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Abstract We consider both known and not previously studied trace functions with applica-
tions in quantum physics. By using perspectives we obtain convexity statements for differ-
ent notions of residual entropy, including the entropy gain of a quantum channel studied by
Holevo and others.

We give new proofs of Carlen-Lieb’s concavity/convexity theorems for certain trace func-
tions, by making use of the theory of operator monotone functions. We then apply these
methods in a study of new classes of trace functions.

Keywords Trace function - Convexity - Entropy gain - Residual entropy - Operator
monotone function

1 Introduction and First Results

Consider a quantum system in which an observable A can be written as a sum A = A; +
-+ 4 Ay of a number of components Ay, ..., A;. If the components correspond to isolated
subsystems then the total quantum entropy of the system S(A) = —TrAlog A is equal to
the sum of the entropies of each subsystem. In the general case we may define the residual
entropy

k
P(AL . A)=SA) =Y S(A) A=A+t A
i=1
as the difference between the total entropy of the system and the sum of the entropies of
each subsystem; although it is a negative quantity.
Another type of residual entropy is the entropy gain over a quantum channel studied by
Holevo and others [7, 8],

A— S(D(A)) — S(A),

F. Hansen ()
Institute for International Education, Tohoku University, Sendai, Japan
e-mail: frank.hansen@m.tohoku.ac.jp

@ Springer


mailto:frank.hansen@m.tohoku.ac.jp

808 F. Hansen

where @ is a quantum channel represented by a completely positive trace preserving linear
map.

Theorem 1.1 Consider n x n matrices A and n x m matrices K. The trace function
9(A)=—TrK*AKlog(K*AK) + TrK*(Alog A)K
is convex in positive definite A for arbitrary K .

Proof The function f(t) =tlogt defined for ¢ > O is operator convex. It is well-known but
may be derived from [6, Theorem 2.4] since f(0) =0, and logt is operator monotone. The
perspective function,

g(t,s) :sf(ts_l) =tlogt —tlogs t,5s>0,

is therefore operator convex as a function of two variables [3, Theorem 2.2]. Consider the
Hilbert space H = M,,,, equipped with inner product given by (X, Y) =TrY*X for matri-
ces X,Y € M,,, and let L4 and Rp denote left and right multiplication with A € M,, and
B € M, respectively. If A and B are positive definite matrices then L4 and Rp are positive
definite commuting operators on H. Operator convexity of the perspective function g(¢, s)
is equivalent to convexity of the map
(A’ B) g TrK*(LAlogA - LARlogB)(K)
= Tr(K*(Alog A)K — K*AKlogB) A,B>0

for every K € M., cf. [4, Theorem 1.1]. The statement of the theorem now follows by
replacing B with K*AK in the above expression. |

Corollary 1.2 The residual entropy

k
Q(A1...., A)=—TrAlogA+ Y TrA;logA; A=A+ + A

i=l

is a convex function in positive definite n X n matrices Ay, ..., A.

Proof We apply Theorem 1.1 to block matrices of the form

Ay 0 ... 0 I 0 0

0 A 0 I 0 ... 0
A= . ) and K=| . . B

0 o0 Ay I 0 ... 0

and since the entry in the first row and the first column of the block matrix
—K*AK log(K*AK) + K*(Alog A)K

is calculated to

k

—(Aj 4+ A Tog(A| + -+ A) + ) Ajlog A;
i=1
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the statement of the corollary follows. Notice that we used the same block matrix technique
as in [2]. O

It is actually much easier to obtain the above result by expressing the residual entropy as
a sum of relative entropies. We may however obtain other results by carefully choosing the
arbitrary matrix K in Theorem 1.1.

Corollary 1.3 Consider the entropy gain
9(A)=S(P(A)) — S(A)

over a quantum channel @, where the channel is represented by a completely positive trace
preserving linear map ®. The entropy gain ¢(A) is a convex function in A.

