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Abstract The problem of calculating the rate of mutual information between two coarse-
grained variables that together specify a continuous time Markov process is addressed. As
a main obstacle, the coarse-grained variables are in general non-Markovian, therefore, an
expression for their Shannon entropy rates in terms of the stationary probability distribution
is not known. A numerical method to estimate the Shannon entropy rate of continuous time
hidden-Markov processes from a single time series is developed. With this method the rate
of mutual information can be determined numerically. Moreover, an analytical upper bound
on the rate of mutual information is calculated for a class of Markov processes for which
the transition rates have a bipartite character. Our general results are illustrated with explicit
calculations for four-state networks.

Keywords Mutual information · Non-Markov processes · Entropy production

1 Introduction

Mutual information [1, 2] is a quantity of central importance in information theory. It is a
nonlinear correlation function [3] between two random variables that measures how much
information about one random variable is encoded in the other. In other words, it measures
the reduction of the uncertainty of a random variable resulting from knowing the other one.
Since the Shannon entropy quantifies the randomness of a random variable, mutual informa-
tion is a difference between Shannon entropies. More generally, given two stochastic time
series the information per unit of time between them is quantified by the rate of mutual
information, which is a difference between Shannon entropy rates. Whereas the Shannon
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entropy rate of Markovian time series can be expressed in terms of the stationary probability
distribution [2], no general formula is known for non-Markovian processes.

Recently, we have obtained an analytical upper bound on the rate of mutual information
and calculated it numerically for a class of Markov processes [4]. This class is formed by
bipartite networks where the full state of the systems is determined by two coarse-grained
variables: one corresponding to an external Markovian process and the other to an internal
non-Markovian process. In this paper we generalize the results obtained in [4] by calculating
an upper bound on the rate of mutual information for a more general class of Markov pro-
cesses, where both coarse-grained processes can be non-Markovian. Moreover, we develop a
numerical method to estimate the Shannon entropy rate of a continuous time coarse-grained
non-Markovian process by adapting an extant numerical method for discrete time [5–7].

Apart from the quite challenging mathematical problem of determining the rate of mutual
information, there are physical motivations for our study. First, within stochastic thermody-
namics [8], which is a framework for far from equilibrium systems, a central quantity is the
thermodynamic entropy production. In a nonequilibrium steady state, it characterizes the
rate at which heat is dissipated. On the other hand, the rate of mutual information is an in-
formation theoretic entropy rate that characterizes the correlations between the two coarse-
grained processes. The study of the relation between both quantities for specific models
should improve our understanding of the relation between thermodynamics and informa-
tion.

More specifically, a considerable amount of work on the role of information in the
stochastic thermodynamics of feedback driven systems, for which a controller acts at pe-
riodic time intervals, has emerged recently [9–22]. In such periodic steady states the rate of
mutual information between system and controller is just the average mutual information
due to each new measurement divided by the length of the period [13]. The second law of
thermodynamics bounding the maximum extractable work has then to be modified in order
to include the mutual information between system and controller, linking directly thermo-
dynamic and information theoretic entropy productions. On the other hand, if a Maxwell’s
demon is described as an autonomous system [23–25], calculating the rate of mutual in-
formation in such a genuine nonequilibrium steady states shows that in this case there is
no such relation between the rate of mutual information and the thermodynamic entropy
production [4].

Second, the study of the energetic costs of sensing in biochemical networks is a field
emerging at this interface between thermodynamics and information theory [26, 27]. For
example, an intriguing relation between the energy costs of dissipation, quantified by the
thermodynamic entropy production, and the adaptation error has been found in a model for
the E. coli sensory system [26]. In these papers, the observables characterizing the quality
of sensing are the adaptation error [26] and the uncertainty in the external ligand concentra-
tion [27]. Alternatively, a natural quantity that should be discussed in this context with the
same dimension of the thermodynamic entropy production is the rate of mutual informa-
tion. Hence, the study of the relation between these two quantities in biochemical sensory
networks could contribute to an understanding of the thermodynamics of such systems [4].

This paper is organized as follows. In Sect. 2, we discuss a one spin system with a fluctu-
ating magnetic field as a simple introductory example. We define the bipartite network and
the quantities of interest in Sect. 3. In Sect. 4, we derive our first main result, which is the
analytical upper bound on the rate of mutual information. Our second main result, namely,
the continuous time numerical method, is explained in Sect. 5, where we also discuss the
discrete time case. In Sect. 6, we calculate the rate of mutual information explicitly for
four-state systems considering cases where the rate of mutual information admits a simple
interpretation. We conclude in Sect. 7.
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2 One Spin Out of Equilibrium

For a simple illustration let us start with the four-state model represented in Fig. 1. One spin
is subjected to a time varying magnetic field while in contact with a thermal reservoir induc-
ing flips. The magnetic field is controlled by some external device that randomly changes
it. More precisely, the field is a Poisson process with rate γ , fluctuating between the values
B1 and B2. The transition rates for the spin flip are denoted by wα

mm′ (from m to m′), where
α = 1,2 represents the state of the magnetic field and m,m′ = −,+ the orientation of the
spin. These transition rates are given by the local detailed balance assumption, i.e.,

wα+−
wα−+

= exp(−2Bα), (1)

where we set Boltzmann constant multiplied by temperature to 1.
Now consider the three time series shown in Fig. 1. The first time series {(B(t),m(t))}T

0
represents a stochastic trajectory of the full four-state Markov process. The time series
{B(t)}T

0 is also Markovian, because if we integrate out the spin variable we get a two-state
Markov process. The physical reason for the Markov character of this process is that the
magnetic field is controlled by an external device that does not care about the internal state
(the spin orientation). The spin time series {m(t)}T

0 is non-Markovian and contains informa-
tion about the magnetic field time series {B(t)}T

0 , i.e., both are correlated.
The rate of mutual information I (see definition below) quantifies how much information

about the time series {B(t)}T
0 is encoded in the time series {m(t)}T

0 . In other words, it gives
a (non-linear) measure of how correlated both time series are, being zero in the case where
they are independent and positive otherwise. Within the present model, both time series
become independent only for B1 = B2. For this choice of parameters, we obtain a two-state
Markov process for the spin by integrating out the magnetic field, i.e., for B1 = B2 the
processes {B(t)}T

0 and {m(t)}T
0 become two independent Markov processes.

