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Abstract We study a class of finite dimensional quantum dynamical semigroups {etL}t≥0

whose generators L are sums of Lindbladians satisfying the detailed balance condition. Such
semigroups arise in the weak coupling (van Hove) limit of Hamiltonian dynamical systems
describing open quantum systems out of equilibrium. We prove a general entropic fluctu-
ation theorem for this class of semigroups by relating the cumulant generating function of
entropy transport to the spectrum of a family of deformations of the generator L. We show
that, besides the celebrated Evans-Searles symmetry, this cumulant generating function also
satisfies the translation symmetry recently discovered by Andrieux et al., and that in the
linear regime near equilibrium these two symmetries yield Kubo’s and Onsager’s linear re-
sponse relations.
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1 Introduction

Markov semigroups are widely used to model non-equilibrium phenomena in classical sta-
tistical physics. Their non-commutative counterparts—quantum dynamical semigroups—
play the same role in quantum statistical physics (see, e.g., [4, 55] for pedagogical introduc-
tions to the subject). The development of the mathematical theory of QDS started in 1974
with the seminal works of Brian Davies [10–12] where he showed that QDS emerge as effec-
tive dynamics of open systems weakly coupled to extended reservoirs. These groundbreak-
ing works were followed by the celebrated 1976 papers of Lindblad [46, 47] and Gorini,
Kossakowski and Sudarshan [35] on the structure of the generator of QDS (see also [7]).
Herbert made several fundamental contributions at this early stage of development. In [58,
59] he gave efficient criteria for the existence and uniqueness of a stationary state and ap-
proach to equilibrium. Together with Joel Lebowitz, in [48] he developed a comprehensive
picture of the nonequilibrium thermodynamics of weakly coupled open systems. This work
remains a standard reference and has been a source of inspiration for many later develop-
ments on the subject, including the present one. Among other things, in [48] Herbert and
Joel introduced the central concept of entropy production, which was further discussed in
[60], and developed the linear response theory for thermodynamical forces. The closely re-
lated linear response theory for weakly coupled open systems under mechanical drive was
developed by Herbert in a joint paper with Brian Davies [23]. In another enlightening work,
Herbert and R. Dümcke [24] showed that some of the generators that were (and sometimes
still are) used to describe the weak coupling limit lead to negative probabilities. Years later,
Herbert came back to the subject and, with Walter Aschbacher, showed that when properly
applied to nonequilibrium situations, the algebraic criterion of [59] also ensures the strict
positivity of entropy production [5].

In 1993/4, using a new scheme to construct nonequilibrium statistical ensembles of in-
teracting particle systems, Evans, Cohen and Morriss discovered some universal features of
the fluctuations of entropy production in transient regimes of deterministic classical systems
out of thermal equilibrium [26, 30]. One year later, Gallavotti and Cohen proved that some
steady states of highly chaotic dynamical systems (SRB measures of transitive Anosov sys-
tems) display the same features [33, 34]. These discoveries, nowadays called fluctuation
relations or fluctuation theorems, triggered a large amount of works during the last two
decades (see [40, 56] and references therein). In particular, Kurchan showed that the fluctu-
ation relations hold for a Brownian particle in a force field [43]. Subsequently, Herbert and
Joel formulated and proved fluctuation relations for general Markov processes [49] while
Maes derived a local version of the fluctuation relations from the Gibbsian nature of the path
space measure associated to such processes [50] (see also [52]). As shown by Gallavotti
[32], the fluctuation relations can be seen as a far from equilibrium generalization of the
familiar near equilibrium fluctuation-dissipation relations (Green-Kubo formulae, Onsager
reciprocity relations).

The attempts to extend fluctuation relations to quantum domain have led to a number of
surprises. The naive quantization of the classical transient fluctuation relations fails and there
is no obvious way to implement the steady state fluctuation relations. These problems have
attracted a lot of interest and generated a huge literature which we will not try to review here.
We shall only mention a few works which, in our opinion, are relevant to the development
of a mathematical understanding of the subject. The interested reader can consult [27] for
an exhaustive review and an extended list of references to the physics literature and [36, 39]
for recent mathematical developments.
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To our knowledge, a (transient) quantum fluctuation relation based on operationally de-
fined counting statistics was first derived by Kurchan in 2000 [44]. Shortly afterwards, Mat-
sui and Tasaki obtained an apparently unrelated abstract fluctuation relation for open quan-
tum systems in terms of the spectral measure of a relative modular operator [53]. The con-
nection between their result and the counting statistics of entropic transport was established
in [36].

