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Abstract We propose a unified approach to reversible and irreversible PCA dynamics, and
we show that in the case of 1D and 2D nearest neighbor Ising systems with periodic bound-
ary conditions we are able to compute the stationary measure of the dynamics also when
the latter is irreversible. We also show how, according to (P. Dai Pra et al. in J. Stat. Phys.
149(4):722–737, 2012), the stationary measure is very close to the Gibbs for a suitable
choice of the parameters of the PCA dynamics, both in the reversible and in the irreversible
cases. We discuss some numerical aspects regarding this topic, including a possible parallel
implementation.

Keywords Markov chains · Probabilistic cellular automata · Stationary distribution ·
Equilibrium and non-equilibrium statistical mechanics

1 Introduction

In this paper we propose a connection between two different subjects that have been quite
studied over the last two decades, that is, the general study of non-equilibrium statistical
mechanics and the description of equilibrium statistical mechanics with the specific use of a
Probabilistic Cellular Automata (PCA). Starting from a series of seminal papers, e.g. [2–4],
a certain effort has been spent in order to give a dynamical description of the equilibrium
statistical mechanics by means of PCA. A PCA is a discrete-time Markov chain (MC) on a
product space SV such that the transition probability P (σ, τ ) is a product measure

P (σ, τ ) =
∏

i∈V

pi(τi | σ), (1.1)
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where pi(τi | σ) is a probability on S for all i ∈ V and σ ∈ SV . Given a probability measure
μ on SV , the question is whether a PCA may be constructed whose stationary measure is μ.
In the context of the equilibrium statistical mechanics we are obviously interested to the
case in which μ is a Gibbs measure. It is well known that such a problem is rather difficult.
For instance, in [1] it is shown that no PCA can be designed in such a way to be reversible
with respect to the stationary distribution of a 2D Ising model. In [3] and [7] a PCA is
introduced whose invariant, reversible measure π is related to the Ising model as follows.
The projection of π to the even sites, i.e., those (i, j) ∈ Z

2 with i + j even, coincides with
the same projection of the Ising model, and the same holds for odd sites. However, opposite
to the Ising model, spins at even sites are independent under the measure π of those at odd
sites. Recently, one of the authors has proved in [11] that the PCA from [7] can be simply
modified in order to provide a way to approximately sample from a Gibbs measure. The
sense of this statement will be clarified in Sect. 2. This result was achieved following some
ideas first introduced in [8] and later exploited in [10] to provide an easy example of cutoff.

On the other hand, one of the main subjects of the recent research in statistical mechanics
has been the study of non-equilibrium statistical mechanics, in particular when a stationary
state can be defined. Several different approaches have been proposed, see e.g. [5, 6], and [9]
and the references therein. In contrast with the case of equilibrium statistical mechanics,
where a well defined recipe, the Gibbs measure, is always available, in the non-equilibrium
case the subject is far from a complete and general understanding. The study of the stationary
measure in the non-equilibrium context can not leave aside the dynamics of the process
whereas the Gibbs recipe has exactly this advantage.

Starting from the results in [11], in this paper we introduce a class of PCA, that includes
some non-equilibrium models for which the invariant measure can be explicitly computed.
An extension of this class seems likely to be achieved with the use of relatively easy argu-
ments.

The paper is organized as follows. In Sect. 2 we will define, according to [11], a class
of reversible and irreversible PCA dynamics. We will prove that if a weak balance condi-
tion is verified then we are able to explicitly write the unique stationary measure of the
chain. In Sect. 3 we show that the Ising systems introduced in Sect. 2 are weakly balanced
whenever periodic boundary conditions are imposed. Finally, in Sect. 4 we present some
numerical/simulative aspects of PCA. In particular, we show that in the irreversible case a
stationary current is present in the system, and under suitable conditions what we call Ising
waves arise.