Moreover, the model is in equilibrium, i.e., detailed balance is fulfilled if and only if
B1 = B2. The thermodynamic entropy production σ (see definition below) is a signature of
nonequilibrium since it is zero when detailed balance is fulfilled and strictly positive for
nonequilibrium stationary states. For this one-spin system, σ is the rate at which the system
dissipates heat to the thermal reservoir.

Fig. 1 One spin system in a time varying magnetic field. The transition rules for the model are shown in
the left panel. The vertical transitions correspond to a spin flip due to thermal fluctuations and fulfill local
detailed balance. The horizontal transitions at rate γ , controlled by an external device, correspond to a change
in the magnetic field between the values B1 (full blue line) and B2 (dashed red line). The right panel shows
the corresponding time series
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Fig. 2 Comparison of the
thermodynamic entropy
production σ (20) and the rate of
mutual information I for the
model of Fig. 1 as a function of
k, where γ = 1, B1 = 0 and
B2 = ln(10). The abbreviation
(disc.) indicates the mutual
information obtained with the
extrapolation for τ → 0 in
discrete time explained in
Sect. 5.1 and (cont.) is related to
the continuous time numerical
method explained Sect. 5.2. I(u)

shows the analytical upper bound
(34)

As cited in the introduction, for feedback driven systems the second law of thermody-
namics has to be adapted in order to include the rate of mutual information between the
system and the controller. For these systems it is possible to rectify fluctuations in order to
extract work from a single heat bath, where the rate of the extracted work is bounded by
the rate of mutual information. A complementary question, considering the model of Fig. 1,
is whether the rate of mutual information between m(t) and B(t), which is non-zero only
when the system is out of equilibrium, is bounded by the dissipation rate required to sus-
tain the nonequilibrium stationary state. In [4] we have shown that, in general, there is no
such bound. In Fig. 2, we compare the thermodynamic entropy production σ with the rate
of mutual information I for the one-spin system of Fig. 1 using the results derived further
below.

3 Bipartite Network

We now define the class of bipartite Markov processes studied in this paper and the rate of
mutual information, for discrete and continuous time.

3.1 Shannon Entropy Rates for Discrete Time

First we consider a discrete time Markov process where the states are labeled by the pair of
variables (α, i), where α = 1, . . . ,Ωx and i = 1, . . . ,Ωy . The Markov chain is defined by
the following transition probabilities,

W
αβ

ij ≡

⎧
⎪⎪⎨

⎪⎪⎩

w
αβ

i τ if i = j and α �= β,

wα
ij τ if i �= j and α = β,

0 if i �= j and α �= β,

1 − ∑
k �=i w

α
ikτ − ∑

γ �=α w
αγ

i τ if i = j and α = β,

(2)

where τ is the time spacing. Transitions where both variables change are not allowed, which
means that the network of states is bipartite.

We denote a discrete time series of the full Markov process with N jumps by {Zn}N
0 =

(Z0,Z1, . . . ,ZN), where Zn = (Xn,Yn) ∈ {1, . . . ,Ωx} × {1, . . . ,Ωy}. The Shannon entropy
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rate of the Markov chain (2) is defined by [2]

HZ ≡ − lim
N→∞

1

Nτ

∑

{Zn}N0

P
[{Zn}N

0

]
lnP

[{Zn}N
0

]
, (3)

where the sum is over all possible stochastic trajectories {Zn}N
0 . Since the full process is

Markovian, it is well known that this entropy rate can be expressed in terms of the stationary
probability distribution P α

i in the form [2]

HZ = − 1

τ

∑

i,j,α,β

P α
i W

αβ

ij lnW
αβ

ij . (4)

Moreover, the Shannon entropy rates of the coarse-grained processes {Xn}N
0 and {Yn}N

0
are defined as

HX ≡ − lim
N→∞

1

Nτ

∑

{Xn}N0

P
[{Xn}N

0

]
lnP

[{Xn}N
0

]
, (5)

HY ≡ − lim
N→∞

1

Nτ

∑

{Yn}N0

P
[{Yn}N

0

]
lnP

[{Yn}N
0

]
. (6)

These two coarse-grained processes are in general non-Markovian. More precisely, they
are hidden Markov processes [28]. The quantity we wish to calculate is the rate of mutual
information between the two coarse-grained variables, which is defined as

I ≡ HX + HY − HZ. (7)

Therefore, in order to obtain the rate of mutual information we have to calculate the Shannon
entropy rates of the two coarse-grained variables X and Y . Using the definitions of the
Shannon entropy rates (3), (5), and (6), we can rewrite I in the form

I = lim
N→∞

1

Nτ
DKL

(
P

[{Zn}N
0

]∥
∥P

[{Xn}N
0

]
P

[{Yn}N
0

])
, (8)

where the Kullback-Leibler distance is defined as [2]

DKL

(
P

[{Zn}N
0

]∥
∥P

[{Xn}N
0

]
P

[{Yn}N
0

]) ≡
∑

{Zn}N0

P
[{Zn}N

0

]
ln

P [{Zn}N
0 ]

P [{Xn}N
0 ]P [{Yn}N

0 ] . (9)

With this formula it becomes explicit that the rate of mutual information measures how
correlated the two processes are.

