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Abstract We investigate a class of simple models for Langevin dynamics of turbulent flows,
including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations.
Starting from a path integral representation of the transition probability, we compute the most
probable fluctuation paths from one attractor to any state within its basin of attraction. We
prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for
a corresponding dual dynamics, which are also within the framework of quasi-geostrophic
Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific
example for which the stationary measure displays either a second order (continuous) or a first
order (discontinuous) phase transition and a tricritical point. In situations where a first order
phase transition is observed, the dynamics are bistable. Then, the transition paths between two
coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are
related to the relaxation paths of the corresponding dual dynamics. For this example, we show
how one can analytically determine the instantons and compute the transition probabilities
for rare transitions between two attractors.
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1 Introduction

Many natural and experimental turbulent flows display bistable behavior, in which one
observes rare and abrupt dynamical transitions between two attractors that correspond to
very different subregions of the phase space. The most prominent natural examples are
the Earth magnetic field reversals (over geological timescales), or the Dansgaard-Oeschger
events that have affected the Earth’s climate during the last glacial period, and are prob-
ably due to several attractors of the turbulent ocean dynamics [60]. Experimental studies
include examples in two-dimensional turbulence [15,28,47,67], rotating tank experiments
[66,74] related to the quasi-geostrophic dynamics of oceans (Kuroshio current bistability
[59,66]) and atmospheres (weather regime blockings), three dimensional turbulent flows in
a Von Kármán geometry [61], the magnetic field reversal in MHD experiments [4,28] and
Rayleigh-Bénard convection cells [17,19,55,68].

The theoretical understanding of these transitions is an extremely difficult problem due
to the large number of degrees of freedom, the broad spectrum of timescales and the non-
equilibrium nature of these flows. Up to now there have been an extremely limited number
of theoretical results, the analysis being mostly limited to analogies with models with few
degrees of freedom. One example with an interesting phenomenological approach results in
the clever use of symmetry arguments in order to describe effectively the largest scales of
MHD experiments [57]. This strategy has been fruitful in several examples in regimes close
to deterministic bifurcations, where the hypothesis of describing the turbulent flow by a few
dominant modes, even if based only up to now on empirical arguments, is likely to be relevant.
In fact it has led to the prediction of non-trivial qualitative features of rare transitions.

The main problem is in how to develop a general theory for these phenomena? When
a complex turbulent flow switches at random from one subregion of the phase space to
another, the first theoretical aim is to characterize and predict the observed attractors. This is
already a non-trivial task as no picture, based on a potential landscape, is available. Indeed,
this is especially tricky when the transition is not related to any symmetry breaking. An
additional theoretical challenge is in being able to compute the transition rates between
attractors. It is also often the case that most transition paths from one attractor to another
concentrate close to a single unique path, therefore a natural objective is to compute this most
probable transition path. In order to achieve these goals, it is convenient to think about the
framework of large deviation theory, in order to describe either, the stationary distribution of
the system, or in computing the transition probabilities of the stochastic process. In principle,
we could argue that from a path integral representation of the transition probabilities [76],
and the study of its semi-classical limit in an asymptotic expansion, with a well chosen
small parameter, we could derive a large deviation rate function that would characterize
the attractors and various other properties of the system. When this semi-classical approach
is relevant, one expects a large deviation result, similar to the one obtained through the
Freidlin—Wentzell theory [26]. If this notion is correct, then this would explain why these
rare transitions share many analogies with phase transitions in statistical mechanics and
stochastic dynamics with few degrees of freedom. The theoretical issues in order to assess
the validity of such a broad approach are however numerous: what is the natural asymptotic
large deviation parameter? Why and when should the finite dimensional picture be valid?
How does one actually compute the large deviation rate function and characterize its minima?
Should one expect that the dynamics of the rare transition to be well described by few degrees
of freedom? And so on. Up to now, these questions have no clear or precise answers for
any meaningful turbulence problems. The aim of this paper is to make small steps in this
direction.
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We will study the class of models that describe two-dimensional and quasi-geostrophic
dynamics. These are arguably the simplest category of turbulence models for which phase
transitions and bistability phenomena exist. For simplicity, we will consider forces which are
stochastic, white in time, Gaussian noises. In previous papers, we have given partial answers
to the theoretical challenges discussed above. For instance, for the two-dimensional stochastic
Navier-Stokes equations, we have argued [15] that in the inertial limit (weak noise and dissi-
pation), one should expect the invariant measure to be concentrated close to the attractors of
the inertial dynamics (the two-dimensional Euler equations). This partially answers the issue
of characterizing the attractors, and helps us to empirically find the bistable regimes, based
on bifurcation diagrams for the inertial dynamics. Indeed, numerical simulations showed that
the Navier-Stokes dynamics actually concentrates close to the set of attractors of the two-
dimensional Euler equations [15], and display bistable behavior in some parameter range.
In order to develop further the theoretical understanding, we have used stochastic averaging
techniques to describe the long time dynamics of the barotropic quasi-geostrophic model in
a regime where the main attractors are simple parallel flows (zonal jets) [14]. Moreover, this
model also displays multiple attractors [14], which can be studied using large deviation theory.
Furthermore, we have also developed a similar theoretical approach for the stochastic Vlasov
equations where bistability was also discussed [51,52]. However these works only partially
address the theoretical questions: mainly in predicting the set of attractors and in determining
the phase transitions and bistable regimes. However, up to now it has not been possible to
explicitly compute the transition rates and transition probabilities for these systems.

For turbulent dynamics, in the inertial limit, the attractors are expected to be subclasses
of the attractors of the inertial dynamics, as we discussed above. The natural attractors
of the inertial dynamics are those derived from the microcanonical measures, namely the
macroscopic equilibria of the Miller-Robert-Sommeria theory [50,63–65]. There have been
many recent contributions to the application of this theory [11,23,34–36,53,54,58,70,71,73,
75]. In essence, these microcanonical measures are characterized by an entropy functional
that is actually a large deviation rate functional (see for instance [8,49]). As explained in [9],
the related entropy maximization is closely related to energy-Casimir variational problems.
This link highlights the possibility that energy-Casimir functionals are natural potentials for
the effective description of the largest scales in these turbulent flows. We address this point
further in the conclusion.

The goal of this paper is to define and to study a class of Langevin dynamics associated to
energy-Casimir potentials and in the investigation of the related stochastic process. We show
that this stochastic process is an equilibrium one, in the sense that either it verifies detailed
balance, or a generalization of the detailed balance property. In the latter, the time reversed
stochastic process is not simply the initial process but belongs to the same class of physical
model (for instance in Langevin dynamics of particles in magnetic fields). From this time
reversal symmetry, identified at the level of the action, we can show that the quasi-potential
related to the action minimization can be explicitly computed, and is actually the energy-
Casimir functional. Moreover, we can also explain why fluctuation trajectories (the most
probable paths to get a rare fluctuation) are time reversed relaxation trajectories of the dual
dynamics, as in classical Langevin dynamics. In situations with bistability (when the quasi-
potential has two or more local minima), we recover the classical picture: an Arrhenius law
for the transition rate and a typical transition trajectory that follows an instanton trajectory
(the time reversed trajectory of the relaxation path of the dual dynamics from the lowest
saddle point). All these properties are derived from the orthogonality of the Hamiltonian part
of the dynamics to the potential part, which is a consequence of the fact that the potential is
conserved under the Hamiltonian dynamics.
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We discuss a specific example where the energy-Casimir functional leads to bistable
regimes, and describe a bifurcation diagram that includes a tricritical point (a bifurcation
from a first order phase transition to a second order phase transition). Close to the critical
point, the turbulent dynamics can be reduced to the effective dynamics involving only a few
degrees of freedom related to the null space of the potential at the transition point, by analogy
with the phenomenology of bifurcations in deterministic systems. However, far away from
the tricritical point such a reduction does not seem to be relevant.