2 Reversible and Irreversible PCA Dynamics

Let us consider a two-body spin system, defined by an Hamiltonian of the form

H(σ) = −
∑

{x,y}
Jx,yσxσy, (2.1)

where Λ is a finite set, σ ∈ X = {−1,+1}Λ, and the sum in (2.1) is extended to the un-
ordered pairs {x, y} with x, y ∈ Λ. The Gibbs measure associated to the Hamiltonian (2.1)
is then

πG(σ) = e−H(σ)

Z
, (2.2)
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where Z = ∑
σ e−H(σ). It is possible to construct Markovian, ergodic dynamics whose sta-

tionary measure is precisely πG(σ). The long run behavior of the chain can then be used
to sample from πG(σ). Those Markovian dynamics are typically based on single spin-flip
transition probabilities, see for instance [12, 14] and the references therein.

One of the authors has recently proved in [11] that an approximate sampling of Gibbs
measure (2.2) can be actually achieved also by means of a reversible PCA dynamics. For a
given pair of configurations (σ, τ ), let us consider the following Hamiltonian:

H(σ, τ) = −
∑

{x,y}
Jx,yσxτy − q

∑

x

σxτx, (2.3)

where

Jx,y = Jy,x ∀x, y ∈ Λ (2.4)

as the interaction is supposed to be symmetric. The last term in the Hamiltonian (2.3), pro-
portional to the parameter q > 0, represents an inertial term, i.e., the tendency of the system
to remain in the current state σ . We next define a homogeneous MC whose transition proba-
bilities are

P (σ, τ ) = e−H(σ,τ)

Zσ

, (2.5)

where

Zσ =
∑

τ

e−H(σ,τ). (2.6)

From (2.4) H(σ,σ ′) = H(σ ′, σ ), thus the Hamiltonian (2.3) is symmetric for the exchange
σ ↔ σ ′. It is then immediate to see that such a MC is ergodic and reversible with respect to
the measure

π(σ) = Zσ

Z
, (2.7)

where Z = ∑
σ Zσ . The following result holds:

Theorem 2.1 [11] If e−2q = o(|Λ| 1
2 ) as |Λ| → ∞ and supx∈Λ

∑
y∈Λ tanh(2|Jx,y |) < 1 then

lim
Λ→∞ dTV(π,πG) = 0, (2.8)

where dTV(·, ·) is the usual total-variation distance and πG is given by (2.1)–(2.2).

Remark 2.1 The long run behavior of the collective dynamics defined by (2.5) can be used to
perform an approximate sampling of a Gibbs distribution in the sense of (2.8). It is important
to stress that Theorem 2.1 was obtained in [11] without any use of reversibility.

Having in mind a generalization of this picture to irreversible MCS, let us define a
non-symmetric Hamiltonian on pairs of configurations by simply taking (2.3), where now
Jx,y �= Jy,x .

Definition 2.1 Whenever Jx,y �= 0 ⇒ Jy,x = 0 we will say that the spin system (2.3) is
completely asymmetric.
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The new chain will evolve according to (2.5). Due to the lack of symmetry of the inter-
action Jx,y , the MC is no longer reversible with respect to (2.7) because H(σ, τ) �= H(τ,σ )

and the detailed balance condition is not satisfied. However, we can still consider π(σ) given
by (2.7) and compute

∑
σ π(σ )P (σ, τ ). This yields

∑

σ

π(σ )P (σ, τ ) =
∑

σ

Zσ

Z

e−H(σ,τ)

Zσ

=
∑

σ

e−H(σ,τ)

Z
. (2.9)

Proposition 2.2 Consider the MC

P (σ, τ ) = e−H(σ,τ)

Zσ

,

H(σ, τ ) = −
∑

{x,y}
Jx,yσxτy − q

∑

x

σxτx,

Zσ =
∑

τ

e−H(σ,τ),

where no assumption is made on Jx,y . Suppose the following Weak Balance Condition (WBC)
holds:

∑

τ

e−H(σ,τ) =
∑

τ

e−H(τ,σ ) ∀σ ∈ X . (2.10)

Then the probability distribution

π(σ) = Zσ

Z
with Z =

∑

σ

Zσ , (2.11)

is the stationary distribution of the chain.

