial. It consequently follows from Lemma 3.8 that h(k) ≤ C2k for some finite
constant C < ∞ and all k ≥ 0. A similar computation as above shows that (h(Yn))n≥0

is uniformly integrable, and thus E[h(Yn)] → E[h(Y∞)]. In particular, the first term in
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Corollary 3.6 with v = (t/n)vr converges as n → ∞ to

lim
n→∞
∑

i, j∈I

δi f
n−1∑

k=0

(I − W (t/n)vr + R(t/n)vr
)ki j a(t/n)vr

j =
∑

i, j∈I

δi f Nr
i j avr

j ,

where

Nr =
∞∑

k=0

∫ t

0

ske−s

k! ds (I − W vr + Rvr
)k .

Similarly, letting r → ∞ and repeating exactly the arguments used above for the second
term of Corollary 3.6, we obtain by dominated convergence

lim
r→∞ lim

n→∞
∑

i, j∈I

δi f
n−1∑

k=0

(I − W (t/n)vr + R(t/n)vr
)ki j a(t/n)vr

j =
∑

i, j∈I

δi f Ñi j a j ,

where

Ñ =
∞∑

k=0

∫ t

0

ske−s

k! ds (I − W + R)k .

To conclude, we have shown that applying Corollary 3.6 to the weight vector v = (t/n)vr

and taking the limit as n → ∞ and r → ∞, respectively, yields the estimate

|ρ f − ρ̃ f | ≤
∑

i, j∈I

δi f Ñi j a j +
∑

i, j∈I

δi f V [t]
i j (ρ ⊗ ρ̃)η j .

It remains to note that tke−t/k! is the density of a Gamma distribution (with shape k + 1 and
scale 1), so

∫ t
0 ske−s/k! ds ≤ 1 and thus Ñ ≤ N elementwise. ��

We can now complete the proof of Theorem 2.3.

Proof (Theorem 2.3) Once again, we will assume without loss of generality that f is a local
function (so that only finitely many δi f are nonzero). The extension to quasilocal f follows
readily by localization as in the proof of Lemma 3.3.

We begin by showing that the second term in Proposition 3.7 vanishes as t → ∞. Indeed,
for any n ≥ 0, we can evidently estimate the second term as

∞∑

k=0

tke−t

k!
∑

i, j∈I

δi f (I − W + R)ki j (ρ ⊗ ρ̃)η j ≤ sup
�≥0

∑

i, j∈I

δi f (I − W + R)�i j (ρ ⊗ ρ̃)η j

n∑

k=0

tke−t

k!
+ sup
�>n

∑

i, j∈I

δi f (I − W + R)�i j (ρ ⊗ ρ̃)η j .

By assumption (1) and as f is local, the two terms on the right vanish as t → ∞ and n → ∞,
respectively. Thus second term in Proposition 3.7 vanishes as t → ∞.

We have now proved the estimate

|ρ f − ρ̃ f | ≤
∑

i, j∈I

δi f Ni j a j .
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To complete the proof of Theorem 2.3, it remains to establish the identity N = DW −1. This
is an exercise in matrix algebra. By the definition of the matrix product

(I − W + R)p =
p∑

k=0

∑

n0,...,nk≥0
n0+···+nk=p−k

(I − W )nk R · · · (I − W )n1 R(I − W )n0 .

We can therefore write
∞∑

p=0

(I − W + R)p=
∞∑

k=0

∑

n0,...,nk≥0

∞∑

p=0

1n0+···+nk=p−k1k≤p(I − W )nk R · · · (I − W )n1 R(I − W )n0

=
∞∑

k=0

∑

n0,...,nk≥0

(I − W )nk R · · · (I − W )n1 R(I − W )n0

=
∞∑

k=0

(W −1 R)k W −1,

where we used W −1 =∑∞
n=0(I − W )n as W is diagonal with 0 < Wii ≤ 1. ��

3.4 Proof of Corollary 2.6

Note that supi Wii < ∞ in all parts of Corollary 2.6 (either by assumption or as card I < ∞).
Moreover, it is easily seen that all parts of Corollary 2.6 as well as the conclusion of Theorem
2.3 are unchanged if all the weights are multiplied by the same constant. We may therefore
assume without loss of generality that supi Wii ≤ 1.

Next, we note that as ρ and ρ̃ are tempered, we have

sup
i∈I

(ρ ⊗ ρ̃)ηi ≤ sup
i∈I

ρ ηi ( · , x	i )+ sup
i∈I

ρ̃ ηi (x
	
i , · ) < ∞

by the triangle inequality. To verify (1), it therefore suffices to show that

lim
k→∞
∑

j∈I

(I − W + R)ki j = 0 for all i ∈ I. (3)

We now proceed to verify this condition in the different cases of Corollary 2.6.

Proof (Corollary 2.6.1) It was shown at the end of the proof of Theorem 2.3 that

∞∑

k=0

(I − W + R)k =
∞∑

k=0

(W −1 R)k W −1 = DW −1.

As W −1 has finite entries, D < ∞ certainly implies that (I − W + R)k → 0 as k → ∞
elementwise. But this trivially yields (3) when card I < ∞. ��
Proof (Corollary 2.6.2) Note that we can write

D =
∞∑

k=0

(W −1 R)k =
n−1∑

p=0

(W −1 R)p
∞∑

k=0

(W −1 R)nk .

Therefore, if R < ∞ and ‖(W −1 R)n‖ < 1, we can estimate

‖D‖ ≤
∥
∥
∥
∥

n−1∑

p=0

(W −1 R)p
∥
∥
∥
∥

∞∑

k=0

‖(W −1 R)n‖k < ∞.
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Thus D < ∞ and we conclude by the previous part. ��

Proof (Corollary 2.6.3) We give a simple probabilistic proof (a more complicated matrix-
analytic proof could be given along the lines of [20, Theorem 3.21]). Let P = W −1 R.
As ‖P‖∞ < 1, the infinite matrix P is substochastic. Thus P is the transition proba-
bility matrix of a killed Markov chain (Xn)n≥0 with P[Xn = j |Xn−1 = i] = Pi j and
P[Xn is dead|Xn−1 = i] = 1 −∑ j Pi j (once the chain dies, it stays dead). Denote by
ζ = inf{n : Xn is dead} the killing time of the chain. Then we obtain

P[ζ > n|X0 = i] = P[Xn is not dead|X0 = i] =
∑

j∈I

Pn
i j ≤ ‖Pn‖∞ ≤ ‖P‖n∞.

Therefore, as ‖P‖∞ < 1, we find by letting n → ∞ that P[ζ = ∞|X0 = i] = 0. That is,
the chain dies eventually with unit probability for any initial condition.

Now define P̃ = I − W + R = I − W + W P . As supi Wii ≤ 1, the matrix P̃ is also
substochastic and corresponds to the following transition mechanism. If Xn−1 = i , then at
time n we flip a biased coin that comes up heads with probability Wii . In case of heads we make
a transition according to the matrix P , but in case of tails we leave the current state unchanged.
From this description, it is evident that we can construct a Markov chain (X̃n)n≥0 with
transition matrix P̃ by modifying the chain (Xn)n≥0 as follows. Conditionally on (Xn)n≥0,
draw independent random variables (ξn)n≥0 such that ξn is geometrically distributed with
parameter WXn Xn . Now define the process (X̃n)n≥0 such that it stays in state X0 for the
first ξ0 time steps, then is in state X1 for the next ξ1 time steps, etc. By construction, the
resulting process is Markov with transition matrix P̃ . Moreover, as ζ < ∞ a.s., we have
ζ̃ := inf{n : X̃n is dead} < ∞ a.s. also. We therefore obtain

lim
n→∞
∑

j∈I

(I − W + R)ni j = lim
n→∞ P[ζ̃ > n|X0 = i] = 0

for every i ∈ I . We have therefore established (3). ��

Proof (Corollary 2.6.4) We begin by writing as above

∞∑

k=0

(I − W + R)k =
∞∑

k=0

(W −1 R)k W −1 =
∞∑

k=0

W −1(RW −1)k,

where the last identity is straightforward. Arguing as in Corollary 2.6.2, we obtain

Wii

∞∑

k=0

∑

j∈I

(I − W + R)ki j =
∑

j∈I

∞∑

k=0

(RW −1)ki j ≤
∥
∥
∥
∥

∞∑

k=0

(RW −1)k
∥
∥
∥
∥

∞

≤
n−1∑

p=0

‖RW −1‖p∞
∞∑

k=0

‖(RW −1)n‖k∞ < ∞.

It follows immediately that (3) holds. ��

Proof (Corollary 2.6.5) Note that
∑

j∈I

(RW −1)ki j‖η j‖ ≤ ‖(RW −1)k‖1

∑

j∈I

‖η j‖ ≤ ‖RW −1‖k
1

∑

j∈I

‖η j‖.
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Thus
∑

j ‖η j‖ < ∞ and ‖RW −1‖1 < 1 yield

∞∑

k=0

∑

j∈I

(I − W + R)ki j‖η j‖ = W −1
i i

∞∑

k=0

∑

j∈I

(RW −1)ki j‖η j‖ < ∞,

which evidently implies

lim
k→∞
∑

j∈I

(I − W + R)ki j (ρ ⊗ ρ̃)η j = 0 for all i ∈ I.

We have therefore established (1). ��

Proof (Corollary 2.6.6) Let r = sup{m(i, j) : Ri j > 0} (which is finite by assumption), and
choose β > 0 such that ‖RW −1‖1 < e−βr . Then we can estimate

‖RW −1‖1,βm := sup
j∈I

∑

i∈I

eβm(i, j)(RW −1)i j ≤ eβr‖RW −1‖1 < 1.

As m is a pseudometric, it satisfies the triangle inequality and it is therefore easily seen that
‖ · ‖1,βm is a matrix norm. In particular, we can estimate

eβm(i, j)(RW −1)ni j ≤ ‖(RW −1)n‖1,βm ≤ ‖RW −1‖n
1,βm

for every i, j ∈ I . But then

‖(RW −1)n‖∞ = sup
i∈I

∑

j∈I

(RW −1)ni j ≤ ‖RW −1‖n
1,βm sup

i∈I

∑

j∈I

e−βm(i, j) < ∞

for all n. We therefore have ‖RW −1‖∞ < ∞, and we can choose n sufficiently large that
‖(RW −1)n‖∞ < 1. The conclusion now follows from Corollary 2.6.4. ��
3.5 Proof of Theorem 2.9

In the case of one-sided local updates, the measure ρ≤k is γ J -invariant for τ(J ) = k (but
not for τ(J ) < k). The proof of Theorem 2.9 proceeds by induction on k. In each stage of
the induction, we apply the logic of Theorem 2.3 to the partial local updates (γ J )J∈J:τ(J )=k ,
and use the induction hypothesis to estimate the remainder.

Throughout this section, we work in the setting of Theorem 2.9. Define

I≤k := {i ∈ I : τ(i) ≤ k}, Ik := {i ∈ I : τ(i) = k}.
We can assume without loss of generality that Ri j = 0 when τ( j) > τ(i). Indeed, the
local update rule γ J

x does not depend on x j for τ( j) > τ(J ), so we can trivially choose the
coupling Q J

x,z for x I\{ j} = z I\{ j} such that Q J
x,zηi = 0 for all i ∈ J . On the other hand, the

choice Ri j = 0 evidently yields the smallest bound in Theorem 2.9. In the sequel, we will
always assume that Ri j = 0 whenever τ( j) > τ(i).