In [4] we have studied the particular case where X is an external process independent of
the internal states, i.e., w

αβ

i ≡ wαβ for all i = 1, . . . ,Ωy . In this case, the external process is
also Markovian and HX becomes

HX = − 1

τ

∑

α,β

P αWαβ lnWαβ, (10)
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where

P α ≡
Ωy∑

i=1

P α
i . (11)

For later convenience we also define

Pi ≡
Ωx∑

α=1

P α
i . (12)

In this paper we are mostly interested in the continuous time limit τ → 0. For the calcu-
lation of an analytical upper bound on the continuous time rate of mutual information, it is
useful to consider the discrete time Markov chain and then take the limit τ → 0. In this limit,
the Shannon entropy rates diverge as ln τ [29, 30], however, the rate of mutual information
is a well defined finite quantity: it is a difference between Shannon entropy rates for which
the term proportional to ln τ cancels.

It is possible to calculate the rate of mutual information numerically for the discrete time
case as a function of τ and then extrapolate to the limit τ → 0. Alternatively, we develop a
more efficient numerical method to directly estimate the entropy rate of a continuous time
series. We now define the Shannon entropy rates and the rate of mutual information for the
continuous time case.

3.2 Shannon Entropy Rates for Continuous Time

The continuous time Markov process is defined by the transition rates (transition probability
per time)

w
αβ

ij ≡
⎧
⎨

⎩

w
αβ

i if i = j and α �= β,

wα
ij if i �= j and α = β,

0 if i �= j and α �= β.

(13)

The stochastic trajectory for a fixed time interval T is written as {Z(t)}T
0 (in this case the time

interval is fixed and the number of jumps N is a random variable). Similarly, the definition
of the Shannon entropy rate of the full Markov process is

HZ ≡ − lim
T →∞

1

T

∫

D
[{

Z(t)
}T

0

]
P

[{
Z(t)

}T

0

]
lnP

[{
Z(t)

}T

0

]
, (14)

where P[{Z(t)}T
0 ] is the probability density of the trajectory {Z(t)}T

0 and the integral is over
all possible stochastic trajectories. Since the Z process is Markovian the continuous time
Shannon entropy rate can also be written in terms of the stationary probability distribution,
and it is given by [31]

HZ = −
∑

i,α

P α
i

∑

j,β �=i,α

w
αβ

ij

(
lnw

αβ

ij − 1
)
. (15)

Since the transition rates can take any positive value, it is clear that this Shannon entropy
rate can be negative. This is a well known fact for continuous random variables [2]. The
Shannon entropy rates of the X and Y processes are defined in the same way,

HX ≡ − lim
T →∞

1

T

∫

D
[{

X(t)
}T

0

]
P

[{
X(t)

}T

0

]
lnP

[{
X(t)

}T

0

]
, (16)
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HY ≡ − lim
T →∞

1

T

∫

D
[{

Y (t)
}T

0

]
P

[{
Y (t)

}T

0

]
lnP

[{
Y (t)

}T

0

]
. (17)

Moreover, the definition of the continuous time rate of mutual information is

I ≡ HX +HY −HZ, (18)

where the relation between I and the discrete time rate of mutual information (7) is I =
limτ→0 I . Even though the Shannon entropy rates HX , HY , and HZ may be negative, the
rate of mutual information I , the quantity of central interest in this paper, fulfills I ≥ 0. In
order to show this we write the rate of mutual information as a Kullback-Leibler distance,

I = lim
T →∞

1

T
DKL

(
P

[{
Z(t)

}T

0

]∥
∥P

[{
X(t)

}T

0

]
P

[{
Y (t)

}T

0

]) ≥ 0. (19)

3.3 Thermodynamic Entropy Production

A central quantity in stochastic thermodynamics is the thermodynamic entropy production
[8, 32], which for the rates (13) reads

σ ≡
∑

i,α

P α
i

(∑

j �=i

wα
ij ln

wα
ij

wα
ji

+
∑

β �=α

w
αβ

i ln
w

αβ

i

w
βα

i

)

. (20)

Analogously to the rate of mutual information, the thermodynamic entropy production can
also be expressed as [33]

σ ≡ lim
T →∞

1

T
DKL

(
P

[{
Z(t)

}T

0

]∥
∥P

[{
Z̃(t)

}T

0

]) ≥ 0, (21)

where {Z̃(t)}T
0 denotes the time-reversed trajectory, i.e., Z̃(t) = Z(T − t). Depending on

the physical interpretation of the transition rates, the entropy rate σ may characterize the
dissipation associated with the full network of states, being zero only if detailed balance is
fulfilled. As discussed above, for the one spin system of Fig. 1 it is proportional to the heat
that flows from the system to the thermal reservoir. On the other hand, I is the information
theoretic entropy rate that quantifies the correlation between the X and Y processes. No
closed formula like equation (20) is known for the rate of mutual information. However, as
we show next, it is still possible to calculate it numerically and to obtain an analytical upper
bound.

