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Abstract This is a review about a series of results on vortices in the Ginzburg-Landau
model of superconductivity on the one hand, and point patterns in Coulomb gases on the
other hand, as well as the connections between the two topics.
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Most of this paper describes joint work with Etienne Sandier, which has naturally led from
the study of the Ginzburg-Landau equations of superconductivity—a rather involved sys-
tem of PDE—to that of a well-known statistical mechanics system: namely the classical
Coulomb gas. We will review results in each area and explain the similarity in the mathe-
matics involved.

1 The Ginzburg-Landau Model of Superconductivity

A type-II superconductor, cooled down below its critical temperature experiences the circu-
lation of “superconducting currents” without resistance, and has a particular response in the
presence of an applied magnetic field. Above a certain value of the external field called the
first critical field, vortices appear. When the field is large enough, the experiments (dating
from the 60’s) show that they arrange themselves in (often) perfect triangular lattices, cf.
http://www.fys.uio.no/super/vortex/ or Fig. 1 below.

These are named Abrikosov lattices after the physicist Abrikosov who had predicted,
from the Ginzburg-Landau model, that periodic arrays of vortices should appear [1]. These
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Fig. 1 Abrikosov lattices

vortices repel each other like Coulomb charges would, while being confined inside the sam-
ple by the applied magnetic field. Their triangular lattice arrangement is the result of these
two opposing effects.

1.1 The Model

The Ginzburg-Landau model was introduced on phenomenological grounds by Landau and
Ginzburg in the 50’s [23]; after some nondimensionalizing procedure, in a two-dimensional
domain Ω it takes the form

GLε(ψ,A) = 1

2

∫
Ω

∣∣(∇ − iA)ψ
∣∣2 + |∇ × A − hex |2 + 1

2ε2

(
1 − |ψ |2)2

(1)

This is an idealized situation where the sample is assumed to be a three-dimensional in-
finitely long cylinder with cross-section Ω , submitted to an external field parallel to the axis
of the cylinder and of intensity hex. Here ψ is a complex-valued function, called “order pa-
rameter” and indicating the local state of the sample: |ψ |2 is the density of “Cooper pairs” of
superconducting electrons. With our normalization |ψ | ≤ 1, and where |ψ | � 1 the material
is in the superconducting phase, while where |ψ | = 0, it is in the normal phase (i.e. behaves
like a normal conductor), the two phases being able to coexist in the sample.

The vector field A is the gauge field or vector potential of the magnetic field. The mag-
netic field in the sample is deduced by h = ∇ × A = curlA = ∂1A2 − ∂2A1, it is thus a
real-valued function in Ω .

Finally, the parameter ε is a material constant, it is the inverse of the “Ginzburg-Landau
parameter” usually denoted κ . It is also the ratio between the “coherence length” usually
denoted ξ (roughly the vortex-core size) and the “penetration length” of the magnetic field
usually denoted λ. We are interested in the regime of small ε, corresponding to high-κ (or
extreme type-II) superconductors. The limit ε → 0 or κ → ∞ that we will consider is also
called the London limit.

This is a U(1)-gauge theory and the functional (as well as all the physically meaningful
quantities) is invariant under the gauge-change

{
ψ �→ ψeiΦ

A �→ A + ∇Φ
(2)
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where Φ is a smooth enough function.
The stationary states of the system are the critical points of GLε , or the solutions of the

Ginzburg-Landau equations:

(GL)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(∇A)2ψ = 1
ε2 ψ

(
1 − |ψ |2) in Ω

−∇⊥h = 〈iψ,∇Aψ〉 in Ω

h = hex on ∂Ω

∇Aψ · ν = 0 on ∂Ω,

where ∇⊥ denotes the operator (−∂2, ∂1), ∇A = ∇ − iA, and ν is the outer unit normal
to ∂Ω . Here appears the superconducting current, a real valued vector field given by j =
〈iψ,∇Aψ〉 where 〈., .〉 denotes the scalar-product in C identified with R

2. It may also be
written as

i

2
(ψ∇Aψ − ψ̄∇Aψ),

where the bar denotes the complex conjugation. For further details on the model, we refer
to [23–25, 45, 56].

The Ginzburg-Landau model has led to a large amount of theoretical physics literature—
probably most relevant to us is the book by De Gennes [24]. However, a precise mathe-
matical proof of the phase transition at the first critical field, and of the emergence of the
Abrikosov lattice as the ground state for the arrangement of the vortices was still missing.

In the 90’s, researchers coming from nonlinear analysis and PDEs became interested
in the model (precursors were Berger, Rubinstein, Schatzman, Chapman, Du, Baumann,
Phillips. . . cf. e.g. [16, 19] for reviews), with the notable contribution of Bethuel-Brezis-
Hélein [10] who introduced systematic tools and asymptotic estimates to study vortices,
but in the simplified Ginzburg-Landau equation not containing the magnetic gauge, and
allowing only for a fixed number of vortices. This was then adapted to the model with gauge
but with a different boundary condition by Bethuel and Rivière [11, 12]. It was however not
clear that this approach could work to treat the case of the full magnetic model when the
number of vortices gets unbounded as ε → 0. It is only with the works of Sandier [44] and
Jerrard [31] that tools capable of handling this started to be developed. Relying on these
tools and expanding them, in a series of works later revisited in a book [45], we analyzed
the full model and obtained the proof of the phase transition, and the computation of the
asymptotics of the first critical field in the limit ε → 0. We characterized the optimal number
and distribution of the vortices and derived in particular a “mean-field regime” limiting
distribution for the vortices, which will be described just below. Note that this analysis and
the tools developed to understand the vortices have proven useful to study vortices in rotating
superfluids like Bose-Einstein condensates (cf. e.g. [21] and references therein), a problem
which has a large similarity with Ginzburg-Landau from the mathematical perspective, and
of current interest for experiments.