The key induction step is formalized by the following result.

Proposition 3.9 Assume (1). Let (βi )i∈I≤k−1 be nonnegative weights such that

|ρ≤k−1g − ρ̃≤k−1g| ≤
∑

i∈I≤k−1

δi g βi
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for every bounded measurable quasilocal function g on S≤k−1 s.t. δi g < ∞ ∀i . Then

|ρ≤k f − ρ̃≤k f | ≤
∑

j∈I≤k−1

{

δ j f +
∑

i,l∈Ik

δi f Dil (W
−1 R)l j

}

β j +
∑

i, j∈Ik

δi f Di j W −1
j j a j

for every bounded measurable quasilocal function f on S≤k with δi f < ∞ ∀i .

Proof We fix throughout the proof a bounded and measurable local function f : S≤k → R

such that δi f < ∞ for all i ∈ I≤k . The extension of the conclusion to quasilocal functions
f follows readily by localization as in the proof of Lemma 3.3.

Let Gv and G̃v be the Gibbs samplers defined in section 3.2. Enumerate the partial cover
{J ∈ J : τ(J ) = k} as {J1, J2, . . .}, and define weights vr as in the proof of Proposition
3.7. By the definition of the one-sided local update rule, ρ≤k is Guvr

-invariant and ρ̃≤k is
G̃uvr

-invariant for every r, u such that
∑

J uvr
J ≤ 1. Thus

|ρ≤k f − ρ̃≤k f | ≤
∑

i, j∈I≤k

δi f N uvr (n)
i j auvr

j + |ρ≤k(G
uvr
)n f − ρ̃≤k(G

uvr
)n f |

as in the proof of Corollary 3.6, with the only distinction that we refrain from using the
Wasserstein matrix to expand the second term in the proof of Proposition 3.2. We now use
the induction hypothesis to obtain an improved estimate for the second term.

Lemma 3.10 We can estimate

|ρ≤k g − ρ̃≤k g| ≤
∑

i∈I≤k−1

δi g βi + 3
∑

i∈Ik

δi g (ρ ⊗ ρ̃)ηi

for any bounded measurable quasilocal function g : S≤k → R with δi g < ∞ ∀i .

Proof For any x ∈ S≤k we can estimate

|ρ≤k g − ρ̃≤k g| ≤ |ρ≤k−1ĝx − ρ̃≤k−1ĝx | + |ρ≤k(g − ĝx )| + |ρ̃≤k(g − ĝx )|,
where we defined ĝx (z) := g(z I≤k−1 x Ik ). By Lemma 3.3 we have

|g(z)− ĝx (z)| ≤
∑

i∈Ik

δi g ηi (zi , xi ).

We can therefore estimate using the induction hypothesis and the triangle inequality

|ρ≤k g − ρ̃≤k g| ≤
∑

i∈I≤k−1

δi g βi +
∑

i∈Ik

δi g {ρηi ( · , X̃i )+ ηi (X̃i , xi )+ ρ̃ηi ( · , xi )}

for all x, X̃ ∈ S≤k . Now integrate this expression with respect to ρ(dx) ρ̃(d X̃). ��
To lighten the notation somewhat we will write v = uvr until further notice. Note that

by construction av
j = 0 whenever τ( j) < k, while Rv

i j = 0 whenever τ( j) > τ(i) by
assumption. Thus we obtain using Lemma 3.10 and Lemma 3.5

|ρ≤k f − ρ̃≤k f | ≤
∑

i, j∈Ik

δi f N v(n)
i j av

j + 3
∑

i, j∈Ik

δi f (I − W v + Rv)ni j (ρ ⊗ ρ̃)η j

+
∑

i∈I≤k

∑

j∈I≤k−1

δi f (I − W v + Rv)ni j β j ,

provided that
∑

i δi f (I − W v + Rv)ni j < ∞ for all j .
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As vJ = 0 for τ(J ) < k, we have Rv
i j = W v

i j = 0 for i ∈ I≤k−1. Thus

V v = I − W v + Rv =
(

V̌ v Řv

0 I

)

,

where V̌ v := (V v
i j )i, j∈Ik and Řv := (Rv

i j )i∈Ik , j∈I≤k−1 . In particular,

(I − W v + Rv)n =
(
(V̌ v)n

∑n−1
k=0(V̌

v)k Řv

0 I

)

.

Moreover, as Rv
i j = 0 whenever τ( j) > τ(i), we evidently have (V̌ v)ki j = (V v)ki j for

i, j ∈ Ik . Substituting into the above expression, we obtain

|ρ≤k f − ρ̃≤k f | ≤
∑

i, j∈Ik

δi f N v(n)
i j av

j + 3
∑

i, j∈Ik

δi f (I − W v + Rv)ni j (ρ ⊗ ρ̃)η j

+
∑

j∈I≤k−1

{

δ j f +
∑

i,l∈Ik

δi f N v(n)
il Rv

l j

}

β j

provided that
∑

i δi f (I − W v + Rv)ni j < ∞ for all j . But the latter is easily verified using
(1) and Lemma 3.8, as f is local and δi f < ∞ for all i by assumption.

The rest of the proof now proceeds precisely as in the proof of Proposition 3.7 and Theorem
2.3. We set v = (t/n)vr , let n → ∞ and then r → ∞. The arguments for the first two terms
are identical to the proof of Proposition 3.7, while the argument for the third term is essentially
identical to the argument for the first term. The proof is then completed as in Theorem 2.3.
We leave the details for the reader. ��

We now proceed to complete the proof of Theorem 2.9.

Proof (Theorem 2.9) Consider first the case that k− := inf i∈I τ(i) > −∞. In this setting,
we say that the comparison theorem holds for a given k ≥ k− if we have

|ρ≤k f − ρ̃≤k f | ≤
∑

i, j∈I≤k

δi f Di j W −1
j j a j

for every bounded measurable quasilocal function f on S≤k such that δi f < ∞ ∀i . Theorem
2.3 shows that the comparison theorem holds for k−. We will now use Proposition 3.9 to
show that if the comparison theorem holds for k − 1, then it holds for k also. Then the
comparison theorem holds for every k ≥ k− by induction, so the conclusion of Theorem
2.9 holds whenever f is a local function. The extension to quasilocal f follows readily by
localization as in the proof of Lemma 3.3.

We now complete the induction step. When the comparison theorem holds for k − 1 (the
induction hypothesis), we can apply Proposition 3.9 with

βi =
∑

j∈I≤k−1

Di j W −1
j j a j .

This gives

|ρ≤k f − ρ̃≤k f | ≤
∑

j,q∈I≤k−1

∑

i,l∈Ik

δi f Dil (W
−1 R)lq Dq j W −1

j j a j

+
∑

i, j∈I≤k−1

δi f Di j W −1
j j a j +

∑

i, j∈Ik

δi f Di j W −1
j j a j
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for every bounded measurable quasilocal function f on S≤k so that δi f < ∞ ∀i . To complete
the proof, it therefore suffices to show that we have

Di j =
∑

q∈I≤k−1

∑

l∈Ik

Dil (W
−1 R)lq Dq j for i ∈ Ik, j ∈ I≤k−1.

To see this, note that as Ri j = 0 for τ(i) < τ( j), we can write

Di j =
∞∑

p=1

∑

j1,..., jp−1∈I :
τ( j)≤τ( j1)≤···≤τ( jp−1)≤k

(W −1 R)i jp−1 · · · (W −1 R) j2 j1(W
−1 R) j1 j

=
∞∑

p=1

p∑

n=1

∑

l∈Ik

∑

q∈I≤k−1

(W −1 R)n−1
il (W −1 R)lq(W

−1 R)p−n
q j

for i ∈ Ik and j ∈ I≤k−1, where we have used that when τ( j1) ≤ · · · ≤ τ( jp−1) ≤ k there
exists 1 ≤ n ≤ p such that j1, . . . , jp−n ∈ I≤k−1 and jp−n+1, . . . , jp−1 ∈ Ik . Rearranging
yields the desired identity for Di j , completing the proof for the case k− > −∞ (note that in
this case the additional assumption (2) was not needed).

We now turn to the case k− = −∞. Let us say that (βi )i∈I≤k is a k-estimate if

|ρ≤k g − ρ̃≤k g| ≤
∑

i∈I≤k

δi g βi

for every bounded measurable quasilocal function g on S≤k such that δi g < ∞ ∀i . Then
the conclusion of Proposition 3.9 can be reformulated as follows: if (βi )i∈I≤k−1 is a (k − 1)-
estimate, then (β ′

i )i∈I≤k is a k-estimate with β ′
i = βi for i ∈ I≤k−1 and

β ′
i =
∑

j∈I≤k−1

∑

l∈Ik

Dil (W
−1 R)l j β j +

∑

j∈Ik

Di j W −1
j j a j

for i ∈ Ik . Thus we can repeatedly apply Proposition 3.9 to extend an initial estimate. In
particular, if we fix k ∈ Z and n ≥ 1, and if (βi )i∈I≤k−n is a (k − n)-estimate, we obtain a
k-estimate (β ′

i )i∈I≤k by iterating Proposition 3.9 n times. We claim that

β ′
i =

k−r∑

s=k−n+1

⎧
⎨

⎩

∑

j∈I≤k−n

∑

l∈Is

Dil (W
−1 R)l j β j +

∑

j∈Is

Di j W −1
j j a j

⎫
⎬

⎭

for 0 ≤ r ≤ n − 1 and i ∈ Ik−r . To see this, we proceed again by induction. As (βi )i∈I≤k−n

is a (k − n)-estimate, the expression is valid for r = n − 1 by Proposition 3.9. Now suppose
the expression is valid for all u < r ≤ n − 1. Then we obtain

β ′
i =
∑

j∈I≤k−n

∑

l∈Ik−u

Dil (W
−1 R)l j β j +

∑

j∈Ik−u

Di j W −1
j j a j

+
k−u−1∑

s=k−n+1

∑

j∈Is

∑

l∈Ik−u

s∑

t=k−n+1

∑

q∈I≤k−n

∑

p∈It

Dil (W
−1 R)l j D jp (W

−1 R)pq βq

+
k−u−1∑

s=k−n+1

∑

j∈Is

∑

l∈Ik−u

s∑

t=k−n+1

∑

q∈It

Dil (W
−1 R)l j D jq W −1

qq aq
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for i ∈ Ik−u by Proposition 3.9. Rearranging the sums yields

β ′
i =
∑

j∈I≤k−n

∑

l∈Ik−u

Dil (W
−1 R)l j β j +

∑

j∈Ik−u

Di j W −1
j j a j

+
k−u−1∑

t=k−n+1

⎧
⎨

⎩

∑

q∈I≤k−n

∑

p∈It

D̄ip (W
−1 R)pq βq +

∑

p∈It

D̄ip W −1
pp ap

⎫
⎬

⎭
,

for i ∈ Ik−u , where we have defined

D̄i j :=
t−1∑

�=s

∑

q∈I�

∑

l∈It

Dil (W
−1 R)lq Dq j

whenever i ∈ It and j ∈ Is for s < t . But as Dq j = 0 when τ(q) < τ( j), we have

D̄i j =
∑

q∈I≤t−1

∑

l∈It

Dil (W
−1 R)lq Dq j = Di j for i ∈ It , j ∈ I≤t−1

using the identity used in the proof for the case k− > −∞, and the claim follows.
We can now complete the proof for the case k− = −∞. It suffices to prove the theorem for a

given local function f (the extension to quasilocal f follows readily as in the proof of Lemma
3.3). Let us therefore fix a K -local function f for some K ∈ I, and let k = maxi∈K τ(i)
and n ≥ 1. By Lemma 3.3, we find that (βi )i∈I≤k−n is trivially a (k − n)-estimate if we set
βi = (ρ ⊗ ρ̃)ηi for i ∈ I≤k−n . Therefore

|ρ f − ρ̃ f | ≤
∑

i, j∈I

δi f Di j W −1
j j a j +

∑

i∈I

∑

j∈I≤k−n

δi f Di j (ρ ⊗ ρ̃)η j

from the k-estimate (β ′
i )i∈I≤k derived above, where we have used that DW −1 R ≤ D. But

as f is local and δi f < ∞ for all i by assumption, the second term vanishes as n → ∞ by
assumption (2). This completes the proof for the case k− = −∞. ��

4 Application: Particle Filters

Our original motivation for developing generalized comparison theorems was the investiga-
tion of algorithms for filtering in high dimension. In this section we will develop one such
application in detail. Our result answers a question raised in [18], and also serves as a concrete
illustration of the utility of our main results.