4 Analytical Upper Bound

Let us take the Y process in the discrete time case and in the stationary regime. The condi-
tional Shannon entropy is defined as

H(YN+1|YN, . . . , Y1) ≡ 1

τ

∑

YN +1,YN ,...,Y1

P (YN+1, YN, . . . , Y1) lnP (YN+1|YN, . . . , Y1), (22)

where P (YN+1|YN, . . . , Y1) = P (YN+1, YN, . . . , Y1)/P (YN, . . . , Y1) is a conditional proba-
bility. The knowledge of one extra random variable can only decrease the uncertainty about
YN+1, which means that H(YN+1|YN, . . . , Y2, Y1) ≤ H(YN+1|YN, . . . , Y2). Therefore, as the
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Y process is stationary, we obtain that this conditional entropy is a decreasing function of N ,
i.e.,

H(YN+1|YN, . . . , Y1) ≤ H(YN |YN−1, . . . , Y1). (23)

Moreover, in the limit N → ∞, we have [2]

lim
N→∞

H(YN+1|YN, . . . , Y1) = HY , (24)

which means that the conditional entropy (22) bounds the Shannon entropy rate HY from
above. Furthermore, it can be shown that HY is bounded from below by [2]

H(YN+1|YN, . . . , Y2,Z1) = H(YN+1|YN, . . . , Y2, Y1,X1), (25)

leading to

H(YN+1|YN, . . . , Y1,X1) ≤ HY ≤ H(YN+1|YN, . . . , Y1), (26)

where the bounds become tighter for increasing N .
As we show in the appendix, for any finite N ,

H(YN+1|YN, . . . , Y1) = −
∑

i,α

P α
i

∑

j �=i

wα
ij

(

ln τ + ln

∑
β P

β

i w
β

ij

Pi

− 1

)

+ O(τ ), (27)

and, analogously,

H(XN+1|XN, . . . ,X1) = −
∑

i,α

P α
i

∑

β �=α

w
αβ

i

(

ln τ + ln

∑
j P α

j w
αβ

j

P α
− 1

)

+ O(τ ). (28)

From (4) we obtain the following formula for the entropy rate HZ ,

HZ = −
∑

i,α

P α
i

(∑

j �=i

wα
ij

(
ln τ + lnwα

ij − 1
) +

∑

β �=α

w
αβ

i

(
ln τ + lnw

αβ

i − 1
)
)

+ O(τ ). (29)

For convenience we define the average transition rates

wij ≡
Ωx∑

α=1

P (α|i)wα
ij = 1

Pi

Ωx∑

α=1

P α
i wα

ij , (30)

wαβ ≡
Ωy∑

i=1

P (i|α)w
αβ

i = 1

P α

Ωy∑

i=1

P α
i w

αβ

i . (31)

The N -th upper bound on the rate of mutual information is then

I (u,N) ≡ H(YN+1|YN, . . . , Y1) + H(XN+1|XN, . . . ,X1) − HZ. (32)

From Eqs. (27), (28), and (29), it is given by

I (u,N) =
∑

i,α

P α
i

(∑

j �=i

wα
ij ln

wα
ij

wij

+
∑

β �=α

w
αβ

i ln
w

αβ

i

wαβ

)

+ O(τ ). (33)
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Fig. 3 Lower and upper bounds for N = 1,3,9 obtained from (26) for the discrete time version of the model
of Fig. 1. The parameters are γ = 1, B1 = 0, B2 = ln(10), k = 7 (left panel), and k = 2 (right panel). In the
limit τ → 0, the upper bounds go to the value given by (34) and the lower bounds go to zero

Taking the continuous time limit τ → 0, the rate of mutual information is hence bounded
from above by

I(u) ≡
∑

i,α

P α
i

(∑

j �=i

wα
ij ln

wα
ij

wij

+
∑

β �=α

w
αβ

i ln
w

αβ

i

wαβ

)

. (34)

Two remarks are important. First, it is interesting to note the formal similarity between
this expression and the one for the thermodynamic entropy production (20). Substituting
in the latter inside the logarithm the rate of a reversed transition by the respective average
forwards rates (30) and (31), we get the former. Second, to calculate the true rate of mutual
information we would have to take the limit N → ∞ with fixed τ . This would give an
expression for the rate of mutual information that would be valid for any time spacing τ and
should become the continuous time rate of mutual information by taking the limit τ → 0
afterwards.

A similar calculation for the lower bounds in Eq. (26) shows that in the continuous time
limit they all go to zero. This is illustrated in Fig. 3, where we plot upper and lower bounds
obtained from (26) as a function of the time spacing τ for the discrete time version of the
one spin model of Fig. 1. This discrete time version is defined by the transition probabilities
given by (2) obtained from the transition rates represented in Fig. 1.

Finally, one limiting case for which the rate of mutual information saturates the upper
bound is the following. We take the X process to be Markovian, i.e., w

αβ

i ≡ wαβ for all
i = 1, . . . ,Ωy . From Eq. (10), it follows

HX = −
∑

α

P α

(∑

β �=α

wαβ
(
ln τ + lnwαβ − 1

)
)

+ O(τ ). (35)

Furthermore, if the X transitions are much faster than the Y transitions (wαβ 
 wα
ij ), the Y

process becomes approximately Markovian, with transition rates wij [34, 35]. Therefore, in
this limit we expect

HY = −
∑

i

Pi

(∑

j �=i

wij (ln τ + lnwij − 1)

)

+ O(τ ). (36)
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The continuous time rate of mutual information I obtained from (29), (35) and (36) is then
precisely the upper bound (34). Therefore, in the case where the X process is Markovian
and much faster then the Y process, the rate of mutual information saturates the upper bound
(34). In Sect. 6, we illustrate this fact explicitly for four-state models.