1.2 Critical Fields and Vortices

What are vortices? A vortex is an object centered at an isolated zero of ψ , around which
the phase of ψ has a nonzero winding number, called the degree of the vortex. So it is
also a small defect of normal phase in the superconducting phase, surrounded by a loop of
superconducting current. When ε is small, it is clear from (1) that any discrepancy between
|ψ | and 1 is strongly penalized, and a scaling argument hints that |ψ | is different from
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1 only in regions of characteristic size ε. A typical vortex centered at a point x0 behaves
like ψ = ρei ϕ with ρ = f (

|x−x0|
ε

) where f (0) = 0 and f tends to 1 as r → +∞, i.e. its
characteristic core size is ε, and

1

2π

∫
∂B(x0,Rε)

∂ϕ

∂τ
= d ∈ Z

is an integer, called the degree of the vortex. For example ϕ = dθ where θ is the polar angle
centered at x0 yields a vortex of degree d at x0.

There are three main critical values of hex or critical fields Hc1 , Hc2 , and Hc3 , for which
phase-transitions occur.

• For hex < Hc1 there are no vortices and the energy minimizer is the superconducting state
(ψ ≡ 1,A ≡ 0). (This is a true solution if hex = 0, and a solution close to this one (i.e.
with |ψ | � 1 everywhere) persists if hex is not too large.) It is said that the superconductor
“expels” the applied magnetic field, this is the “Meissner effect”, and the corresponding
solution is called the Meissner solution.

• For hex = Hc1 , which is of the order of |log ε| as ε → 0, the first vortice(s) appear.
• For Hc1 < hex < Hc2 the superconductor is in the “mixed phase” i.e. there are vortices,

surrounded by superconducting phase where |ψ | � 1. The higher hex > Hc1 , the more
vortices there are. The vortices repel each other so they tend to arrange in these triangular
Abrikosov lattices in order to minimize their repulsion.

• For hex = Hc2 ∼ 1
ε2 , the vortices are so densely packed that they overlap each other, and

a second phase transition occurs, after which |ψ | ∼ 0 inside the sample, i.e. all supercon-
ductivity in the bulk of the sample is lost.

• For Hc2 < hex < Hc3 superconductivity persists only near the boundary, this is called
surface superconductivity. More details and the mathematical study of this transition are
found in [25] and references therein.

• For hex > Hc3 = O( 1
ε2 ) (defined in decreasing fields), the sample is completely in the

normal phase, corresponding to the “normal” solution ψ ≡ 0, h ≡ hex of (GL). See [26]
for a proof.

1.3 Formal Correspondence

Given a family of configurations (ψε,Aε) it turns out to be convenient to express the energy
in terms of the induced magnetic field hε(x) = ∇ × Aε(x). Taking the curl of the second
relation in (GL) we obtain

−�hε + hε = curl〈iψε,∇Aεψε〉 + hε � curl∇ϕε

where we approximate |ψε| by 1 and where ϕε denotes the phase of ψε . One formally has
that curl∇ϕε = 2π

∑
i diδai

where {ai}i is the collection of zeroes of ψ , i.e. the vortex
centers (really depending on ε), and di ∈ Z are their topological degrees. This is not exact,
however it can be given some rigorous meaning in the asymptotics ε → 0. We may rewrite
this equation in a more correct manner

{−�hε + hε � 2π
∑

i diδ
(ε)
ai

in Ω

h = hex on ∂Ω,
(3)

where the exact right-hand side in (3) is a sum of quantized charges, or Dirac masses, which
should be thought of as somehow smeared out at a scale of order ε. This relation is called in
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the physics literature the London equation (it is usually written with true Dirac masses, but
this only holds approximately). It indicates how the magnetic field penetrates in the sample
through the vortices.

Some computations (with the help of all the mathematical machinery developed to de-
scribe vortices) lead eventually to the conclusion that everything happens as if the Ginzburg-
Landau energy GLε of a configuration were equal to

GLε(ψε,Aε) � 1

2

∫
Ω

|∇hε|2 + |hε − hex|2

= 1

2

∫∫
Ω×Ω

GΩ(x, y)

(
2π

∑
i

diδ
(ε)
ai

− hex

)
(x)

(
2π

∑
i

diδ
(ε)
ai

− hex

)
(y),

(4)

where GΩ is a type of Green (or Yukawa) kernel, solution to

{
−�GΩ + GΩ = δy in Ω

GΩ = 0 on ∂Ω,
(5)

and hε solves (3). With this way of writing, and in view of the logarithmic nature of GΩ ,
one recognizes essentially a pairwise Coulomb interaction of positive charges in a constant
negative background (−hex), which is what leads to the analogy with the Coulomb gas de-
scribed later. There remains to understand for which value of hex vortices become favorable,
and with which distribution. To really understand that, the effect of the “smearing out” of
the Dirac charges needs to be more carefully accounted for. Instead of each vortex having
any infinite cost in (4) (which would be the case with true Dirac’s) the real cost of each
vortex can be evaluated as being ∼ πd2

i |log ε| per vortex (roughly the equivalent of the cost
generated by a Dirac mass smeared out at the scale ε). We may thus evaluate (4) as

GLε(ψε,Aε)

h2
ex

� |log ε|
hex

π
∑

i d
2
i

hex
+ h2

ex

2

∫
Ω

|∇h|2 + |h − 1|2 (6)

where h = limε→0
hε

hex
.

Optimizing over the degrees di ’s allows to see that the degrees di = 1 are the only
favorable ones. In view of (3), assuming this is true we can then rewrite π

∑
i d

2
i as

1
2

∫
Ω

| − �hε + hε|. Passing to the limit ε → 0, and assuming hex
|log ε| → λ as ε → 0, we

find that the mean-field limit energy arising from (4) is

GLε

h2
ex

�ε→0 EMF
λ (h) = 1

2λ

∫
Ω

| − �h + h| + 1

2

∫
Ω

|∇h|2 + |h − 1|2

= 1

2λ

∫
Ω

|μ| + 1

2

∫∫
Ω×Ω

GΩ(x, y)d(μ − 1)(x) d(μ − 1)(y) (7)

where h is here related to the limiting “vorticity” (or vortex density) μ :=
limε→0

1
hex

2π
∑

i diδai
by −�h + h = μ in Ω with h = 1 on ∂Ω , simply by taking the

limit of (3).
In (7) the first contribution to the energy corresponds the total self-interaction of the

vortices in (4), while the second one is the cross-interaction of the vortices and the vortices
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Fig. 2 Optimal density of
vortices according to the obstacle
problem

and the equivalent background charge (which is really the result of the confinement effect
of the applied magnetic field).

