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Abstract We consider both known and not previously studied trace functions with applica-
tions in quantum physics. By using perspectives we obtain convexity statements for differ-
ent notions of residual entropy, including the entropy gain of a quantum channel studied by
Holevo and others.

We give new proofs of Carlen-Lieb’s concavity/convexity theorems for certain trace func-
tions, by making use of the theory of operator monotone functions. We then apply these
methods in a study of new classes of trace functions.

Keywords Trace function · Convexity · Entropy gain · Residual entropy · Operator
monotone function

1 Introduction and First Results

Consider a quantum system in which an observable A can be written as a sum A = A1 +
· · · + Ak of a number of components A1, . . . ,Ak . If the components correspond to isolated
subsystems then the total quantum entropy of the system S(A) = −TrA logA is equal to
the sum of the entropies of each subsystem. In the general case we may define the residual
entropy

ϕ(A1, . . . ,Ak) = S(A) −
k∑

i=1

S(Ai) A = A1 + · · · + Ak

as the difference between the total entropy of the system and the sum of the entropies of
each subsystem; although it is a negative quantity.

Another type of residual entropy is the entropy gain over a quantum channel studied by
Holevo and others [7, 8],

A → S
(
Φ(A)

) − S(A),
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where Φ is a quantum channel represented by a completely positive trace preserving linear
map.

Theorem 1.1 Consider n × n matrices A and n × m matrices K . The trace function

ϕ(A) = −TrK∗AK log
(
K∗AK

) + TrK∗(A logA)K

is convex in positive definite A for arbitrary K .

Proof The function f (t) = t log t defined for t > 0 is operator convex. It is well-known but
may be derived from [6, Theorem 2.4] since f (0) = 0, and log t is operator monotone. The
perspective function,

g(t, s) = sf
(
ts−1

) = t log t − t log s t, s > 0,

is therefore operator convex as a function of two variables [3, Theorem 2.2]. Consider the
Hilbert space H = Mn×m equipped with inner product given by (X,Y ) = TrY ∗X for matri-
ces X,Y ∈ Mn×m and let LA and RB denote left and right multiplication with A ∈ Mn and
B ∈ Mm respectively. If A and B are positive definite matrices then LA and RB are positive
definite commuting operators on H. Operator convexity of the perspective function g(t, s)

is equivalent to convexity of the map

(A,B) → TrK∗(LA logA − LARlogB)(K)

= Tr
(
K∗(A logA)K − K∗AK logB

)
A,B > 0

for every K ∈ Mn×m cf. [4, Theorem 1.1]. The statement of the theorem now follows by
replacing B with K∗AK in the above expression. �

Corollary 1.2 The residual entropy

ϕ(A1, . . . ,Ak) = −TrA logA +
k∑

i=1

TrAi logAi A = A1 + · · · + Ak

is a convex function in positive definite n × n matrices A1, . . . ,Ak .

Proof We apply Theorem 1.1 to block matrices of the form

A =

⎛

⎜⎜⎜⎝

A1 0 . . . 0
0 A2 0
...

. . .

0 0 Ak

⎞

⎟⎟⎟⎠ and K =

⎛

⎜⎜⎜⎝

I 0 . . . 0
I 0 . . . 0
...

...
...

I 0 . . . 0

⎞

⎟⎟⎟⎠ ,

and since the entry in the first row and the first column of the block matrix

−K∗AK log
(
K∗AK

) + K∗(A logA)K

is calculated to

−(A1 + · · · + Ak) log(A1 + · · · + Ak) +
k∑

i=1

Ai logAi
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the statement of the corollary follows. Notice that we used the same block matrix technique
as in [2]. �

It is actually much easier to obtain the above result by expressing the residual entropy as
a sum of relative entropies. We may however obtain other results by carefully choosing the
arbitrary matrix K in Theorem 1.1.

Corollary 1.3 Consider the entropy gain

ϕ(A) = S
(
Φ(A)

) − S(A)

over a quantum channel Φ , where the channel is represented by a completely positive trace
preserving linear map Φ . The entropy gain ϕ(A) is a convex function in A.

Proof A completely positive trace preserving linear map Φ : Mn → Mm is of the form

Φ(A) =
k∑

i=1

a∗
i Aai

where the so-called Kraus matrices a1, . . . , ak ∈ Mn×m satisfy

a1a
∗
1 + · · · + aka

∗
k = 1.