Proof By (2.9) and (2.10),

∑

σ

π(σ )P (σ, τ ) =
∑

τ

e−H(τ,σ )

Z
= Zτ

Z
= π(τ).

Therefore (2.11) is stationary. �

Remark 2.2 The WBC (2.10) determines a class of MCS for which the stationary distribution
is (2.11); some examples within this class are presented in Sect. 3. The fulfillment of the
WBC is indeed a weaker requirement than the detailed balance principle, which holds for the
reversible dynamics due to (2.4).

We end the present section with a couple of important remarks.

Remark 2.3 Given a function g : X ×X → R, its expectation with respect to the stationary
measure over pairs of subsequent configurations is

〈
g(σ, τ )

〉 =
∑

σ,τ

π(σ )P (σ, τ )g(σ, τ ) =
∑

σ,τ

e−H(σ,τ)g(σ, τ )

Z
. (2.12)

Hence, the two-step stationary measure of the dynamics is Gibbsian in the sense of (2.12).
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Remark 2.4 Given a function g : X ×X →R, consider

J (g) = 〈
g(σ, τ ) − g(τ, σ )

〉
.

Whenever J (g) �= 0 we see a current of the function g. In the reversible case J (g) is
identically zero for each g, while in the irreversible case it may be in general different from
zero.

3 Weakly Balanced, Irreversible Ising Systems

We prove the WBC (2.10) for some examples of 1D and 2D nearest neighbor Ising systems.
Similar proofs can be obtained in more general cases.

3.1 Weak Balance for 1D Nearest Neighbor Ising Systems

The Hamiltonian of the 1D nearest neighbor Ising model is given by

H(σ) = −
L∑

i=1

Jiσiσi+1.

Here we assume that the strength of the interaction Ji may in general depend on the site i.
The sum on i may be performed using either periodic boundary conditions or empty bound-
ary condition. In the first case sites 1 and L + 1 coincide (Ising system on the circle). In the
second case JL = 0 (Ising system on the segment).

We can introduce a PCA reversible dynamics for this model starting from the pair Hamil-
tonian

H(σ, τ) = −
L∑

i=1

[
Ji

2
(σiτi+1 + τiσi+1) + qσiτi

]
, (3.1)

and then defining the PCA dynamics with the transition probabilities

P (σ, τ ) = e−H(σ,τ)

Zσ

.

Both periodic and empty boundary conditions can be considered for the sum (3.1). This
reversible PCA dynamics can be generalized to an irreversible case in two ways. The first
possibility is to define a completely asymmetric system by the pair Hamiltonian

H(σ, τ) = −
L∑

i=1

[Jiσiτi+1 + qσiτi]. (3.2)

This is a particularly simple irreversible system, and the WBC can be directly checked in one
line

∑

τ

e−H(σ,τ) = 2L
∏

i

cosh(Ji−1σi−1 + qσi)

= 2L
∏

i

cosh(Ji−1σi + qσi−1) =
∑

τ

e−H(τ,σ ),
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where in the second equality we have used the parity of the hyperbolic cosine. We will now
compute Z by the following elementary identities:

cosh(a + b) = cosha coshb + sinha sinhb, (3.3)

sinh(a + b) = sinha coshb + cosha sinhb. (3.4)

When the system is defined on the circle,

Z =
∑

σ,τ

e−H(σ,τ) = (coshq)L
∏

i

coshJi + (sinhq)L
∏

i

sinhJi,

by (3.3), (3.4), and the parity of the hyperbolic sine and cosine, whereas

Z =
∑

σ,τ

e−H(σ,τ) = (coshq)L
∏

i

coshJi

if the system is defined on the segment. In this simple 1D case it is also easy to exhibit a
function g such that J (g) �= 0. Let us take for instance the family gi(σ, τ ) = σiτi+1. For the
Ising system on the segment,