We have the following rigorous statement.

Theorem 1 ([46], Chap. 7 [45]) Assume hex ∼ λ|log ε| as ε → 0, where λ > 0 is a constant
independent of ε. If (ψε,Aε) minimizes GLε , then as ε → 0

2π
∑

i diδai

hex
→ μ∗ in the weak sense of measures

where μ∗ is the unique minimizer of EMF
λ . Moreover

minGLε = h2
ex

(
minEMF

λ + o(1)
)

as ε → 0. (8)

Minimizing EMF
λ leads to a standard variational problem called an “obstacle problem”.

The corresponding optimal distribution of vorticity is uniform of density 1 − 1/(2λ) on a
subdomain ωλ of Ω depending only on λ.

An easy analysis of this obstacle problem yields the following (cf. also Fig. 2):

1. ωλ =∅ (hence μ∗ = 0) if and only if λ < λΩ , where λΩ is given by

λΩ = (
2 max |h0 − 1|)−1

(9)

for h0 the solution to {−�h0 + h0 = 0 in Ω

h0 = 1 on ∂Ω.
(10)

2. For λ > λΩ , the measure of ωλ is nonzero, so the limiting vortex density μ∗ �= 0. More-
over, as λ increases (i.e. as hex does), the set ωλ increases. When λ = +∞ (this corre-
sponds to the case hex � |log ε|), ωλ becomes Ω and μ∗ = 1Ω .

Since Hc1 corresponds to the applied field for which minimizers start to have vortices,
this leads us to expecting that

Hc1 ∼ λΩ |log ε| as ε → 0 (11)

where λΩ depends only on Ω via (9)–(10).
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In fact this is true, because we were able to show that below this value Hc1 , not only the
average vortex density μ∗ is 0, but there are really no vortices. To see this, a more refined
asymptotic expansion of GLε than (7) is needed. It suffices instead to note that in the regime
when a zero or small number of vortices is expected, the solution to (3) is well approximated
by hexh0 where h0 solves (10), and then to split the true hε as hexh0 + h1,ε where h1,ε is a
remainder term, and expand the energy GLε in terms of this splitting.

Let us state the result we obtain when looking this way more carefully at the regime hex ∼
λΩ |log ε| and analyzing individual vortices. For simplicity, we assume that the function h0

achieves a unique minimum at a point p ∈ Ω (this is satisfied for example if Ω is convex)
and that its Hessian at that point, Q, is nondegenerate.

Theorem 2 ([52, 53], [45] Chap. 12) There exists an increasing sequence of values

Hn = λΩ |log ε| + (n − 1)λΩ log
|log ε|

n
+ constant order terms

such that if hex ≤ λΩ |log ε| + O(log |log ε|) and hex ∈ (Hn,Hn+1), then global minimizers
of GLε have exactly n vortices of degree 1, at points aε

i → p as ε → 0, and the ãε
i :=√

hex
n

(aε
i − p) converge as ε → 0 to a minimizer of

wn(x1, . . . , xn) = −
∑
i �=j

log |xi − xj | + n

n∑
i=1

Q(xi). (12)

We find here the precise value of Hc1 for which the first vortex appears in the minimizers,
and then a sequence of “critical fields” for which a second, a third, etc.. vortices appear
in minimizers, together with a characterization of their optimal locations, governed by an
explicit interaction energy wn.

1.4 The Next Order Study

Theorem 1 above proved that above Hc1 , for λ > λΩ , the number of vortices is proportional
to hex and they are uniformly distributed in a subregion of the domain, but it is still far from
explaining the optimality of the Abrikosov lattice. To (begin to) explain it, one needs to look
at the next order in the energy asymptotics (7), and at the blown-up of (3) at the inverse of
the intervortex distance scale, which here is simply

√
hex. For simplicity, let us reduce to

the case λ = 1 (or hex � |log ε|) where the limiting optimal measure is μ∗ = 1Ω and the
limiting h ≡ 1.

Once the blow-up by
√

hex is performed and the limit ε → 0 is taken, (3) becomes

−�H + 1 = 2π
∑

a

δa in R
2 (13)

where the limiting blown-up points a form an infinite configuration in the plane, and these
are now true Dirac’s (one may in fact reduce to the case where all degrees are equal to +1,
other situations being energetically too costly).

One may recognize here essentially a jellium of infinite size, and E = ∇H the electric
field generated by the points (its rotated vector field j = −E⊥ corresponds to the super-
conducting current in superconductivity). The jellium model was first introduced by Wigner
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[58], and it means an infinite set of point charges with identical charges with Coulomb inter-
action, screened by a uniform neutralizing background, here the density −1. It is also called
a one-component plasma.

It then remains first to identify and define a limiting interaction energy for this “jellium,”
and second to derive it from GLε . The energy, that will be denoted W , arises as a next order
correction term in the expansion of minGLε beyond the order h2

ex term identified by (7)–(8).
Isolating efficiently the next order terms in GLε relies on another “splitting” of the en-

ergy. Instead of expanding hε near hexh0 as in the case with few vortices, one should expand
around hexhλ where hλ is the minimizer of EMF

λ , i.e. the solution to the obstacle problem
above. Splitting hε = hexhλ + h1,ε where h1,ε is seen as a remainder, turns out to exactly
isolate the leading order contribution h2

ex minEMF
λ from an explicit lower order term.

1.4.1 The Renormalized Energy: Definition and Properties

We next turn to discussing the effective interaction energy between the blown-up points. As
we said, it should be a total Coulomb interaction between the points (seen as discrete positive
point charges) and the fixed constant negative background “charge”. Of course defining the
total Coulomb interaction of such a system is delicate because several difficulties arise:
first, the infinite number of charges and the lack of local charge neutrality, which lead us
to defining the energy as a thermodynamic limit; second the need to remove the infinite
self-interaction created by each point charge, now that we are dealing with true Dirac’s.