These Langevin dynamics are very interesting examples of turbulent dynamics, that fit
within the classical framework of equilibrium stochastic thermodynamics. All the recent
results related to stochastic thermodynamics: Gallavotti-Cohen fluctuation relations, relations
between the entropy production and the probability of paths, and so on, could be easily
generalized for these Langevin dynamics. Together with genuine turbulence dynamics, they
also display fascinating dynamical behavior including phase transitions. The relevance of
these dynamics for real physical phenomena should however be questioned. As discussed in
the paper and in the conclusion, several examples of these Langevin dynamics actually relate
to physical microscopic dissipation mechanisms (linear friction and/or viscosity), but this is
not true in general. When this analogy is incorrect, these dynamics should be understood, at
best, as effective models for the largest scales of the flows. All these aspects and the resulting
limitations and benefits of these model to real flows are further discussed in the conclusion.

This Langevin dynamics approach also opens up a new set of very interesting theoreti-
cal and mathematical issues. For instance, for dynamics that involve white in space noises,
or colored noises but with vanishing related frictions, under which conditions are the sto-
chastic dynamics well-posed? Will dynamics with regularized noises lead to qualitative sim-
ilar behavior? What are the necessary and sufficient conditions for the formal computa-
tions performed in this work to be mathematically rigourous? Some of these questions are
related to recent advances in the mathematics of stochastic partial differential equations
[6,7,29,39,40,44,45]. Again, these aspects are further discussed in the conclusion.

In Sect. 2 we discuss a general framework for Langevin dynamics. Starting from a few
hypotheses (Liouville theorem, transversality condition, and the relation between friction and
noise amplitude), we derive the time reversal symmetry properties of the stochastic process.
Section 3 applies this framework to two-dimensional and quasi-geostrophic turbulence mod-
els. Section 4 discusses a specific case where a tricritical point is a situation for bistability,
and finally Sect. 5 concludes by emphasizing the interest and limitations of these Langevin
models and outlining the perspectives.

2 Langevin Dynamics and Equilibrium Instantons

The aim of this section is to describe the general framework for Langevin dynamics. We
first define Langevin dynamics in Sect. 2.1, as stochastic, ordinary or partial differential
equations, for which the deterministic part is composed of a vector field with a Liouville
property (conservation of phase space volume, Eq. 5) plus a potential force with potential
G. The conservative part of the dynamics are assumed to be transverse to the gradient of the
potential (6). The stochastic force is defined as the derivative of a Brownian process, with a
correlation function identical to that of the kernel of the potential force.

We derive the main properties of Langevin dynamics: its invariant measure is a Gibbs
measure with potential G. As Langevin dynamics is a Markov process, we can define the
time reversed Markov process. A classical proof that the time reversal of a finite dimensional
diffusion is also a diffusion can be found in [33]. It is also a classical result, in the sense that
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1070 F. Bouchet et al.

for a Langevin dynamics, the time reversed process is another Langevin dynamics which
is usually simply related to the original dynamics. We call this process the reversed, or
dual Langevin dynamics. We study this time-reversal symmetry through the symmetry of
the action, describing transition path probabilities. Based on this symmetry, we describe
the relation between relaxation paths (most probable paths for a relaxation from any initial
state to an attractor of the system) and fluctuation paths (most probable paths to observe a
fluctuation starting from an attractor and ending at any point of the system). As we explain,
for Langevin dynamics, fluctuation paths are time reversed trajectories of relaxation paths of
the dual dynamics.

These properties, for instance the relation between fluctuation and relaxation paths, can
be considered as a generalization of Onsager reciprocal relations. However, they are valid for
fluctuations arbitrarily far from the main attractor, and for relaxation dynamics that do not
necessarily need to be linear. Such a symmetry between the fluctuation and relaxation paths
is somehow a classical remark in statistical mechanics. For instance, the relation between the
action symmetry and detailed balance can be found in [41], discussion of these properties can
also be found in [46], and the general idea may be traced back to Onsager and Machlup [56].
We also note an interesting discussion of this symmetry in [69]. Moreover, this symmetry is
also clearly related to the Gallavotti-Cohen fluctuation relations [24,27].

The fact that large deviation functionals can be computed explicitly when the dynamics
can be decomposed into the sum of a gradient and a transverse part is explained in the book of
Freidlin and Wentzell [26]. In our problem, this transversality comes from the Hamiltonian
structure and the fact that the potential is a conserved quantity of the Hamiltonian dynamics.
As explained very clearly in [5], for non-equilibrium systems, the deterministic vector field
can also be decomposed into the sum of the gradient of the quasi-potential plus a transverse
part, the transversality condition being equivalent to the Hamilton-Jacobi equation. Similar
ideas can also be found in the works of Graham in the 1980s and 1990s (see for instance
[30]).

While many ideas discussed in the following section are classical: time reversal of
Langevin dynamics, the relation between a transverse decomposition and the time reversed
process, the Lyapunov properties of the quasi-potential, they are discussed independently by
authors in different communities. We do not know of any references where the general struc-
ture of Langevin dynamics is discussed bringing together these sets of ideas. It is thus useful
to have a self contained discussion. Moreover, the general relationship between the transverse
decomposition and the conserved quantites of Hamiltonian systems, and the applicability of
this framework to the two-dimensional Euler and quasi-geostrophic equation are new.

2.1 Langevin Dynamics with Potential G

We call the Langevin dynamics for the potential G the stochastic dynamics given by

∂q

∂t
= F [q] (r)− α

∫

D
C(r, r′) δG

δq(r′)
[q] dr′ + √

2αγ η, (1)

where F satisfies a Liouville property (defined below, Eq. 5), G is a conserved quantity of the
dynamics defined by F (see Eq. (6), and the stochastic force η is a Gaussian process, white in
time, with correlation function E

[
η(r, t)η(r′, t ′)

] = C(r, r′)δ(t − t ′). As it is a correlation
function, C is a symmetric positive function, i.e. for any function φ over D∫

D

∫

D
φ (r) C(r, r′) φ

(
r′) dr dr′ ≥ 0, (2)

123



Langevin Dynamics, Large Deviations and Instantons 1071

and C(r, r′) = C(r′, r). For simplicity, we assume in the following that C is positive definite
and has an inverse C−1 such that∫

D
C(r, r1)C−1(r1, r′) dr1 = δ

(
r − r′) .

The variable q is either finite dimensional (for instance q ∈ R
N ), or a field (e.g. a two-

dimensional field for solution of the two-dimensional Euler equations). If q ∈ R
N , we assume

that the deterministic dynamical system

∂q

∂t
= F [q] , (3)

conserves the Lebesgue measure
∏N

i=1 dqi , or equivalently that the divergence of the vector
field F is zero:

∇ · F ≡
N∑

i=1

∂F
∂qi

= 0. (4)

We call this property a Liouville property. If q is a field (for instance a two-dimensional vortic-
ity or potential vorticity field, for the two-dimensional Euler or quasi-geostrophic equations)
defined over a domain D, we assume that a Liouville property holds, in the sense that the
formal generalization of the finite dimensional Liouville property,

∇ · F ≡
∫

D

δF
δq(r)

dr = 0, (5)

is verified. We further assume that the deterministic dynamical system (3) has G as a conserved
quantity. Then for any q: ∫

D
F [q] (r)

δG
δq(r)

[q] dr = 0. (6)

This equation is a transversality property between the the vector field F and the gradient of
the potential G.

These two hypotheses, Liouville (5) and the conservation of the potential (6), are verified
if the dynamical system is Hamiltonian:

F[q] = {q,H} , (7)

with G being one of its conserved quantity, for instance G = H. We stress however that G
does not need to be H in general.