J (gi) = 〈σiτi+1 − τiσi+1〉 = Z−1
∑

σ,τ

e−H(σ,τ)(σiτi+1 − τiσi+1)

= Z−12L
∑

σ

[
σi sinh(Jiσi + qσi+1)

∏

l �=i

cosh(Jlσl + qσl+1)

− σi+1 sinh(Ji−1σi−1 + qσi)
∏

l �=i

cosh(Jl−1σl−1 + qσl)

]

= tanhJi

(
1 − tanh2 q

)
. (3.5)

The second option to generalize the PCA dynamics defined by the Hamiltonian (3.1) is to
define a partially asymmetric system. The proof of the WBC (2.10) relies on the hypothesis
that the system is translationally invariant. As such, the system has to be defined on the circle
with Ji = J for all 1 ≤ i ≤ L. The pair Hamiltonian then becomes

H(σ, τ) = −
L∑

i=1

[
αJσiτi+1 + (1 − α)J τiσi+1 + qσiτi

]
, (3.6)

where 0 < α < 1. The proof of WBC for the 2D version of (3.2) is presented in Sect. 3.2.
The actual proof of the WBC for (3.6) is similar with respect to that—but much easier. It is
left as an exercise to the reader.

3.2 Weak Balance for 2D Nearest Neighbor Completely Asymmetric Ising Systems

We now consider the translationally invariant Ising model on a 2D square lattice Λ with
N ×N sites, with periodic boundary conditions. To this purpose we introduce some notation.
The configuration σ ∈ {−1,+1}Λ has value σi,j in the site x = (i, j) of the torus Λ. The
Hamiltonian of the system is defined by the expression

H(σ) = −
∑

{(i,j),(k,l)}
n.n. pairs

Jσi,j σk,l ,



Equilibrium and Non-equilibrium Ising Models by Means of PCA 647

that we rewrite more explicitly as

H(σ) = −J

N∑

i,j=1

(σi,j σi,j+1 + σijσi+1,j ). (3.7)

Similarly to the previous section, the reversible PCA dynamics associated to (3.7) is deter-
mined by the pair Hamiltonian

H(σ, τ) = −J

2

N∑

i,j=1

(σi,j τi,j+1 + σi,j+1τi,j + σi+1,j τi,j + σij τi+1,j ) − q

N∑

i,j=1

σi,j τi,j . (3.8)

According to (2.5) and (2.6), the Hamiltonian above defines an homogeneous MC, which
is again ergodic and reversible with respect to the measure π(σ), given by formulas (2.7)
and (3.8).

To generalize this picture to irreversible MCS, we define an irreversible PCA considering
a completely asymmetric version of the dynamics above. We define the following Hamilto-
nian:

H(σ, τ) = −J

N∑

i,j=1

(σi,j τi,j+1 + σi,j τi+1,j ) − q

N∑

i,j=1

σi,j τi,j . (3.9)

Proposition 3.1 The irreversible PCA defined as in (2.5)–(2.6) by the Hamiltonian (3.9) is
weakly balanced, i.e.,

∑

τ

e−H(σ,τ) =
∑

τ

e−H(τ,σ ), ∀σ ∈ X .

Hence, π(σ) = Zσ

Z
is the stationary measure of such an irreversible PCA.

Proof By direct computation we have that

∑

τ

e−H(σ,τ) =: Z→
σ = 2|Λ| ∏

i,j

cosh
(
J (σi−1,j + σi,j−1) + qσi,j

)
, (3.10)

∑

τ

e−H(τ,σ ) =: Z←
σ = 2|Λ| ∏

i,j

cosh
(
J (σi+1,j + σi,j+1) + qσi,j

)
. (3.11)

The parity of the hyperbolic cosine then yields

cosh
(
J (σi±1,j + σi,j±1) + qσi,j

) =

⎧
⎪⎨

⎪⎩

cosh(2J + q) if σi±1,j = σi,j±1 = σi,j ,

cosh(2J − q) if σi±1,j = σi,j±1 = −σi,j ,

cosh(q) if σi±1,j �= σi,j±1.