Let us now define the interaction energy W . Let m > 0 be a given positive number (cor-
responding to the density of points). We say a vector field E belongs to the class Am if

E = ∇H − �H = 2π(ν − m) for some ν = ∑
p∈Λ δp,

where Λ is a discrete set in R
2. (14)

As said above, the vector-field E physically corresponds, in the electrostatic analogy, to the
electric field generated by the point charges, and −E⊥ to a superconducting current in the
superconductivity context.

Note that H has a logarithmic singularity near each a, and thus |∇H |2 is not integrable;
however, when removing small balls of radius η around each a, adding back π logη, and
letting η → 0, this singularity can be “resolved”.

Definition 1 We define the renormalized energy W for E ∈ Am by

W(E) := lim sup
R→∞

W(E,χBR
)

|BR| , (15)

where χBR
is any cutoff function supported in BR with χBR

= 1 in BR−1 and |∇χBR
| ≤ C,

and W(E,χ) is defined by

W(E,χ) := lim
η→0

∫
R2\∪n

i=1B(xi ,η)

χ |E|2 + π(logη)
∑

i

χ(xi). (16)

The name is given by analogy with the “renormalized energy” introduced in [10] as the
effective interaction energy of a finite number of point vortices. Renormalized refers here to
the way the energy is computed by substracting off the infinite contribution corresponding
to the self interaction of each charge or vortex.



668 S. Serfaty

In the particular case where the configuration of points Λ has some periodicity, i.e. if it
can be seen as n points a1, . . . , an living on a torus T of appropriate size, then W can be
expressed much more simply as a function of the points only:

W(a1, . . . , an) = π

|T|
∑
j �=k

G(aj − ak) + π lim
x→0

(
G(x) + log |x|), (17)

where G is the Green’s function of the torus (i.e. solving −�G = δ0 − 1/|T|). The Green
function of the torus can itself be expressed explicitly in terms of some Eisenstein series and
the Dedekind Eta function. The definition (15) thus allows to generalize such a formula to
any infinite system, without any periodicity assumption.

The question of central interest to us is that of understanding the minimum and minimiz-
ers of W . Here are a few remarks.

1. The value of W doesn’t really depend on the cutoff functions satisfying the assumption.
2. W is unchanged by a compact perturbation of the points.
3. One can reduce by scaling to studying W over the class A1.
4. It can be proven that minimizers of W over A1 exist (and the minimum is finite).
5. It can be proven that the minimum of W is equal to the limit as N → ∞ of the minimum

of W over configurations of points which are N × N periodic.

We do not know the value of minA1 W , however we can identify the minimum of W over
a restricted class: that of points on a perfect lattice (of volume 1).

Theorem 3 ([48]) The minimum of W over perfect lattice configurations (of density 1) is
achieved uniquely, modulo rotations, by the triangular lattice.

By triangular lattice, we mean the lattice Z+Zeiπ/3, properly scaled.
The proof of this theorem uses the explicit formula for W in the periodic case in terms of

Eisenstein series mentioned above. By transformations using modular functions or by direct
computations, minimizing W becomes equivalent to minimizing the Epstein zeta function
ζ(s) = ∑

p∈Λ
1

|p|s , s > 2, over lattices. Results from number theory in the 60’s to 80’s (due
to Cassels, Rankin, Ennola, Diananda, Montgomery, cf. [37] and references therein) say that
this is minimized by the triangular lattice.

In view of the experiments showing Abrikosov lattices in superconductors, it is then
natural to formulate the

Conjecture 1 The “Abrikosov” triangular lattice is a global minimizer of W .

Observe that this question belongs to the more general family of crystallization problems.
A typical such question is, given a potential V in any dimension, to determine the point
positions that minimize

∑
i �=j

V (xi − xj )

(with some kind of boundary condition), or rather

lim
R→∞

1

|BR|
∑

i �=j,xi ,xj ∈BR

V (xi − xj ),
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and to determine whether the minimizing configurations are perfect lattices. Such questions
are fundamental in order to understand the crystalline structure of matter. They also arise in
the arrangement of Fekete points, “Smale’s problem” on the sphere, or the “Cohn-Kumar
conjecture”. . . One should immediately stress that there are very few positive results in that
direction in the literature (in fact it is very rare to have a proof that the solution to some
minimization problem is periodic). Some exceptions include the two-dimensional sphere
packing problem, for which Radin [39] showed that the minimizer is the triangular lattice,
and an extension of this by Theil [55] for a class of very short range Lennard-Jones po-
tentials. Here the corresponding potential is rather logarithmic, hence long-range, and these
techniques do not apply. The question could also be rephrased as that of finding

min
“∥∥∥∥

∑
i

δxi
− 1

∥∥∥∥
(H 1)∗

”

where the quantity is put between brackets to recall that δxi
does not really belong to the

dual of the Sobolev space H 1 but rather has to be computed in the renormalized way that
defines W . A closely related problem: to find

min

∥∥∥∥
∑

i

δxi
− 1

∥∥∥∥
Lip∗

turns out to be much easier. It is shown in [13] with a relatively short proof that again the
triangular lattice achieves the minimum.

With S. Rota Nodari, in [40], we investigated further the structure of minimizers of W

(or rather, a suitable modification of it) and we were able to prove that the energy density
and the points were uniformly distributed at any scale � 1, in good agreement with (but of
course much weaker than!) the conjecture of periodicity of the minimizers.

Even though the minimization of W is only conjectural, it is natural to view it as (or
expect it to be) a quantitative “measure of disorder” of a configuration of points in the plane.
In this spirit, in [14] we use W to quantify and compute explicitly the disorder of some
classic random point configurations in the plane and on the real line.

1.4.2 Next Order Result for GLε

We can now state the main next order result on GLε .

Theorem 4 ([48]) Consider minimizers (ψε,Aε) of the Ginzburg-Landau in the regime
λΩ |log ε| ≤ hex � 1

ε2 . After blow-up at scale
√

hex around a randomly chosen point in ωλ,
the ∇hε converge as ε → 0 to vector fields in the plane which, almost surely, minimize W .
Moreover, minGLε can be computed up to o(hex) (i.e. up to an error o(1) per vortex):

minGLε = h2
ex minEMF

λ +
(

1 − 1

2λ

)
hex|ωλ|min

A1
W + o(hex) as ε → 0.