5 Estimating Shannon Entropy Rate from a Single Time Series

5.1 Discrete Time

For discrete time, the probability of a stochastic trajectory of the Y process can be written
as

P
[{Yn}N

0

] =
∑

XN XN−1...X1X0

P [YN,XN |YN−1,XN−1] . . . P [Y1,X1|Y0,X0]P (X0, Y0), (37)

where P (X0, Y0) denotes the initial probability distribution and P [Xn,Yn|Xn−1, Yn−1] is the
conditional probability. Explicitly, for (Xn−1, Yn−1) = (α, i) and (Xn,Yn) = (β, j) we have
P [Xn,Yn|Xn−1, Yn−1] = W

αβ

ij .
Let the random matrix T (Yn,Yn−1) be defined by

T (Yn,Yn−1)Xn,Xn−1 ≡ P [Xn,Yn|Xn−1, Yn−1] = P [Zn|Zn−1]. (38)

This is a Ωx ×Ωx matrix, where the variables (Yn,Yn−1) make it random. Using this matrix,
Eq. (37) can be rewritten as

P
[{Yn}Nτ

n=0

] = VT (YN,YN−1) . . .T (Y1, Y0)PY0 (39)

where V is a row vector with all Ωx components equal to one and PY0 is a column vector
with components P (Y0,X0), with X0 = 1, . . . ,Ωx . The Shannon entropy rate (6) can then
be written as

HY = − lim
N→∞

1

Nτ

∑

YN ,YN−1,...,Y0

P (YN,YN−1, . . . , Y0) ln VT (YN,YN−1) . . .T (Y1, Y0)PY0 .

(40)
Moreover, in the large N limit, where boundary terms become irrelevant, we can replace
the product of matrices (39) in Eq. (40) with ‖∏N

n=1 T (Yn,Yn−1)‖, where ‖·‖ is any matrix
norm [5]. Therefore, in order to estimate the entropy rate HY we generate a long time series
{Y ∗

n }N
0 with a numerical simulation and calculate

HY  − 1

Nτ
ln

∥
∥
∥
∥
∥

N∏

n=1

T
(
Y ∗

n , Y ∗
n−1

)
∥
∥
∥
∥
∥
. (41)

Such a numerical method to calculate the Shannon entropy rate has been used in [5–7].
The appropriate way to calculate this product, avoiding numerical precision problems for
large N , is to normalize the product every L steps and repeat the procedure M times, so that
N = ML [36]. More precisely, for m = 1, . . . ,M we calculate the vector

vm =
[

mL∏

l=(m−1)L+1

T
(
Y ∗

l , Y ∗
l−1

)
]

um−1, (42)
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and the normalization factor

Rm = ‖vm‖, (43)

where um is the normalized vector

um = vm

Rm

, (44)

and the initial vector u0 is any random vector with an unitary norm. By calculating the
normalization factors iteratively we obtain the Shannon entropy rate with the formula

HY  − 1

MLτ

M∑

m=1

lnRm. (45)

The present method is based on the fact that the probability of an Y stochastic trajectory
can be written as a product of random matrices (39). Since this is true for any coarse-grained
non-Markovian variable we can also apply the same method to calculate HX . Explicitly, if
we define the Ωy × Ωy random matrix

T (Xn,Xn−1)Yn,Yn−1 ≡ P [Xn,Yn|Xn−1, Yn−1], (46)

then we can estimate the Shannon entropy rate from the numerically generated time series
{X∗

n}N
0 from

HX  − 1

Nτ
ln

∥
∥
∥
∥
∥

N∏

n=1

T
(
X∗

n,X
∗
n−1

)
∥
∥
∥
∥
∥
. (47)

Moreover, we can also apply the same procedure of normalizing the product after some steps
and keep track of the normalization factor to calculate this product numerically. Finally, with
the Shannon entropy rates (41) and (47) we obtain the rate of mutual information from (4)
and (7).

In Fig. 3, we show the numerically obtained rate of mutual information for two sets of
the kinetic parameters of the discrete time version of the one spin system of Fig. 1 as a
function of the time spacing τ . For small τ , the rate of mutual information shows a linear
behavior, which we can extrapolate in order to obtain the continuous time rate of mutual
information I . The result has been shown in Fig. 2. A more efficient numerical method to
obtain I , which generalizes the above discussion to the continuous time case, is introduced
next.

5.2 Continuous Time

We consider the continuous time trajectory {Z(t)}T
0 that stays in state Zn during the waiting

time τn. The number of jumps N is a random functional of the trajectory and the time
interval T = ∑N

n=0 τn is fixed. The main difference, in relation to the discrete time case, is
the presence of the exponentially distributed waiting times in the probability density of the
continuous time trajectory, which is written as

P
[{

Z(t)
}T

0

] = exp(−λZN
τN)

[
N∏

n=1

wZn−1Zn exp(−λZn−1τn−1)

]

P (Z0), (48)
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Fig. 4 Example of continuous time-series where the Z process jumps 6 times and the X and Y process each
jumps 3 times, i.e., Nx = Ny = 3

where P (Z0) is the initial probability distribution. For Zn = (α, i), the escape rate is

λZn ≡
∑

j �=i

wα
ij +

∑

β �=α

w
αβ

i . (49)

Furthermore for Zn+1 = (β, j) the transition rates are wZnZn+1 = w
αβ

ij .
As illustrated in Fig. 4, the path {Z(t)}T

0 has Nx jumps for which the variable X changes
and Ny jumps for which the variable Y changes. Due to the bipartite form of the network
of states, there are no jumps where both variables change, which implies N = Nx + Ny .
We denote the time intervals between jumps for the trajectory {X(t)}T

0 by τ x
n , with n =

0, . . . ,Nx . Similarly, for the trajectory {Y (t)}T
0 we have τ

y
n , with n = 0, . . . ,Ny . In Fig. 4,

an example of a trajectory with N = 6 jumps is shown.
The random matrix T (Yn,Yn−1) is defined by its elements T (Yn,Yn−1)Xn,Xn−1 , which

are the transition rate wZn−1Zn if Zn−1 �= Zn and −λZn otherwise. More precisely, we can
define T (Yn,Yn−1) using its relation with the matrix T (Yn,Yn−1), defined in (38), which is