The major property of Langevin dynamics is that the stationary probability density func-
tional is known a priori and is given by

Ps[q] = 1

Z
exp

(
−G[q]

γ

)
, (8)

where Z is a normalization constant. At a formal level, this can be easily checked by writing
the Fokker-Planck equation for the evolution of the probability functional. Then the property
that Ps is stationary readily follows from the Liouville property and the fact that G is a
conserved quantity for the deterministic dynamics.
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2.2 Reversed Langevin Dynamics

We consider the linear operator I to be a linear involution on the space of fields q (I 2 = Id).
Therefore, we define the reversed Langevin dynamics, with respect to I , as

∂q

∂t
= Fr [q] (r)− α

∫

D
Cr (r, r′) δGr

δq(r′)
[q] dr′ + √

2αγ η, (9)

where

Fr = −I ◦ F ◦ I, (10)

Cr = I +C I, (11)

here I + is the adjoint of I for the L2 scalar product, and

Gr [q] = G [I [q]] . (12)

From the properties of F , C and G, one can demonstrate that a Liouville property holds
for Fr , that Cr is positive definite, and that Gr is a conserved quantity for the dynamics
∂q
∂t = Fr [q] for any q: ∫

D
Fr [q] (r)

δGr

δq(r)
[q] dr = 0. (13)

As a consequence, the reversed Langevin dynamics (9) is also Langevin.
A very interesting case is when the deterministic dynamics is symmetric with respect to

time reversal. Then there exists a linear involution I such that

F = Fr = −I ◦ F ◦ I. (14)

Moreover, if C and G are symmetric with respect to the involution: Cr = C and

Gr = G, (15)

then the reversed Langevin dynamics are nothing else than the original Langevin dynamics.
In this case, we say that the Langevin dynamics are time-reversible. Simple examples of
time-reversible Langevin dynamics are the overdamped processes:

q̇ = −
∫

D
C(r, r′) δG

δq(r′)
[q] dr′ + √

2γ η, (16)

which can be proved to be time-reversible with the involution I = Id, the canonical Langevin
dynamics

{
ẋ = p,
ṗ = − dV

dx − αp + √
2αkB Tη,

with I (x, p)T = (x,−p)T , or the two-dimensional stochastic Euler equations:

∂ω

∂t
+ v · ∇ω = −α

∫

D
C(r, r′) δG

δω(r′)
dr′ + √

2αγ η, with v = ez × ∇ψ,

under the assumption that G is conserved by the Euler dynamics, and is an even functional
(G [−ω] = G [ω]). For the two-dimensional Euler equations, the natural involution corre-
sponding to time-reversal symmetry is I [ω] = −ω. In the following, we will also consider
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cases when the Langevin dynamics are not time-reversible, for instance the two-dimensional
stochastic Euler equations when G is not even, or the quasi-geostrophic equations with topog-
raphy h(y) 	= 0.

2.3 Path Integrals, Action, and Time-Reversal Symmetry

The Lagrangian L associated to the Langevin dynamics (1) is defined as

L
[

q,
∂q

∂t

]
= 1

4α

∫

D

∫

D

⎛
⎝∂q

∂t
− F [q] (r)+ α

∫

D
C(r, r1)

δG
δq(r1)

[q] dr1

⎞
⎠

× C−1(r, r′)

⎛
⎝∂q

∂t
− F [q] (r′)+ α

∫

D
C(r′, r2)

δG
δq(r2)

[q] dr2

⎞
⎠ dr dr′,

(17)

and the action functional as

A(0,T ) [q] =
T∫

0

L
[

q(t),
∂q

∂t
(t)

]
dt. (18)

Consequently, the Lagrangian of the reverse process is defined as

Lr

[
q,
∂q

∂t

]
= 1

4α

∫

D

∫

D

⎛
⎝∂q

∂t
− Fr [q] (r)+ α

∫

D
Cr (r, r1)

δGr

δq(r1)
[q] dr1

⎞
⎠

× C−1
r (r, r′)

⎛
⎝∂q

∂t
− Fr [q] (r′)+ α

∫

D
Cr (r′, r2)

δGr

δq(r2)
[q] dr2

⎞
⎠ dr dr′,

(19)

with the time-reversed action functional Ar defined accordingly.
Using the Onsager-Machlup formalism, we know that P [qT , T ; q0, 0], the transition

probability to go from the state q0 at time 0 to the state qT at time T , can be expressed as

P [qT , T ; q0, 0] =
q(T )=qT∫

q(0)=q0

D [q] exp

(
−A
γ

)
, (20)

where we have used the fact that the Jacobian

J [q] =
∣∣∣∣∣∣det

⎡
⎣ δ

δq(r′)

⎛
⎝q̇ − F[q] + α

∫

D
C(r, r1)

δG
δq(r1)

[q] dr1

⎞
⎠

⎤
⎦

∣∣∣∣∣∣ ,

is formally equal to a q-independent constant when we interpret our stochastic partial dif-
ferential equation using Ito’s convention [76], and can be included in the definition of the
functional integration measure.

For a given path {q(t)}0≤t≤T , we define the reversed path by qr (t) = I [q(T − t)]. The
main interest of the reversed process stems from the study of temporal symmetries of the
stochastic process and the remark that
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A [qr , T ] = Ar [q, T ] − (G [q(T )] − G [q(0)]) , (21)

or equivalently, using (12),

A [q, T ] = Ar [qr , T ] + (G [q(T )] − G [q(0)]) . (22)

Let us derive this equality. Using the definition of Fr , Gr and Cr , (Eqs. 10–12), and using
that

δGr

δq(r)
[q] = I

δG
δq(r)

[I [q]] ,

with I 2 = Id, we have

L
[

I [q] ,− ∂

∂t
I [q]

]
= 1

4α

∫

D

∫

D

⎛
⎝ ∂q

∂t
− Fr [q] (r)− α

∫

D
Cr (r, r1)

δGr

δq(r1)
[q] dr1

⎞
⎠

× C−1
r (r, r′)

⎛
⎝ ∂q

∂t
− Fr [q] (r′)− α

∫

D
Cr (r′, r2)

δGr

δq(r2)
[q] dr2

⎞
⎠ dr dr′.

Then, by expanding and using the conservation of Gr we arrive to

L
[

I [q] ,−∂ I [q]

∂t

]
= Lr

[
q,
∂q

∂t

]
−

∫

D

∂q

∂t

δG
δq(r)

dr,

or equivalently,

L
[

I [q] ,−∂ I [q]

∂t

]
= Lr

[
q,
∂q

∂t

]
− d

dt
G [q] .

Using the above formula and (18) in order to compute A [qr , T ], we obtain (21).

Performing the change of variable qr (t) = I [q(T − t)] in the path integral representation
(20), and using the action duality formula (21), we obtain

P [qT , T ; q0, 0] exp

(
−G [q0]

γ

)
= Pr [I [q0] , T ; I [qT ] , 0] exp

(
−Gr [I [qT ]]

γ

)
, (23)

where Pr is a transition probability for the reversed process. We have thus obtain a relation
between the transition probability of the direct, forward, process and that of the reversed one.

2.4 Detailed Balance for Reversible Processes

If we assume that the Langevin equation is time-reversible, then the direct and the reverse
processes are the same, and the duality relation for the transition probability implies

P [qT , T ; q0, 0] exp

(
−G [q0]

γ

)
= P [I [q0] , T ; I [qT ] , 0] exp

(
−G [I [qT ]]

γ

)
,

where it is also true that exp (−G [I [qT ]] /γ ) = exp (−G [qT ] /γ ). This result is the detailed
balance property for the stochastic process. When the reverse process is different from the
direct process, then in general, detailed balance should not be verified.
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2.5 Steady States of the Deterministic Dynamics, Critical Points of G, and Relaxation Paths

2.5.1 Steady States and Critical Points of the Potential G

Let us prove that any non-degenerate critical point of the potential is also a steady state of
the deterministic dynamics. This is a classical result in mechanics, i.e. any non-degenerate
critical point of the energy is a steady state.

