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Abstract We show that for the anti-ferromagnetic Ising model on the Bethe lattice, weak
spatial mixing implies strong spatial mixing. As a by-product of our analysis, we obtain what
is to the best of our knowledge the first rigorous proof of the uniqueness threshold for the
anti-ferromagnetic Ising model (with non-zero external field) on the Bethe lattice. Following
a method due to Weitz [15], we then use the equivalence between weak and strong spatial
mixing to give a deterministic fully polynomial time approximation scheme for the partition
function of the anti-ferromagnetic Ising model with arbitrary field on graphs of degree at
most d , throughout the uniqueness region of the Gibbs measure on the infinite d-regular tree.
By a standard correspondence, our results translate to arbitrary two-state anti-ferromagnetic
spin systems with soft constraints. Subsequent to a preliminary version of this paper, Sly and
Sun [13] have shown that our results are optimal in the sense that, under standard complexity
theoretic assumptions, there does not exist a fully polynomial time approximation scheme for
the partition function of such spin systems on graphs of maximum degree d for parameters
outside the uniqueness region. Taken together, the results of [13] and of this paper therefore
indicate a tight relationship between complexity theory and phase transition phenomena in
two-state anti-ferromagnetic spin systems.

Keywords Phase transitions · Complexity theory · Approximation algorithms ·
Decay of correlations · Two-spin systems on trees

A preliminary version of this paper appeared in the proceedings of the 23rd Annual ACM-SIAM Symposium
on Discrete algorithms (SODA), pp. 941–953, 2012.

A. Sinclair · P. Srivastava (B)
Soda Hall, University of California Berkeley, Berkeley, CA 94720, USA
e-mail: piyushsr@cs.berkeley.edu

A. Sinclair
e-mail: sinclair@cs.berkeley.edu

M. Thurley
Medallia, Inc., Buenos Aires, Argentina
e-mail: marc.thurley@googlemail.com

123



Approximation Algorithms for Two-State Spin Systems 667

1 Introduction

1.1 Background

Spin systems are a general framework for modeling nearest-neighbor interactions on graphs,
and are widely studied in both statistical physics and applied probability. A spin system
consists of a large collection of nodes, each of which may be in one of a fixed number
of states called spins. A neighborhood structure is specified by edges between the nodes.
Interactions between neighboring nodes are determined by edge potentials, which assign an
energy value to each edge based on the spin values of its endpoints. In addition, there are vertex
potentials which assign an energy value to each node based on the value of its spin. For any
configuration σ of spins on the nodes, the energy H(σ ) is just the sum of its edge and vertex
energies. Based on the Gibbs formalism from statistical physics, the probability of finding
the system in configuration σ is then proportional to the weight w(σ) = exp(−H(σ )).

In this paper, we concentrate on two-state spin systems, where each vertex can be in one
of two states, referred to as “+” and “−”. Such a system can be defined by specifying a
(+,+) edge activity β, a (−,−) edge activity γ , and a vertex activity λ, where β, γ and λ
are non-negative parameters. For a graph G = (V, E), a configuration σ : V → {+ ,− } is
an assignment of + and − spins to the vertices of G. The weight w(σ) of the configuration
σ is given by

w(σ) = λm(σ )βn+(σ )γ n−(σ ), (1)

where m(σ ) denotes the number of vertices assigned spin −, and n+(σ ) (respectively, n−(σ ))
denotes the number of edges for which both endpoints are assigned spin + (respectively, −).
The partition function of the model is defined as

Z =
∑

σ∈{+,−}V

w(σ). (2)

The partition function, in addition to being a natural weighted generalization of the notion of
counting, is a fundamental quantity in statistical physics. For example, it is the normalizing
factor in the Gibbs distribution: the probability of occurrence of configuration σ is given
by μ(σ) = w(σ)/Z . In addition, many other properties of the model can be deduced by
studying the partition function [4].

As a simple concrete example of a two-state spin system, consider the setting β = 1 and
γ = 0 (so that configurations with adjacent “−” spins are assigned weight zero, and thus
prohibited), known as the hard-core model. The associated Gibbs distribution is a weighted
measure on independent sets in the graph G, in which any independent set U has weight λ|U |.
Another important class of examples, known as the Ising model1, is obtained by setting
β = γ > 0. There is a significant qualitative difference between the Ising model with
β = γ > 1 (the ferromagnetic case) and with β = γ < 1 (the anti-ferromagnetic case).
The latter is an example of a “repulsive” model, which means that the edge potentials assign
higher weights to edges with different spins at their endpoints, while the ferromagnetic case is
“attractive” (higher weights are assigned to edges with the same spin at their endpoints). The
parameter λ can be identified with an “external field”, i.e., a bias associated with each spin.
The case λ = 1 corresponds to zero field, while λ < 1 and λ > 1 correspond to positive and
negative fields respectively. More generally, we will refer to any two-state system satisfying

1 The description of the Ising model given here differs slightly from the more popular description in terms of
edge and vertex potentials outlined in the first paragraph. However, translating between the two descriptions
is easy; see Appendix 1.
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668 A. Sinclair et al.

βγ > 1 as ferromagnetic, and any satisfying βγ < 1 as anti-ferromagnetic. Also, a model
satisfying βγ > 0 is said to have soft constraints (in the sense that no combination of spin
values at adjacent vertices is prohibited). In a sense to be made precise later (see Appendix 1),
Ising models capture arbitrary two-state spin systems with soft constraints; in particular, the
two descriptions are equivalent on regular graphs. For this reason we will henceforth focus
mainly on Ising models.

The theory of spin systems derives in large part from considering the limiting behavior
of the Gibbs distribution as the size of the underlying graph goes to infinity. Based on the
above formalism for finite graphs, one may define a Gibbs measure μ on an infinite graph
G by requiring that the marginal distribution on any finite subgraph H , conditional on the
configuration on G \H , is given by Eq. (1). (Here the spins in G \H act as a fixed boundary
condition in (1).) It is a well known result in the statistical physics literature (see, for example,
[4]) that at least one such measure μ can always be defined. However, for certain values of
the parameters of the spin system there may be multiple solutions for μ, in which case the
Gibbs measure is said to be non-unique.