The three different values depend on the configuration σ when it is represented in terms
of Peierls contours. Indeed, once a configuration σ and the corresponding set of Peierls
contour Γ are chosen, then the contribution of the single term i, j appearing in the products
of (3.10) (resp. (3.11)) depends on the contribution of the dual edges below and to the left
(resp. above and to the right) of the site i, j . If none of them belongs to any Peierls contour,
the contribution will be cosh(2J + q); if both of them belong to some Peierls contour, then
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the contribution will be cosh(2J −q); if exactly one of them belongs to a Peierls contour and
the other does not, then the contribution will be cosh(q). Let us name NE elbow (resp. SW
elbow) a pair of dual edges in a Peierls contour of this form � (resp. �). Hence, the first part
of the Proposition follows simply noting that for all configurations of Peierls contours the
number of elbows in the SW direction is the same of the number of elbows NE-oriented. �

Remark 3.1 Remark 2.1 implies that Theorem 2.1 holds also in this case. Thus, if e−2q =
o(|Λ| 1

2 ) as |Λ| → ∞ then π(σ), defined by (2.7) and (3.9), tends asymptotically in total-
variation distance to the Gibbs measure πG(σ), defined by (2.2) and (3.7).

4 Parallelization, Phase Transition, Ising Waves

In this section we present some numerical studies about the 2D Ising model PCA we have
discussed in Sect. 3.2 above, that is, the discrete-time MC defined by (2.5)–(2.6). Both (3.8)
and (3.9) will be considered as the Hamiltonian of the system.

MCS can be easily implemented and simulated on any computer using the so-called ran-
dom mapping representation, see e.g. [13]. Random processes of the kind of PCA can be
simulated using the very same approach. The product form of the transition matrix (1.1)
ensures that the spins flip independently, so a unique random map will serve all the spins.
To fix the ideas, let us consider the reversible PCA defined by (2.5), (2.6) and (3.8). If we
define the local field to be

hi,j (σ ) = J

2
(σi−1,j + σi+1,j + σi,j−1 + σi,j+1).

Then equation (3.8) becomes

H(σ, τ) = −
N∑

i,j=1

[
hi,j (σ ) + qσi,j

]
τi,j .

Thus, the transition probabilities (2.5)–(2.6) become

P (σ, τ ) =
∏

i,j

exp[τi,j (hi,j (σ ) + qσi,j )]
2 cosh(hi,j (σ ) + qσi,j )

.

The update procedure of a spin at vertex (i, j) is sketched in the pseudocode given by List-
ing 1. The number of floating point operations required for the update of a single spin is very
low. Indeed, the problem of simulating the evolution of such a MC is not particularly com-
plex, involving only simple operations on many data elements. This is particularly suited
for a Graphics Processing Unit (GPU) because it closely resembles the operations involved
in graphic applications. Moreover, from (1.1) there is no dependency in the probabilistic
update rule for the evolution of the spins. Therefore they can be updated simultaneously,
making the problem embarrassingly parallel. The natural choice to efficiently implement
such a model seems to be Compute Unified Device Architecture (CUDA).

CUDA maps geometry onto blocks of threads executing simultaneously. It is then natural
to map a configuration σ , stored as a square matrix of size N × N , onto a square grid of
blocks. Each block is able to run multiple threads, simultaneously updating a portion of the
configuration matrix σ . The update rule (1.1) ensures that no inter-thread dependencies arise
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1 for each neighbor (k,l) of (i,j)
p += sigma((k,l))

3 end for
p *= -J

5 p -= q * sigma((i,j))
p = 1 / (1 + exp(2p))

7

if rand() < p then
9 tau((i,j)) = 1

else
11 tau((i,j)) = -1

end if
�

Listing 1 Update procedure for the spin in site (i, j)