Thus, our study reduces the problem to understanding the minimization of W . If the last
step of proving Conjecture 1 was accomplished, this would completely justify the emer-
gence of the Abrikosov lattice in superconductors, for applied magnetic fields in the regime
considered here, which is hex � Hc2 . Note that the Abrikosov lattice is also expect to ap-
pear for hex up to Hc2 , but the mathematical mechanism for it is then different (instead of
a nonlinear problem, one can reduce to a minimization in the Lowest Landau Level, see
e.g. [2]).
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1.5 Other Results

We also investigated the structure of solutions to (GL) which are not necessarily minimizing,
in other words critical points of (1). Let us list here the main results:

• In [53] and [45, Chap 12], we prove the existence of branches of local minimizers of
(1) (hence stable solutions) of similar type as the solutions in Theorem 2 which have
arbitrary bounded numbers of vortices all of degree +1 and exist for wide ranges of the
parameter hex, and the locations of the vortices in these solutions are also characterized.
In other words, for a given hex, there may exist an infinite number of stable solutions with
vortices, indexed by the number of vortices. Only one specific value of the number of
vortices is optimal, depending on the value of hex, as in Theorem 2.

• Similarly, there also exist multiple branches of locally minimizing solutions of (GL) with
(rather arbitrary) unbounded numbers of vortices. This is proven in [17]. These vortices
arrange themselves according to a uniform density over a set again determined by an
obstacle problem, and at the microscopic level, they tend to minimize W .

• If one considers a general solution to (GL) with not too large energy, then one can char-
acterize the possible distributions of the vortices, depending on whether their number is
bounded or unbounded as ε → 0. The characterization says roughly that the total force
(generated by the other vortices and by the external field) felt by a vortex has to be zero.
In particular it implies that if there is a large number of vortices converging to a certain
regular density, that density must be constant on its support. This is proven in [47] and
[45, Chap. 13].

The analysis of the three-dimensional version of the Ginzburg-Landau model is of course
more delicate than that of the two-dimensional one, because of the more complicated geom-
etry of the vortices, which are lines instead of points (the first result attacking this question
was [42]). This explains why it has taken more time for analogous results to be proven. The
best to date is the three-dimensional equivalent of Theorem 1 by Baldo-Jerrard-Orlandi-
Soner [6, 7], see also references therein and [32].

2 The 2D Coulomb Gas

The connection with the jellium is what prompted us to examine in [49] the consequences
that our study could have for the 2D classical Coulomb gas. More precisely, let us consider
a 2D Coulomb gas of n particles xi ∈ R

2 in a confining potential V (growing sufficiently
fast at infinity), and let us take the mean-field scaling of interaction where the Hamiltonian
is given by

Hn(x1, . . . , xn) = −
∑
i �=j

log |xi − xj | + n

n∑
i=1

V (xi). (18)

Note that ground states of this energy are also called “weighted Fekete sets”, they arise in
interpolation, cf. [43], and are interesting in their own right.

For V (x) = |x|2, some numerical simulations, see Fig. 3, give the shapes of minimizers
of Hn, which is then also a particular case of wn that appeared in (12).

The Gibbs measure for the same mean-field Coulomb gas at temperature 1/β is

dPβ
n (x1, . . . , xn) = 1

Z
β
n

e−βHn(x1,...,xn)dx1 · · ·dxn (19)
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Fig. 3 Numerical minimization
of Hn by Gueron-Shafrir [29],
n = 29

where Zβ
n is the associated partition function, i.e. a normalization factor that makes dPβ

n a
probability measure. The particular case of β = 2 and V (x) = |x|2 corresponds to the law
of the eigenvalues for random matrices with i.i.d. normal entries, the Ginibre ensemble. The
connection between Coulomb gases and random matrices was first pointed out by Wigner
[57] and Dyson [20]. For general background and references, we refer to [22]. The same
situation but with xi belonging to the real line instead of the plane is also of importance for
random matrices, the corresponding law is that of what is often called a “β-ensemble”.

Among interacting particle systems, Coulomb gases have always been considered as par-
ticularly interesting but delicate, due to the long range nature of the interactions (which is
particularly true in 1 and 2 dimensions). The case of one-dimensional Coulomb gases can be
solved more explicitly [3, 8, 33, 34], and crystallisation at zero temperature is established.
In dimension 2, many studies rely on a rather “algebraic approach” with exact computations
(e.g. [30]), or require a finite system or a condition ensuring local charge balance [4, 51].
Our approach is strictly energy-based and this way valid for any temperature and general
potentials V .

2.1 Analysis of Ground States

A rather simple analysis of (18), analogous to (7), leads to the result that minimizers of

Hn satisfy
∑n

i=1 δxi
n

→ μ0 where μ0 minimizes the following mean-field limit for Hn/n2 as
n → ∞:

F(μ) =
∫
R2×R2

− log |x − y|dμ(x)dμ(y) +
∫
R2

V (x)dμ(x) (20)

defined for μ a probability measure. The unique mean-field minimizer, which is also called
the equilibrium measure in potential theory is a probability μ0 (just as the minimizer of
EMF

λ for Ginzburg-Landau, it can also be viewed as the solution of an obstacle problem).
Its support, that we will denote Σ , is compact (and assumed to have a nice boundary). For
example if V (x) = |x|2, it is a multiple of the characteristic function of a ball (the circle
law for the Ginibre ensemble in the context of random matrices), and this is analogous to
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Theorem 1 and the obstacle problem distribution found for Ginzburg-Landau. Deriving this
mean-field limit is significantly easier than for Ginzburg-Landau, due to the discrete nature
of the starting energy, and the fact that all charges are +1 (as opposed to the vortex degrees,
which can be any integer).

The connection with the Ginzburg-Landau situation is made by defining analogously
the potential generated by the charge configuration using the mean-field density μ0 as a
neutralizing background, this yields the following equation playing the role of the analogue
to (3):

hn = −2π�−1

(
n∑

i=1

δxi
− nμ0

)
in R

2.