We will now look at the phenomenon of non-uniqueness more closely in the special
case when the infinite graph G is a d-ary tree.2 As noted above, the anti-ferromagnetic Ising
model essentially captures all two-state anti-ferromagnetic spin systems with soft constraints
on regular graphs, and hence it is sufficient to consider the Ising case. Consider an anti-
ferromagnetic Ising model on the d-ary tree with edge activity β(= γ ) and vertex activity λ.
It turns out that if β ≥ d−1

d+1 then the Gibbs measure is unique for all values of λ. In particular,

in the zero-field case λ = 1, the Gibbs measure is unique if and only if β ≥ d−1
d+1 . However,

when β < d−1
d+1 , the Gibbs measure is no longer unique for all values of the vertex activity

λ. In this case, there exists a critical activity λc (β, d) ≥ 1 such that the Gibbs measure is
unique if and only if |log λ| ≥ log λc(β, d). We sketch the curves of log λc(β, d) in Fig. 1,
for d = 5 and d = 13. The area below the curves is the non-uniqueness region. We note
here that the non-uniqueness region is monotonically increasing with degree, so the curve
for d = 5 lies strictly below that for d = 13. Also, note that the curves intersect the β-axis
at β = d−1

d+1 .
The phenomenon of non-uniqueness of the Gibbs measure can also be described in terms

of the more algorithmic notion of decay of correlations. We stick to our example of the infinite
d-ary tree. Fix a vertex v in the tree, and let Sl be the set of vertices in the tree at distance
at least l from v. Let qv(l, σ ) be the probability of having spin + at v conditional on the
configuration on Sl being σ . It turns out that uniqueness of the Gibbs measure is equivalent
to the condition that the inequality

|qv(l, σ )− qv(l, τ )| ≤ exp(−�(l)), (3)

holds for any two configurations σ and τ on Sl .3 The above condition is referred to in the
literature as weak spatial mixing.

2 We remark here that the infinite (d + 1)-regular tree (also known as the Bethe lattice) and the infinite
d-ary tree show exactly the same behavior with respect to the uniqueness of the Gibbs measure. This follows
immediately from the fact that the (d + 1)-regular tree can be viewed as a root attached to the roots of d + 1
infinite d-ary trees. We shall thus move freely between these two objects for ease of exposition throughout the
paper.
3 To be precise, this condition does not hold on the boundary of the uniqueness region, that is, for |log λ| =
log λc(β, d); at this critical value, the l.h.s of Eq. (3) still decays to 0 with l, but not at an exponential rate.
We will focus on the interior of this region, and by a slight abuse of terminology refer to it as the “uniqueness
region”.
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Fig. 1 log λc(β, d) for d = 5 and d = 13. The curves intersect the β-axis at β = 2
3 and β = 6

7 respectively.

It has been believed for a long time (and proved in various manifestations) that there is
an intimate relationship between weak spatial mixing and the running time of algorithms for
approximating the associated partition function: roughly speaking, in the uniqueness region
(where there is decay of correlations), the system should be amenable to local algorithms and
thus be computationally tractable. A spectacular result in this direction was Weitz’s deter-
ministic fully polynomial time approximation scheme (FPTAS)4 for the partition function of
the hard-core model, which works on all graphs of degree at most d +1 for all activities λ less
than the critical activity λc(d) for the uniqueness of the Gibbs measure on the infinite d-ary
tree [15]. This is even more interesting in light of a later breakthrough result of Sly [12] (see
also [3]), who showed that the existence of a fully polynomial randomized approximation
scheme (FPRAS) for the partition function of the hard-core model on graphs of degree at
most d + 1 for activities larger than λc(d) would imply that NP = RP.5 Thus the range of
validity of Weitz’s algorithm is optimal.

Weitz [15] gave a general two-step framework for designing deterministic algorithms for
approximating partition functions of two-state spin systems. To describe this framework, we
begin with the standard observation that in order to get an FPTAS for the partition function,
it is sufficient to give an FPTAS for the probability of having spin + at any given vertex v.
The first component of the framework is a combinatorial reduction, which shows that the
problem of approximating this probability for a general two-state spin system on a graph G of
maximum degree d +1 can be reduced to the problem of approximating the same probability

4 We refer to Sect. 2.1 for a formal definition of an FPTAS.
5 NP = RP would imply that all NP-complete problems have randomized polynomial time algorithms, which
is widely believed to be false. See, for example, the textbook of Arora and Barak [1]. An FPRAS is the natural
randomized version of an FPTAS. See Sect. 2.1 for details.
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on a related finite subtree of the infinite (d + 1)-regular tree rooted at v, in which the spins
of some of the vertices are fixed to certain values (this is the so-called self-avoiding walk
tree of the graph G). We emphasize that this is a model-independent reduction, and depends
only upon the fact that the number of spin values is two. The associated self-avoiding walk
tree, however, may be exponential in the size of the original graph G, and thus one needs
to show that it is sufficient to truncate the tree at a depth logarithmic in the size of G in
order to obtain a good approximation. However, since some of the fixed vertices in the tree
might be very close to the root v, it is not possible to argue using weak spatial mixing that a
logarithmic depth of recursion suffices for approximating the partition function (because the
parameter l in Eq. (3) must be taken to be the minimum distance of a fixed vertex from the
root).

Accordingly, the second component of Weitz’s framework is to establish that, for the spin
system in question, weak spatial mixing on the infinite d-ary tree is in fact equivalent to strong
spatial mixing, which roughly states that the exponential decay of point-to-set correlations (3)
guaranteed by weak spatial mixing holds also when the spins at an arbitrary set of vertices are
fixed to arbitrarily chosen values (see Sect. 2 for a precise definition). Weitz [15] established
this fact for the hard core model, using a step-by-step comparison of ratios of occupation
probabilities on the standard d-ary tree and on the modified tree with fixed vertices. It was
claimed in [15] that such a result holds also for the anti-ferromagnetic Ising model, but to
the best of our knowledge no proof of this fact (except in the special zero-field case where
λ = 1; see [11,16]) has so far been published.

1.2 Contributions

In this paper, we give a proof of the fact that for the anti-ferromagnetic Ising model with any
field, weak spatial mixing implies strong spatial mixing on the d-ary tree. Formally, we have
the following theorem.

Theorem 1 For the anti-ferromagnetic Ising model with arbitrary field on the d-ary tree
with d ≥ 2, weak spatial mixing implies strong spatial mixing.

Remark We point out a byproduct of our approach that may be of independent interest. The
exact value of the critical field λc(β, d) as a function of (β, d) is apparently widely accepted
folklore, but the only derivation we could find for it in the literature [4, p. 255] does not
provide a formal proof, appealing instead to numerical evidence. We emphasize that our
proof of strong spatial mixing does not assume knowledge of λc(β, d), and in fact derives
its value as a byproduct (see the Remark following Theorem 3 for more details). Thus our
approach gives a proof of the location of the uniqueness threshold λc(β, d) of two-state
anti-ferromagnetic spin systems.

Notice that it is easy to see that in the statement of Theorem 1, “infinite d-ary tree” can
be replaced by “infinite (d + 1)-regular tree”, since the (d + 1)-regular tree and the d-ary
tree differ only in the degree of the root. Given Weitz’s general reduction described above,
we obtain as an almost immediate consequence an FPTAS for the partition function of the
anti-ferromagnetic Ising model on graphs of maximum degree at most d + 1 throughout the
uniqueness region of the Gibbs measure on the d-ary tree.

Corollary 1 Let d ≥ 2. Consider an anti-ferromagnetic Ising model with parameters β and
λ. For β and λ in the interior of the uniqueness region of the d-ary tree, every graph of
degree at most d + 1 exhibits strong spatial mixing. Moreover, for such β and λ, there is a
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deterministic fully polynomial time approximation scheme for the partition function of the
associated spin system on graphs of degree at most d + 1.