We now apply Theorem 1.1 by substituting A by the matrix
⎛

⎜⎜⎜⎝

A 0 . . . 0
0 A 0
...

. . .

0 0 A

⎞

⎟⎟⎟⎠ and setting K =

⎛

⎜⎜⎜⎝

a1 0 . . . 0
a2 0 . . . 0
...

...
...

ak 0 . . . 0

⎞

⎟⎟⎟⎠ .

The entry in the first row and the first column of the block matrix

−K∗AK log
(
K∗AK

) + K∗(A logA)K

is then calculated to −Φ(A) logΦ(A) + Φ(A logA). Since Φ is trace preserving it follows
that the entropic map

A → S
(
Φ(A)

) + TrΦ(A logA) = S
(
Φ(A)

) − S(A)

is convex. �

Corollary 1.4 The entropy gain

ϕ(A1, . . . ,Ak) = S
(
Φ1(A1) + · · · + Φk(Ak)

) −
k∑

i=1

S(Ai)

of k positive definite quantities observed through k quantum channels Φ1, . . . ,Φk is a convex
function in A1, . . . ,Ak .

Proof The statement is obtained as in the above corollary by considering suitable block
matrices, where each block corresponds to a single quantum channel. We leave the details
to the reader. �
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2 Carlen-Lieb Trace Functions

We give new proofs of some of the statements in [2] without using variational methods.

Theorem 2.1 (Carlen-Lieb) The trace function

(A,B) → Tr
(
Ap + Bp

)1/r
0 < p ≤ r ≤ 1

is concave in positive definite matrices A and B .

Proof The function

f (t) = (
tp + 1

)1/p
t > 0

is operator monotone, cf. [1, Corollary 4.3]. Indeed, if z = reiθ with 0 < θ < π then zp =
rpeipθ . Since we add a positive constant it is plain that the argument of zp + 1 is less than
pθ but still positive. The argument of f (z) is therefore between zero and pθ ≤ θ < π . We
have shown that the analytic continuation of f to the complex upper half plane has positive
imaginary part, thus f is operator monotone.

The perspective function

(t, s) → sf
(
ts−1

) = s
(
tps−p + 1

)1/p = (
tp + sp

)1/p

is therefore operator concave, cf. [3, Theorem 2.2] and so is the function,

g(t, s) = (
tp + sp

)1/r
t, s > 0,

that appears by composing with the operator monotone and operator concave function t →
tp/r .

The left and right multiplication operators LA and RB are positive definite commuting
operators on the Hilbert space H = Mn equipped with the inner product (A,B) = TrB∗A.
It follows that the (super) operator mapping

(A,B) → (
L

p

A + R
p

B

)1/r

is concave according to the preceding remark. The trace function

(A,B) → TrK∗(Lp

A + R
p

B

)1/r
(K) (1)

is therefore concave by [4, Theorem 1.1]. The statement now follows by choosing K as the
identity matrix. Indeed, under the trace we have

Tr(LA + LB)(A + B)n = Tr(A + B)n+1

for each n, and we thus obtain

Tr
(
L

p

A + R
p

B

)1/r
(I ) = Tr

(
Ap + Bp

)1/r

by simple algebraic calculations. �

Notice that the statement in (1) is stronger than what is obtained in the reference [2].
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Theorem 2.2 The function

f (t) = (
tp + 1

)1/p
t > 0

is operator convex for 1 ≤ p ≤ 2.

Proof We have previously shown that f is operator monotone for 0 < p ≤ 1. Let us calcu-
late the representing measure.

We set z = reiθ for r > 0 and 0 < θ < π and calculate the analytic continuation of f ,

f
(
reiθ

) = (
rpeipθ + 1

)1/p
,

into the complex upper half plane. Let arg z with 0 ≤ arg z < 2π denote the angle between
the positive x-axis and the complex number z = x + iy. With this non-standard convention
arg z is an analytic function in C\[0,∞), and the angle Ap(r, θ) between the positive x-axis
and (rpeipθ + 1)1/p is given by

Ap(r, θ) = 1

p
arg

(
rp cospθ + 1 + irp sinpθ

)
,

and it satisfies

0 < Ap(r, θ) < θ < π for 0 < p ≤ 1, r > 0,0 < θ < π.

The imaginary part of the analytic continuation of f is therefore given by

�f
(
reiθ

) = (
1 + r2p + 2rp cospθ

)1/(2p)
sinAp(r, θ),

and the representing measure of f is obtained as the limit

1

π
lim
θ→π

�f
(
reiθ

) = 1

π

(
1 + r2p + 2rp cospπ

)1/(2p)
sinAp(r,π).