4.1 Introduction and Main Result

Let (Xn, Yn)n≥0 be a Markov chain. We interpret Xn as the unobserved component of the
model and Yn as the observed component. A fundamental problem in this setting is to track
the state of the unobserved component Xn given the history of observed data Y1, . . . , Yn . Such
problems are ubiquitous in a wide variety of applications, ranging from classical tracking
problems in navigation and robotics to large-scale forecasting problems such as weather
prediction, and are broadly referred to as filtering or data assimilation problems.

In principle, the optimal solution to the tracking problem is provided by the filter

πn := P[Xn ∈ · |Y1, . . . , Yn].
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If the conditional distribution πn can be computed, in yields not only a least mean square
estimate of the unobserved state Xn but also a complete representation of the uncertainty
in this estimate. Unfortunately, when Xn takes values in a continuous (or finite but large)
state space, the filter is rarely explicitly computable and approximations become necessary.
In practice, filtering is widely implemented by a class of sequential Monte Carlo algorithms
called particle filters, cf. [1], that have been very successful in classical scientific and engi-
neering applications.

The major problem with particle filtering algorithms is that they typically require an
exponential number of samples in the model dimension to achieve a fixed approximation
error. Such algorithms are therefore largely useless in high-dimensional problems that arise
in complex applications such as weather forecasting. We refer to [18] for a detailed discussion
of these issues and for further references. In many applications, the high-dimensional nature
of the problem is due to the presence of spatial degrees of freedom: Xn and Yn at each time
n are themselves random fields that evolve dynamically over time. In practice, such models
are typically expected to exhibit decay of correlations. We have started in [18] to explore
the possibility that such properties could be exploited to beat the curse of dimensionality
by including a form of spatial localization in the filtering algorithm. In particular, the initial
analysis in [18] has yielded dimension-free error bounds for the simplest possible class of
local particle filtering algorithms, called block particle filters, under strong (but dimension-
free) model assumptions that ensure the presence of decay of correlations.

It should be noted that the block particle filtering algorithm exhibits some significant
drawbacks that could potentially be resolved by using more sophisticated algorithms. These
issues are discussed at length in [18], but are beyond the scope of this paper. In the sequel, we
will reconsider the same algorithm that was introduced in [18], but we provide an improved
analysis of its performance on the basis of the generalized comparison Theorem 2.3. We will
see that the use of Theorem 2.3 already yields a qualitative improvement over the main result
of [18].

In the remainder of this section we recall the setting of [18] and state our main result on
block particle filters. The following sections are devoted to the proofs.

Dynamical Model

Let (Xn, Yn)n≥0 be a Markov chain that takes values in the product space X × Y, and whose
transition probability P can be factored as

P((x, y), A) =
∫

1A(x
′, y′) p(x, x ′) g(x ′, y′) ψ(dx ′) ϕ(dy′).

Such processes are called hidden Markov models [1]. The definition implies that the unob-
served process (Xn)n≥0 is a Markov chain in its own right with transition density p (with
respect to the reference measure ψ), while each observation Yn is a noisy function of Xn

with observation density g (with respect to the reference measure ϕ).
Our interest is in high-dimensional hidden Markov models that possess spatial structure.

To this end, we introduce a finite undirected graph G = (V, E) that determines the spatial
degrees of freedom. The state (Xn, Yn) at each time n is itself a random field (Xvn , Y vn )v∈V

indexed by the vertices of G. In particular, we choose

X =
∏

v∈V

X
v, Y =

∏

v∈V

Y
v, ψ =

⊗

v∈V

ψv, ϕ =
⊗

v∈V

ϕv,
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n−1 Y i+1
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Fig. 1 Dependency graph of a high-dimensional filtering model of the type considered in Sect. 4

where (Xv, ψv) and (Yv, ϕv) are measure spaces for every v ∈ V . To define the dynamics
of the model, we introduce for each v ∈ V a local transition density pv : X × X

v → R+ and
local observation density gv : X

v × Y
v → R+, and we set

p(x, z) =
∏

v∈V

pv(x, zv), g(x, y) =
∏

v∈V

gv(xv, yv).

Therefore, each observation Y vn at location v is a noisy function of the unobserved state
Xvn at location v, and the current state Xvn is determined by the configuration Xn−1 at the
previous time step. We will assume throughout that the dynamics is local in the sense that
pv(x, zv) = pv(X̃ , zv) whenever x N (v) = X̃ N (v), where N (v) = {v′ ∈ V : d(v, v′) ≤ r}
denotes a neighborhood of radius r around the vertex v with respect to the graph distance d .
That is, the state Xvn at time n and vertex v depends only on the past X0, . . . , Xn−1 through

the states X N (v)
n−1 in an r -neighborhood of v in the previous time step; the interaction radius r is

fixed throughout. The dependence structure of our general model is illustrated schematically
in Fig. 1 (in the simplest case of a linear graph G with r = 1).

Block Particle Filters

An important property of the filter πn = P[Xn ∈ · |Y1, . . . , Yn] is that it can be computed
recursively. To this end, define for every probability measure ρ on X the probability measures
Pρ and Cnρ as follows:

Pρ(dx ′) := ψ(dx ′)
∫

p(x, x ′) ρ(dx), Cnρ(dx) := g(x, Yn) ρ(dx)
∫

g(z, Yn) ρ(dz)
.

Then it is an elementary consequence of Bayes’ formula that [1]

πn = Fnπn−1 := CnPπn−1 for every n ≥ 1,

where the initial condition is π0 = μ := P[X0 ∈ · ]. In the sequel we will often write
π
μ
n := Fn · · · F1μ to make explicit the initial condition of the filtering recursion.
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To obtain approximate algorithms, we insert additional steps in the filtering recursion that
enable a tractable implementation. The classical particle filtering algorithm inserts a random
sampling step SN in the filtering recursion that replaces the current filtering distribution by
the empirical measure of N independent samples: that is,

SNρ := 1

N

N∑

i=1

δx(i) where (x(i))i=1,...,N are i.i.d. samples ∼ ρ.

This yields a sequential Monte Carlo algorithm that maintains N approximate samples from
the current filtering distribution at any time; cf. [1,18] and the references therein. As N → ∞,
the sampling error vanishes by the law of large numbers and the particle filter converges to
the exact filter. Unfortunately, the number of samples N needed to achieve a fixed error is
typically exponential in the dimension card V .

To alleviate the curse of dimensionality we must localize the algorithm so that it can benefit
from the decay of correlations of the underlying model. The simplest possible algorithm of
this type inserts an additional localization step in the filtering recursion in the following
manner. Fix a partition K of the vertex set V into nonoverlapping blocks, and define for any
probability ρ on X the blocking operator Bρ as

Bρ :=
⊗

K∈K

BKρ,

where we denote by BJρ for J ⊆ V the marginal of ρ on X
J . That is, the blocking operation

forces the underlying measure to be independent across different blocks in the partition K.
The block particle filter π̂μn is now defined by the recursion

π̂μn := F̂n · · · F̂1μ, F̂k := CkBSN P.

This algorithm is very straightforward to implement in practice, cf. [18].

Analysis of [18]

We first introduce some notation. Recall that in our model, each vertex v interacts only with
vertices in an r -neighborhood N (v) in the previous time step, where the interaction radius r
is fixed throughout. Given J ⊆ V , define the r -inner boundary as

∂ J := {v ∈ J : N (v) 
⊆ J }.
Thus ∂ J is the subset of vertices in J that can interact with vertices outside J in one time
step of the dynamics. We also define the quantities

|K|∞ := max
K∈K

card K ,

� := max
v∈V

card{v′ ∈ V : d(v, v′) ≤ r},
�K := max

K∈K
card{K ′ ∈ K : d(K , K ′) ≤ r},

where d(J, J ′) := minv∈J minv′∈J ′ d(v, v′) for J, J ′ ⊆ V . Thus |K|∞ is the maximal size
of a block, while � (�K) is the maximal number of vertices (blocks) that interact with a
single vertex (block) in one time step. Note that r,�,�K are local quantities that depend
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on the geometry but not on the size of the graph G. We finally define, for each J ⊆ I , the
following local distance between random measures ρ, ρ′:

|||ρ − ρ′|||J := sup
f ∈XJ :| f |≤1

E[|ρ f − ρ′ f |2]1/2

where XJ is the set of J -local measurable functions f on X. We will write π x
n := π

δx
n and

π̂ x
n := π̂

δx
n when the filtering recursions are initialized at a point x ∈ X.

We can now recall the main result of [18].

Theorem 4.1 (Theorem 2.1 in [18]) There exists a constant 0 < ε0 < 1, depending only on
the local quantities � and �K, such that the following holds.

Suppose there exist ε0 < ε < 1 and 0 < κ < 1 such that

ε ≤ pv(x, zv) ≤ ε−1, κ ≤ gv(xv, yv) ≤ κ−1 ∀ v ∈ V, x, z ∈ X, y ∈ Y.

Then for every n ≥ 0, σ ∈ X, K ∈ K and J ⊆ K we have

|||πσn − π̂σn |||J ≤ α card J

[

e−β1d(J,∂K ) + eβ2|K|∞

N
1
2

]

,

where the constants 0 < α, β1, β2 < ∞ depend only on ε, κ , r , �, and �K.

The error bound in Theorem 4.1 contains two terms. The first term quantifies the bias
introduced by the localization B, which decreases when we take larger blocks. The second
term quantifies the variance introduced by the sampling SN , which decreases with increas-
ing sample size N but grows exponentially in the block size. Traditional particle filtering
algorithms correspond to the choice of a single block K = {V }, and in this case the error
grows exponentially in the dimension card V . To avoid this curse of dimensionality, we must
tune the block size so as to optimize the tradeoff between bias and variance. As all the con-
stants in Theorem 4.1 depend only on local quantities, the optimal block size results in a
dimension-free error bound. We refer to [18] for a full discussion.