By the translation described in Appendix 1, we can extend this result to general two-state
anti-ferromagnetic spin systems. The difference is that the critical activity may now differ for
vertices of different degrees. Let λc(β, d) be the critical activity for the anti-ferromagnetic
Ising model described above (and defined formally in Sect. 2.2.1). Then, we have the follow-
ing corollary.

Corollary 2 Let d ≥ 2. Consider an anti-ferromagnetic two-state spin system with para-
meters β, γ and λ. Let β ′ be the edge potential for the equivalent anti-ferromag-netic Ising
model. Let G be the class of graphs with maximum degree d + 1 in which every vertex v
satisfies the condition

| log λv| �
∣∣∣∣log λ+ deg(v)

2
(log γ − logβ)

∣∣∣∣ > log λc(β
′, d).

Then there is a deterministic fully polynomial time approximation scheme for the partition
function of the associated spin system on graphs in the class G . In particular, the class G
includes all (d + 1)-regular graphs when β, γ and λ are in the interior of the uniqueness
region of the d-ary tree.

We briefly sketch the approach we use to prove our main technical result, namely that
weak spatial mixing implies strong spatial mixing (Theorem 1). Inspired by recent work of
Restrepo et al. [11], we design a “message” (i.e., an invertible function of the probability of
a vertex having spin + ) such that “disagreements” in the message decay by a constant factor
at each vertex of the tree. The challenge is to ensure that such a message can be designed
for all points in the uniqueness region of the d-ary tree. For the special zero-field case of the
anti-ferromagnetic Ising model (when λ = 1), such a message is well known [16]. However,
this message does not work up to the threshold for general vertex potentials λ. Restrepo et
al. [11] recently derived a message which works up to the tree uniqueness threshold for the
hard-core model. For the general anti-ferromagnetic Ising model, such a message turns out to
be more complex than those known for the zero-field case and for the hard-core model. Our
message is defined at the beginning of Sect. 3, and the requisite decay property is established
in Sect. 4.

We conjecture that our proof of strong spatial mixing based on stepwise decay of messages
may lead to further consequences. For example, as shown by Restrepo et al. [11], the message
decay property can be used to extend Weitz’s algorithm by exploiting the structure of special
classes of graphs to obtain approximation algorithms beyond the tree threshold for those
graphs. In addition, our proof demonstrates the versatility of the message approach introduced
by Restrepo et al.

Remark After obtaining our message-decay proof, we received a sketch of Weitz’s orig-
inal unpublished proof [14]. It is interesting to note that that proof is quite different
from ours, and employs a delicate two-step analysis of the tree recursion described in
Sect. 2. For reasons mentioned above, we believe that our message-decay proof, in addi-
tion to being the first published version of this result, is potentially more robust and
flexible than Weitz’s approach; for example, it is not clear how to adapt Weitz’s analy-
sis to obtain stronger results for special classes of graphs such as lattices, as is done in
[11].
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1.3 Related Work

Our work is mainly motivated by the deterministic counting algorithm of Weitz [15], which
was the first to show an interesting connection between the running time of an algorithm
not related to Markov chain Monte Carlo and the phase transition phenomenon for spin
systems. On the complexity side, using a randomized gadget first proposed by Dyer, Frieze
and Jerrum [2] and analysed further by Mossel, Weitz and Wormald [10], Sly [12] proved
that if there is an FPRAS for the partition function of the hard-core model on graphs of
degree at most d in the non-uniqueness region of the d-regular tree, then NP = RP, thus
showing that the range of validity of Weitz’s algorithm is optimal. Technically Sly’s result
holds only sufficiently close to the boundary of the uniqueness region; this restriction was
mostly removed in a later paper of Galanis et al. [3].

For two-state anti-ferromagnetic spin systems on unbounded degree graphs, Goldberg,
Jerrum and Paterson [6] showed that approximating the partition function for the zero-field
case (λ = 1) is NP-hard in the interior of the square 0 ≤ β, γ ≤ 1. For bounded degree
graphs, subsequent to the results of this paper, Sly and Sun [13] have shown that there is no
FPRAS for the partition function of the anti-ferromagnetic Ising model on d-regular graphs
in the non-uniqueness regime of the d-regular tree, unless NP = RP. The results of [13]
taken together with the results of this paper therefore strengthen the connections between the
theory of NP-hardness and the phase transition phenomenon first established by the results
of Weitz [15] and Sly [12] cited above.

A related problem is to get exponential lower bounds on the mixing time of any local
Markov chain (Glauber dynamics) that samples from the hard-core and anti-ferromagnetic
Ising models. Mossel, Weitz and Wormald [10] and Gerschenfeld and Montanari [5] showed
that beyond the uniqueness threshold for d-regular trees, Glauber dynamics for these models
can take exponential time to mix on d-regular graphs. Gerschenfeld and Montanari also show
that for these models on random regular graphs, this threshold for slow mixing is also the
threshold beyond which the reconstruction problem on the graph is solvable.

On the algorithmic side, an analysis of Weitz’s algorithm for the zero-field case of the
anti-ferromagnetic Ising model appears in [16]. There has been some subsequent progress
on the hard-core model on special classes of graphs too: recently, Restrepo et al. [11] used a
message-decay proof to get improved strong spatial mixing thresholds on the 2D integer
lattice for the hard core model. They achieved this by exploiting the special structure of self-
avoiding walk trees obtained when Weitz’s reduction is applied to the lattice. The message-
decay proof turns out to be crucial in tightening the analysis to obtain strong spatial mixing
over a wider range of parameters for these special trees. Much more is known about algorithms
for the ferromagnetic case: Jerrum and Sinclair [7] gave an FPRAS for the Ising model
with arbitrary field on graphs of arbitrary degree, while Goldberg, Jerrum and Paterson [6]
showed how to extend this to the whole of the ferromagnetic region βγ > 1 with λ = 1.
The latter paper [6] also gave an FPRAS for the partition function on graphs of arbitrary
degree for parts of the anti-ferromagnetic region βγ < 1. However, the results of [6] when
restricted to bounded degree graphs do not hold throughout the uniqueness region and hence
are incomparable to ours.

More recently, the work of [6] has been improved upon by Li, Lu and Yin [9]. They
consider two-state anti-ferromagnetic spin systems with zero field (λ = 1) on general graphs,
and derive a condition under which an FPTAS exists for approximating the partition function.
Their condition requires that (β, γ ) lies in the intersection of the uniqueness regions for all
possible degrees d . (Note that in the (β, γ ) parameterization, this is a non-trivial region of
the βγ -plane.) However, for any fixed degree d , this region is smaller than the uniqueness
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region for d , which is the range of validity obtained in our present paper. We also point out
an important qualitative difference between the parameterization we use (edge potential β
and vertex field λ) and the parameterization via two edge potentials (β and γ ) used by Li et
al.: while the (β, γ ) parametrization is not monotonic, in the sense that uniqueness on a d-
regular tree does not imply uniqueness on a (d −1)-regular tree, the (β, λ) parametrization is
monotonic. In fact, as our results show, uniqueness on the d-regular tree implies strong spatial
mixing, and hence uniqueness, on all d ′-regular trees for d ′ ≤ d in the (β, λ) parametrization.
Subsequent to the results of this paper, Li, Lu and Yin [8] have presented a unified framework
for establishing the results of this paper as well as their earlier paper [9]; their new approach
also improves upon our Corollary 2 in the case of non-regular graphs.