It follows that

(
tp + 1

)1/p = β + t +
∫ ∞

0

(
λ

1 + λ2
− 1

t + λ

)
hp(λ)dλ, (2)
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where β is a constant determined by setting t = 0 in Eq. (2), and the non-negative function
hp is given by

hp(λ) = 1

π

(
1 + λ2p + 2λp cospπ

)1/(2p)
sinAp(λ,π) λ > 0,

cf. [5] for the details. The key in the proof is the realisation that

π < Ap(λ,π) < 2π for 1 < p < 2 and r > 0,

and this is so because arg z < arg(z + 1) < 2π when z is in the lower complex plane. It
follows that both sides in Eq. (2) are real analytic functions in p in the whole interval (0,2).

The formula in (2) is consequently valid also for 1 ≤ p ≤ 2. However, for 1 < p < 2 the
weight function hp is negative implying that f is operator convex. Notice that hp = 0 for
p = 1. �

The same line of arguments as for 0 < p ≤ 1 applies, so we obtain:

Corollary 2.3 The trace function

(A,B) → Tr
(
Ap + Bp

)1/p
1 ≤ p ≤ 2

is convex in positive definite matrices A and B .

2.1 Variational inequalities

Remark 2.4 Let x and y be positive numbers and take 0 < p < 1. It is easy to prove that

(
xp + yp

)1/p ≤ λ(p−1)/px + (1 − λ)(p−1)/py for 0 < λ < 1

with equality for λ = xp(xp + yp)−1.

Theorem 2.5 Let 0 < p < 1 and take positive definite n × n matrices A,B . Then

Tr
(
Ap + Bp

)1/p ≤ Tr
(
X(p−1)/pA + (1 − X)(p−1)/pB

)

for each n × n matrix X with 0 < X < 1. If A and B commute then there is equality for
X = Ap(Ap + Bp)−1.
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Proof We know that the trace function ϕ(X,Y ) = Tr(Xp + Y p)1/p is concave in positive
definite X and Y . It is also positively homogeneous since

ϕ(tX, tY ) = tϕ(X,Y ) t > 0.

It follows that the Fréchet differential

dϕ(X,Y )(A,B) ≥ ϕ(A,B)

for positive definite X,Y,A,B , cf. for example [9, Lemma 5]. We notice that

dϕ(X,Y )(A,B) = d1ϕ(X,Y )A + d2ϕ(X,Y )B

by the chain rule for Fréchet differentials. By setting f (t) = t1/p and g(t) = tp we obtain

d1ϕ(X,Y )A = Tr df
(
Xp + Y p

)
dg(X)A = Trf ′(Xp + Y p

)
dg(X)A

= 1

p
Tr

(
Xp + Y p

)(1−p)/p
dg(X)A

and similarly

d2ϕ(X,Y )B = 1

p
Tr

(
Xp + Y p

)(1−p)/p
dg(Y )B.

We thus derive that

Tr
(
Ap + Bp

)1/p ≤ 1

p
Tr

(
Xp + Y p

)(1−p)/p(
dg(X)A + dg(Y )B

)
.

Let now 0 < X < 1 and set Y = (1 − Xp)1/p . Then Xp + Y p = 1 and thus

Tr
(
Ap + Bp

)1/p ≤ 1

p
Tr

(
dg(X)A + dg(Y )B

)

= 1

p
Tr

(
g′(X)A + g′(Y )B

)

= Tr
(
Xp−1A + (

1 − Xp
)(p−1)/p

B
)
.

We may replace X with X1/p since any 0 < X < 1 can be obtained in this way, and we
obtain

Tr
(
Ap + Bp

)1/p ≤ Tr
(
X(p−1)/pA + (1 − X)(p−1)/pB

)

which is the statement of the theorem. �

3 New Types of Trace Functions

Theorem 3.1 Let 0 < p ≤ 1. The function of two variables,

g(t, s) =
⎧
⎨

⎩

t−s
tp−sp t 
= s

1
p
t1−p t = s,

defined for t, s > 0, is operator concave.
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Proof We notice that g(t, s) is not a perspective function, so our approach will have to be
more indirect. We first prove that for 0 ≤ λ ≤ 1 the function

fλ(t) = (
λtp + 1 − λ

)1/p
t > 0

is operator monotone. Indeed, if z = reiθ with 0 < θ < π , then zp = rpeipθ . Since we add a
positive constant it is plain that the argument of λzp + 1 −λ is less that pθ but still positive.
The argument of fλ(z) is therefore between zero and θ < π . We have shown that the analytic
continuation of fλ to the complex upper half plane has positive imaginary part, thus fλ is
operator monotone.