The next step is again to express this in the blown-up coordinates at scale
√

n (analogous to
the

√
hex scale previously) around x0, x ′ = √

n(x − x0), via h′
n the solution to

h′
n

(
x ′) = −2π�−1

(
n∑

i=1

δx′
i
− μ0

(
x0 + x ′

√
n

))
. (21)

When taking n → ∞, the limit equation to (21) is

−�h = 2π

(∑
a

δa − μ0(x0)

)
in R

2 (22)

analogue of (13), corresponding to another infinite jellium with uniform neutralizing back-
ground μ0(x0).

Expanding the energy to next order is done via a suitable splitting, by analogy with
Ginzburg-Landau. In fact in this setting the splitting procedure is quite simple: it suffices to
write νn := ∑n

i=1 δxi
as nμ0 + (νn − nμ0). Noting that

Hn(x1, . . . , xn) =
∫∫

�c

− log |x − y|dνn(x) dνn(y) +
∫

V (x)dνn(x)

where � denotes the diagonal, inserting the indicated splitting of νn, we eventually find the
exact decomposition

Hn(x1, . . . , xn) = n2F(μ0) − n

2
logn + 1

π
W

(∇h′
n,1R2

) + 2n

n∑
i=1

ζ(xi), (23)

where W(E,χ) is as in (16). The function ζ in (23) is explicit and determined only by
V , it is like an effective potential and plays no other role than confining the particles to
Σ = Supp(μ0) (it is zero there, and positive elsewhere), so there remains to understand the
limit n → ∞ of W(∇h′

n,1R2) corresponding to (22). One of our main results below is that
this term is of order n. An important advantage of this formulation is that it transforms, via
(23), the sum of pairwise interactions into an extensive quantity in space (16), which allows
for localizing (via a screening procedure), cutting and pasting, etc. . . .

Let us now state the next order result playing the role of Theorem 4.

Theorem 5 ([49]) Let (x1, . . . , xn) ∈ (R2)n. Up to extraction of a subsequence, we have
that Pn, the push-forward of 1

|Σ |dx|Σ (the normalized Lebesgue measure on Σ ) by

x �→ (
x,En(

√
nx + ·)), En := ∇h′

n
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converges weakly in the sense of measures to some probability measure P whose first
marginal is 1

|Σ |dx|Σ , and satisfying that P -a.e. (x,E) ∈ Aμ0(x). In addition, along this sub-
sequence, we have

lim inf
n→∞

1

n

(
Hn(x1, . . . , xn) − n2F(μ0) + n

2
logn

)
≥ |Σ |

π

∫
W(E)dP (x,E). (24)

Moreover, this lower bound is sharp, and for minimizers of Hn, it holds that P -a.e. (x,E),
E minimizes W over Aμ0(x) and

lim
n→∞

1

n

(
minHn − n2F(μ0) + n

2
logn

)
= |Σ |

π

∫ (
min

E∈Aμ0(x)

W
)

dP (x,E)

= 1

π

∫
Σ

min
Aμ0(x)

W := α0. (25)

This result contains a sharp lower bound valid for any configuration, and not just for
minimizers. The lower bound is by W̃ (P ) := |Σ |

π

∫
W(E)dP (x,E), an average of the renor-

malized energy W with respect to all the possible blow-up centers, and we notice that
α0 = min W̃ (P ) where the minimum is taken over the P ’s whose first marginal is 1

|Σ |dx|Σ
and which satisfy that P -a.e. (x,E) ∈ Aμ0(x). A rephrasing is that minimizers of Hn provide
configurations of points in the plane whose associated “electric fields” E minimize, after
blow-up and taking the limit n → ∞, the renormalized energy, P−a.e., i.e. (heuristically)
for almost every blow-up center. W̃ is a next-order limiting energy for Hn (or next order
Γ -limit, in the language of Γ -convergence). It is the term that sees the difference between
different microscopic patterns of points, beyond the macroscopic averaged behavior μ0.

If again the conjecture on the minimizers of W was established, this would prove that
points in zero temperature Coulomb gases should form a crystal in the shape of an Abrikosov
triangular lattice.

The result of Theorem 5 can be improved when one looks directly at minimizers (or
ground states) of Hn instead of general configurations. With S. Rota Nodari, we obtained
the following

Theorem 6 ([40]) Let (x1, . . . , xn) be a minimizer of Hn. Let x ′
i , ∇h′

n, Σ , μ0, be as above
and Σ ′ = √

nΣ , μ′
0(x) = μ0(x/

√
n). The following holds, with K�(a) denoting the square

of sidelength � centered at a:

1. for all i ∈ [1, n], xi ∈ Σ ;
2. there exist β ∈ (0,1), c̄ > 0, C > 0 (depending only on μ0), such that for every � ≥ c̄ and

a ∈ Σ ′ such that d(K�(a), ∂Σ ′) ≥ nβ/2, we have

lim sup
n→∞

1

�2

∣∣∣∣W
(∇h′

n,χK�(a)

) −
∫

K�(a)

(
min
A

μ′
0(x)

W
)

dx

∣∣∣∣ ≤ o(1) as � → +∞, (26)

where χK�(a)
is any cutoff function supported in K�(a) and equal to 1 in K�−1(a); and

lim sup
n→∞

∣∣∣∣#
(
K�(a) ∩ {

x ′
i

}) −
∫

K�(a)

m′
0(x) dx

∣∣∣∣ ≤ C�. (27)
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This says that for minimizers, the configurations seen after blow-up around any point
sufficiently inside Σ (and not just a.e. point) tend to minimize W and their points follow the
distribution μ0 even at the microscopic scale.

This result is to be compared with previous results of Ameur-Ortega-Cerdà [5] where,
using a very different method based on “Beurling-Landau densities”, they prove (27), with
a larger possible error o(�2) but for distances to ∂Σ ′ which can be smaller (their paper does
not however contain the connection with W ).

When (18) is considered for xi ∈ R instead of R
2, then it is the Hamiltonian of what

is called a “log gas”. The same corresponding result are proven in [50], together with the
definition of an appropriate one-dimensional version of W , for which the minimum is this
time shown to be achieved by the lattice configuration (or “clock distribution”) Z.