2 Preliminaries

2.1 Notation and Terminology

We will mostly follow the notational conventions of [6]. Given a graph G = (V, E), a two-
state spin configuration is defined as an assignment σ : V → {+ ,− } of spins to the vertices.
Weights for different configurations are computed in terms of the (+,+)-edge activity β, the
(−,−) edge activity γ and a vertex activity λ, and are given by

w(σ) = λm(σ )βn+(σ )γ n−(σ ), (4)

where given the configuration σ , m(σ ) denotes the number of vertices assigned spin −,
and n+(σ ) (respectively, n−(σ )) denotes the number of edges for which both endpoints are
assigned spin + (respectively, −). The partition function is defined as

Z =
∑

σ∈{−1,1}V

w(σ).

We remark that this representation can be easily translated to the usual description in terms
of edge potentials and vertex field: for completeness we give the translation in Appendix 1.

Definition 1 (Occupation probability) Given a vertex v in the graph G, the occupation
probability pv is the probability that v is assigned spin + in a random configuration σ
sampled according to the weights defined in Eq. (4).

The standard notion of efficient approximation in complexity theory is that of a fully
polynomial time approximation scheme, which we define below in relation to the computation
of the partition function.

Definition 2 (Fully polynomial time approximation scheme) Consider a two state spin
system with parameters β, γ and λ. A deterministic algorithm A for approximating the par-
tition function Z of the model is called a fully polynomial approximation scheme (FPTAS) if,
given an input graph G and accuracy parameter ε > 0, the algorithm runs in time polynomial
in 1/ε and the size of the graph G and outputs a quantity Ẑ satisfying

(1 − ε)Z ≤ Ẑ ≤ (1 + ε)Z . (5)

A closely related notion is that of a fully polynomial randomized approximation scheme
(FPRAS). In this case, the algorithm A is a randomized algorithm, and takes as input a graph
G, an accuracy parameter ε > 0 and a confidence parameter δ > 0, runs in time polynomial
in 1/ε, log(1/δ) and the size of the graph G, and outputs a quantity Ẑ which satisfies the
condition in Eq. (5) with probability at least 1 − δ.
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2.2 The Ising Model

The Ising model corresponds to the case β = γ . The model is ferromagnetic when β > 1 and
anti-ferromagnetic when β < 1 (the case β = 1 is trivial). The zero-field case corresponds
to λ = 1, the positive field case to λ < 1 and the negative field case to λ > 1. As shown
in Appendix 1, on d-regular graphs the Ising model is equivalent to general two-state spin
systems. Thus, in the rest of this paper, we will concentrate mostly on the Ising case. On
non-regular graphs the equivalence still holds; however, the vertex activity λ in the Ising
model may then be different on different vertices. The adaptation of our results to this setting
is described in Corollary 2.

2.2.1 Phase Transition

The anti-ferromagnetic Ising model exhibits a uniqueness phase transition on the d-ary tree
for d ≥ 2. In particular, one can show the existence of a critical activity λc(β, d) as expressed
in the following classical result (see, e.g., Georgii [4, p. 254]).

Theorem 2 (Existence of a critical activity) Consider the anti-ferromagnetic Ising model
on an infinite d-ary tree with edge activity β and vertex activity λ. If β ≥ d−1

d+1 then the

Gibbs measure is unique for all values of λ. If β < d−1
d+1 , then there exists a critical activity

λc(β, d) ≥ 1 such that the Gibbs measure is unique if and only if |log λ| ≥ log λc(β, d).

A consequence of uniqueness6 of the Gibbs measure is weak spatial mixing, which captures a
weak notion of decay of point to set correlations. Let pρ(σ, S) be the probability of occupation
of the root ρ of an infinite d-ary tree when the spins of a set S of nodes are fixed according
to the configuration σ . Let δ(ρ, S) denote the distance of ρ from the set S.

Definition 3 (Weak spatial mixing) Given any two-state spin system, weak spatial mixing
is said to hold if for any set S whose distance δ(ρ, S) from the root ρ of the tree is finite, and
any two configurations σ1 and σ2, we have

|pρ(σ1, S)− pρ(σ2, S)| ≤ exp(−�(δ(ρ, S))).

Notice that weak spatial mixing does not guarantee exponential decay of correlations when
the set S contains vertices which are very close to the root ρ, even when σ1 and σ2 differ only
on vertices which are very far away from ρ. A related but, as the name suggests, stronger
notion is that of strong spatial mixing, which captures the idea that fixing vertices near the
root to the same spin should not affect the exponential decay of point-to-set correlations. We
note that strong spatial mixing is not in general implied by weak spatial mixing for arbitrary
spin systems; see Appendix 2 for a counterexample involving the ferromagnetic Ising model
with appropriate parameters.

Definition 4 (Strong spatial mixing) Given any two-state spin system, strong spatial mixing
is said to hold if for any set S whose distance δ(ρ, S) from the root ρ of the tree is finite, and
any two configurations σ1 and σ2 which differ only on a set T ⊆ S of vertices, we have

|pρ(σ1, S)− pρ(σ2, S)| ≤ exp(−�(δ(ρ, T ))).

6 As stated in the introduction, we exclude the boundary of the uniqueness region here.
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2.2.2 Phase Transition and Tree Recursions

It is well known (see, for example, [4]) that the uniqueness condition for two-state spin
systems on d-ary trees can be written in terms of the number of fixed points of the recursion
for occupation probabilities. Consider a subtree rooted at a vertex v in the d-ary tree, and let
vi , i = 1, 2, ...d be its children. Let pv be the occupation probability at vertex v and define
Rv = 1−pv

pv
. One can then write the following recurrence for Rv :

Rv = λ

d∏

i=1

(
βRvi + 1

β + Rvi

)
.

This can easily be converted to a recurrence for occupation probabilities. Define

h(x) �
β + (1 − β)x

1 − (1 − β)x
.

We can then write the recurrence as

pv = F(pv1 , pv2 , . . . , pvd ) �
1

1 + λ
∏d

i=1 h(pvi )
. (6)

We will find it useful in what follows to consider the tree recurrence with the special boundary
condition in which all vertices at some distance l from the root are fixed to the same spin.
In this case, by symmetry, the tree recurrence outputs the same value pv at all vertices v
which are at the same distance from the root. Thus, the recurrence can be simplified to a
one-parameter recurrence as follows:

pv = f (pv1) �
1

1 + λh(pv1)
d
.