The perspective function

(t, s) → sfλ

(
ts−1

) = (
λtp + (1 − λ)sp

)1/p
t, s > 0

is operator concave and so is any function that appears as the composition of an operator
monotone function of one variable with the perspective. It follows that

(t, s) → (
λtp + (1 − λ)sp

)(1−p)/p

is operator concave. However, by an elementary calculation we may write

t − s

tp − sp
= 1

p

∫ 1

0

(
λtp + (1 − λ)sp

)(1−p)/p
dλ,

and the statement of the theorem follows. �

Take 0 ≤ p ≤ 1. Since the function (t, s) → t−s
tp−sp is operator concave, it follows that the

trace function

(A,B) → TrK∗ LA − RB

L
p

A − R
p

B

(K)

is concave in positive definite n × n matrices for any n × n matrix K , where LA and RB

denote left and right multiplication with A and B .
By choosing K as the unit matrix we obtain:

Theorem 3.2 Let 0 < p ≤ 1. The trace function

(A,B) → Tr
A − B

Ap − Bp

is concave in positive definite matrices.

4 The Fréchet Differential

Some of the techniques in this section are adapted from [9].

Theorem 4.1 Consider the function f (t) = tp for 0 < p ≤ 1. The map

x → Trhdf (x)−1h,

defined in positive definite n × n matrices, is concave for each self-adjoint n × n matrix h.
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Proof Consider x > 0 and a basis (ei)
n
i=1 in which x is diagonal with eigenvalues given by

xei = λiei for i = 1, . . . , n. We may then calculate

eidf (x)hej = eihej

λ
p

i − λ
p

j

λi − λj

i, j = 1, . . . , n.

Expressed in this basis df (x)h = h ◦ Lf (λ1, . . . , λn) is the Hadamard (entry-wise) product
of h and the Löwner matrix

Lf (λ1, . . . , λn) =
(

λ
p

i − λ
p

j

λi − λj

)n

i,j=1

.

The inverse Fréchet differential df (x)−1h is therefore well-defined and given by the
Hadamard product

df (x)−1h = h ◦
(

λi − λj

λ
p

i − λ
p

j

)n

i,j=1

expressed in the same basis and thus

Trhdf (x)−1h =
n∑

i,j=1

|(hei | ej )|2 λi − λj

λ
p

i − λ
p

j

= Trhg(Lx,Rx)h,

where Lx and Rx are left and right multiplication with x and

g(t, s) = t − s

tp − sp
t, s > 0.

The operators Lx and Rx are positive definite commuting operators on the Hilbert space H =
Mm equipped with the inner product (A,B) = TrB∗A. The last expression Trhdf (x)−1h =
Trhg(Lx,Rx)h is independent of any particular basis, and since g is operator concave by
Theorem 3.1, we obtain [4, Theorem 1.1] that the map x → Trhdf (x)−1h is concave. �

Theorem 4.2 Consider the function f (t) = tp for 0 < p ≤ 1. The map of two variables,

(x,h) → Trhdf (x)h x > 0, h∗ = h,

is convex.

Proof Keeping the notation as in the proof of Theorem 1.1 we define two quadratic forms
α and β on H⊕H by setting

α(X ⊕ Y ) = λTrXdf (A1)X + (1 − λ)TrYdf (A2)Y

β(X ⊕ Y ) = Tr
(
λX + (1 − λ)Y

)
df (A)

(
λX + (1 − λ)Y

)
,

where A1,A2 are positive definite matrices, and A = λA1 + (1 − λ)A2 for some λ ∈ [0,1].
The statement of the theorem is equivalent to the majorisation

β(X ⊕ Y ) ≤ α(X ⊕ Y ) (3)
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for arbitrary self-adjoint X,Y ∈ Mn. The quadratic form h → Trhdf (x)h is positive definite
since

Trhdf (x)h =
n∑

i,j=1

|(hei | ej )|2
λ

p

i − λ
p

j

λi − λj

,

where (ei)
n
i=1 is a basis in which x is diagonal and λ1, . . . λn are the corresponding eigen-

values counted with multiplicity. We also notice that the corresponding sesqui-linear form
is given by

(
h,h′) → Trh′df (x)h.