Extrema of the stationary PDF are critical points of the potential G. Such a critical point
qc verifies

δG
δq(r)

[qc] = 0.

We assume that the critical point is non-degenerate, that the second variations of G has no
null eigenvalues. More explicitly, the relation

∫

D

δ2G
δq(r)δq(r′)

[qc] φ(r′) = 0,

implies that φ = 0. Now, we can show that qc is also a steady state of the Hamiltonian
dynamics.

We use the property that G is conserved. By taking the variational derivative δ/δq(r) of
Eq. (6) we obtain that for any q

∫

D

δ2G
δq(r2)δq(r)

[q] F [q] (r2) dr2 +
∫

D

δG
δq(r2)

[q]
δF
δq(r)

[q] (r2) dr2 = 0. (24)

If we apply this formula at the critical point qc, we can conclude that
∫

D

δ2G
δq(r2)δq(r)

[qc] F [qc] (r2) dr2 = 0.

Moreover, using that G is non-degenerate we observe that for all r

F [qc] (r) = 0,

and thus qc is a steady state of the deterministic dynamics.
The remark that non-degenerate critical points of conserved quantity are steady states also

extend to their stability properties. Any stable and non-degenerate minima or maxima of a
conserved quantity is a stable fixed point of the deterministic dynamics (again, think of the
energy or angular momentum in classical mechanics). These points are probably about as old
as classical mechanics. For infinite-dimensional problems, like the two-dimensional Euler
equations or any other fluid mechanical problems, the issue may be more subtle. Indeed, one
should be careful of possible norm inequivalence (an infinite number of small scales can do a
lot). But proofs about stability of critical points of conserved quantities can still be obtained
on a case by case basis. For instance, we refer to the two Arnold stability theorems for the
two-dimensional Euler equations [1? ], or their generalization to many other fluid mechanical
problems [38].

Another important point is that from relations (10) and (12), it is clear that if qs is a steady
state of the deterministic dynamics, then I [qs] is a steady state of the reversed dynamics,
and vice-versa. Moreover, if qc is a critical point of the potential G, then I [qc] will be a
critical point of Gr . The stability properties (minima, global minima, local minima, number
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of unstable directions, and so on) of qc, with respect to the minimization of G, will agree
with the stability properties of I [qc] with respect to the minimization of Gr .

2.5.2 Relaxation Dynamics and Lyapunov Functionals

We define a relaxation path to be a solution of the relaxation dynamics:

∂q

∂t
= F [q] (r)− α

∫

D
C(r, r′) δG

δq(r′)
[q] dr′. (25)

For any relaxation path q(t), using the property that G is conserved by the inertial dynamics
we can derive that

d

dt
G [q(t)] = −α

∫

D
C(r, r′) δG

δq(r′)
δG
δq(r)

dr dr′ ≤ 0,

where we have used the positive definiteness of C for establishing the inequality. Thus, we
can conclude that G is a Lyapunov functional for the relaxation dynamics.

From this, we state that any minima of the potential is stable for the relaxation dynamics.

2.6 Action Minima, Relaxation Paths of the Dual Dynamics and Instantons

We consider action minima, subjected to fixed boundary conditions

A(0,T ) [q0, qT ] = min{q | q(0)=q0, q(T )=qT } A(0,T ) [q] . (26)

This variational problem is important for many questions. For instance, it describes the
most probable path to go from state q0 to state qT . Moreover, as will be discussed in the next
section, it will be useful in order to describe large deviation results.

From the definition of the action (17–18), and as C is positive definite, it is clear that

A(0,T ) [q0, qT ] ≥ 0.

Furthermore, using the action duality relation given by Eq. (22), we also conclude that

A(0,T ) [q0, qT ] ≥ G [qT ] − G [q0] . (27)

It is self-evident from the definition of the relaxation paths (25), and from the structure of
the action functional (17–18) that a relaxation path has zero action. This should be physically
intuitive, as no noise is needed for the system to follow such a path. Then, if there exists
a relaxation path between q0 and qT taking time T , ({q(t)}0≤t≤T such that q(0) = q0 and
q(T ) = qT ), we deduce that

A(0,T ) [q0, qT ] = 0.

Similarly, using the duality relation (22), if there exists a relaxation path for the reversed
dynamics between I [qT ] and I [q0], we surmise that

A(0,T ) [q0, qT ] = G [qT ] − G [q0] .

This is an important statement. Indeed, the reversed dynamics has properties very similar
to that of the original dynamics (it has the same fixed points, the same attractors, and the
same saddles up to the application of the involution I ), but in the argument above, we see
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that the final and end-points of the relaxation paths have been exchanged from q0 and qT to
I [qT ] and I [q0] respectively. This will be especially useful when the starting point is one of
the local minima of the potential G, and thus one of the attractors of the reversed dynamics.

Consider now the case when q0 is a local minima of G. Then as it is also an attractor of
the relaxation dynamics, no non-trivial relaxation path will start at q0. But, for all qT inside
the basin of attraction of q0, there exists a relaxation path from qT to q0. Generically, this
path will take an infinite amount of time T = ∞, e.g. if there is an exponential relaxation.
Consequently, there will also be a relaxation path for the dual dynamics from I [qT ] to I [q0]
taking infinite time.

Therefore, for the relaxation dynamics, we have that for all qT in the basin of attraction
of an local minima of q0

A(−∞,0) [q0, qT ] = G [qT ] − G [q0] .

For many problems, e.g. when one considers the stationary distribution, the action minima
A(−∞,0) [q0, qT ] becomes an essential quantity.

If qT is in the basin of attraction of q1 	= q0, then as there exists a relaxation path from
q1 to qT , we can infer that

A(−∞,0) [q0, qT ] = A(−∞,0) [q0, q1] .

Moreover, it is easily understood that the action minima will correspond to the relaxation
trajectory, in the reversed dynamics, from the saddle qs(q0, q1) that belongs to the closure
of the basin of attractions of both q0 and q1, with the smallest possible value of the potential
G [qs(q0, q1)]. Hence, if qT is within the basin of attraction of q1 we have

A(−∞,0) [q0, qT ] = A(−∞,0) [q0, q1] = A(−∞,∞)

[
q0, qs(q0,q1)

] = G [qs(q0, q1)] − G [q0] .

Ultimately, the minimizers of the action, between local minima of the potential and saddles,
of infinite time, are immensely important. These trajectories are called instantons. As it should
be obvious from the previous discussion, instantons for Langevin dynamics are the reversed
time trajectories of relaxation paths of the reversed dynamics. Instantons are thus fluctuation
paths for the Langevin dynamics. More explicitly, if {qr (t)}−∞≤t≤∞ is a relaxation path for
the reversed dynamics between a saddle I [qs] and the attractor I [q0], then the instanton
between q0 and qs is given by {I [qr (−t)]}−∞≤t≤∞. As instantons are the most probable
fluctuation paths between attractors and saddles, they require an infinite amount of time
to leave the attractor and an infinite amount of time to converge to the saddle. Moreover,
they are degenerate, in the sense that if {qr (t)}−∞≤t≤∞ is an instanton, then for any τ ,
{qr (t + τ)}−∞≤t≤∞ is also an instanton.