Note that in the anti-ferromagnetic case, h is an increasing function, and hence F and f
are decreasing in each of their arguments. We also note that since f is strictly decreasing in
[0, 1], it has a unique fixed point.

In terms of the recurrence function f , the condition for uniqueness can be stated as follows.

Theorem 3 ([4]) For given values of β and λ, the infinite d-ary tree has a unique Gibbs
measure if and only if the two-step recurrence function f ◦ f has a unique fixed point.
In particular, if the Gibbs measure is unique, and (β, λ) are not on the boundary of the
uniqueness region, then the unique fixed point x� of f satisfies

f ′(x�) > −1. (7)

Remark In [4], it is claimed (implicitly) on the basis of numerical simulations that the
condition (7) is also sufficient for uniqueness. To be precise, the expression for the critical
activity λc(β, d) given in [4, p. 255] is exactly the same as that obtained by assuming that
(7) is also a sufficient condition for uniqueness. While we believe this fact to be folklore,
we have not been able to find a rigorous proof of it in the literature. With a slight abuse
of terminology, we will henceforth refer to the set of (β, λ) for which the fixed point x�

satisfies f ′(x�) > −1 as the “uniqueness region”. We will justify this terminology later (see
the Remark following the proof of Theorem 1 in Sect. 4) by proving that condition (7) does
indeed imply uniqueness. Thus we will obtain a rigorous proof of the expression for the
critical activity appearing in [4].
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2.3 Messages

Definition 5 (Message) A message is a continuously differentiable function φ : [0, 1] → R

with positive derivative.

Note that a message is strictly increasing and hence invertible on its range. Moreover, the
inverse function φ−1 is also a continuously differentiable function with positive derivative.

Given a recurrence function f : [0, 1] → [0, 1], and a message φ, we denote by f φ the
function φ ◦ f ◦φ−1. The function f φ , which will play a crucial role in this paper, describes
the evolution of the message φ under the recurrence, in the sense that f φ(φ(x)) = φ( f (x)).
We will also need the following fact.
Notation In the following, we will find it convenient to use the following shorthand notations:
we will denote the function f φ as g, and the inverse φ−1 of φ as ψ .

Fact 4 For any message φ, the parameters (β, λ) are in the uniqueness region if and only if
g′(p�) > −1 at the unique fixed point p� of g = f φ .

Proof Notice that since φ is strictly increasing, and f has a unique fixed point x�, g = f φ

also has a unique fixed point p� = φ(x�). Now, we notice that g′(p�) = f ′(x�), because

g′(p�) = φ′( f (ψ(p�))) f ′(ψ(p�))ψ ′(p�)

= φ′( f (x�)) f ′(x�) 1

φ′(ψ(p�))

= φ′(x�)
φ′(x�)

f ′(x�)

= f ′(x�),

where in the second line we used the facts that ψ(p�) = x� and ψ ′(y) = 1
φ′(ψ(y)) , and in the

third line the fact that f (x�) = x�. Thus, (β, λ) are in the uniqueness region (as defined in
the Remark following Theorem 3) if and only if g′(p�) = f ′(x�) > −1.

2.4 Weitz’s Tree Reduction

As indicated in the introduction, Weitz [15] proved the following combinatorial reduction
(see [15] for a formal definition of the self-avoiding walk tree used in this theorem).

Theorem 5 ([15]) Let G be a graph of degree at most d, and let v be a vertex in G. For any
two-state spin system on G, the occupation probability pv in (G) is equal to the occupation
probability of v in the self-avoiding walk (SAW) tree (which is also of degree at most d) rooted
at v. Further, if the SAW tree exhibits strong spatial mixing, then there is a deterministic fully
polynomial time approximation scheme for the partition function of the spin system on graphs
of degree at most d.

3 Messages and Contraction on the d-ary Tree

In this section, we will prove the main technical ingredient of our result, which is expressed
in the following theorem.

Theorem 6 Given d, β and λ, there exists a message φ and a constant c < 1, such that the
tree recurrence g = f φ for the quantity φ(pv) satisfies ‖g′‖∞ ≤ c < 1, whenever (β, λ) is
in the uniqueness region for the d-ary tree.
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The above theorem says that in the uniqueness region, the single-parameter recurrence g =
f φ for the message φ(pv) contracts at every step. (Without the message, the function f itself
is not contractive.) This stepwise contraction is easily seen by standard arguments to imply
weak spatial mixing; for completeness, we give a proof in the Section titled “Contraction and
Weak Spatial Mixing” in Appendix 3. To extend the argument to strong spatial mixing, as
required for Theorem 1, we need to consider a multi-parameter (vectorized) version of the
message recurrence g, since under arbitrary boundary conditions the occupation probabilities
need not be uniform. We will show in Sect. 4 that for our messageφ in Theorem 6, the analysis
of the vectorized version can in fact be reduced to an application of Theorem 6.

Remark For ease of notation, in the rest of the paper we will prove our results in terms of the
uniqueness threshold of the d-ary tree, relating it to algorithms on graphs of degree at most
d + 1. As already noted, the uniqueness thresholds on the (d + 1)-regular tree and the d-ary
tree coincide, and hence our results apply equally to the infinite (d + 1)-regular tree.

We begin by setting up some notation for the proof of Theorem 6. In light of Fact 4,
the main technical challenge is to come up with a message φ such that the quantity

∣∣g′∣∣ is
maximized at the unique fixed point of g = f φ . Let us fix constants

A = d(1 − β2)+ (1 − β)2 and D =
√

A + 4β − √
A

2
√

A
.

Define

φ(x) = log

(
x + D

1 − x + D

)
.

Notice that D > 0, so φ is a continuously differentiable function with positive derivative
on the interval [0, 1]. Using this message we are able to prove the following (recall that ψ
denotes φ−1).

Lemma 1 Consider the anti-ferromagnetic Ising model on a d-ary tree with edge activity β
and vertex activity λ. Then, using the shorthand notations α and η for ψ(x) and f (ψ(x))
respectively, we have

g′′(x) = (η − α)g′(x)ψ ′(x)

× dβ(1 − β2)(2β + Aαη + A(1 − α)(1 − η))

(β + α(1 − α)(1 − β)2)(β + Aη(1 − η))(β + Aα(1 − α))
. (8)

The proof of Lemma 1 is somewhat technical and is deferred to Sect. 5.
Before proceeding with the technical development, we pause to give some comments on the

design of our message. Notice that the requirement that the derivative of the function g = f φ

should have its maximum magnitude at the unique fixed point of g does not immediately lead
to a solution for φ, and thus we must resort to some educated guesswork for the functional
form of φ. Our choice is guided by the intuition that, by analogy with the zero field case,

where it is well known that the simple message φ(x) = log
(

x
1−x

)
is sufficient, a log ratio of

probabilities shifted by an additive constant D to account for the field should be appropriate.
The choice of D is then determined by the above requirement. An important additional
property of our message is that, perhaps surprisingly, it does not depend upon the vertex
potential λ, but only upon the edge potential β and the degree d; this is reflected in the fact
that the additive shift D is the same for both probabilities. This property will be important in
extending our algorithm to the setting of general two-state anti-ferromagnetic spin systems
in Corollary 2.