Main Result

The intuition behind the block particle filtering algorithm is that the localization controls the
sampling error (as it replaces the model dimension card V by the block size |K|∞), while the
decay of correlations property of the model controls the localization error (as it ensures that
the effect of the localization decreases in the distance to the block boundary). This intuition
is clearly visible in the conclusion of Theorem 4.1. It is however not automatically the case
that our model does indeed exhibit decay of correlations: when there are strong interactions
between the vertices, phase transitions can arise and the decay of correlations can fail much
as for standard models in statistical mechanics [16], in which case we cannot expect to obtain
dimension-free performance for the block particle filter. Such phenomena are ruled out in
Theorem 4.1 by the assumption that ε ≤ pv ≤ ε−1 for ε > ε0, which ensures that the
interactions in our model are sufficiently weak.

It is notoriously challenging to obtain sharp quantitative results for interacting models,
and it is unlikely that one could obtain realistic values for the constants in Theorem 4.1 at the
level of generality considered here. More concerning, however, is that the weak interaction
assumption of Theorem 4.1 is already unsatisfactory at the qualitative level. Note that there is
no interaction between the vertices in the extreme case ε = 1; the assumption ε > ε0 should
be viewed as a perturbation of this situation (i.e., weak interactions). However, setting ε = 1
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turns off not only the interaction between different vertices, but also the interaction between
the same vertex at different times: in this setting the dynamics of the model become trivial.
In contrast, one would expect that it is only the strength of the spatial interactions, and not
the local dynamics, that is relevant for dimension-free errors, so that Theorem 4.1 places an
unnatural restriction on our understanding of block particle filters.

Our main result resolves this qualitative deficiency of Theorem 4.1. Rather than assuming
pv(x, zv) ≈ 1 as in Theorem 4.1, we will assume only that the spatial interactions are weak
in the sense that pv(x, zv) ≈ qv(xv, zv), where the transition density qv describes the local
dynamics at the vertex v in the absence of interactions.

Theorem 4.2 For any 0 < δ < 1 there exists 0 < ε0 < 1, depending only on δ and �, so
that the following holds. Suppose there exist ε0 < ε < 1 and 0 < κ < 1 so that

εqv(xv, zv) ≤ pv(x, zv) ≤ ε−1qv(xv, zv),

δ ≤ qv(xv, zv) ≤ δ−1,

κ ≤ gv(xv, yv) ≤ κ−1

for every v ∈ V , x, z ∈ X, y ∈ Y, where qv : X
v × X

v → R+ is a transition density with
respect to ψv . Then for every n ≥ 0, σ ∈ X, K ∈ K and J ⊆ K we have

|||πσn − π̂σn |||J ≤ α card J

[

e−β1d(J,∂K ) + eβ2|K|∞
N γ

]

,

where 0 < γ ≤ 1
2 and 0 < α, β1, β2 < ∞ depend only on δ, ε, κ , r , �, and �K.

In Theorem 4.2, the parameter ε controls the spatial correlations while the parameter δ
controls the temporal correlations (in contrast to Theorem 4.1, where both are controlled
simultaneously by the single parameter ε). The key point is that δ can be arbitrary, and only
ε must lie above the threshold ε0. That the threshold ε0 depends on δ is natural: the more
ergodic the dynamics, the more spatial interactions can be tolerated without losing decay of
correlations.

The proof of Theorem 4.1 was based on repeated application of the classical Dobrushin
comparison theorem (Corollary 2.4). While there are some significant differences between
the details of the proofs, the essential improvement that makes it possible to prove Theorem
4.2 is that the generalized comparison theorem (Theorem 2.3) enables us to treat spatial and
temporal degrees of freedom on a different footing.

Organization of the Proof

As in [18], we consider three recursions

πμn := Fn · · · F1μ, π̃μn := F̃n · · · F̃1μ, π̂μn := F̂n · · · F̂1μ,

where Fn := CnP, F̃n := CnBP, and F̂n := CnBSN P. The filter πμn and the block particle
filter π̂μn were already defined above. The block filter π̃μn is intermediate: it inserts only the
localization but not the sampling step in the filtering recursion. This allows to decompose
the approximation error into two terms

|||πμn − π̂μn |||J ≤ |||πμn − π̃μn |||J + |||π̃μn − π̂μn |||J

by the triangle inequality. In the proof of Theorem 4.2, each of these terms will be considered
separately. The first term, which quantifies the bias due to the localization, will be bounded
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in Sect. 4.2. The second term, which quantifies the sampling variance, will be bounded in
Sect. 4.3. Combining these bounds completes the proof.

4.2 Bounding the Bias

The goal of this section is to bound the bias term ‖πσn − π̃σn ‖J , where we denote by

‖μ− ν‖J := sup
f ∈XJ :| f |≤1

|μ f − ν f |

the local total variation distance on the set of sites J . [Note that ‖μ − ν‖J ≤ K for some
K ∈ R evidently implies |||μ− ν|||J ≤ K ; the random measure norm ||| · |||J will be
essential to bound the sampling error, but is irrelevant for the bias term.]

Let us first give an informal outline of the ideas behind the proof of the bias bound. While
πσn is itself a high-dimensional distribution (defined on the set of sites V ), we do not know
how to obtain a tractable local update rule for it. Thus we cannot apply Theorem 2.3 directly.
Instead, we will consider the smoothing distribution

ρ = Pσ [X1, . . . , Xn ∈ · |Y1, . . . , Yn],
defined on the extended set of sites I = {1, . . . , n} × V and configuration space S = X

n . As
(Xvk , Y vk )(k,v)∈I is a Markov random field (as is illustrated in Fig. 1), we can read off a local
update rule forρ from the model definition. At the same time, asπσn = Pσ [Xn ∈ ·|Y1, . . . , Yn]
is a marginal of ρ, we immediately obtain estimates for πσn from estimates for ρ.

This basic idea relies on the probabilistic definition of the filter as a conditional distri-
bution of a Markov random field: the filtering recursion (which was only introduced for
computational purposes) plays no role in the analysis. The block filter π̃σn , on the other hand,
is defined in terms of a recursion and does not have an intrinsic probabilistic interpretation.
In order to handle the block filter, we will artificially cook up a probability measure P̃ on S

such that the block filter satisfies π̃σn = P̃[Xn ∈ ·|Y1, . . . , Yn], and choose the corresponding
smoothing distribution

ρ̃ = P̃[X1, . . . , Xn ∈ · |Y1, . . . , Yn].
This implies in particular that

‖πσn − π̃σn ‖J = ‖ρ − ρ̃‖{n}×J ,

and we can now bound the bias term by applying Theorem 2.3.
To apply the comparison theorem we must choose a good cover J. It is here that the full

flexibility of Theorem 2.3, as opposed to the classical comparison theorem, comes into play.
If we were to apply Theorem 2.3 with the singleton cover Js = {{i} : i ∈ I }, we would
recover the result of Theorem 4.1: in this case both the spatial and temporal interactions must
be weak in order to ensure that D = ∑n(W

−1 R)n < ∞. To avoid this problem, we work
instead with larger blocks in the temporal direction. That is, our blocks J ∈ J will have the
form J = {k + 1, . . . , k + q} × {v} for an appropriate choice of the block length q . The
local update γ J

x now behaves as q time steps of an ergodic Markov chain in X
v: the temporal

interactions decay geometrically with q , and can therefore be made arbitrarily small even if
the interaction in one time step is arbitrarily strong. On the other hand, when we increase q
there will be more nonzero terms in the matrix W −1 R. We must therefore ultimately tune
the block length q appropriately to obtain the result of Theorem 4.2.
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Remark 4.1 The approach used here to bound the bias directly using the comparison theorem
is different than the one used in [18], which exploits the recursive property of the filter.
The latter approach has a broader scope, as it does not rely on the ability to express the
approximate filter as the marginal of a random field: this could be essential for the analysis
of more sophisticated algorithms that do not admit such a representation. For the purpose of
this paper, however, the present approach yields a shorter proof that is well adapted to the
analysis of block particle filters.

Remark 4.2 The problem under investigation is based on an interacting Markov chain model,
and is therefore certainly dynamical in nature. Nonetheless, our proofs use Theorem 2.3 and
not the one-sided Theorem 2.9. If we were to approximate the dynamics of the Markov
chain Xn itself, it would be much more convenient to apply Theorem 2.9 as the model is
already defined in terms of one-sided conditional distributions p(x, z) ψ(dz). Unfortunately,
when we condition on the observations Yn , the one-sided conditional distributions take a
complicated form that incorporates all the information in the future observations, whereas
conditioning on all variables outside a block J ∈ J gives rise to relatively tractable local
expressions. For this reason, the static “space-time” picture remains the most convenient
approach for the investigation of high-dimensional filtering problems.

We now turn to the proof details. We first state the main result of this section.

Theorem 4.3 (Bias term) Suppose there exist 0 < ε, δ < 1 such that

εqv(xv, zv) ≤ pv(x, zv) ≤ ε−1qv(xv, zv),

δ ≤ qv(xv, zv) ≤ δ−1

for every v ∈ V and x, z ∈ X, where qv : X
v ×X

v → R+ is a transition density with respect
to ψv . Suppose also that we can choose q ∈ N and β > 0 such that

c := 3q�2eβ(q+2r)(1 − ε2(�+1))+ eβ(1 − ε2δ2)+ eβq(1 − ε2δ2)q < 1.

Then we have

‖πσn − π̃σn ‖J ≤ 2eβr

1 − c
(1 − ε2(q+1)�) card J e−βd(J,∂K )

for every n ≥ 0, σ ∈ X, K ∈ K and J ⊆ K .

In order to use the comparison theorem, we must have a method to construct couplings.
Before we proceed to the proof of Theorem 4.3, we begin by formulating two elementary
results that will provide us with the necessary tools for this purpose.

Lemma 4.4 If probabilities μ, ν, γ satisfy μ(A) ≥ αγ (A) and ν(A) ≥ αγ (A) for every
measurable set A, there is a coupling Q of μ, ν with

∫
1x 
=z Q(dx, dz) ≤ 1 − α.

Proof Define μ̃ = (μ− αγ )/(1 − α), ν̃ = (ν − αγ )/(1 − α), and let

Q f = α

∫

f (x, x) γ (dx)+ (1 − α)

∫

f (x, z) μ̃(dx) ν̃(dz).

The claim follows readily. ��
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Lemma 4.5 Let P1, . . . , Pq be transition kernels on a measurable space T, and let

μx (dω1, . . . , dωq) = P1(x, dω1)P2(ω1, dω2) · · · Pq(ωq−1, dωq).

Suppose there exist probability measures ν1, . . . , νq on T so that Pi (x, A) ≥ ανi (A) for
every measurable set A, x ∈ T, and i ≤ q. Then there exists for every x, z ∈ T a coupling
Qx,z of μx , μz so that

∫
1ωi 
=ω′

i
Qx,z(dω, dω′) ≤ (1 − α)i for all i ≤ q.

Proof Define the transition kernels P̃i = (Pi − ανi )/(1 − α) and

Q̃i f (x, z) = α

∫

f (x ′, x ′) νi (dx ′)+ (1 − α) 1x 
=z

∫

f (x ′, z′) P̃i (x, dx ′) P̃i (z, dz′)

+ (1 − α) 1x=z

∫

f (x ′, x ′) P̃i (x, dx ′).

Then Q̃i (x, z, · ) is a coupling of Pi (x, · ) and Pi (z, · ). Now define

Qx,z(dω1, dω′
1, . . . , dωq , dω′

q) = Q̃1(x, z, dω1, dω′
1) · · · Q̃q(ωq−1, ω

′
q−1, dωq , dω′

q).

The result follows once we note that
∫

1x ′ 
=z′ Q̃i (x, z, dx ′, dz′) ≤ (1 − α) 1x 
=z . ��
We can now proceed to the proof of Theorem 4.3.