Proof A completely positive trace preserving linear map @ : M, — M,, is of the form
k
(A=) aAq;
i=I
where the so-called Kraus matrices ay, ..., ay € M, satisfy
aaj +---+apaf = 1.

We now apply Theorem 1.1 by substituting A by the matrix

A 0 ... O a 0 ... 0
0 A 0 a 0 ... 0
. . and setting K =

0 0 A a 0 ... 0

The entry in the first row and the first column of the block matrix
—K*AKlog(K*AK) + K*(Alog A)K

is then calculated to —®@ (A)log @ (A) + @ (Alog A). Since @ is trace preserving it follows
that the entropic map

A— S(P(A) +Trd(AlogA) = S(P(A)) — S(A)
is convex. O

Corollary 1.4 The entropy gain

k
QA1 ... A = S(P1(A) + - + Bi(A)) — Y S(A)
i=1

of k positive definite quantities observed through k quantum channels @, ..., @y is a convex
functionin Ay, ..., Ag.

Proof The statement is obtained as in the above corollary by considering suitable block

matrices, where each block corresponds to a single quantum channel. We leave the details
to the reader. O
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810 F. Hansen

2 Carlen-Lieb Trace Functions
We give new proofs of some of the statements in [2] without using variational methods.

Theorem 2.1 (Carlen-Lieb) The trace function

1/r

(A, B) > Tr(A” + B?) O<p<r<l

is concave in positive definite matrices A and B.
Proof The function

fo=@"+0"" >0

is operator monotone, cf. [1, Corollary 4.3]. Indeed, if z = re'? with 0 < @ < 7 then z” =
rPe?? . Since we add a positive constant it is plain that the argument of z” + 1 is less than
p0 but still positive. The argument of f(z) is therefore between zero and pf <6 < . We
have shown that the analytic continuation of f to the complex upper half plane has positive
imaginary part, thus f is operator monotone.

The perspective function

(t,s) — sf(ts_l) =s(t1’s_p + l)l/p = (t" +s”)1/p
is therefore operator concave, cf. [3, Theorem 2.2] and so is the function,
g(t,s)= (1" +s”)1/r t,s >0,
th?t appears by composing with the operator monotone and operator concave function ¢ —
plr
t "l;he left and right multiplication operators L4 and Rjp are positive definite commuting
operators on the Hilbert space H = M,, equipped with the inner product (A, B) = Tr B*A.
It follows that the (super) operator mapping
(A,B)— (L4 +RY)""
is concave according to the preceding remark. The trace function

(A, B) = TrK*(L + RY) """ (K) (1

is therefore concave by [4, Theorem 1.1]. The statement now follows by choosing K as the
identity matrix. Indeed, under the trace we have

Tr(Ls+ Lg)(A+ B)' =Tr(A + B)"!
for each n, and we thus obtain
Te(L} + RY)"" (1) = Te(A? + B?)""
by simple algebraic calculations. ]

Notice that the statement in (1) is stronger than what is obtained in the reference [2].
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Theorem 2.2 The function
fO=@"+1"" >0

is operator convex for 1 < p <2.

Proof We have previously shown that f is operator monotone for 0 < p < 1. Let us calcu-
late the representing measure.

3.0

25- ///////
p:]///
/

ORY p=0% —
_— p=1.2
//
L5
///
B t
0.2 0.4 0.6 0.8 1.0 1.2 1.4

We set z =re'® for r > 0 and 0 < @ < 7 and calculate the analytic continuation of f,
f(re“’) =(r el 4 l)l/p,
into the complex upper half plane. Let arg z with 0 < argz < 27 denote the angle between
the positive x-axis and the complex number z = x + iy. With this non-standard convention

arg z is an analytic function in C\[0, 00), and the angle A, (r, #) between the positive x-axis
and (rPe’?® + 1)V/7 is given by