123



678 A. Sinclair et al.

Lemma 2 Let g = f φ , with the message φ defined above. Then |g′(x)| is maximized at the
unique positive fixed point of g.

Proof We use the notation established in Lemma 1, where we derived an expression for g′′(x)
in Eq. (8). It is easy to see that ignoring the factor (η − α), the rest of the right hand side of
Eq. (8) is negative: this is because g is a decreasing function, while ψ , being the inverse of
the increasing function φ, is increasing. Also, we have 0 < β < 1 (in the anti-ferromagnetic
case) and 0 ≤ α, η ≤ 1 (since they are probabilities), so that the fractions appearing on the
right hand side are positive.

Let x� be the unique fixed point of the strictly decreasing function g. From the above
discussion, it follows that the sign of g′′(x) is the opposite of the sign of η−α = f (ψ(x))−
ψ(x). Notice that η − α is strictly positive for x < x� and strictly negative for x > x�. This
implies that g′(x) is strictly decreasing for x < x� and strictly increasing for x > x�. Since
g is strictly decreasing this shows that the magnitude of g′ is maximized at x�.

Combining Lemma 2 with Fact 4, we immediately get Theorem 6. Lemma 2 further implies
that the constant c in the Theorem is |g′(x�)|, where x� is the unique fixed point of g.

4 Strong Spatial Mixing on the d-ary Tree

In this final section we use the message defined in the previous section to prove our main
result, Theorem 1. Along with Weitz’s reduction stated in Theorem 5, this will immediately
imply Corollary 1, the FPTAS for the anti-ferromagnetic Ising model with arbitrary fields. To
derive Corollary 2 for general two-state spin systems, we will need the translation described
in Appendix 1. Both these latter proofs appear at the end of this section.

Recall that Theorem 1 asserts that weak spatial mixing implies strong spatial mixing. We
already showed in Theorem 6 that in the uniqueness region, there is uniform contraction in
the tree recurrence with uniform boundary conditions. However, in order to prove strong
spatial mixing, we will need to handle non-uniform boundary conditions as well, in which
case the one-parameter recurrence g = f φ is no longer sufficient. We therefore consider the
multi-parameter vectorized version G of the function g. For x ∈ R

d , G(x) is defined as

G(x1, x2, . . . , xd) = φ

(
1

1 + λ
∏d

i=1 h (ψ(xi ))

)
, (9)

where, as before, ψ = φ−1. We claim that strong spatial mixing on the d-ary tree is implied
whenever the function G satisfies the following condition; a proof of this implication can be
found in the Section titled “Contraction and Strong Spatial Mixing” in Appendix 3.

Definition 6 (Contractive spatial mixing) Given the parameters β and λ for the anti-
ferromagnetic Ising model on a d-regular tree, contractive spatial mixing holds if there exists
a constant c < 1 such that

|G(x)− G( y)| ≤ c‖x − y‖∞,

for the vectorized version G of g defined as above with respect to the message φ.

To establish this condition, we will rely on the following lemma.

Lemma 3 Let η = ψ(G(x)). Let η̄ be the unique solution of ψ(g(η̄)) = η. Then
‖∇G(x)‖1 ≤ ‖∇G(η̄, η̄, . . . , η̄)‖1 = |g′(η)|.
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Proof Set αi = ψ(xi ) for i = 1, 2, . . . d . We then have

η = 1

1 + λ
∏d

i=1 h(αi )
= 1

1 + λh(ψ(η̄))d
. (10)

Recalling the definitions of the quantities A and D given just before Lemma 1, we can now
write ‖∇G(x)‖1 as

‖∇G(x)‖1 = dη(1 − η)(1 − β2)

β + Aη(1 − η)

(
1 + (1 − β2)

d∑

i=1

αi (1 − αi )

β + (1 − β)2αi (1 − αi )

)
. (11)

For notational convenience, we define the function J (x) � x(1−x)
β+(1−β)2x(1−x)

. Note that max-

imizing the sum in (11) under the constraint (10) is the same as maximizing
∑d

i=1 J (αi )

under the constraint that
∏d

i=1 h(αi ) = 1−η
λη

. Since h is positive and invertible, it is therefore

sufficient to show that the function K (x) � J (h−1(ex )) is concave in order to show that all
αi ’s are equal at a maximum. We now show this by direct computation. After differentiating
twice and simplifying, we have

K ′′(x) = −e−x (1 + e2x )β

(1 − β2)2
< 0.

This shows that K is concave. By the discussion above, it follows that the sum in Eq. (11)
is maximized when all αi ’s are equal. In conjunction with the condition that η = 1

1+∏d
i=1 h(αi )

,

this shows that

‖∇G(x)‖1 ≤ ‖∇G(η̄, η̄, . . . , η̄)‖1.

Note that for any x , G(x, x, ..., x)=g(x), and therefore ‖∇G(η̄, η̄, . . . , η̄)‖1 =|g′(η̄)|.
Using Lemma 2 and the above lemma, we are now ready to prove our main technical

result, Theorem 1, which says that weak spatial mixing implies strong spatial mixing for
general anti-ferromagnetic Ising models.

Proof of Theorem 1 Consider a setting of parameters β and λ such that the d-ary tree has
weak spatial mixing. Let x� be the unique fixed point of the function g. We will use only
the property that the fixed point satisfies the condition (7) of Theorem 3. By Theorem 6 we
have ‖g′‖∞ = c < 1. By Lemma 3, this implies that for all x in the domain of the function
G defined in Eq. (9), ‖∇G(x)‖1 ≤ c. Using the mean value theorem followed by Hölder’s
inequality, we then have

|G(x)− G( y)| ≤ c‖x − y‖∞,

for all vectors x and y in the domain of G, and thus contractive spatial mixing holds. As
observed above, this implies strong spatial mixing.

Remark We can now justify our use of the term “uniqueness region” as described in the
Remark following Theorem 3. Notice that in the proof of Theorem 1 above, we used only the
fact that weak spatial mixing implies that (β, λ) is in the “uniqueness region” as defined in
the aforementioned Remark. Thus, we see that whenever (β, λ) is in the uniqueness region,
we have strong spatial mixing, and hence, in particular, uniqueness. As stated earlier, this
provides a rigorous proof of the claim in [4] that the interior of the uniqueness region is
equivalent to the condition (7).
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Combining the above theorem with the general reduction of Weitz [15] stated in Theorem 5,
we can now prove Corollary 1, which asserts the existence of an FPTAS for general anti-
ferromagnetic Ising models on bounded-degree graphs up to the uniqueness threshold.