2.7 Large Deviations, Freidlin–Wentzell Theory and Entropic Effects

Up to now, we have discussed only the symmetry properties of the action functional (18) and
of the action minima (26). In the limit of small noise, γ → 0 (see Sect. 2.1), one directly
observes, from the path integral representation of the transition probability (20) that the
minima of the action will play a crucial role. Indeed, the path integral will then be seen as
a Laplace integral, and a Laplace principle will be used in order to derive a large deviation
result

P [qT , T ; q0, 0] =
γ→0

exp

(
− A(0,T ) [q0, qT ]

γ
+ o

(
1

γ

))
, (28)

where A(0,T ) [q0, qT ] = min{q | q(0)=q0, q(T )=qT } A(0,T ) [q], and where o (1/γ ) are subdom-
inant contributions. Physicist, through explicit computations, have discussed many examples
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where this Laplace principle may or may not be correct for small γ . In quantum mechanics,
evaluations of path integrals in the limit of small h̄, or in the WKB approximation, which
also involves the evaluation of path integrals through a saddle point approximation. On the
mathematical side, the study of sufficient hypotheses in order to rigorously prove such large
deviation results (28) is one of the main aspects of Freidlin–Wentzell theory [26]. Roughly
speaking, Freidlin and Wentzell proved that for finite dimensional stochastic dynamics, under
generic hypotheses, a large deviation result actually holds.

However, we draw the attention of the reader to the fact that for infinite dimensional field
equations, e.g. turbulence models, a large deviation result (28) is far from obvious in the limit
of small γ . It may be expected to be true if, for instance, the degrees of freedom at the smallest
scales can be proven to have a negligible effect upon the dynamics, such that it is qualitatively
similar to an effective finite dimensional system. For the turbulence model we present here,
such a property is not obvious at all. Studying this issue in general is an extremely difficult
task. The path integral taken over Gaussian fluctuations around the critical point is given
by the determinant of the second variation of the action functional and this determinant is
typically infinite for infinitely many degrees of freedom. Therefore it requires a regularization
which can either lead to a renormalization of constants in (28) or to a completely different
answer. This problem goes beyond the scope of this paper, however, we will return to this
discussion for a specific case in the conclusion.

3 The Two-Dimensional Euler and Quasi-Deostrophic Equilibrium Dynamics

In this section, we apply the formalism outlined previously to turbulence models. We explain
why the two main hypotheses of Langevin dynamics (Liouville property and conservation of
the potential related to the transversality condition) are verified. We assume that the kernel
in front of the gradient part and the noise autocorrelation are identical. Then all of the time-
reversal properties and the Lyapunov properties discussed in the previous section apply to
these turbulence models.

An interesting aspect, explained below, is that depending on the properties of the potential
G (even or not), and of the model (with or without topography), the Langevin dynamics can
be either symmetric under time reversal or not.

We consider the Langevin dynamics associated to the quasi-geostrophic equations in a
periodic domain D = [0, 2πlx )× [0, 2π) with aspect ratio lx to be given as

∂q

∂t
+ v [q − h] · ∇q = −α

∫

D
C(r, r′) δG

δq(r′)
dr′ + √

2αγ η, (29)

v = ez × ∇ψ, ω = �ψ, q = ω + h(r), (30)

with potential G. The stochastic force η is a Gaussian process, white in time, with correlation
function E

[
η(r, t)η(r′, t ′)

] = C(r, r′)δ(t − t ′). The potential G and the assumption of
Langevin dynamics are discussed in Sect. 3.1. Moreover, the topography h(r) is such that∫
D h (r) dr = 0. We consider G to be the Green’s function of the Laplacian operator

(G = �−1) for doubly periodic functions with zero averages. Then, the equations relating
the potential vorticity q , the stream function ψ , and the velocity are inverted as
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ψ(r) =
∫

D
G

(
r, r′) [

q(r′)− h(r′)
]

dr′,

and

v [ω] (r) =
∫

D
ez × ∇r′ G

(
r, r′)ω(r′) dr′, (31)

respectively. Here, v [ω] is the operator that allows us to compute the velocity from the
vorticity. When h = 0, these dynamics correspond to the two-dimensional Euler equilibrium
dynamics.

3.1 Conserved Quantity and Liouville Property

From the velocity-vorticity relationship, it is easily checked that the kinetic energy can be
expressed as

E = −1

2

∫

D
[q − h (r)]ψ dr = 1

2

∫

D
(∇ψ)2 dr, (32)

and, for any sufficiently smooth real function s, the Casimir functionals are defined as

Cs =
∫

D
s(q) dr,

which are all conserved quantities of the deterministic quasi-geostrophic dynamics (Eqs. (29)
for α = 0). For any s, and any β the functional

G = Cs + βE,
will be the correct potential for Langevin dynamics.

Moreover, as the deterministic equations (Eq. (29) for α =0) essentially correspond to a
transport equation by a divergenceless velocity field, the Liouville property (5) is formally
verified

∇ · F ≡ −
∫

D
v [q − h] · ∇q dr = −

∫

D
∇ · (v [q − h] q) dr = 0.

Then the formalism of Sect. 2 applies with F [q] = −v [q − h] · ∇q .

3.2 Reversed Dynamics and Detailed Balance

For the two-dimensional Euler or quasi-geostrophic equations, the relevant involution corre-
sponding to a time reversal is

I [q] = −q.

Using (10–12) we conclude that

Fr [q] = v [q + h] · ∇q,

Cr = C and

Gr [q] = G [−q] .

From these equations, we observe that for the two-dimensional Euler equations (h = 0),
Fr = F , and thus we conclude that the dynamics are time-reversible (see Eq. (10). The time
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reversibility condition on G (see Eq. 15) imposes that the potential G must be even. There we
have two cases:

1. For the two-dimensional Euler equations with an even potential G, the Langevin dynamics
are time-reversible and detailed balance is verified.

2. When either h 	= 0 (quasi-geostrophic) or when G is not even, then the Langevin dynam-
ics are not time-reversible. The original dynamics are conjugated to another Langevin
dynamics where h has to be replaced by −h and G by Gr [q] = G [−q]. In this case,
detailed balance is not verified.

3.3 Instanton Equation

As discussed in Sect. 2, the instantons from one attractor to a saddle are given by the reverse
of the relaxation paths of the corresponding reversed dynamics. From (25) applied to the
case where Fr [q] = v [q + h] · ∇q , and Gr [q] = G [−q], we determine that the equation of
these relaxation paths is

∂q

∂t
+ v [q + h] · ∇q = −α

∫

D
C(r, r′) δG

δq(r′)
[−q] dr′. (33)

3.4 Energy, Enstrophy, and Energy-Enstrophy Ensembles and Physical Dissipation

In this subsection, we consider the special case when the potential is given in the following
form

G =
∫

D

q2

2
dr + βE . (34)

This structure is referred to as the potential enstrophy ensemble (when β = 0), the
enstrophy ensemble (whenβ = 0 and h = 0), or generally as the energy-enstrophy ensemble.
The properties of the corresponding invariant measures have been discussed on a number of
occasions, starting with the works of Kraichnan [43] in the case of Galerkin truncations of
the dynamics, and for some cases without discretization, see for instance [11] and references
therein.

For specific choices of the potential G and of the kernel C , the friction term can also
be identified with a classical physical dissipation mechanism. For instance, if C(r, r′) =
�δ(r − r′), and the potential takes the form of (34), then the dissipative term on the right
hand side of (29) is

−α
∫

D
C(r, r′) δG

δq(r′)
[q] dr′ = α�q − αβq,

which leads to a diffusion type dissipation with viscosity α and a linear friction with friction
parameter αβ. Such a linear friction can model the effects of three-dimensional boundary
layers on the quasi two-dimensional bulk vorticity, that appear in experiments with a very
large aspect ratio, rotating tank experiments, or soap film experiments.

The fact that for the enstrophy ensemble, the quasi-potential is simply the enstrophy, the
relaxation and fluctuation paths can be easily computed explicitly in many scenarios, as is
discussed in [12].