T (Yn,Yn−1) ≡ 1

τ

(
T (Yn,Yn−1) − IxδYn−1Yn

)
, (50)

where Ix is the 
x × 
x identity matrix and δYn−1Yn is the Kronecker delta. In addition, we
define the matrix

FYn(τ ) ≡ exp
(
T (Yn,Yn)τ

)
. (51)

Similarly to the discrete time case, for which Eq. (39) holds, from the master equation, we
obtain

P
[{

Y (t)
}T

0

] = VFYNy

(
τ

(y)

Ny

)
T (YNy , YNy−1)FYNy−1

(
τ

(y)

Ny−1

)

× · · ·T (Y2, Y1)FY1

(
τ

(y)

1

)
T (Y1, Y0)FY0

(
τ

(y)

0

)
PY0 . (52)

Moreover, the same expression is valid for the probability density of the X time-series,
i.e.,

P
[{

X(t)
}T

0

] = VFXNx

(
τ

(x)
Nx

)
T (XNx ,XNx−1)FXNx−1

(
τ

(x)

Nx−1

)

× · · ·T (X2,X1)FX1

(
τ

(x)

1

)
T (X1,X0)FX0

(
τ

(x)

0

)
PX0 . (53)

The matrix T (Xn,Xn−1)Yn,Yn−1 is now defined as

T (Xn,Xn−1) ≡ 1

τ

(
T (Xn,Xn−1) − IyδXn−1Xn

)
, (54)
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where T (Xn,Xn−1) is given by (46) and Iy is the Ωy × Ωy identity matrix. The matrix
FXn(τ ) is defined as

FXn(τ ) ≡ exp
(
T (Xn,Xn)τ

)
. (55)

In order to calculate the Shannon entropy rates a procedure similar to the discrete time
case method can be used: we generate a long continuous time series, with the waiting times,
{Z∗(t)}T

0 , with N∗ = N∗
x + N∗

y jumps, and estimate the non-Markovian Shannon entropy
rates through the expressions

HY  − 1

T
ln

∥
∥
∥
∥
∥
FY ∗

N∗
y

(
τ

(y)

N∗
y

)
N∗

y∏

n=1

T
(
Y ∗

n , Y ∗
n−1

)
FY ∗

n−1

(
τ

(y)

n−1

)
∥
∥
∥
∥
∥
,

HX  − 1

T
ln

∥
∥
∥
∥
∥
FX∗

N∗
x

(
τ

(x)

N∗
x

)
N∗

x∏

n=1

T
(
X∗

n,X
∗
n−1

)
FX∗

n−1

(
τ

(x)

n−1

)
∥
∥
∥
∥
∥
.

(56)

We are assuming that N∗
x and N∗

y are large, so that boundary terms can be neglected and
we can use any matrix norm. These products are also numerically calculated by normalizing
after a certain number of steps and keeping track of the normalization factors. The result
obtained with the continuous time method for the one spin system of Fig. 1 can be seen in
Fig. 2. This method is more direct because for discrete time we have to obtain the result
as a function of τ and then extrapolate for τ → 0. Moreover, when the probabilities of not
jumping in discrete time are large, the continuous time method is computationally cheaper.

The continuous time method we presented above is not restricted to the bipartite networks
we consider in this paper: it could be applied for other kinds of coarse-graining. The method
only depends on the fact that we can write the probability density of a trajectory as a product
of random matrices.

6 Four-State System

We now illustrate the main results of this paper, namely, the analytical upper bound and the
continuous time numerical method, by considering the general four-state network shown in
Fig. 5, for which the one spin system of Fig. 1 is a particular example. Since Ωx = Ωy = 2,
there are four T (Yn,Yn−1) and four T (Xn,Xn−1) matrices, each of which is a two by two
matrix. For the sake of clarity, let us write these matrices explicitly. Using the superscript
(y) for the T (Yn,Yn−1) matrices and (x) for the T (Xn,Xn−1) matrices, they are given by:

T (y)(1,1) =
(−γ1 − k1 γ2

γ1 −γ2 − k2

)

, T (y)(1,2) =
(

k3 0
0 k4

)

, (57)

T (y)(2,1) =
(

k1 0
0 k2

)

, T (y)(2,2) =
(−γ3 − k3 γ4

γ3 −γ4 − k4

)

, (58)

T (x)(1,1) =
(−γ1 − k1 k3

k1 −γ3 − k3

)

, T (x)(1,2) =
(

γ2 0
0 γ4

)

, (59)

T (x)(2,1) =
(

γ1 0
0 γ3

)

, T (x)(2,2) =
(−γ2 − k2 k4

k2 −γ4 − k4

)

. (60)
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Fig. 5 General four-state model

In the following we treat two simple cases for which the rate of mutual information acquires
a simple form in some limit.

6.1 Y Following X

Here we consider k1 = k4 = 0. For this choice of rates a jump in the Y process can happen
only after a jump in the X process. In this sense, Y follows X. Calculating the stationary
probability distribution, we obtain for the upper bound on the rate of mutual information
(34) the expression

I(u) = k2k3γ

2[(k3 + k2)γ + k2k3]
(

ln
k2 + 2γ

γ
+ ln

k3 + 2γ

γ

)

, (61)

where γ1 = γ2 = γ3 = γ4 = γ . If we further assume k2 = k3 = k and k 
 γ , the rate of
mutual information can be obtained with the following heuristic argument. A typical time
series of the full process is an alternating sequence of long time intervals of size 1/γ with
short time intervals of size 1/k. If we know the X time series, we can predict in which of
the k/γ intervals of size 1/k the Y jumps will take place. Since this information amounting
to ln k/γ occurs at the rate γ of the X jumps, we obtain that for k 
 γ

I  γ ln
k

γ
. (62)

More generally, for k1 �= k3, from the same kind of argument, we obtain

I  γ

2

(

ln
k2

γ
+ ln

k3

γ

)

. (63)

This expression is in agreement with the upper bound (61) in the limit k2, k3 
 γ .
Moreover, we can also understand the rate of mutual information in the limit γ 
 k2, k3.