1 .
A,(r,0) = — arg(r” cos pd + 1 +ir” sin pf),
p
and it satisfies
0<A,(r6)<b<m forO<p=<l,r>00<0<m.
The imaginary part of the analytic continuation of f is therefore given by
o~ 0\ __ 2p P 1/2p) .
msf(re )_(l—l—r +2r cosp@) sinA,(r,0),

and the representing measure of f is obtained as the limit

1 . 1
—é}im Sf(re”)y=—(1+r*"+2r7 cospn)l/(z") sinA,(r, 7).
7T Om T
It follows that
(ﬂ’+1)”"—ﬂ+t+/oo - L Vi ooan )
N o \1+2a2 rt+1/)7" ’
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where B is a constant determined by setting # = 0 in Eq. (2), and the non-negative function
h, is given by

1
hy(0) = = (1422 + 227 cos prr) /" sin A, (h, 1) 1 >0,
b/

cf. [5] for the details. The key in the proof is the realisation that
7<A,Am)<2r forl<p<2andr >0,

and this is so because argz < arg(z + 1) < 27 when z is in the lower complex plane. It
follows that both sides in Eq. (2) are real analytic functions in p in the whole interval (0, 2).

021

The formula in (2) is consequently valid also for 1 < p < 2. However, for 1 < p < 2 the
weight function &, is negative implying that f is operator convex. Notice that &, = 0 for
p=1. O
The same line of arguments as for 0 < p <1 applies, so we obtain:
Corollary 2.3 The trace function
(A,B)—Tr(A”? +B?)"" 1<p<2
is convex in positive definite matrices A and B.
2.1 Variational inequalities
Remark 2.4 Let x and y be positive numbers and take 0 < p < 1. It is easy to prove that
(x” —+ y”)l/p <APD/Py 4 (1= )PD/Py forO< i <1
with equality for A = x”(x? + y?)~ 1.
Theorem 2.5 Let 0 < p < 1 and take positive definite n x n matrices A, B. Then
Tr(A” + Bp)l/l’ < Tr(X(”_l)/”A +(1— X)(p—n/pB)

for each n x n matrix X with 0 < X < 1. If A and B commute then there is equality for
X =AP(AP + BP)7.
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Proof We know that the trace function (X, Y) = Tr(X” + Y”)!/? is concave in positive
definite X and Y. It is also positively homogeneous since

eX, tY)=te(X,Y) t>0.
It follows that the Fréchet differential
de(X,Y)(A, B) = ¢(A, B)
for positive definite X, Y, A, B, cf. for example [9, Lemma 5]. We notice that
do(X,Y)(A,B)=di¢(X,Y)A+d,p(X,Y)B
by the chain rule for Fréchet differentials. By setting f(t) =¢'/? and g(t) = t” we obtain

dip(X,Y)A =Trdf (X? +Y?)dg(X)A="Tr f'(X? + Y")dg(X)A
— %Tr(X” +1?) PP ag(x)A
and similarly
do(X,Y)B = %Tr(X” +1?) "7 ag(v)B.

We thus derive that

Tr(A? + B7)"" < L1e(x7 1+ ¥7) P (dg(X)A + dg(¥)B).
P

Letnow 0 < X <l andset Y = (1 — X?)//?. Then X? + Y? =1 and thus

Tr(A? + B?)"" < — Tr(dg(X)A + dg(Y)B)

L
p
1
= S Tr(g'0A+g'(1)B)
=Tr

( XP A+ (1 _ X,;)(pfl)/pB).

We may replace X with X'/? since any 0 < X < 1 can be obtained in this way, and we
obtain

Tr(A? + Bp)‘/f’ <Tr(XPVPA 4 (1 - X)@»~V/P )

which is the statement of the theorem. O

3 New Types of Trace Functions
Theorem 3.1 Let 0 < p < 1. The function of two variables,

11—
55 lF#s

g(t,s)=
Ll=r =y,
p

defined for t,s > 0, is operator concave.
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814 F. Hansen

Proof We notice that g(¢, s) is not a perspective function, so our approach will have to be
more indirect. We first prove that for 0 < A <1 the function

L@ =0 +1=0)"" 150

is operator monotone. Indeed, if z = ret? with 0 < 0 < 7, then z” = rPe'??. Since we add a
positive constant it is plain that the argument of Az” 4+ 1 — A is less that p8 but still positive.
The argument of f; (z) is therefore between zero and 6 < 7. We have shown that the analytic
continuation of f; to the complex upper half plane has positive imaginary part, thus f; is
operator monotone.