For the majority of the other cases, the dissipative term on the right hand side of (29)
cannot be identified as a microscopic dissipation mechanism nor as a physical mechanism.
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There is however another possible interpretation of this kind of friction term. As explained
in [9], entropy maxima subjected to constraints related to the conservation of energy and the
distribution of vorticity, are also extrema of energy-Casimir functionals. By analogy with the
Allen-Cahn equation in statistical mechanics, that uses the free energy as a potential, it seems
reasonable to describe the largest scales of turbulent flows as evolving through a gradient
term of the energy-Casimir functional. Such models have been considered in the past (see,
for example [20,21] and references therein). At this stage, this should be considered as a
phenomenological approach, as no clear theoretical results exist to support this view.

4 Phase Transition and Instantons Between Zonal Flows in the Barotropic
Quasi-Geostrophic Equations

In order to fully determine the quasi-geostrophic Langevin dynamics (29), we need to specify
the topography function and the potential G. Given the infinite number of conserved quantities
for the quasi-geostrophic dynamics, there are many possible choices. We are interested in
the description of the phenomenology of phase transitions and instanton theory in situations
of first order transitions. Therefore, we will illustrate such a phenomenology through two
examples.

For the first example, we choose a topography given by h (r) = H cos (2y), such that

q = �ψ + H cos (2y) ,

and consider the potential
G = C + βE, (35)

with energy (32), β the inverse temperature, and where C is the Casimir functional

C =
∫

D

q2

2
− a4

q4

4
+ a6

q6

6
dr, (36)

where we assume that a6 > 0.

4.1 Zonal Phase Transitions

We first consider the structure of the minima of the potential G (35), and then their bifurcations
when the parameters ε and a4 are changed, where ε is defined by

β = −1 + ε.

At low positive temperature (β → ∞), we expect to observe energy minima, which
correspond to ψ = 0 and q = H cos (2y). As the energy is convex, for positive β and small
enough a4, both C and βE will also be convex. Henceforth, we expect that G will contain
an unique global minimum and no local minima. For large enough β, this equilibrium state
will be dominated by the topographic effect. For small negative β, the change of convexity
of βE from convex to concave will not change this picture. However, for smaller β (more
negative and higher absolute value), we expect a phase transition to occur as the potential
G will become locally concave. If a4 > 0, with sufficiently large values, this will be a first
order phase transition. If a4 < 0 with sufficiently large values, this will be a second order
phase transition.

When H = 0, a bifurcation occurs for β = −1 (ε = 0) and a4 = 0, as can be easily
checked (see [23]). This bifurcation is due to the vanishing of the Hessian at β = −1
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(ε = 0) and a4 = 0. As discussed in many papers [16,22,23,72], for the quadratic Casimir
functional C2 = ∫

D q2/2 dr, the first bifurcation involves the eigenfunction of −� with the
lowest eigenvalue. If we assume that the aspect ratio lx (defined just before Eq. 29) satisfies
lx < 1, then the smallest eigenvalue is the one corresponding to the zonal mode proportional
to cos (y). Because we are interested by transitions between two zonal states, we assume
from now on that lx < 1.

For non-zero, but sufficiently small, H there will still be a bifurcation for ε and a4 close to
zero. This is the regime that we wish to consider. The null space of the Hessian is spanned by
eigenfunctions cos (y) and sin (y), therefore as a consequence, for small enough ε, a4 and H ,
we expect that the bifurcation can be described by a normal form involving only the projection
of the field q onto the null space. Hence, we decompose the fields into a contribution arising
through its projection onto this null space and its orthogonal complement:

ψ = A cos (y)+ B sin (y)+ ψ ′ (37)

where
∫
D exp (iy) ψ ′(r) dr = 0. Then

q = −A cos (y)− B sin (y)+ q ′, (38)

with
∫
D exp (iy) q ′(r) dr = 0. The fact that the bifurcation can be described by a normal

form over the null space of the Hessian can be expected on a general basis. It can actually
be justified by using Lyapunov-Schmidt reduction, as performed and explained in [23] for a
number of examples for the two-dimensional Euler and quasi-geostrophic equations. Then
all other degrees of freedoms describing the minima qc of G are slaved to A and B, in the
sense that they can be simply expressed as functions of A and B themselves. Even though
the following example is not treated in the paper [23], it would not be difficult. Therefore, we
omit the details of the Lyapunov-Schmidt reduction here for simplicity. Instead, we rather
propose a more heuristic discussion.

Our strategy, will be in treating the problem perturbatively by assuming that ε 
 1,
a6 H2 
 a4, and a4 H2 
 ε (note that it implies that a6 H4 
 ε). We make these assump-
tions in order to get an explicit description of the phase transition. However, it is important
to understand that the theory that predicts the transition rates and the instantons does not
depend on these assumptions, and that the same phenomenology will remain valid beyond
the perturbative regime. We will assume that ψ ′ and q ′ are first order corrections in all of the
three perturbation parameters. By rewriting the potential G, taking into account only the lead-
ing order contributions, and using Eqs. (32), and (36–38), we get after some straightforward
computations that

E = π2lx
(

A2 + B2) + 1

2

∫

D

[
H cos(2y)− q ′]ψ ′ dr,

and

G = π2lxG0(A, B)+ G1(A, B)
[
q ′] + lower order terms,

with

G0(A, B) = ε
(

A2 + B2) − 3a4

8

(
A2 + B2)2 + 5a6

24

(
A2 + B2)3

,
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and

G1(A, B)
[
q ′] = ε − 1

2

∫

D

[
H cos (2y)− q ′]ψ ′ dr

+ 1

2

∫

D
q ′2 {

1 − 3a4 [A cos(y)+ B sin(y)]2

+ 5a6 [A cos(y)+ B sin(y)]4} dr. (39)

We further assume that a4 A2 
 ε, a6 A2 
 a4 and ε 
 1. Then. the leading order terms
are obtained from the minimization of the first integral and

ψ ′ =
[

H

3
cos(2y)

] [
1 + O (ε)+ O (

a4 A2) + O (
a6 A4)] ,

or equivalently

q ′ = − H

3
cos(2y)

[
1 + O (ε)+ O (

a4 A2) + O (
a6 A4)] .

We use this expression in order to compute the leading order contributions to G1(A, B) =
minq ′ G1(A, B)

[
q ′]. After lengthy but straightforward computations, we get the leading

order contribution to be

G1 = min
q ′ G1 = − H2

3
− π2lx a4 H2

6

(
A2 + B2)

+ 5π2lx a6 H2

144

[
5

(
A2 + B2)2 + 2

(
A2 − B2)2

]
,

and subsequently we obtain

min
q

G = min
(A,B)

π2lx G(A, B) (40)

with G given at leading order by

G(A, B) = − H2

3
+

(
ε − a4 H2

6
+ 5a6 H4

216

) (
A2 + B2)

+
(

−3a4

8
+ 25a6 H2

144

) (
A2 + B2)2 + 5a6

24

(
A2 + B2)3

+ 5a6 H2

72

(
A2 − B2)2

. (41)

G(A, B) is the normal form that describes the phase transition in the limit a4 A2 
 ε, and
a6 A2 
 a4 and ε 
 1.

The fact that G is a normal form for small enough a4, a6, and H , implies that the gradient of
G in the directions transverse to q = A cos (y)+ B sin (y) are much steeper than the gradient
of G. A more complete derivation could easily be performed along the lines discussed in
[23].