This corresponds to the case where the X process becomes Markovian and much faster
than the Y process, therefore, as discussed in Sect. 4 the rate of mutual information should
saturate the upper bound. Suppose that we know the Y time series. In the time interval
between two Y jumps there are many X jumps and we have no information about the X state
during this time interval. When a Y jump takes place, we know the state X with absolute
precision, i.e., if the Y jump is 1 → 2 (2 → 1) then the X state is 2 (1). Furthermore,
since the X jumps are fast compared to k2, k3, the time interval between two Y jumps is
long enough for the X process to decorrelate, so that the information obtained with an Y

jump is completely new. The complete knowledge of a binary random variable accounts for
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Fig. 6 Numerically obtained
rate of mutual information I
compared to the upper bound
I(u) (61) as a function of γ −1

for γ1 = γ2 = γ3 = γ4 = γ ,
k1 = k4 = 0, k3 = 4, and k2 = 1

ln 2 of mutual information. The average rate of Y transitions is given by k3PIII + k2PII =
k2k3/(k2 + k3), where PII and PIII denote the stationary probabilities of the states II and
III defined in Fig. 5. This leads to the expression

I  k2k3

k2 + k3
ln 2, (64)

valid for γ 
 k2, k3. As expected, this form is also in agreement with the upper bound (61)
in the respective limit. Figure 6, where we compare the analytical upper bound with the
numerical result, demonstrates that in the limits k2k3 
 γ and γ 
 k2, k3 the upper bound
and the numerical result indeed tend to the same value.

6.2 Equilibrium Model

As a second example, we consider a network in equilibrium for which the rate of mutual
information is nevertheless non-zero. In Fig. 5, we set γ1 = γ2 = γ3 = γ4 = γ , k3 = k1,
and k4 = k2. For this choice of rates detailed balance is fulfilled because the product of
the transition rates for the clockwise cycle equals the product of the transition rates for the
counterclockwise cycle. Moreover, in the stationary state all states are equally probable. The
upper bound on the rate of mutual information (34) is independent of γ and given by

I(u) = 1

2
(k1 + k2)

(
ln 2 − H(ε)

)
, (65)

where ε ≡ k1/(k1 + k2) and H(ε) ≡ −ε ln ε − (1 − ε) ln(1 − ε). As we show in Fig. 7, the
rate of mutual information tends to the upper bound in the limit γ 
 k1, k2. This is again in
agreement with the discussion at the end of Sect. 4, since the X process is Markovian and,
in the limit γ 
 k1, k2, much faster than the Y process. Moreover, similarly to the way we
obtained the result (64) for the previous model, the rate of mutual information can be easily
explained in this limit. The difference in relation to the previous explanation is that when
an Y jump occurs the mutual information about the X state is ln 2 − H(ε). This happens
because if a Y jump occurs, then the probability of X being in state 1 is ε and in state 2 is
1 − ε. As the average rate of a Y jump is simply (k1 + k2)/2, we obtain

I  1

2
(k1 + k2)

(
ln 2 − H(ε)

)
, (66)
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Fig. 7 Numerically obtained
rate of mutual information I
compared to the upper bound
I(u) (65) as a function of
γ1 = γ2 = γ3 = γ4 = γ . The
other parameters are k3 = k1 = 1
and k4 = k2, thus enforcing
equilibrium

which is equal to the upper bound (65).
More generally, if the only restrictions are γ1 = γ2 = γ3 = γ4 = γ and γ 
 k1, k2, k3, k4,

then from the same kind of argument we obtain

I  (PI k1 + PII k2)
(
ln 2 − H(ε1)

) + (PIII k3 + PIV k4)
(
ln 2 − H(ε2)

)

= (k1 + k2)(k3 + k4)

2(k1 + k2 + k3 + k4)

(
2 ln 2 − H(ε1) − H(ε2)

)
, (67)

where ε1 = k1/(k1 + k2) and ε2 = k3/(k3 + k4). This more general expression accounts for
the results (64) and (66).

7 Summary

In this paper we have addressed the problem of calculating the rate of mutual information
between two coarse-grained processes that together fully specify a continuous time Markov
process. To this end, we have developed a numerical method to estimate the Shannon entropy
rate of hidden Markov processes from a continuous time series, generalizing the numerical
method used in the discrete time case [5–7]. Moreover, for the class of bipartite Markov
processes we considered in this paper, we have obtained an expression for an upper bound on
the rate of mutual information in terms of the stationary probability distribution. While this
expression has some formal similarity with the one for the rate of thermodynamic entropy
production, it has become clear that these two rates, in general, are not related through a
simple inequality.

As applications of the theory developed here we have studied three four-state systems
each of which can serve as illustrating, inter alia, the apparent independence of the rate of
mutual information from the rate of thermodynamic entropy production. First, the one spin
system with time-varying magnetic field is arguably the simplest case which shows that in an
non-equilibrium steady state the rate of mutual information is not bounded by the dissipation
rate. Second, for a four state network for which some transition rates are zero, the rate of
mutual information is still well defined whereas the thermodynamic entropy production is
not since the latter requires that each backward transition is possible with a finite rate as
well. Third, a four state system in equilibrium with zero thermodynamic entropy production
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can still have non-zero rate of mutual information. Moreover, in these four-state systems it
is typically possible to find, and to understand in simple terms, a limiting case for the rates
such that the analytical upper bound on the rate of mutual information becomes saturated.