The two quadratic forms α and β are in particular positive definite. Therefore, there exists
an operator Γ on H⊕H which is positive definite in the Hilbert space structure given by β

such that

α
(
X ⊕ Y,X′ ⊕ Y ′) = β

(
Γ (X ⊕ Y ),X′ ⊕ Y ′) X,X′, Y,Y ′ ∈ Mn,

where we retain the notation α and β also for the corresponding sesqui-linear forms. Sup-
pose γ is an eigenvalue of Γ corresponding to an eigenvector X ⊕ Y . Then

α
(
X ⊕ Y,X′ ⊕ Y ′) = β

(
γ (X ⊕ Y ),X′ ⊕ Y ′) for X′, Y ′ ∈ Mn

or equivalently

λTrX′df (A1)X + (1 − λ)TrY ′df (A2)Y

= γ Tr
(
λX′ + (1 − λ)Y ′)df (A)

(
λX + (1 − λ)Y

)

for arbitrary X′, Y ′ ∈ Mn. From this we may derive the identities

df (A1)X = γ df (A)
(
λX + (1 − λ)Y

) = df (A2)Y

and thus by setting M = df (A)(λX + (1 − λ)Y ), we obtain

df (A)−1(M) = λX + (1 − λ)Y

= λdf (A1)
−1(γM) + (1 − λ)df (A2)

−1(γM).

By multiplying from the left with M∗ and taking the trace we obtain

γ
(
λTrM∗df (A1)

−1M + (1 − λ)TrM∗df (A2)
−1M

)

= TrM∗df (A)−1M ≥ λTrM∗df (A1)
−1M + (1 − λ)TrM∗df (A2)

−1M,

where the last inequality is implied by the concavity result in Theorem 4.1. This shows
that the positive definite operator Γ ≥ 1 from which (3) and the statement of the theorem
follow. �

Since the dependence of the function f in Trhdf (x)h is linear we immediately obtain:

Corollary 4.3 Let f be a function written on the form

f (t) =
∫ 1

0
tpdμ(p) t > 0,
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where μ is a positive measure on the unit interval. Then the map of two variables,

(x,h) → Trhdf (x)h x > 0, h∗ = h,

is convex.

If we in the corollary above choose μ as the Lebesgue measure, we realise that

f (t) = t − 1

log t
t > 0

is an example of a function such that (x,h) → Trhdf (x)h is convex. Moreover, the perspec-
tive g of f given by

g(t, s) = sf
(
ts−1

) = s
ts−1 − 1

log(ts−1)
= t − s

log t − log s
t, s > 0

is operator concave. Since

Trhdlog(x)−1h = Trhg(Lx,Rx)h

this observation directly shows that the function x → Trhdlog(x)−1h is concave, cf.
[9, Eq. (3.4)].

5 More Trace Functions

Lemma 5.1 Let K be a contraction. Then

ψ(A) = q
(
Aq−1 − K

(
K∗AK

)q−1
K∗) ≥ 0

for −1 ≤ q ≤ 1.

Proof By continuity we may assume K invertible. For 0 ≤ q ≤ 1 we use the inequality

K∗A1−qK ≤ (
K∗AK

)(1−q)
,

or by inversion

K−1A−(1−q)
(
K∗)−1 = (

K∗A1−qK
)−1 ≥ (

K∗AK
)−(1−q)

which implies the inequality

Aq−1 − K
(
K∗AK

)q−1
K∗ ≥ 0.

For −1 ≤ q ≤ 0 we apply Jensen’s sub-homogeneous operator inequality

K∗A1−qK ≥ (
K∗AK

)1−q
,

or by inversion

K−1A−(1−q)
(
K∗)−1 = (

K∗A1−qK
)−1 ≤ (

K∗AK
)q−1

.
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This inequality finally implies

Aq−1 ≤ K
(
K∗AK

)q−1
K∗

and the proof is complete. �

Corollary 5.2 Let K be a contraction. The mapping

ϕ(A) = Tr
(
K∗AK

)q − TrAq A > 0

is decreasing for −1 ≤ q ≤ 1.

Proof The Fréchet differential of ϕ(A) is given by

dϕ(A)D = −q Tr
(
Aq−1 − K

(
K∗AK

)q−1
K∗)D = −Trψ(A)D,

thus dϕ(A)D ≤ 0 for arbitrary D ≥ 0 by the preceding lemma. �
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