2.2 Method of the Proofs

The proof of the above Theorems 4 and 5 follows the idea of Γ -convergence (see e.g.
[15, 18]) i.e. relies on obtaining general (i.e. ansatz-free) lower bounds, together with match-
ing upper bounds obtained via explicit constructions.

There are really two scales in our energies: a macroscopic scale (that of the support of μ∗
or μ0), and the scale of the distance between the points (or vortices) which is much smaller.
We know how to obtain lower bounds for the energy at the microscopic scale, but it is not
clear in our case how to “glue” these estimates together. For that purpose we introduced in
[48] a new general method for obtaining lower bounds on two-scale energies. A probability
measure approach allows to integrate the local estimates via the use of the ergodic theorem
(an idea suggested by S.R.S. Varadhan). That abstract method applies well to positive (or
bounded below) energy densities, but those associated to W(E,χ) are not, due to one of
the main difficulties mentioned above: the lack of local charge neutrality. To remedy this we
start by modifying the energy density to make it bounded below, using sharp energy lower
bounds by improved “ball construction” methods (à la Jerrard/Sandier).

The method is the same for both cases but in the case of the Coulomb gas, it is com-
plicated by the (slow) variation of the macroscopic density μ0. For Ginzburg-Landau, the
situation is on the other hand made more difficult by the presence of vortices of arbitrary
signs and degrees.

Finally, let us mention that in [27, 28] we carry out a similar analysis for the “Ohta-
Kawasaki” model of diblock-copolymers, where the interacting objects are this time
“droplets” that can have more complicated geometries and nonquantized charges (their
charge is really their volume), and derive the same next order limiting energy W .

2.3 The Case with Temperature

Understanding the asymptotics of Hn via Theorem 5 (and not only of ground states) nat-
urally allows to deduce information on finite temperature states. First, inserting the lower
bound on Hn found in Theorem 5 into (19) directly yields an upper bound on Zβ

n . Con-
versely, using an explicitly constructed test-configuration meant to approximate minimizers
of Hn up to o(n), and showing that a similar upper bound holds in a sufficiently large phase-
space neighborhood of that configuration, allows to deduce a lower bound for Zβ

n . The lower
bound and the upper bound will coincide as β → ∞ only. The main statement is

Theorem 7 ([49]) For any β > 0 there exists Cβ such that limβ→+∞ Cβ = 0 and

lim sup
n→∞

1

nβ

∣∣∣∣logZβ
n + nβ

2

(
nF(μ0) − 1

2
logn + α0

)∣∣∣∣ ≤ Cβ,
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where

α0 = 1

π

∫
min
Aμ0(x)

W dx.

Only the term in n2 of this expansion was previously known, for such a general situation
of general β and V . This is in contrast to the one-dimensional log gas case where Zβ

n is
known for V quadratic and all β by Selberg integrals, and for more general V ’s as well.
Also, the result relates the computation of Zβ

n to that of the unknown constant minW , so
to prove Conjecture 1 it would suffice in principle to know how to compute Zβ

n for a 2D
Coulomb gas!

The final result is a large deviations type result. First, let us recall the best previously
known result which is a result of “large deviations from the circle law”:

Theorem 8 (Petz-Hiai [38], Ben Arous-Zeitouni [9]) P
β
n satisfies a large deviations princi-

ple with good rate function F(·) and speed n−2: for all A ⊂ {probability measures},

− inf
μ∈A◦ F̃(μ) ≤ lim inf

n→∞
1

n2
logPβ

n (A) ≤ lim sup
n→∞

1

n2
logPβ

n (A) ≤ − inf
μ∈Ā

F̃(μ),

where F̃ = F − minF .

This thus says that the probability of an event A is exponentially small if F > minF
in A, i.e. if one deviates from the circle law μ0:

P
β
n (A) ≤ e−n2 infĀ(F−F(μ0)).

One may wonder whether the same is true at next order, i.e. whether the arrangements
of points after blow up follow the next order optimum of Hn, i.e. minimize W . Figure 4,
corresponding to the Ginibre case of β = 2 and V (x) = |x|2 indicates that this should not
be the case since the points do not arrange themselves according to triangular lattices.

We may then wonder how to quantify the order or rigidity of the configurations according
to the temperature. The following result provides some answer, and an improvement at next
order on Theorem 8:

Theorem 9 ([49]) For any β > 0 there exists Cβ > 0 such that limβ→+∞ Cβ = 0 and the
following holds. For An ⊂ (R2)n, we have

lim sup
n→∞

1

n
logPβ

n (An) ≤ −β

( |Σ |
π

inf
P∈A

∫
W(E)dP (x,E) − α0 − Cβ

)
,

and A is the set of probability measures which are limits (in the weak sense) of blow-ups at
rate

√
n around a point x of the electric fields ∇hn associated to

∑n

i=1 δxi
with (xi) ∈ An.

Modulo again the conjecture on minW , this proves crystallization as the temperature
goes to 0: after blowing up around a point x in the support of μ0, at the scale of

√
n,

as β → ∞ we see (almost surely) a configuration which minimizes W . Indeed, α0 is the
minimum value that W̃ can possibly take, and is achieved if and only if W(E) = minAμ0(x)

W

for P -a.e. (x,E).
For β finite, the result says that the average of W lies below a fixed threshhold (say

α0 + 1 + C
β

), except with very small probability.
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Fig. 4 Eigenvalues of
1000-by-1000 matrix with i.i.d.
Gaussian entries (β = 2) (from
Benedek Valkó’s webpage)

To our knowledge, this is the first time Coulomb gases are rigorously connected to tri-
angular lattices (again modulo the solution to the conjecture on the minimum of W ), in
agreement with predictions in the literature (cf. [4] and references therein).