On the mathematical side, finding a general expression for the rate of mutual informa-
tion at least for the bipartite case on which we focused is most likely as hard a problem
as finding one for the Shannon entropy rate of a non-Markovian process. For interesting
physical perspectives, the rate of mutual information could become particularly relevant for
the emerging theories of both autonomous information machines and cellular sensing sys-
tems. In both cases, one could suspect that even though there is no simple bound between
the information-theoretic and the thermodynamic rate of entropy production in general, in
more specific settings these two quantities might obey relations still to be uncovered. The
algorithm described here to calculate the former will help in generating the necessary data
for any specific model network efficiently.

Acknowledgements Support by the ESF through the network EPSD is gratefully acknowledged.

Appendix: Detailed Derivation of the Analytical Upper Bound

The first upper bound H(Y2|Y1) can be easily calculated by using the conditional probability

P (Y2|Y1) =
∑

X1
P (Y2, Y1,X1)

P (Y1)
=

∑
α P α

i wα
ij τ

Pi

, (68)

where Y2 �= Y1. We here performed the substitutions X1 → α, Y1 → i, and Y2 → j . Using
this formula in (22) we obtain

H(Y2|Y1) = −
∑

i,α

P α
i

∑

j �=i

wα
ij

(

ln τ + ln

∑
β P

β

i w
β

ij

Pi

− 1

)

+ O(τ ). (69)

Moreover, H(YN+1|YN, . . . , Y1) up to order τ is given by the above formula for any
finite N . In order to demonstrate this we first rewrite (22) as

H(YN+1|YN, . . . , Y1)

= − 1

τ

∑

YN+1 �=YN

∑

YN ...Y1

P (YN+1, YN, . . . , Y1) lnP (YN+1|YN, . . . , Y1)

− 1

τ

∑

YN ...Y1

P (YN,YN, . . . , Y1) lnP (YN |YN, . . . , Y1), (70)

where P (YN,YN, . . . , Y1) denotes the probability of having a sequence for which YN+1 =
YN . For YN+1 �= YN , the expression of the conditional probability P (YN+1|YN, . . . , Y1) has
at least one transition probability term of order τ . Therefore, as P (YN+1|YN, . . . , Y1) is at
least a term of order τ , it is convenient to further rewrite the above expression as

H(YN+1|YN, . . . , Y1)

= − 1

τ

∑

YN+1 �=YN

∑

YN

P (YN+1, YN) ln τ
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− 1

τ

∑

YN+1 �=YN

∑

YN ...Y1

P (YN+1, YN, . . . , Y1) ln
P (YN+1|YN, . . . , Y1)

τ

− 1

τ

∑

YN ...Y1

P (YN,YN, . . . , Y1) lnP (YN |YN, . . . , Y1), (71)

where in the first line we summed over the variables Y1, . . . , YN−1. The three following
relations are important for the subsequent derivation. First, for YN+1 �= YN ,

P (YN+1, YN, . . . , Y1) =
{

P (YN+1, YN) + O(τ 2) if YN = YN−1 = · · · = Y1

O(τ 2) otherwise.
(72)

Moreover,

P (YN, . . . , Y1) =
{

P (YN) + O(τ ) if YN = YN−1 = · · · = Y1

Aτη + O(τ η+1) otherwise,
(73)

where η ≥ 1 is an integer and A is a constant independent of τ . Finally, the conditional
probability distribution fulfills

P (YN+1|YN, . . . , Y1) =
{

P (YN+1|YN) + O(τ 2) if YN = YN−1 = · · · = Y1

Bτν + O(τ ν+1) otherwise,
(74)

where ν ≥ 1 is an integer and B is a constant independent of τ . With these three relations,
the term in the second line in Eq. (71) becomes

1

τ

∑

YN+1 �=YN

∑

YN ...Y1

P (YN+1, YN, . . . , Y1) ln
P (YN+1|YN, . . . , Y1)

τ

= 1

τ

∑

YN+1 �=YN

∑

YN

P (YN+1, YN) ln
P (YN+1|YN)

τ
+ O(τ ), (75)

where we used τ ν+η−1 ln τ ν−1 ∈ O(τ ). For the term in the third line in Eq. (71) we need the
relations,

P (YN |YN, . . . , Y1) = 1 −
∑

YN+1 �=YN

P (YN+1|YN, . . . , Y1) (76)

and

P (YN,YN, . . . , Y1) = P (YN, . . . , Y1)

(

1 −
∑

YN+1 �=YN

P (YN+1|YN, . . . , Y1)

)

(77)

which lead to

1

τ

∑

YN ...Y1

P (YN,YN, . . . , Y1) lnP (YN |YN, . . . , Y1) = 1

τ

∑

YN+1 �=YN

P (YN+1, YN) + O(τ ). (78)

Inserting (75) and (78) in (71) we obtain

H(YN+1|YN, . . . , Y1) = H(YN+1|YN) + O(τ ). (79)
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Therefore, since the Y process is stationary, from (69), we obtain for any finite N

H(YN+1|YN, . . . , Y1) = −
∑

i,α

P α
i

∑

j �=i

wα
ij

(

ln τ + ln

∑
β P

β

i w
β

ij

Pi

− 1

)

+ O(τ ). (80)

Applying the same method to the X process we get,

H(XN+1|XN, . . . ,X1) = −
∑

i,α

P α
i

∑

β �=α

w
αβ

i

(

ln τ + ln

∑
j P α

j w
αβ

j

P α
− 1

)

+ O(τ ). (81)
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