We observe that the term proportional to
(

A2 − B2
)2

breaks the symmetry between A
and B. Its minimization imposes that A2 = B2. Then either A = B, or A = −B. If we take
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Fig. 1 Contour plot (left) and surface plot (right) of the reduced potential surface G(A, B) (see Eq. 41) for
parameters: ε = 1.6×10−2, H = 4, a4 = 6×10−4, a6 = 3.6×10−6. For these parameter, G has four global
minima with |A| = |B| and one local minima at A = B = 0. This structure with four non-trivial attractors is
due to symmetry breaking imposed by the topography h(y) = H cos (2y)

Fig. 2 The plot depicts the
topography (h(y) = H cos (2y),
symmetric red curve) and two
non-trivial attractors of the
potential vorticity q (black solid
lines) corresponding to two
minima of the effective potential
G (see Eq. 41; Fig. 1) for
parameter values ε > 0 and
a4 > 0. Additionally, we show
the saddle between the two
attractors of the effect potential G
(dashed black curve) (Color
figure online) -15
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into account that minimizing with respect to A2 + B2 will give only the absolute value of A,
we can surmise that we will have four equivalent non-trivial solutions:

qi = − H

3
cos (2y)+ √

2 |A| (ε, a4, a6) cos(y + φi ),

with φi taking one of the four value
{− 3π

4 ,−π
4 ,

π
4 ,

3π
4

}
, with |A| minimizing

G̃(|A|) = − H2

3
+2

(
ε − a4 H2

6
+ 5a6 H4

216

)
|A|2 +4

(
3a4

8
+ 25a6 H2

144

)
|A|4 + 5a6

3
|A|6 .

(42)
The reduced potential G is plotted in Fig. 1 for the case ε > 0 and a4 > 0. The structure

has four non-trivial attractors due to a breaking of the symmetry imposed by the topography
h(y) = H cos (2y). For ε < 0, the minima of G have the symmetries of h (potential vorticity
profile have a reflexion symmetry with respect to both y = 0 or y = π and an anti-reflection
symmetry with respect to both y = π/2 and y = 3π/2). For ε > 0 this symmetry is broken
leading to four different attractors. In Fig. 2, we show the potential vorticity of two of the
attractors, the corresponding saddle and the topography.

Considering the reduced potential G̃ (Eq. 42), we recognize that the structure contains
a tricritical point: a point at which a first order transition line switches to a second order
transition line. Figure 3 shows a normal form for a tricritical point. The reduced potential
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Fig. 3 We show the phase diagram for a tricritical point corresponding to the maximization of the normal form
s(m) = −m6− 3b

2 m4−3am2 (taken from [10]). The inset show the qualitative shape of the potential s when the
parameters a and b are changed. The black solid line corresponds to a line of first order (discontinuous) phase
transition. The black dashed line is a second order phase transition line. At the tricritical point (a = b = 0),
the first order phase transition change to a second order phase transition

G̃ (Eq. 42) has the same normal form structure with a = 2
5a6

(
ε − a4 H2

6 + 5a6 H4

216

)
and

b = 8
5a6

(
3a4
8 + 25a6 H2

144

)
.

From this last equation, we can conclude that for a4 < 25a6 H2/54 (a4 < 0 at leading
order), we have a continuous phase transition for ε = 35a6 H4/648 (zero at leading order).
For a4 = 25a6 H2/54 (a4 = 0 at leading order), we have a tricritical point. Therefore, the
transition is between a state given at leading order by

q = − H

3
cos (2y)

to one of the four states given by

qi = − H

3
cos (2y)+ √

2 |A| (ε, a4, a6) cos (y + φi ) , (43)

where φi ∈ {− 3π
4 ,−π

4 ,
π
4 ,

3π
4

}
, and |A| (ε, a4, a6) being the non-zero minimizer of (42).

For a4 > 0 and ε close to zero, we have the coexistence of both of these states, and thus the
transition when ε is increased is of first order. For a4 < 0 and ε close to zero, the transition
when ε is increased is a second order (continuous) transition.

4.2 Instantons for the Topography Phase Transition

To summarize, we know how to describe and compute the instantons corresponding to the
phase transitions between zonal flows. In Sect. 2 we have derived the general theory for
Langevin dynamics for field problems with potential G, and have concluded in Sect. 2.6 that
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instantons are the time reversed trajectories of relaxation paths for the reversed dynamics.
The corresponding equation of motion for the relaxation paths for the reversed dynamics for
the quasi-geostrophic dynamics has then been derived in Sect. 3.3.

The general theory and Eq. (33) show that for the quasi-geostrophic dynamics, the reversed
dynamics is simply the quasi-geostrophic dynamics where h has been replaced by −h and G
by Gr , with Gr [q] = G [−q]. In the example we discussed now, G is even (see Eq. 36) such
that Gr = G. We remark, that over the set of zonal flows v = U (y)ex , the nonlinear term of
the quasi-geostrophic equation vanishes: v [q + h] · ∇q = 0. As a consequence, when the
instanton remains a zonal flow, the fact that h has to be replaced by −h has no consequence.
Let us now argue that the instanton is actually generically a zonal flow.

We assume for simplicity that the stochastic forces are homogeneous (invariant by trans-
lation in both directions). Then C

(
r, r′) = C

(
r − r′) = Cz(y − y′)+ Cm(y − y′, x − x ′)

where

Cz(y) = 1

2πlx

2πlx∫

0

C(x, y) dx

is the zonal part of the correlation function, and Cm = C − Cz the non-zonal or meridional
part.

As the nonlinear term of the two-dimensional Euler equations identically vanishes, the
relaxation dynamics has a solution among the set of zonal flows. If Cz is non-degenerate (pos-
itive definite as a correlation function), then relaxation paths will exist through the gradient
dynamics

∂q

∂t
= −2παlx

2π∫

0

Cz(y − y′) δG
δq(y′)

dy′, (44)

where q = q(y) is the zonal potential vorticity field.
Moreover, as argued in Sect. 4.1, the fact that G (41) is a normal form for small enough a4,

a6, and H , implies that the gradient of G in directions transverse to q = A cos (y)+ B cos (y)
are much steeper than the gradient of G. As a consequence, at leading order the relaxation
paths will be given by the relaxation paths for the effective two-degrees of freedom G. Then,
from (40), (41), and (44) we obtain that, at leading order, for the relaxation path given by
(37–38), the dynamics of A and B are given by

dA

dt
= −c

∂G

∂A
and

dB

dt
= −c

∂G

∂B
,

with c = −αlx
∫ 2π

0 Cz(y) cos (y) dy, where we recall that G is given by Eq. (41).
From this result the relaxation paths are easily computed. Using the fact that fluctuation

paths are time reversed trajectories of relaxation paths, instanton are also easily obtained.
One of the resulting relaxation paths (blue curve) and one of the instantons (red curve) are
depicted in Fig. 4 overlapped on the contours of the potential G in the (A, B)-plane. The
corresponding two attractor involved, together with the saddle point and examples of two
intermediate states are shown in Fig. 5.

4.3 Dimensional Analysis

In this section, we briefly discuss dimensional analysis for the dynamics (29), with topography
h = H cos (2y), and potential G given by Eqs. (35–36). We recall these equations for clarity:
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Fig. 4 Contour plot of the
reduced potential surface
G(A, B) (same as Fig. 1) with
the superimposed transition path
between two attractors denoted
by filled circle via a saddle filled
square. The instanton (most
probable fluctuation path from
one attractor to a saddle) is show
by the solid red line, while the
corresponding relaxation path
from the saddle to the second
attractor is given by the solid blue
line. In this case, the instanton
and the relaxation paths are
actually the reverse of one
another (Color figure online)
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Fig. 5 The potential vorticity
q(y) for two of the non-trivial
attractors (solid black curves), the
corresponding saddle between
the attractors (dashed black
curve), and two intermediate
profiles along the instanton path
(solid red curve) and the
relaxation path (solid blue curve)
(Color figure online)
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∂q

∂t
+ v [q − H cos (2y)] · ∇q = −α

∫

D
C(r − r′) δG

δq(r′)
dr′ + √

2αγ η, (45)

v = ez × ∇ψ, ω = �ψ, q = ω + H cos (2y) , (46)

with

G =
∫

D

q2

2
− a4

q4

4
+ a6

q6

4
dr − (1 − ε) E . (47)

First, let us discuss a set of convenient non-dimensional units for our problem. We express
length in units of the domain size. The dynamics involve the following parameters α (s−1), γ
(s2), H (s−1), a4 (s2), a6 (s4), β or ε (no dimension), the aspect ratio lx (no dimension), and
the force spectrum C (no dimension), energy E (s−2), and Casimirs C (s−2). We are interested
mainly in the range of parameter for which the dynamics is bistable. Moreover, it will be
especially useful to consider the perturbative regime close to the bifurcation described in
Sect. 4.1. As a consequence, we choose ε 
 1, a4 > 0 and a4 sufficiently small (as discussed
below), and H sufficiently small (a4 H2 
 ε and a6 H2 
 a4) such that the phase transition
is close to the one occurring for H = 0. We recall that these assumptions are made in order
to get an explicit description of the phase transitions, however it is important to understand
that the theory that predicts the transition rates and the instantons does not depend on these
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assumptions and that the same phenomenology will remain valid beyond this perturbative
regime.