Proof of Corollary 1 As observed earlier, in order to obtain an FPTAS for the partition func-
tion of the associated spin system, it is sufficient to give an FPTAS for approximating the
occupation probability pρ of a vertex ρ, under an arbitrary fixing of spin values for an arbi-
trary subset of vertices. Given a vertex ρ in a graph G of maximum degree (d +1), we start by
constructing Weitz’s self-avoiding walk (SAW) tree rooted at ρ. For non-leaf vertices (apart
from ρ) in this tree which do not have d children, we can create dummy children (so as to
make the arity of the vertex d) all of which independently have occupation probabilities of
1/2. It is easy to see that this does not change the output of the tree recurrence (Eq. (6)) at any
vertex of the tree. As we saw in the proof of Theorem 1, we have strong spatial mixing on
this SAW tree whenever (β, λ) are in the uniqueness region of the d-ary tree. The corollary
now follows using Weitz’s reduction (Theorem 5).

Finally, we will see how to use Lemmas 1 and 3 to prove Corollary 2, which extends the
FPTAS to general two-state anti-ferromagnetic spin systems.

Proof of Corollary 2 Given a two-state spin system with parameters β, γ and λ on a graph
G of degree at most d + 1, we can use the translation given in Appendix 1 to come up with
an equivalent Ising model with edge potential β ′ = √

βγ and vertex-dependent potentials
λv = λ(

√
γ /β)dv . Now, as before, in order to estimate the occupation probability pρ for a

given vertex ρ, we construct Weitz’s self-avoiding walk (SAW) tree rooted at ρ, and complete
the degree of any non-leaf vertex (apart from ρ) in the tree which does not have d children
by attaching dummy children which are fixed to have occupation probability 1

2 . We now use
the message φ constructed above for d-ary trees for the parameter β ′. By the hypotheses of
the corollary, the parameters (β ′, λu) at each vertex u of the SAW tree are in the uniqueness
region of the d-ary tree. Since the message φ does not depend upon λu , Theorem 6 and
Lemma 3 apply at each vertex u of the tree. Thus, as in the proof of Theorem 1, we get
contractive spatial mixing and, hence, strong spatial mixing on the SAW tree. Employing
Weitz’s reduction (Theorem 5), we have the first part of the corollary.

The claim that the class G in the corollary includes (d + 1)-regular graphs when β, γ
and λ are in the uniqueness region of d-ary tree follows by noticing that in this case the
parameters λ′ = λv obtained by the translation are the same at each vertex v, and that β ′ and
λ′ are in the uniqueness region of the d-ary tree by the hypotheses of the corollary. Thus, we
can complete the proof for this case in the same manner as in the proof of Corollary 1.

5 Proof of Lemma 1

In this section, we prove Lemma 1 from Sect. 3. The proof involves a few somewhat lengthy
derivative computations, which we isolate in the following lemma.

Lemma 4 With the notation used in Lemma 1 above, we have

φ′′(x)
φ′(x)

= A(2x − 1)

β + Ax(1 − x)
; (12)

h′(x)
h(x)

= 1 − β2

β + (1 − β)2x(1 − x)
; (13)
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h′′(x)
h′(x)

= 2(1 − β)

1 − (1 − β)x
; (14)

f ′(x) = −d f (x)(1 − f (x))
h′(x)
h(x)

; (15)

f ′′(x)
f ′(x)

= f ′(x)(1 − 2 f (x))

f (x)(1 − f (x))
+ h′′(x)

h′(x)
− h′(x)

h(x)
. (16)

Proof (sketch) All of these identities are easily verified by direct computation. In proving
Eq. (12), one needs to keep in mind the definition of the constant D.

Proof of Lemma 1 To ease notation, we will suppress the dependence of the quantities η and
α on x . Using the chain rule, we have

g′(x) = φ′(η)
φ′(α)

f ′(α).

Here, we used the fact that since ψ = φ−1, ψ ′(x) = 1
φ′(ψ(x)) . After taking the logarithm,

and noticing that the right hand side is more easily expressed as a function of α rather than
of x , one can write the second derivative of g as

1

ψ ′(x)
g′′(x)
g′(x)

= φ′′(η)
φ′(η)

dη

dα
− φ′′(α)
φ′(α)

+ f ′′(α)
f ′(α)

. (17)

We now consider each of the terms involved above. Recalling that η = f (α), and using
Eqs. (15) and (16) to expand the first and last terms in Eq. (17) above, we get

1

ψ ′(x)
g′′(x)
g′(x)

= T1 − T2, (18)

where T1 and T2 are defined as

T1 �
h′′(α)
h′(α)

− h′(α)
h(α)

− φ′′(α)
φ′(α)

, and

T2 � d
h′(α)
h(α)

[
φ′′(η)
φ′(η)

η(1 − η)+ 1 − 2η

]
.

Notice that all terms containing η are isolated in T2. We now consider each of the terms
separately. For T1, we have

h′′(α)
h′(α)

− h′(α)
h(α)

= 2(1 − β)

1 − (1 − β)α
− 1 − β2

β + (1 − β)2α(1 − α)

= (1 − β)2(2α − 1)

β + (1 − β)2α(1 − α)
.

Here, we used Eqs (14) and (13) in the first line. Now using Eq. (12), we have

T1 = (2α − 1)
(
(1 − β)2 [β + Aα(1 − α)] − A

[
β + (1 − β)2α(1 − α)

])
(
β + (1 − β)2α(1 − α)

)
(β + Aα(1 − α))

= β(2α − 1)((1 − β)2 − A)(
β + (1 − β)2α(1 − α)

)
(β + Aα(1 − α))

= −dβ(2α − 1)

(β + Aα(1 − α))

h′(α)
h(α)

.

Here, we use A = d(1 − β2)+ (1 − β)2, followed by Eq. (13) in the last line.
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We now consider T2. Again using Eq. (12), we have

T2 = d
h′(α)
h(α)

[
A(2η − 1)η(1 − η)

β + Aη(1 − η)
− (2η − 1)

]

= −dβ(2η − 1)

β + Aη(1 − η)

h′(α)
h(α)

.

Notice that modulo the h′(α)
h(α) factor, T1 and T2 have the same functional form as functions of

α and η respectively. In fact, the message φ is designed so as to make this possible. We can
now substitute these values into Eq. (18) to get

g′′(x) = dβg′(x)ψ ′(x)h′(α)
h(α)

[
2η − 1

β + Aη(1 − η)
− 2α − 1

β + Aα(1 − α)

]

= dβg′(x)ψ ′(x)h′(α)
h(α)

(η − α)(2β + A(αη + (1 − α)(1 − η)))

(β + Aα(1 − α)) (β + Aη(1 − η))

= (η − α)g′(x)ψ ′(x) dβ(1 − β2)(2β + Aαη + A(1 − α)(1 − η))

(β + α(1 − α)(1 − β)2)(β + Aη(1 − η))(β + Aα(1 − α))
,

where in the last step we used Eq. (13).
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Appendix 1: Translation Between Various Descriptions of the Ising Model

General two-state spin systems are usually described in terms of (symmetric) energy functions
Q(+ ,+ ), Q(+ ,− ) = Q(− ,+ ) and Q(− ,− ), and an odd vertex field h(+)=−h(−) = h.
For a graph G = (V, E), the partition function of the system is then Z2 = ∑

σ w2(σ ), where
the sum is over all states of the system σ : V → {+,−} and w2(σ ) is defined as

w2(σ ) � exp

⎛

⎝−
∑

{u,v}∈E

Q(σ (u), σ (v))−
∑

v∈V

h(σ (v))

⎞

⎠ .