Figure 1 Execution time of 500
steps of the PCA dynamics
defined by (2.5), (2.6) and (3.8).
Different values of N are
considered. Simulations were run
on a Nvidia Tesla K20s GPU

as the transition probabilities depend only on the previous time-step configuration. The only
aspect that must be carefully regarded is the memory access, because the memory is the main
potential performance inhibitor in GPUS. It is hence very important to optimize for memory
access. Dividing the two dimensional matrix into a set of square tiles is a good strategy to
efficiently use the GPU’s shared memory and minimize the number of global memory reads.
However, the presence of periodic boundary conditions causes a non uniform access pattern
on the boundary, that is, the impossibility to achieve coalesced memory and high memory
bandwidth. This latter issue disappears if one considers non-periodic boundary conditions.

Figure 1 shows the execution time of 500 successive transitions of the PCA for different
values of the number of sites N in each dimension. In particular, we see that for a square
lattice of size 14000 × 14000 the execution time is less than one minute. Together with
Theorem 2.1 this paves the way for an extremely sped-up Gibbs sampling.

Let us now consider the irreversible PCA defined by (2.5), (2.6) and (3.9), with initial
state σi,j = −1 for all sites (i, j). To have fairly readable pictures, in Figs. 2, 3, and 4 we set
the size of the square lattice equal to 50 × 50. The evolution of the dynamics for J = 0.5
and q = 1.0 is presented in Fig. 3a, whereas the evolution for J = 0.5 and q = 3.0 Fig. 3b.



650 C. Lancia, B. Scoppola

Figure 2 Simulation of nine successive steps of the PCA dynamics defined by (2.5), (2.6) and (3.9), with
N = 50, J = 1.5 and q = 0.1. Dots represents +1 spins

In the latter case the product |Λ| 1
2 e−2q is small, then from Theorem 2.1 we may expect the

typical configurations of PCA and serial Glauber dynamics to be rather alike. Indeed, Fig. 3b
displays roundish clusters of +1 spins, quite similar to the standard Ising droplets. Clearly
the total asymmetry of the interaction is still visible as the droplets present a moderate degree
of stretching along the SE direction. The droplets stretch is even more evident in Fig. 3a,
where the contributions to the Hamiltonian due to the local field and to the inertial term are
comparable.

In Fig. 4 the value of q is fixed to the value 1
2 . For a large value of J the system exhibits

spontaneous magnetization (Fig. 4b), whereas for a small value of q the system exhibit a
paramagnetic behavior (Fig. 4a). Figure 4 then suggests the presence of a phase transition,
and a comparison of Fig. 4a with Figs. 3a–b clearly implies that the critical temperature, if
any exists, must be function of both J and q .

The last argument has shown the need to explore the whole plane J, q . A region of this
plane we find rather interesting is that for J large and q small. Here the spin-flipping is not
hampered by the contribution −qσi,j τi,j , so the alignment of a spin with its southern and
western nearest neighbour costs virtually nothing. Figure 2 shows the evolution for J = 1.5
and q = 0.1. Due to the mechanism we have just described, the droplets steadily drift in the
NE direction. The constant drift suggests the presence of a current of a family of functions

gi,j (σ, τ ) = τi,j (σi−1,j + σi,j−1),
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Figure 3 Simulation of nine successive steps of the PCA dynamics defined by (2.5), (2.6) and (3.9), with
N = 50, J = 0.5 and different values of q . Dots represents +1 spins
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Figure 4 Simulation of nine successive steps of the PCA dynamics defined by (2.5), (2.6) and (3.9), with
N = 50, q = 0.5 and different values of J . Dots represents +1 spins. (b) shows a negative spontaneous
magnetization which is not observed in (a)

which generalize to the 2D case what we have already discovered in (3.5). Figure 2 also
suggests that there is another mechanism at work along the mentioned drift. Due to the total
asymmetry of the interaction, the growth of the droplets along the SW direction is preferred.
We propose for such elongated, drifting droplets the name of Ising waves.
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