Proof (Theorem 4.3) We begin by constructing a measure P̃ that allows to describe the block
filter π̃σn as a conditional distribution. We fix the initial condition σ ∈ X throughout the proof
(the dependence of various quantities on σ is implicit).

To construct P̃, define for K ∈ K and n ≥ 1 the function

hK
n (x, z∂K ) :=

∫

π̃σn−1(dω)
∏

v∈∂K

pv(x KωV \K , zv).

Evidently hK
n is a transition density with respect to

⊗
v∈∂K ψ

v . Let

P̃n(x, z) :=
∏

K∈K

hK
n (x, z∂K )

∏

v∈K\∂K

pv(x, zv),

and define P̃nμ(dx ′) := ψ(dx ′)
∫

P̃n(x, x ′) μ(dx). Then P̃nπ̃
σ
n−1 = BPπ̃σn−1 by construc-

tion for every n ≥ 1, as π̃σn−1 is a product measure across blocks. Thus

πσn = CnP · · · C1Pδσ , π̃σn = CnP̃n · · · C1P̃1δσ ,

that is, the filter and the block filter satisfy the same recursion with different transition
densities p and P̃n . Thus we can interpret the block filter as the filter corresponding to a
time-inhomogeneous Markov chain with transition densities P̃n : that is, if we set

P̃[(X1, . . . , Xn, Y1, . . . , Yn) ∈ A]

:=
∫

1A(x1, . . . , xn, y1, . . . , yn) P̃1(σ, x1)

n∏

k=2

P̃k(xk−1, xk) g(xk, yk) ψ(dxk) ϕ(dyk)

(note that Pσ satisfies the same formula where P̃k is replaced by p), we can write

π̃σn = P̃[Xn ∈ · |Y1, . . . , Yn].
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Let us emphasize that the transition densities P̃k and operators P̃k themselves depend on the
initial condition σ , which is certainly not the case for the regular filter. However, since σ is
fixed throughout the proof, this is irrelevant for our computations.

From now on we fix n ≥ 1 in the remainder of the proof. Let

ρ = Pσ [X1, . . . , Xn ∈ · |Y1, . . . , Yn], ρ̃ = P̃[X1, . . . , Xn ∈ · |Y1, . . . , Yn].
Then ρ and ρ̃ are probability measures on S = X

n , which is indexed by the set of sites
I = {1, . . . , n} × V (the observation sequence on which we condition is arbitrary and is
fixed throughout the proof). The proof now proceeds by applying Theorem 2.3 to ρ, ρ̃, the
main difficulty being the construction of a coupled update rule.

Fix q ≥ 1. We first specify the cover J = {J vl : 1 ≤ l ≤ �n/q�, v ∈ V } by

J vl := {(l − 1)q + 1, . . . , lq ∧ n} × {v} for 1 ≤ l ≤ �n/q�, v ∈ V .

We choose the local updates γ J
x (dz J ) = ρ(dz J |x I\J ) and γ̃ J

x (dz J ) = ρ̃(dz J |x I\J ), and
postpone the construction of the coupled updates Q J

x,z and Q̂ J
x to be done below. Now note

that the cover J is in fact a partition of I ; thus Theorem 2.3 yields

‖πσn − π̃σn ‖J = ‖ρ − ρ̃‖{n}×J ≤ 2
∑

i∈{n}×J

∑

j∈I

Di j b j

provided that D =∑∞
k=0 Ck < ∞ (cf. Corollary 2.6), where

Ci j = sup
x,z∈S:

x I\{ j}=z I\{ j}

∫

1ωi 
=ω′
i

Q J (i)
x,z (dω, dω′),

bi = sup
x∈S

∫

1ωi 
=ω′
i

Q̂ J (i)
x (dω, dω′),

and where we write J (i) for the unique block J ∈ J that contains i ∈ I . To proceed, we must
introduce coupled updates Q J

x,z and Q̂ J
x and estimate Ci j and b j .

Fix until further notice a block J = J vl ∈ J. We will consider first the case that 1 <
l < �n/q�; the cases l = 1, �n/q� will follow subsequently using the identical proof. Let
s = (l − 1)q . Then we can compute explicitly the local update rule

γ J
x (A) =

∫
1A(x J ) pv(xs, xvs+1)

∏s+q
m=s+1 gv(xvm, Y vm)

∏
w∈N (v) pw(xm, xwm+1) ψ

v(dxvm)
∫

pv(xs, xvs+1)
∏s+q

m=s+1 gv(xvm, Y vm)
∏
w∈N (v) pw(xm, xwm+1) ψ

v(dxvm)

by Bayes’ formula, the definition of Pσ (in the same form as the definition of P̃), and as
pv(x, zv) depends only on x N (v). We now construct couplings Q J

x,z of γ J
x , γ

J
z where x, z

differ only at the site j = (k, w) ∈ I . We distinguish the following cases:

1. k = s, w ∈ N (v)\{v};
2. k = s, w = v;
3. k ∈ {s + 1, . . . , s + q}, w ∈⋃u∈N (v) N (u)\{v};
4. k = s + q + 1, w ∈ N (v)\{v};
5. k = s + q + 1, w = v.

It is easily verified that γ J
x does not depend on xwk except in one of the above cases. Thus

when j satisfies none of the above conditions, we can set Ci j = 0 for i ∈ J .
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Case 1. Note that

γ J
x (A) ≥ ε2

∫
1A(x J ) qv(xvs , xvs+1)

∏s+q
m=s+1 gv(xvm, Y vm)

∏
w∈N (v) pw(xm, xwm+1) ψ

v(dxvm)
∫

qv(xvs , xvs+1)
∏s+q

m=s+1 gv(xvm, Y vm)
∏
w∈N (v) pw(xm, xwm+1) ψ

v(dxvm)

and the right hand side does not depend on xws for w 
= v. Thus whenever x, z ∈ S satisfy
x I\{ j} = z I\{ j} for j = (s, w) with w ∈ N (v)\{v}, we can construct a coupling Q J

x,z using
Lemma 4.4 such that Ci j ≤ 1 − ε2 for every i ∈ J .

Case 2. Define the transition kernels on X
v

Pk,x (ω, A) =
∫

1A(xvk ) pv(ωxV \{v}
k−1 , xvk )

∏s+q
m=k gv(xvm , Y vm)

∏
w∈N (v) pw(xm , xwm+1) ψ

v(dxvm)
∫

pv(ωxV \{v}
k−1 , xvk )

∏s+q
m=k gv(xvm , Y vm)

∏
w∈N (v) pw(xm , xwm+1) ψ

v(dxvm)

for k = s + 1, . . . , s + q . As Pk,x (xvk−1, dxvk ) = γ J
x (dxvk |xvs+1, . . . , xvk−1) by construction,

we are in the setting of Lemma 4.5. Moreover, we can estimate

Pk,x (ω, A) ≥ ε2δ2

∫
1A(xvk )

∏s+q
m=k gv(xvm, Y vm)

∏
w∈N (v) pw(xm, xwm+1) ψ

v(dxvm)
∫ ∏s+q

m=k gv(xvm, Y vm)
∏
w∈N (v) pw(xm, xwm+1) ψ

v(dxvm)
,

where the right hand side does not depend on ω. Thus whenever x, z ∈ S satisfy x I\{ j}
= z I\{ j} for j = (s, v), we can construct a coupling Q J

x,z using Lemma 4.5 such that
Ci j ≤ (1 − ε2δ2)k−s for i = (k, v) with k = s + 1, . . . , s + q .

Case 3. Fix k ∈ {s + 1, . . . , s + q} and u 
= v. Note that

γ J
x (A) ≥ ε2(�+1) ×

∫
1A(x J ) pv(xs , xvs+1)

∏s+q
m=s+1 gv(xvm , Y vm)

∏
w∈N (v) β

w
m (xm , xwm+1) ψ

v(dxvm)
∫

pv(xs , xvs+1)
∏s+q

m=s+1 gv(xvm , Y vm)
∏
w∈N (v) β

w
m (xm , xwm+1) ψ

v(dxvm)
,

where we define βwm (xm, xwm+1) = qw(xwm , xwm+1) if either m = k or m = k − 1 and
w = u, and we define βwm (xm, xwm+1) = pw(xm, xwm+1) otherwise. The right hand side of
this expression does not depend on xu

k as the terms qw(xwm , xwm+1) for w 
= v cancel in the
numerator and denominator. Thus whenever x, z ∈ S satisfy x I\{ j} = z I\{ j} for j = (k, u),
we can construct a coupling Q J

x,z using Lemma 4.4 such that Ci j ≤ 1 − ε2(�+1) for every
i ∈ J .

Case 4. Let u ∈ N (v)\v. Note that

γ J
x (A) ≥ ε2

∫
1A(x J ) pv(xvs , xvs+1)

∏s+q
m=s+1 gv(xvm, Y vm)

∏
w∈N (v) β

w
m (xm, xwm+1)ψ

v(dxvm)
∫

pv(xvs , xvs+1)
∏s+q

m=s+1 gv(xvm, Y vm)
∏
w∈N (v) β

w
m (xm, xwm+1)ψ

v(dxvm)
,

where we set βwm (xm, xwm+1) = qw(xwm , xwm+1) if m = s + q and w = u, and we set
βwm (xm, xwm+1) = pw(xm, xwm+1) otherwise. The right hand side does not depend on xu

s+q+1
as the term qu(xu

s+q , xu
s+q+1) cancels in the numerator and denominator. Thus whenever

x, z ∈ S satisfy x I\{ j} = z I\{ j} for j = (s + q + 1, u), we can construct a coupling Q J
x,z

using Lemma 4.4 such that Ci j ≤ 1 − ε2 for every i ∈ J .
Case 5. Define for k = s + 1, . . . , s + q the transition kernels on X

v

Pk,x (ω, A) =
∫

1A(xvk ) pv(xs , xvs+1)
∏k

m=s+1 gv(xvm , Y vm)
∏
w∈N (v) β

w
m,ω(xm , xwm+1) ψ

v(dxvm)
∫

pv(xs , xvs+1)
∏k

m=s+1 gv(xvm , Y vm)
∏
w∈N (v) β

w
m,ω(xm , xwm+1) ψ

v(dxvm)
,

where βwm,ω(xm, xwm+1) = pv(xk, ω) if m = k and w = v, and βwm,ω(xm, xwm+1)

= pw(xm, xwm+1) otherwise. As Pk,x (xvk+1, dxvk ) = γ J
x (dxvk |xvk+1, . . . , xvs+q) by construc-

tion, we are in the setting of Lemma 4.5. Moreover, we can estimate
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Pk,x (ω, A) ≥ ε2δ2 ×
∫

1A(xvk ) pv(xs , xvs+1)
∏k

m=s+1 gv(xvm , Y vm)
∏
w∈N (v) β

w
m (xm , xwm+1) ψ

v(dxvm)
∫

pv(xs , xvs+1)
∏k

m=s+1 gv(xvm , Y vm)
∏
w∈N (v) β

w
m (xm , xwm+1) ψ

v(dxvm)
,

where we define βwm (xm, xwm+1) = 1 if m = k and w = v and βwm (xm, xwm+1)= pw(xm, xwm+1) otherwise. Note that the right hand side does not depend on ω. Thus when-
ever x, z ∈ S satisfy x I\{ j} = z I\{ j} for j = (s +q +1, v), we can construct a coupling Q J

x,z

using Lemma 4.5 such that Ci j ≤ (1−ε2δ2)s+q+1−k for i = (k, v)with k = s+1, . . . , s+q .
We have now constructed coupled updates Q J

x,z for every pair x, z ∈ S that differ only at
one point. Collecting the above bounds on Ci j , we can estimate

∑

(k′,v′)∈I

eβ{|k−k′|+d(v,v′)}C(k,v)(k′,v′)

≤ 2eβ(q+r)(1 − ε2)�+ eβ(q+2r)(1 − ε2(�+1))�2q

+ eβ(k−s)(1 − ε2δ2)k−s + eβ(s+q+1−k)(1 − ε2δ2)s+q+1−k

≤ 3q�2eβ(q+2r)(1 − ε2(�+1))+ eβ(1 − ε2δ2)+ eβq(1 − ε2δ2)q =: c,

when (k, v) ∈ J . In the last line, we have used that αx+1 + αq−x is a convex function of
x ∈ [0, q − 1], and thus attains its maximum on the endpoints x = 0, q − 1.