This is in fact equivalent to our formulation of the system given in Sect. 1.1 (see Eqs. (1)
and (2)). To see this, define

β = exp (−Q(+,+)+ Q(+,−)) ;
γ = exp (−Q(−,−)+ Q(+,−)) ;
λ = exp(2h),

which yields

w(σ) = w2(σ ) exp (Q(+,−)|E | + h|V |)
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for all σ , and, therefore,

Z = Z2 exp (Q(+,−)|E | + h|V |) .
We call the above spin systems soft constraint systems if β, γ and λ are non-zero, or equiva-
lently, if the energy functions and field are finite for all spin values. As we shall now see, every
such soft constraint system can be represented in terms of the Ising model (this translation
can also be found, e.g., in [6]). Consider a general two-state spin system with parameters
β, γ > 0 and λ. Then the equivalent Ising model has edge activity

β ′ = √
βγ ,

and a degree-dependent vertex activity given by

λ′
v = λ

(√
γ

β

)dv

,

where dv denotes the degree of vertex v. Now, denote the weight of a configuration σ in
the Ising model just defined by w�(σ ) and its partition function by Z�. Then one calculates
straightforwardly that

w(σ) = w�(σ )

(√
β

γ

)|E |

and hence

Z = Z�
(√

β

γ

)|E |
.

Thus we have translated the original spin system with parameters (β, γ, λ) into an Ising
model with locally changing field. Note that on regular graphs the resulting field is in fact
constant at all vertices. Furthermore, the Ising model is anti-ferromagnetic if and only if
βγ < 1. This justifies our use of the term “anti-ferromagnetic” for general spin systems
based on the value of βγ . We also observe that in the special case of d-regular trees, this
implies that weak (strong) spatial mixing in the original spin system (β, γ, λ) is equivalent
to weak (strong) spatial mixing in the Ising model given by the translation. A little thought
shows that since all vertices except the root have the same degree in the d-ary tree, the last
observation holds also for d-ary trees.

Appendix 2: Weak Spatial Mixing Does Not Imply Strong Spatial Mixing for the
Ferromagnetic Ising Model

We construct a counterexample as follows: given a degree d ≥ 3, consider the infinite rooted
d-ary tree, with the fixed boundary condition where each vertex in the tree has one of its
children fixed to +. Notice that if the original parameters are β ≥ 1 and λ, the effect of
this fixed boundary condition can be simulated by changing the vertex field to λ

β
. Therefore,

strong spatial mixing on this subgraph of the d-ary tree with parameters (β, λ) holds only
if weak spatial mixing holds on the (d − 1)-ary tree with parameters (β, λ

β
). It is therefore

sufficient to choose β and λ satisfying both the conditions
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log λ > log λc(β, d), and (19)

0 < log λ− logβ < log λc(β, d − 1) (20)

in order to construct a counterexample. To see that such a choice of parameters is possible,
we consider the exact form of λc(β, d). Translating the results in [4, p. 250] to our notation
using Appendix 1, we have

log λc(β, d) = (d − 1) logβ − P(d)+ Q(β, d),

where

P(d) � d log d − (d − 1) log(d − 1), and

lim
β→∞ Q(β, d) = 0, for any fixed d.

We note that P(d) is an increasing function of d . Thus, the required conditions (19) and (20)
become

log λ > logβ, (21)

log λ > (d − 1) logβ − P(d)+ Q(β, d), and (22)

log λ < (d − 1) logβ − P(d − 1)+ Q(β, d − 1). (23)

For a fixed d , Q(β, d) is oβ(1), and hence inequality (22) implies inequality (21) for β large
enough and d ≥ 3. Again, since Q(β, d) is oβ(1), and P(d) is an increasing function, it is
possible to find λ satisfying both the inequalities (22) and (23) for β large enough. Thus, for
any d ≥ 3, we can find (β, λ) with β > 1 such that weak spatial mixing for the d-ary tree
does not imply strong spatial mixing.

Appendix 3: Contraction and Spatial Mixing

Contraction and Weak Spatial Mixing

We show in this section that a stepwise contraction in the recurrence for φ(pv) implies weak
spatial mixing. As before, we denote f φ by g, and assume that for any x , y in the range of
φ, it holds that

|g(x)− g(y)| ≤ c|x − y|, (24)

for some c < 1. To show that this implies weak spatial mixing, we consider boundary
conditions σ1 and σ2 on a set S whose distance from the root ρ is l. Using the monotonicity
of the tree recurrence F (defined in Eq. (6)) in all its arguments, it can be verified that∣∣φ(pρ(σ1, S))− φ(pρ(σ2, S))

∣∣ is maximized when S is the set of all leaves at distance l
from ρ and σ1 assigns all vertices in S to + and σ2 assigns all vertices in S to −. With this
definition of σ1 and σ2, we notice that the tree recurrence for φ(pv) outputs the same value
for all vertices v at the same distance from the root. For a vertex at distance l − i from the
root ρ, we denote by qi, j the quantity φ(pv(σ j , S)), for j ∈ {1, 2}. Now, using condition
(24), we have

∣∣qi+1,1 − qi+1,2
∣∣ = ∣∣g(qi,1)− g(qi,2)

∣∣

≤ c
∣∣qi,1 − qi,2

∣∣ .
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Since both φ and φ−1 are continuously differentiable functions defined over compact sets,
they are Lipschitz continuous, say with parameters L1 and L2 respectively. We therefore have
weak spatial mixing, since

∣∣pρ(σ1, S)− pρ(σ2, S)
∣∣ = ∣∣φ−1(ql,1)− φ−1(ql,2)

∣∣

≤ L2cl
∣∣q0,1 − q0,2

∣∣

≤ L1L2cl .

Contraction and Strong Spatial Mixing

In this section, we show that contractive spatial mixing, as defined in Definition 6 implies
strong spatial mixing. We again consider boundary conditions σ1 and σ2 on a set S which
differ only on a subset T which is at distance l from the root ρ. Again, since both φ and
φ−1 are continuously differentiable functions defined over compact sets, they are Lipschitz
continuous, say with parameters L1 and L2 respectively. We define the quantity qi as

qi � max
v:δ(ρ,v)=l−i

|φ(pv(σ1, S))− φ(pv(σ2, S))| .

Notice that q0 ≤ |φ(1)− φ(0)| ≤ L1. Also, since G is the tree recurrence for φ (pv),
contractive spatial mixing for G implies qi+1 ≤ cqi for c < 1. Thus, we get strong spatial
mixing since

∣∣pρ(σ1, S)− pρ(σ2, S)
∣∣ ≤ L2ql ≤ L2clq0 ≤ L1L2cl .
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