The perspective function

(t,5) > sfi(ts™) = (" + 1 =1)s")"" 1,5>0

is operator concave and so is any function that appears as the composition of an operator
monotone function of one variable with the perspective. It follows that

1—
(t,5) = (M? 4+ (1 —2)s?) 7777
is operator concave. However, by an elementary calculation we may write

f—s 1! N\ (1=p)/p
prapriae (At? 4+ (1 = 2)s?) dhx,
-5 P Jo

and the statement of the theorem follows. O

Take 0 < p < 1. Since the function (¢, s) — ﬁ

trace function

is operator concave, it follows that the

Li—R
(A,B) > TrK*—5—2

— (K
r—r ™

is concave in positive definite n x n matrices for any n x n matrix K, where L, and Rp
denote left and right multiplication with A and B.

By choosing K as the unit matrix we obtain:

Theorem 3.2 Let 0 < p < 1. The trace function

- B

A
(A,B) > Tr———
AP — B

is concave in positive definite matrices.

4 The Fréchet Differential

Some of the techniques in this section are adapted from [9].

Theorem 4.1 Consider the function f(t) =t? for 0 < p < 1. The map
x — Trhdf(x)"'h,

defined in positive definite n X n matrices, is concave for each self-adjoint n x n matrix h.
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Proof Consider x > 0 and a basis (e;)]_, in which x is diagonal with eigenvalues given by

xe; = M\je; fori =1, ..., n. We may then calculate
AP —ar
e;df (X)he; = ejhe; — Loqj=1,...,n.
If (x)he; =,

Expressed in this basis df (x)h =h o L¢(Ay, ..., A,) is the Hadamard (entry-wise) product
of & and the Lowner matrix

AP —APN\"
Lf(xl,...,xn)=<’ ’) :
Ai =2 i,j=1

The inverse Fréchet differential df(x)~'h is therefore well-defined and given by the

Hadamard product
. A=\
df(x)""h=ho

P P
A =25 )=
expressed in the same basis and thus
Thdf) =3 [ 22 M Tehg(L,, R
thdf (x) —Z|( ei|€j)|m— rhg(Ly, R\)h,
ij=1 i J

where L, and R, are left and right multiplication with x and

g(t,s)= t,s > 0.

P —

The operators L, and R, are positive definite commuting operators on the Hilbert space H =
M,, equipped with the inner product (A, B) = Tr B*A. The last expression Trhdf (x)"'h =
Trhg(L,, R,)h is independent of any particular basis, and since g is operator concave by
Theorem 3.1, we obtain [4, Theorem 1.1] that the map x — Trhdf(x)~'h is concave. O

Theorem 4.2 Consider the function f(t) =t? for 0 < p < 1. The map of two variables,
(x,h) > Trhdf(x)h x >0,h" =h,
is convex.

Proof Keeping the notation as in the proof of Theorem 1.1 we define two quadratic forms
o and B on H @ H by setting

a(X®Y)=ATrXdf(ADX + (1 =) TrYdf (A)Y
BX®Y)=Tr(AX + (1 —1)Y)df (A)(AX + (1 = 1Y),

where A, A, are positive definite matrices, and A = XA, + (1 — L) A, for some X € [0, 1].
The statement of the theorem is equivalent to the majorisation

BX®Y)<a(X®Y) 3
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816 F. Hansen

for arbitrary self-adjoint X, Y € M,,. The quadratic form 7 — Tr hdf (x)h is positive definite
since

" AP — AP
Trhdf (x)h = hei | e)]>= L,
If (x) ’_;]I( Dl vy
where (e;)7_, is a basis in which x is diagonal and Ay, ... A, are the corresponding eigen-

values counted with multiplicity. We also notice that the corresponding sesqui-linear form
is given by

(h,h") > Trh'df (x)h.