Up to this point we have considered an arbitrary block J = J vl ∈ J with 1 < l < �n/q�. It
is however evident that the identical proof holds for the boundary blocks l = 1, �n/q�, except
that for l = 1 we only need to consider Cases 3–5 above and for l = �n/q� we only need
to consider Cases 1–3 above. As all the estimates are otherwise identical, the corresponding
bounds on Ci j are at most as large as those in the case 1 < l < �n/q�. We therefore obtain

‖C‖∞,βm := max
i∈I

∑

j∈I

eβm(i, j)Ci j ≤ c,

where we define the metric m(i, j) = |k − k′| + d(v, v′) for (k, v), (k′, v′) ∈ I .
Next, we construct couplings Q̂ J

x of γ J
x and γ̃ J

x and to estimate the coefficients bi . To this

end, let us first note that hK
n (x, z∂K ) depends only on x∂

2 K , where

∂2 K :=
⋃

w∈∂K

N (w) ∩ K

is the subset of vertices in K that can interact with vertices outside K in two time steps. It is
easily seen that γ J

x = γ̃ J
x , so we can set bi = 0 for i ∈ J , unless J = J vl with v ∈ ∂2 K for

some K ∈ K. In the latter case we obtain by Bayes’ formula

γ̃ J
x (A) =

∫
1A(x J )

∏s+q
t=s gv(xvt , Y vt ) hK

t+1(xt , x∂K
t+1)
∏
w∈N (v)∩K\∂K pw(xt , xwt+1) dψ J

∫ ∏s+q
t=s gv(xvt , Y vt ) hK

t+1(xt , x∂K
t+1)
∏
w∈N (v)∩K\∂K pw(xt , xwt+1) dψ J

for 1 < l < �n/q�, where s = (l − 1)q and dψ J =⊗(k,v)∈J ψ
v(dxvk ). Note that

∏

w∈N (v)\(K\∂K )

pw(x, zw) ≥ ε�
∏

w∈N (v)\(K\∂K )

qw(xw, zw),

while

hK
m (x, z∂K ) ≥ ε�

∏

w∈N (v)∩∂K

qw(xw, zw)
∫

π̃σm−1(dω)
∏

w∈∂K\N (v)

pw(x KωV \K , zw).
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Thus we can estimate γ J
x (A) ≥ ε2(q+1)��(A) and γ̃ J

x (A) ≥ ε2(q+1)��(A) with

�(A) =
∫

1A(x J )
∏s+q

m=s gv(xvm, Y vm) β(x
v
m, xvm+1)

∏
w∈N (v)∩K\∂K pw(xm, xwm+1) dψ J

∫ ∏s+q
m=s gv(xvm, Y vm) β(x

v
m, xvm+1)

∏
w∈N (v)∩K\∂K pw(xm, xwm+1) dψ J

,

where we define β(x, z) = qv(x, z) if v ∈ ∂K and β(x, z) = 1 if v ∈ ∂2 K\∂K . We can
therefore construct a coupling Q̂ J

x using Lemma 4.4 such that bi ≤ 1−ε2(q+1)� for all i ∈ J
in the case 1 < l < �n/q�. The same conclusion follows for l = 1, �n/q� by the identical
proof.

We are now ready to put everything together. As ‖ · ‖∞,βm is a matrix norm,

‖D‖∞,βm ≤
∞∑

k=0

‖C‖k∞,βm ≤ 1

1 − c
< ∞.

Thus D < ∞, to we can apply the comparison theorem. Moreover,

sup
i∈J

∑

j∈J ′
Di j = sup

i∈J
e−βm(i,J ′)∑

j∈J ′
eβm(i,J ′)Di j ≤ e−βm(J,J ′)‖D‖∞,βm .

Thus we obtain

‖πσn − π̃σn ‖J ≤ 2(1 − ε2(q+1)�)
∑

i∈{n}×J

∑

j∈{1,...,n}×∂2 K

Di j

≤ 2

1 − c
(1 − ε2(q+1)�) card J e−βd(J,∂2 K ).

But clearly d(J, ∂2 K ) ≥ d(J, ∂K )− r , and the proof is complete. ��
Remark 4.3 In the proof of Theorem 4.3 (and similarly for Theorem 4.8 below), we apply
the comparison theorem with a nonoverlapping cover {(l − 1)q + 1, . . . , lq ∧ n}, l ≤ �n/q�.
Working with overlapping blocks {s + 1, . . . , s + q}, s ≤ n − q would give somewhat better
estimates at the expense of even more tedious computations.

4.3 Bounding the Variance

We now turn to bounding the variance term |||π̃σn − π̂σn |||J . We will follow the basic approach
taken in [18], where a detailed discussion of the requisite ideas can be found. In this section
we develop the necessary changes to the proof in [18].

At the heart of the proof lies a stability result for the block filter [18, Proposition 4.15]. This
result must be modified in the present setting to account for the different assumptions on the
spatial and temporal correlations. This will be done next, using the generalized comparison
Theorem 2.3 much as in the proof of Theorem 4.3.

Proposition 4.6 Suppose there exist 0 < ε, δ < 1 such that

εqv(xv, zv) ≤ pv(x, zv) ≤ ε−1qv(xv, zv),

δ ≤ qv(xv, zv) ≤ δ−1

for every v ∈ V and x, z ∈ X, where qv : X
v ×X

v → R+ is a transition density with respect
to ψv . Suppose also that we can choose q ∈ N and β > 0 such that

c := 3q�2eβq(1 − ε2(�+1))+ eβ(1 − ε2δ2)+ eβq(1 − ε2δ2)q < 1.
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Then we have

‖F̃n · · · F̃s+1δσ − F̃n · · · F̃s+1δσ̃ ‖J ≤ 2

1 − c
card J e−β(n−s)

for every s < n, σ, σ̃ ∈ X, K ∈ K and J ⊆ K .

Proof We fix n > 0, K ∈ K, and J ⊆ K throughout. We will also assume for notational
simplicity that s = 0. As F̃k differ for different k only by their dependence on different
observations Yk , and as the conclusion of the Proposition is independent of the observations,
the conclusion for s = 0 extends trivially to any s < n.

As in Theorem 4.3, the idea behind the proof is to introduce a Markov random field ρ of
which the block filter is a marginal, followed by an application of the generalized comparison
theorem. Unfortunately, the construction in the proof of Theorem 4.3 is not appropriate in
the present setting, as there all the local interactions depend on the initial condition σ . That
was irrelevant in Theorem 4.3 where the initial condition was fixed, but is fatal in the present
setting where we aim to understand a perturbation to the initial condition. Instead, we will
use a more elaborate construction of ρ introduced in [18], called the computation tree, that
we presently recall.

Define for K ′ ∈ K the block neighborhood N (K ′) := {K ′′ ∈ K : d(K ′, K ′′) ≤ r} (we
recall that card N (K ′) ≤ �K). We can evidently write

BK ′
F̃s

⊗

K ′′∈K

μK ′′ = CK ′
s PK ′ ⊗

K ′′∈N (K ′)
μK ′′

,

where we define for any probability η on X
K ′

(CK ′
s η)(A) :=

∫
1A(x K ′

)
∏
v∈K ′ gv(xv, Y vs ) η(dx K ′

)
∫ ∏

v∈K ′ gv(xv, Y vs ) η(dx K ′
)

,

and for any probability η on X

⋃
K ′′∈N (K ′) K ′′

(PK ′
η)(A) :=

∫

1A(x
K ′
)
∏

v∈K ′
pv(z, xv) ψv(dxv) η(dz).

Iterating this identity yields

BK F̃n · · · F̃1δσ = CK
n PK

⊗

Kn−1∈N (K )

[

· · · CK2
2 PK2

⊗

K1∈N (K2)

[

CK1
1 PK1

⊗

K0∈N (K1)

δσ K0

]

· · ·
]

.

The nested products can be naturally viewed as defining a tree.
To formalize this idea, define the tree index set (we write Kn := K for simplicity)

T := {[Ku · · · Kn−1] : 0 ≤ u < n, Ks ∈ N (Ks+1) for u ≤ s < n} ∪ {[∅]}.
The root of the tree [∅] represents the block K at time n, while [Ku · · · Kn−1] represents a
duplicate of the block Ku at time u that affects the root along the branch Ku → Ku+1 →
· · · → Kn−1 → K . The set of sites corresponding to the tree is

I = {[Ku · · · Kn−1]v : [Ku · · · Kn−1] ∈ T, v ∈ Ku} ∪ {[∅]v : v ∈ K },
and the corresponding configuration space is S = ∏i∈I X

i with X
[t]v := X

v . The following
tree notation will be used throughout the proof. Define for vertices of the tree T the depth
d([Ku · · · Kn−1]) := u and d([∅]) := n. For every site [t]v ∈ I , we define the associated
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vertex v(i) := v and depth d(i) := d([t]). Define also the sets I+ := {i ∈ I : d(i) > 0} and
T0 := {[t] ∈ T : d([t]) = 0} of non-leaf sites and leaf vertices, respectively. Define the set
of children c(i) of site i ∈ I as

c([Ku · · · Kn−1]v) := {[Ku−1 · · · Kn−1]v′ : Ku−1 ∈ N (Ku), v
′ ∈ N (v)},

and similarly for c([∅]v). Finally, we will often identify a vertex [Ku · · · Kn−1] ∈ T with
the set of sites {[Ku · · · Kn−1]v : v ∈ Ku}, and analogously for [∅].

Having introduced the tree structure, we now define probabilities ρ, ρ̃ on S by

ρ(A) =
∫

1A(x)
∏

i∈I+ pv(i)(xc(i), xi )gv(i)(xi , Y i )ψv(i)(dxi )
∏

[t]∈T0
δσ [t](dx [t])

∫ ∏
i∈I+ pv(i)(xc(i), xi )gv(i)(xi , Y i )ψv(i)(dxi )

∏
[t]∈T0

δσ [t](dx [t])
,

ρ̃(A) =
∫

1A(x)
∏

i∈I+ pv(i)(xc(i), xi )gv(i)(xi , Y i )ψv(i)(dxi )
∏

[t]∈T0
δσ̃ [t](dx [t])

∫ ∏
i∈I+ pv(i)(xc(i), xi )gv(i)(xi , Y i )ψv(i)(dxi )

∏
[t]∈T0

δσ̃ [t](dx [t])
,

where we write σ [K0···Kn−1] := σ K0 and Y i := Y v(i)d(i) for simplicity. By construction,

BK F̃n · · · F̃1δσ coincides with the marginal of ρ on the root of the computation tree, while
BK F̃n · · · F̃1δσ̃ coincides with the marginal of ρ̃ on the root of the tree: this is easily seen by
expanding the above nested product identity. In particular, we obtain

‖F̃n · · · F̃1δσ − F̃n · · · F̃1δσ̃ ‖J = ‖ρ − ρ̃‖[∅]J ,

and we aim to apply the comparison theorem to estimate this quantity.
The construction of the computation tree that we have just given is identical to the con-

struction in [18]. We deviate from the proof of [18] from this point onward, since we must
use Theorem 2.3 instead of the classical Dobrushin comparison theorem to account for the
distinction between temporal and spatial correlations.