3 Higher Dimensional Coulomb Gases

With Nicolas Rougerie, in [41], we extended the results for the Coulomb gas presented
above to arbitrary higher dimension, considering this time

Hn(x1, . . . , xn) =
∑
i �=j

g(xi − xj ) + n

n∑
i=1

V (xi)

with xi ∈ R
d and the kernel g is the Coulomb kernel − log |x| in dimension 2 and |x|2−d in

dimension d ≥ 3. The mean-field limit energy is defined in the same way by

F(μ) =
∫∫

Rd×Rd

g(x − y)dμ(x)dμ(y) +
∫
Rd

V (x) dμ(x).

Turning to higher dimension required a new approach and a new definition of W , the
previous one being very tied to the two-dimensional “ball construction method” as alluded to
in Sect. 2.2. The new approach is based on a different way of renormalizing, or substracting
off the infinite “self-interaction” energy of each point: we replace point charges by smeared-
out charges, as in “Onsager’s lemma”. More precisely, we pick some arbitrary fixed radial
nonnegative function ρ, supported in B(0,1) and with integral 1, and for any point x and
η > 0 we introduce the smeared charge

δ(η)
x = 1

ηd
ρ

( ·
η

)
∗ δx.
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Newton’s theorem asserts that the Coulomb potentials generated by the smeared charge δ(η)
x

and the point charge δx coincide outside of B(x,η). A consequence of this is that if we
define instead of

h′
n

(
x ′) = −cd�

−1

(
n∑

i=1

δx′
i
− μ0

(
x0 + x ′n−1/d

))
(28)

as in (21), the potential

h′
n,η

(
x ′) = −cd�

−1

(
n∑

i=1

δ
(η)

x′
i

− μ0
(
x0 + x ′n−1/d

))
(29)

then h′
n and h′

n,η coincide outside of the B(x ′
i , η). Moreover, they differ by

∑
i fη(x − x ′

i )

where fη is a fixed function equal to cd�
−1(δ

(η)

0 − δ0), vanishing outside B(0, η). (Here the
constant cd is the constant such that −�g = cdδ0, depending only on dimension.)

By keeping these smeared out charges, we are led at the limit to solutions to

−�hη = cd

(∑
a

δ(η)
a − m

)
, m = μ0(x0) (30)

which are in bijection with the functions h solving the same equation with η = 0, via adding
or subtracting

∑
a fη(x − a).

For any fixed η > 0 one may then define the electrostatic energy per unit volume of the
infinite jellium with smeared charges as

lim sup
R→∞

−
∫

KR

|∇hη|2 := lim sup
R→∞

|KR|−1
∫

KR

|∇hη|2 (31)

where hη is as in the above definition and KR denotes the cube [−R,R]d . This energy is
now well-defined for η > 0 and blows up as η → 0, since it includes the self-energy of each
smeared charge in the collection. One should then “renormalize” (31) by removing the self-
energy of each smeared charge before taking the limit η → 0. The leading order energy of a
smeared charge is κdg(η) where κd is a constant depending on dimension and on the choice
of the smoothing function ρ. We are then led to the definition

Definition 2 ([41]) The renormalized energy W is defined over the class Am by

W(∇h) = lim inf
η→0

Wη(∇h) = lim inf
η→0

(
lim sup
R→∞

−
∫

KR

|∇hη|2 − m
(
κdg(η) + γ21d=2

))
,

where κd and γ2 are constants depending only on the choice of ρ.

It is also proven in [41] that W achieves its minimum (for each given m), which in
dimension 2 coincides with that of W . It is also natural to expect that the minimum of W
may be achieved by crystalline configurations (like the FCC lattice in three dimensions) but
this is a completely open question.

We are able to show that a similar splitting relation as (23) holds, which makes appear Wη

instead of W . It is however only an inequality, but equality is retrieved as one lets η → 0.
This allows to let n → ∞ and obtain lower bounds via the same “probabilistic method”



678 S. Serfaty

mentioned in Sect. 2.2, for fixed η. At the end we let η tend to 0, to retrieve similar results
as Theorems 7–9.

The following gives the analogue to Theorem 7 but this time expressed in terms of the
free energy Fn,β = − 2

β
logZβ

n .

Theorem 10 ([41]) Let us define

ξd :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

cd

(min
A1

W)

∫
Rd

μ
2−2/d

0 if d ≥ 3

1

2π
min
A1

W − 1

2

∫
R2

μ0 logμ0 if d = 2.

(32)

Let β̄ = lim supn→+∞ βn1−2/d and assume β̄ > 0. There exists Cβ̄ with limβ̄→+∞ Cβ̄ = 0
such that, for n large enough,

∣∣∣∣Fn,β − n2F(μ0) +
(

n

2
logn

)
1d=2 − n2−2/dξd

∣∣∣∣ ≤ Cβ̄n2−2/d . (33)

Taking in particular formally β = ∞ leads to Fn,∞ = minHn and allows to retrieve the
next order expansion of minHn.

An analogue of Theorem 9 is also given:

Theorem 11 ([41]) Let β̄ > 0 be as in Theorem 10. There exists Cβ̄ with limβ̄→+∞ Cβ̄ = 0
such that, for any An ⊂ (Rd)n, it holds that

lim sup
n→∞

logPβ
n (An)

n2−2/d
≤ −β

2

( |Σ |
cd

inf
P∈A∞

∫
W(E)dP (x,E) − ξd − Cβ̄

)
, (34)

where A is the set of probability measures which are limits (in the weak sense) of ∇h′
n(x +·)

associated to the (xi) ∈ An via (28).

These results show that the expected regime for crystallization (maybe surprisingly) de-
pends on the dimension and is the regime β � n2/d−1. In that regime, the Gibbs measure
essentially concentrates on minimizers of W , which as before would show crystallization if
one knew that such minimizers have to be crystalline.

For a self-contained presentation of these topics, one can also refer to [54].
Other than proving that specific crystalline configurations achieve the minimum of W

or W , the main result missing in these studies is to establish a complete Large Deviations
Principle at next order for the Coulomb gas, and identifying the right rate function which
should involve W , but not only. This would prove at the same time the existence of a com-
plete next order “thermodynamic limit” (for leading order results see [35] and references
therein.

Let us finish by pointing out that the quantum case (of the Coulomb gas) is quite different
and studied in [36]: the next order term is of order n and identified to be the ground state of
the “Bogoliubov Hamiltonian.”
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