The two quadratic forms « and B are in particular positive definite. Therefore, there exists
an operator I" on H & ‘H which is positive definite in the Hilbert space structure given by S
such that

a(XeVY. X'eoY)=8(IrXaY).X' ®Y) X XYY eM,

where we retain the notation « and 8 also for the corresponding sesqui-linear forms. Sup-
pose y is an eigenvalue of I" corresponding to an eigenvector X & Y. Then

aX@Y. X' aY)=B(y(XaY). X ®Y) forX Y eM,
or equivalently

ATrX'df (A)X + (1 —A) TrY'df (Ay)Y
=y Tr(AX 4+ (1 = 0Y')df (A)(AX + (1 — 1)Y)

for arbitrary X', Y’ € M,,. From this we may derive the identities

df(A)X = ydf(A)(AX + (1 — 1Y) =df (A)Y
and thus by setting M = df(A)(AX + (1 — A)Y), we obtain

df(A)"' (M) =2X + (1 —1)Y
=Adf (A~ (y M) + (1 = Wdf (Ay) ™ (y M).
By multiplying from the left with M* and taking the trace we obtain
y(ATe M*df (A)™'M + (1 — ) Tr M*df (Ar) ™' M)
=TrM*df(A)"'M > A Tr M*df(A))"'M + (1 — 1) Tr M*df (A)) "' M,

where the last inequality is implied by the concavity result in Theorem 4.1. This shows
that the positive definite operator I" > 1 from which (3) and the statement of the theorem
follow. ]

Since the dependence of the function f in Trhdf(x)h is linear we immediately obtain:

Corollary 4.3 Let f be a function written on the form
1
1= [ rducp) =0
0
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where  is a positive measure on the unit interval. Then the map of two variables,
(x,h) > Trhdf(x)h x> 0,h" =h,
is convex.

If we in the corollary above choose u as the Lebesgue measure, we realise that

r—1
logt

f@) = t>0

is an example of a function such that (x, #) — Tr hdf (x)h is convex. Moreover, the perspec-
tive g of f given by

—1 _ _
2(t.5) :sf(ts_l) ts 1 t—s

= = t, 0
slog(ts—l) logt —logs 5=

is operator concave. Since
Trhdlog(x)~'h =Trhg(L,, R,)h

this observation directly shows that the function x — Trhdlog(x)~'h is concave, cf.
[9, Eq. 3.4)].

5 More Trace Functions
Lemma 5.1 Let K be a contraction. Then
Y(A) =q(AT" — K(K*AK)"'K*) >0
for —1<qg<1.
Proof By continuity we may assume K invertible. For 0 < ¢ < 1 we use the inequality
K*A"1K < (K*AK)"7,
or by inversion

KA 0-0(k*) 7 = (K*AK)

> (K*AK)_(I_q)
which implies the inequality
AT K (K*AK)T K* > 0.
For —1 < g <0 we apply Jensen’s sub-homogeneous operator inequality
K*A'"™K > (K*AK)'™,

or by inversion

1

KA 0-0(k*) 7 = (K*AK) T < (K*AK)'T
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818 F. Hansen

This inequality finally implies
AT < K(K*AK)" K
and the proof is complete. ]
Corollary 5.2 Let K be a contraction. The mapping
@(A) =Tr(K*AK)? —TrA? A>0
is decreasing for —1 < g < 1.
Proof The Fréchet differential of ¢ (A) is given by
de(A)D = —q Tr(A™" — K(K*AK)‘I"K*)D =—Try(A)D,
thus dg(A)D < 0 for arbitrary D > 0 by the preceding lemma. O

Acknowledgements We thank Peter Harremogs for pointing out that the convexity of the residual entropy
of a compound system may be easily inferred by considering it as a sum of relative entropies.
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