Fix q ≥ 1. In analogy with the proof of Theorem 4.3, we consider a cover J consisting
of blocks of sites i ∈ I such that (l − 1)q < d(i) ≤ lq ∧ n and v(i) = v. Here, however,
the same vertex v is duplicated many times in the tree, so we end up with many connected
blocks of different lengths. To keep track of these, define

I0 := {i ∈ I : d(i) = 0}, Il := {i ∈ I : d(i) = (l − 1)q + 1}
for 1 ≤ l ≤ �n/q�, and let

�([Ku, . . . , Kn−1]v) := max{s ≥ u : Ku = Ku+1 = · · · = Ks}.
We now define the cover J as

J = {J i
l : 0 ≤ l ≤ �n/q�, i ∈ Il},

where

J i
0 := {i}, J i

l := {[Ku · · · Kn−1]v : (l − 1)q + 1 ≤ u ≤ lq ∧ �(i)}
for i = [K(l−1)q+1 · · · Kn−1]v ∈ Il and 1 ≤ l ≤ �n/q�. It is easily seen that J is in fact a
partition of of the computation tree I into linear segments.

Having defined the cover J, we must consider a coupled update rule. We choose the natural
local updates γ J

x (dz J ) = ρ(dz J |x I\J ) and γ̃ J
x (dz J ) = ρ̃(dz J |x I\J ), with the coupled

updates Q J
x,z and Q̂ J

x to be constructed below. Theorem 2.3 yields

‖F̃n · · · F̃1δσ − F̃n · · · F̃1δσ̃ ‖J = ‖ρ − ρ̃‖[∅]J ≤ 2
∑

i∈[∅]J

∑

j∈I

Di j b j
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provided that D =∑∞
k=0 Ck < ∞ (cf. Corollary 2.6), where

Ci j = sup
x,z∈S:

x I\{ j}=z I\{ j}

∫

1ωi 
=ω′
i

Q J (i)
x,z (dω, dω′),

bi = sup
x∈S

∫

1ωi 
=ω′
i

Q̂ J (i)
x (dω, dω′),

and where we write J (i) for the unique block J ∈ J that contains i ∈ I . To proceed, we must
introduce coupled updates Q J

x,z and Q̂ J
x and estimate Ci j and b j .

Fix until further notice a block J = J i
l ∈ J with i = [K(l−1)q+1 · · · Kn−1]v ∈ Il and

1 ≤ l ≤ �n/q�. From the definition of ρ, we can compute explicitly

γ J
x (A) =

∫
1A(x J ) pv(xc(i), xi )

∏
a∈I+:J∩c(a) 
=∅

pv(a)(xc(a), xa)
∏

b∈J gv(xb, Y b) ψv(dxb)
∫

pv(xc(i), xi )
∏

a∈I+:J∩c(a) 
=∅
pv(a)(xc(a), xa)

∏
b∈J gv(xb, Y b) ψv(dxb)

using the Bayes formula. We now proceed to construct couplings Q J
x,z of γ J

x and γ J
z for

x, z ∈ S that differ only at the site j ∈ I . We distinguish the following cases:

1. d( j) = (l − 1)q and v( j) 
= v;
2. d( j) = (l − 1)q and v( j) = v;
3. (l − 1)q + 1 ≤ d( j) ≤ lq ∧ �(i) and v( j) 
= v;
4. d( j) = lq ∧ �(i)+ 1 and v( j) 
= v;
5. d( j) = lq ∧ �(i)+ 1 and v( j) = v.

It is easily seen that γ J
x does not depend on x j except in one of the above cases. Thus when

j satisfies none of the above conditions, we can set Caj = 0 for a ∈ J .
Case 1. In this case, we must have j ∈ c(i) with v( j) 
= v. Note that

γ J
x (A) ≥ ε2 ×

∫
1A(x J ) qv(xi− , xi )

∏
a∈I+:J∩c(a) 
=∅

pv(a)(xc(a), xa)
∏

b∈J gv(xb, Y b)ψv(dxb)
∫

qv(xi− , xi )
∏

a∈I+:J∩c(a) 
=∅
pv(a)(xc(a), xa)

∏
b∈J gv(xb, Y b)ψv(dxb)

,

where i− ∈ c(i) is the (unique) child of i such that v(i−) = v(i). As the right hand side does
not depend on x j , we can construct a coupling Q J

x,z using Lemma 4.4 such that Caj ≤ 1−ε2

for every a ∈ J and x, z ∈ S such that x I\{ j} = z I\{ j}.
Case 2. In this case j = i−. Let us write J = {i1, . . . , iu} where u = card J and

d(ik) = (l − 1)q + k for k = 1, . . . , u. Thus i1 = i , and we define i0 = i−. Let us also write
J̃k = {ik, . . . , iu}. Then we can define the transition kernels on X

v

Pk,x (ω, A) =
∫

1A(xik ) pv(ωxc(ik )\ik−1 , xik )
∏

J̃k∩c(a) 
=∅
pv(a)(xc(a), xa)

∏
b∈ J̃k

gv(xb, Y b) ψv(dxb)
∫

pv(ωxc(ik )\ik−1 , xik )
∏

J̃k∩c(a) 
=∅
pv(a)(xc(a), xa)

∏
b∈ J̃k

gv(xb, Y b) ψv(dxb)

for k = 1, . . . , u. By construction, Pk,x (xik−1 , dxik ) = γ J
x (dxik |xi1 , . . . , xik−1), so we are

in the setting of Lemma 4.5. Moreover, we can estimate

Pk,x (ω, A) ≥ ε2δ2

∫
1A(xik )

∏
J̃k∩c(a)
=∅

pv(a)(xc(a), xa)
∏

b∈ J̃k
gv(xb, Y b) ψv(dxb)

∫ ∏
J̃k∩c(a)
=∅

pv(a)(xc(a), xa)
∏

b∈ J̃k
gv(xb, Y b) ψv(dxb)

.

Thus whenever x, z ∈ S satisfy x I\{ j} = z I\{ j}, we can construct a coupling Q J
x,z using

Lemma 4.5 such that Cik j ≤ (1 − ε2δ2)k for every k = 1, . . . , u.
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Case 3. In this case j ∈ ⋃a∈I+:J∩c(a)
=∅
c(a) or J ∩ c( j) 
= ∅, with v( j) 
= v. We

remark for future reference that there are at most q�2 such sites j . Note that

γ J
x (A) ≥ ε2(�+1) ×

∫
1A(x J ) pv(xc(i), xi )

∏
a∈I+:J∩c(a) 
=∅

βa(xc(a), xa)
∏

b∈J gv(xb, Y b) ψv(dxb)
∫

pv(xc(i), xi )
∏

a∈I+:J∩c(a) 
=∅
βa(xc(a), xa)

∏
b∈J gv(xb, Y b) ψv(dxb)

,

where βa(xc(a), xa) = qv(a)(xa− , xa) when j = a or j ∈ c(a) and βa(xc(a), xa)

= pv(a)(xc(a), xa) otherwise. The right hand side of this expression does not depend on
x j as the terms qv(a)(xa− , xa) for v(a) 
= v cancel in the numerator and denominator. Thus
whenever x, z ∈ S satisfy x I\{ j} = z I\{ j}, we can construct a coupling Q J

x,z using Lemma
4.4 such that Caj ≤ 1 − ε2(�+1) for every a ∈ J .

Case 4. In this case J ∩ c( j) 
= ∅ with v( j) 
= v. Note that

γ J
x (A) ≥ ε2

∫
1A(x J ) pv(xc(i), xi )

∏
a∈I+:J∩c(a) 
=∅

βa(xc(a), xa)
∏

b∈J gv(xb, Y b) ψv(dxb)
∫

pv(xc(i), xi )
∏

a∈I+:J∩c(a) 
=∅
βa(xc(a), xa)

∏
b∈J gv(xb, Y b) ψv(dxb)

,

where we have defined βa(xc(a), xa) = qv(a)(xa− , xa) whenever j = a, and we define
βa(xc(a), xa) = pv(a)(xc(a), xa) otherwise. The right hand side does not depend on x j as the
term qv( j)(x j− , x j ) cancels in the numerator and denominator. Thus whenever x, z ∈ S satisfy
x I\{ j} = z I\{ j}, we can construct a coupling Q J

x,z using Lemma 4.4 such that Caj ≤ 1 − ε2

for every a ∈ J .
Case 5. In this case j− ∈ J . Note that the existence of such j necessarily implies that

�(i) > lq by the definition of J . Thus we can write J = {i1, . . . , iq} where d(ik) = lq −k+1
for k = 1, . . . , q , and we define i0 = j . Let us also define the sets J̃k = {ik, . . . , iq}. Then
we can define for k = 1, . . . , q the transition kernels on X

v

Pk,x (ω, A) =
∫

1A(xik ) pv(xc(iq ), xiq )
∏

a∈I+: J̃k∩c(a) 
=∅
βa
ω(x

c(a), xa)
∏

b∈ J̃k
gv(xb, Y b) ψv(dxb)

∫
pv(xc(iq ), xiq )

∏
a∈I+: J̃k∩c(a) 
=∅

βa
ω(x

c(a), xa)
∏

b∈ J̃k
gv(xb, Y b) ψv(dxb)

with βa
ω(x

c(a), xa) = pv(xc(a), ω) if a = ik−1 and βa
ω(x

c(a), xa) = pv(a)(xc(a), xa) other-
wise. By construction Pk,x (xik−1 , dxik ) = γ J

x (dxik |xi1 , . . . , xik−1), so we are in the setting
of Lemma 4.5. Moreover, we can estimate

Pk,x (ω, A) ≥ ε2δ2

×
∫

1A(xik ) pv(xc(iq ), xiq )
∏

a∈I+: J̃k∩c(a)
=∅
βa(xc(a), xa)

∏
b∈ J̃k

gv(xb, Y b) ψv(dxb)
∫

pv(xc(iq ), xiq )
∏

a∈I+: J̃k∩c(a)
=∅
βa(xc(a), xa)

∏
b∈ J̃k

gv(xb, Y b) ψv(dxb)
,

where βa(xc(a), xa) = 1 if a = ik−1 and βa(xc(a), xa) = pv(a)(xc(a), xa) otherwise. Thus
whenever x, z ∈ S satisfy x I\{ j} = z I\{ j}, we can construct a coupling Q J

x,z using Lemma
4.5 such that Cik j ≤ (1 − ε2δ2)k for every k = 1, . . . , q .