As discussed in Sect. 4.1, with these hypotheses, the lower values of G are approximated by
the normal form G (41). From (41), we conclude that if we assume a6 H2 
 a4, then the order
of magnitude of A, the amplitude of the large scale mode, is (ε/a4)

1/2. As we have chosen
a4 H2 
 ε, the correction due to the topography is of sub-leading order (see Eq. 43). The
kinetic energy of the largest scale mode is then of the order ε/a4. Subsequently, we choose
(a4/ε)

1/2 as a time unit. We denote H ′ = (a4/ε)
1/2 H , γ ′ = (a4/ε)

3/2 γ , α′ = (a4/ε)
1/2 α,

a′
6 = (ε/a4)

2a6, and q ′ = (a4/ε)
1/2 q to be the dimensionless variables in this time unit.

Therefore, we can write the non-dimensional equations, dropping the prime variables as

∂q

∂t
+ v [q − H cos (2y)] · ∇q = −α

∫

D
C(r − r′) δG

δq(r′)
dr′ + √

2αγ η, (48)

v = ez × ∇ψ, ω = �ψ, q = ω + H cos (2y) , (49)

with

G =
∫

D

q2

2
− ε

q4

4
+ a6

q6

6
dr − (1 − ε) E . (50)

Within these non-dimensional variables, ε controls the distance to the bifurcation. The
approximation of the large scale dynamics by a few number of modes will then be valid for
ε 
 1, and the approximation that the topography is a second order effect is controlled by
H2 
 ε and H2 
 1 and a6 H2 
 ε (this also implies a6 H4 
 ε).

We now give a qualitative picture of the dynamics. Recall that the stationary distribution
of the stochastic process is given by Ps = Z−1 exp (−G/γ ). The gradient of G in the direc-
tions which are transverse with respect to the modes A cos (y) + B sin (y) is of order one,
whereas the stochastic force is multiplied by γ 1/2. As a consequence, typical values of fluc-
tuations for the stationary measure in these transverse directions are of order γ 1/2. Finally,
the non-dimensional parameter α controls the relative order of magnitude of the inertial (or
Hamiltonian) part of the dynamics, compared to the dissipative gradient terms in (48).

5 Conclusions and Perspectives

We have defined Langevin dynamics for two-dimensional and quasi-geostrophic turbulent
flows. These dynamics have an energy-Casimir invariant measure. The dissipative part of the
dynamics derives from a potential that is transverse to the Hamiltonian part of the dynamics.
Moreover, the noise autocorrelation function is the same as the kernel defining the dissipative
part. Under these hypotheses, the action is modified in a simple manner under time reversal.
It is either symmetric leading to detailed balance, or leads to a dual action which describes
dynamics that belong to the same family of physical model. These symmetries put these
Langevin dynamics in the framework of classical Langevin dynamics. For instance, fluctua-
tion paths are time reversed trajectories of relaxation paths of the dual dynamics. This gives
a very simple characterization of fluctuation paths, of large deviations, and of large deviation
paths, when they exist.

We have proposed and analyzed cases with phase transitions, both continuous and discon-
tinuous, and of a tricritical point. This opens the study to a rich phenomenology of processes,
including bistable situations. These Langevin dynamics with exact theoretical prediction will
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be very useful benchmarks for future tests of numerical algorithms aimed at computing large
deviations in turbulence problems [13,37,62].

Several interesting concepts could be developed in the future. These Langevin dynamics
give examples of turbulence problems for which the recent results of stochastic thermo-
dynamics could be extended, e.g. it would be very interesting to study Gallavotti-Cohen
fluctuation relations [27], or entropy production [3,40] in this setup. The temporal response
of the system to external driving or change of parameters could also be studied in relation to
recently studied non-equilibrium linear response for Markovian dynamics [2,48].

Let us come back to two important and related issues not discussed in this paper. Firstly,
is it possible to give a clear mathematical meaning to the Langevin dynamics (29), given
that it may involve very rough forces through the noise term? Or of smooth noise combined
with very weak friction? Secondly, for the dynamics (29), will large deviation results (28) be
valid? Similar questions have been addressed in the past in the context of the Allen-Cahn or
stochastic Ginzburg-Landau equations, related to stochastic quantization [25,42] with very
appealing new results in larger dimensions [31,32]. In order to discuss these two questions
in a fluid mechanical context, let us consider a special case of Langevin dynamics (29), with
C(r, r′) = �δ(r − r′), corresponding to the enstrophy ensemble (see Sect. 3.4). From a
physical point of view, it has been identified for a long time that the dynamics can not be
given a simple physical interpretation. Indeed, for the enstrophy measure, the expectations
of both the energy and enstrophy are infinite. Even the expectation for the velocity field
is not defined, and most of the realizations do not lead to a physical velocity field. This is
related to some of the mathematical results in [6]. These remarks give a negative answer to
the first question. Still, it has been observed [12] that, at a formal level, the minimization
of the action can be computed explicitly and leads to a quasi-potential which is indeed the
enstrophy as may have been expected. A natural physical question is then to understand
what happens if the noise is regularized at a scale δ, much smaller than the domain size.
Recently, we have been aware of the work by [18], that actually considers this problem.
Their mathematical result, is that for any finite δ the dynamics are well defined. Moreover,
that for any finite δ, a large deviation principle for exit times from a bounded domain holds
when the noise amplitude goes to zero (when γ goes to zero in our notation, see Eq. 29).
These large deviations are actually described by the minimization of the action functional
(17–18), with a kernel Cδ taking into account the noise regularization. When δ goes to zero,
the large deviation functional and the minimizers of the actions actually converge to the one
corresponding to the enstrophy ensemble [18]. These results justify the formal computation
in [12], and equivalent results would justify the formal computations presented in this current
work. However, we stress that for these results to hold, the order of the limits (γ → 0 and
δ → 0 afterwards) is crucial.

As discussed above, for the enstrophy ensemble, it is necessary to regularize the noise first
in order to obtain meaningful dynamics. However, it is not yet clear which are the relevant
cases, depending on the kernel C or the potential G, when such a regularization is necessary
or not? For instance, when a4 < 0 or a6 > 0, see Eq. (36), such a regularization may be
unnecessary, or with a potential controlling the extremal values of the vorticity field, such
a regularization would also be unnecessary. This question could be the subject of further
studies. The dynamics could also be regularized at the level of the dissipation, for instance
by adding small scale dissipation in the form of hyperviscosity with a small coefficient.

In order to conclude, we stress once more, that for applications it would be desirable to
go beyond the Langevin dynamics considered in this paper. A first step could be for the
derivation of the slow dynamics of zonal jets in quasi-geostrophic models [14], followed by
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large deviation computations. We consider progresses in this direction and in others in future
works.
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