We have now constructed coupled updates Q J
x,z for every pair x, z ∈ S that differ only at

one point. Collecting the above bounds on the matrix C , we can estimate
∑

j∈I

eβ|d(a)−d( j)|Caj ≤ 3q�2eβq(1 − ε2(�+1))+ eβ(1 − ε2δ2)+ eβq(1 − ε2δ2)q =: c

whenever a ∈ J , where we have used the convexity of the function αx+1 + αq−x .
Up to this point we have considered an arbitrary block J = J i

l ∈ J with 1 ≤ l ≤ �n/q�.
However, in the remaining case l = 0 it is easily seen that γ J

x = δσ J does not depend on x ,
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so we can evidently set Caj = 0 for a ∈ J . Thus we have shown that

‖C‖∞,βm := max
i∈I

∑

j∈I

eβm(i, j)Ci j ≤ c,

where we define the pseudometric m(i, j) = |d(i)− d( j)|. On the other hand, in the present
setting it is evident that γ J

x = γ̃ J
x when J = J i

l ∈ J with 1 ≤ l ≤ �n/q�. We can therefore

choose couplings Q̂ J
x such that bi ≤ 1d(i)=0 for all i ∈ I . Substituting into the comparison

theorem and arguing as in the proof of Theorem 4.3 yields

‖F̃n · · · F̃1δσ − F̃n · · · F̃1δσ̃ ‖J ≤ 2

1 − c
card J e−βn .

Thus the proof is complete. ��
Proposition 4.6 provides control of the block filter as a function of time but not as a

function of the initial conditions. The dependence on the initial conditions can however be
incorporated a posteriori as in the proof of [18, Proposition 4.17]. This yields the following
result, which forms the basis for the proof of Theorem 4.8 below.

Corollary 4.7 (Block filter stability) Suppose there exist 0 < ε, δ < 1 such that

εqv(xv, zv) ≤ pv(x, zv) ≤ ε−1qv(xv, zv),

δ ≤ qv(xv, zv) ≤ δ−1

for every v ∈ V and x, z ∈ X, where qv : X
v ×X

v → R+ is a transition density with respect
to ψv . Suppose also that we can choose q ∈ N and β > 0 such that

c := 3q�2eβq(1 − ε2(�+1))+ eβ(1 − ε2δ2)+ eβq(1 − ε2δ2)q < 1.

Let μ and ν be (possibly random) probability measures on X of the form

μ =
⊗

K∈K

μK , ν =
⊗

K∈K

νK .

Then we have

‖F̃n · · · F̃s+1μ− F̃n · · · F̃s+1ν‖J ≤ 2

1 − c
card J e−β(n−s),

as well as

E[‖F̃n · · ·F̃s+1μ− F̃n · · · F̃s+1ν‖2
J ]1/2

≤ 2

1 − c

1

(εδ)2|K|∞ card J (e−β�K)
n−s max

K∈K
E[‖μK − νK ‖2]1/2,

for every s < n, K ∈ K and J ⊆ K .

Proof The proof is a direct adaptation of [18, Proposition 4.17]. ��
The block filter stability result in [18] is the only place in the proof of the variance bound

where the inadequacy of the classical comparison theorem plays a role. Having exploited
the generalized comparison Theorem 2.3 to extend the stability results in [18] to the present
setting, we would therefore expect that the remainder of the proof of the variance bound
follows verbatim from [18]. Unfortunately, however, there is a complication: the result of
Corollary 4.7 is not as powerful as the corresponding result in [18]. Note that the first (uniform)
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bound in Corollary 4.7 decays exponentially in time n, but the second (initial condition
dependent) bound only decays in n if it happens to be the case that e−β�K < 1. As in [18]
both the spatial and temporal interactions were assumed to be sufficiently weak, we could
assume that the latter was always the case. In the present setting, however, it is possible that
e−β�K ≥ 1 no matter how weak are the spatial correlations.

To surmount this problem, we will use a slightly different error decomposition than was
used in [18] to complete the proof. The present approach is inspired by [3]. The price we
pay is that the variance bound scales in the number of samples as N−γ where γ may be less
than the optimal (by the central limit theorem) rate 1

2 . It is likely that a more sophisticated

method of proof would yield the optimal N
1
2 rate. However, let us note that in order to

put the block particle filter to good use we must optimize over the size of the blocks in K,
and optimizing the error bound in Theorem 4.2 yields at best a rate of order N−α for some
constant α depending on the constants β1, β2. As the proof of Theorem 4.2 is not expected to
yield realistic values for the constants β1, β2, the suboptimality of the variance rate γ does
not significantly alter the practical conclusions that can be drawn from Theorem 4.2.

We now state the variance bound. The following is the main result of this section.

Theorem 4.8 (Variance term) Suppose there exist 0 < ε, δ, κ < 1 such that

εqv(xv, zv) ≤ pv(x, zv) ≤ ε−1qv(xv, zv),

δ ≤ qv(xv, zv) ≤ δ−1,

κ ≤ gv(xv, yv) ≤ κ−1

for every v ∈ V , x, z ∈ X, and y ∈ Y, where qv : X
v × X

v → R+ is a transition density
with respect to ψv . Suppose also that we can choose q ∈ N and β > 0 so that

c := 3q�2eβq(1 − ε2(�+1))+ eβ(1 − ε2δ2)+ eβq(1 − ε2δ2)q < 1.

Then for every n ≥ 0, σ ∈ X, K ∈ K and J ⊆ K , the following hold:

1. If e−β�K < 1, we have

|||π̃σn − π̂σn |||J ≤ card J
32�K

1 − c

2 − e−β�K

1 − e−β�K

(εδκ�K )−4|K|∞

N
1
2

.

2. If e−β�K = 1, we have

|||π̃σn − π̂σn |||J ≤ card J
16β−1�K

1 − c
(εδκ�K )−4|K|∞ 3 + log N

N
1
2

.

3. If e−β�K > 1, we have

|||π̃σn − π̂σn |||J ≤ card J
32�K

1 − c

{
1

e−β�K − 1
+ 2

}
(εδκ�K )−4|K|∞

N
β

2 log�K

.

The proof of Theorem 4.8 combines the stability bounds of Corollary 4.7 and one-step
bounds on the sampling error, [18, Lemma 4.19 and Proposition 4.22], that can be used
verbatim in the present setting. We recall the latter here.

Proposition 4.9 (Sampling error) Suppose there exist 0 < ε, δ, κ < 1 such that

εqv(xv, zv) ≤ pv(x, zv) ≤ ε−1qv(xv, zv),

δ ≤ qv(xv, zv) ≤ δ−1,

κ ≤ gv(xv, yv) ≤ κ−1

123



Comparison Theorems for Gibbs Measures 279

for every v ∈ V , x, z ∈ X, and y ∈ Y. Then we have

max
K∈K

|||F̃nπ̂
σ
n−1 − F̂nπ̂

σ
n−1|||K ≤ 2κ−2|K|∞

N
1
2

and

max
K∈K

E[‖F̃s+1F̃s π̂
σ
s−1 − F̃s+1F̂s π̂

σ
s−1‖2

K ]1/2 ≤ 16�K(εδ)
−2|K|∞κ−4|K|∞�K

N
1
2

for every 0 < s < n and σ ∈ X.

Proof Immediate from [18, Lemma 4.19 and Proposition 4.22] replacing ε by εδ. ��
We can now prove Theorem 4.8.

Proof (Theorem 4.8) We fix for the time being an integer t ≥ 1 (we will optimize over t at
the end of the proof). We argue differently when n ≤ t and when n > t .

Suppose first that n ≤ t . In this case, we estimate

|||π̃σn − π̂σn |||J = |||F̃n · · · F̃1δσ − F̂n · · · F̂1δσ |||J

≤
n∑

k=1

|||F̃n · · · F̃k+1F̃k π̂
σ
k−1 − F̃n · · · F̃k+1F̂k π̂

σ
k−1|||J

using a telescoping sum and the triangle inequality. The term k = n in the sum is estimated
by the first bound in Proposition 4.9, while the remaining terms are estimated by the second
bound of Corollary 4.7 and Proposition 4.9. This yields

|||π̃σn − π̂σn |||J ≤ card J
32�K

1 − c

(εδκ�K )−4|K|∞

N
1
2

{
(e−β�K)

n−1 − 1

e−β�K − 1
+ 1

}

(in the case e−β�K = 1, the quantity between the brackets { · } equals n).
Now suppose that n > t . Then we decompose the error as

|||π̃σn − π̂σn |||J ≤ |||F̃n · · · F̃n−t+1π̃
σ
n−t − F̃n · · · F̃n−t+1π̂

σ
n−t |||J

+
n∑

k=n−t+1

|||F̃n · · · F̃k+1F̃k π̂
σ
k−1 − F̃n · · · F̃k+1F̂k π̂

σ
k−1|||J ,

that is, we develop the telescoping sum for t steps only. The first term is estimated by the
first bound in Corollary 4.7, the sum is estimated as in the case n ≤ t . This yields

|||π̃σn − π̂σn |||J ≤ card J

1 − c

[

2e−βt + 32�K(εδκ
�K )−4|K|∞

N
1
2

{
(e−β�K)

t−1 − 1

e−β�K − 1
+ 1

}]

(in the case e−β�K = 1, the quantity between the brackets { · } equals t).
We now consider separately the three cases in the statement of the Theorem.
Case 1. In this case we choose t = n, and note that

(e−β�K)
n−1 − 1

e−β�K − 1
+ 1 ≤ 2 − e−β�K

1 − e−β�K
for all n ≥ 1.

Thus the result follows from the first bound above.
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Case 2. In this case we have

|||π̃σn − π̂σn |||J ≤ card J

1 − c

[

2e−βt + 32�K(εδκ
�K )−4|K|∞

N
1
2

t

]

for all t, n ≥ 1. Now choose t = �(2β)−1 log N�. Then

|||π̃σn − π̂σn |||J ≤ card J

1 − c

[

16β−1�K(εδκ
�K )−4|K|∞ log N

N
1
2

+ 34�K(εδκ
�K )−4|K|∞

N
1
2

]

,

which readily yields the desired bound.
Case 3. In this case we have

|||π̃σn − π̂σn |||J ≤ card J

1 − c

[

2e−βt + 32�K(εδκ
�K )−4|K|∞

N
1
2

{
(e−β�K)

t−1 − 1

e−β�K − 1
+ 1

}]

for all t, n ≥ 1. Now choose t =
⌈

log N
2 log�K

⌉
. Then

|||π̃σn − π̂σn |||J ≤ card J
32�K

1 − c

{
1

e−β�K − 1
+ 2

}
(εδκ�K )−4|K|∞

N
β

2 log�K

,

and the proof is complete. ��
The conclusion of Theorem 4.2 now follows readily from Theorems 4.3 and 4.8. We

must only check that the assumptions Theorems 4.3 and 4.8 are satisfied. The assumption
of Theorem 4.3 is slightly stronger than that of Theorem 4.8, so it suffices to consider the
former. To this end, fix 0 < δ < 1, and choose q ∈ N such that

1 − δ2 + (1 − δ2)q < 1.

Then we may evidently choose 0 < ε0 < 1, depending on δ and � only, such that

3q�2(1 − ε2(�+1))+ 1 − ε2δ2 + (1 − ε2δ2)q < 1

for all ε0 < ε ≤ 1. This is the constant ε0 that appears in the statement of Theorem 4.2.
Finally, we can clearly choose β > 0 sufficiently close to zero (depending on δ, ε, r,� only)
such that c < 1. Thus the proof of Theorem 4.2 is complete.
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