Within the framework of QDS, de Roeck and Maes [22] used the unraveling technique
to obtain the first complete transient fluctuation theorem (see Sect. 6). The relation between
this Markovian approach to fluctuations and the Hamiltonian description of the dynamics of
a small system weakly coupled to an extended environment was discussed by de Roeck in
[18] and by Dereziński, de Roeck and Maes [14] (see also Sect. 5). The works [14, 18, 22]
complete the program of [48] regarding nonequilibrium thermodynamics of weakly coupled
open systems. The first proof of the transient fluctuation theorem for a fully Hamiltonian
system (the spin-boson model) was given by de Roeck in the important paper [19] (see also
[20, 21, 41]).

Among the non-rigorous works let us mention the important observation of Andrieux,
Gaspard, Monnai and Tasaki [2] that global conservation laws (energy and charge) induce
translation symmetries in the cumulant generating function of (energy and charge) fluxes.
Translation symmetries and entropic fluctuation relation lead to fluctuation relations for indi-
vidual fluxes and, following the arguments of [32, 49], to Green-Kubo and Onsager relations
near thermal equilibrium. We also mention the recent work by Chetrite and Mallik [8] where
finite time fluctuation relations (similar to the classical transient Evans-Searles relations) for
time-reversible quantum dynamical semigroups are derived.

This work is of a review nature and we do not prove any specific new results. The pur-
pose of the paper is to provide an abstract general setup for the non-equilibrium statistical
mechanics of QDS and to generalize and streamline the proof of the full fluctuation theo-
rem of [14, 18, 22] emphasizing (in the spirit of [60]) the minimal mathematical structure
behind the result. The fluctuation theorem we discuss includes large deviation bounds and
the central limit theorem for individual entropic fluxes, as well as linear response formulae
and the fluctuation-dissipation relations near equilibrium, and applies to the weakly coupled
quantum systems studied in [48]. Although the paper is mathematically self-contained, it is
intended for readers familiar with the works [48, 58–60]. This paper can be also viewed as
an introduction to [41] where we discuss fluctuation relations and non-equilibrium statistical
mechanics of the fully Hamiltonian Pauli-Fierz systems.

The paper is organized as follows. In Sect. 2 we recall basic definitions and facts about
positive maps and QDS. In Sect. 3 we introduce the setup of QDS out of equilibrium, and
state our main results. In Sect. 4 we show that open systems weakly coupled to thermal
reservoirs fit into our general setup. In Sects. 5 and 6 we relate our results to the full counting
statistics of entropic transport and the unraveling of quantum dynamical semigroups. Finally,
Sect. 7 is devoted to the proofs.

2 Preliminaries

Let H be a finite dimensional Hilbert space and O = B(H) the C∗-algebra of all linear
operators on H (the identity operator will be always denoted by 1). Equipped with the inner
product 〈X|Y 〉 = tr(X∗Y ), O is a Hilbert space. The adjoint and the spectrum of a linear
map Φ : O → O are denoted by Φ∗ and sp(Φ). Id denotes the identity of B(O). A subset
A ⊂ O is called self-adjoint if X ∈ A ⇒ X∗ ∈ A. The commutant of a subset A ⊂ O is
A′ = {B ∈ O |AB = BA for all A ∈ A}.
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We denote by O+ = {X |X ≥ 0} the cone of positive elements of O. A linear map Φ from
O to another unital C∗-algebra B is called unital if Φ(1) = 1, positive if Φ(O+) ⊂ B+,
and positivity improving if Φ(X) > 0 for all non-zero X ∈ O+. A positive linear map is
automatically a ∗-map, i.e., it satisfies Φ(X∗) = Φ(X)∗. A positive linear map Φ : O → O
is called Schwartz if

Φ
(
X∗)Φ(X) ≤ ‖Φ‖Φ(

X∗X
)
,

for all X ∈ O. Note that if Φ is Schwartz, then ‖Φ‖ = ‖Φ(1)‖.
A state on O is a positive and unital linear map ρ : O → C. Any state ρ has the form

ρ(X) = tr(DX) for some D ∈ O+ satisfying tr(D) = 1. Such an operator D is called a
density matrix. In the following, we shall use the same symbol to denote a density matrix
and the state it induces on O (hence, ρ(X) = tr(ρX), etc.). With this convention, the set of
states on O, which we denote by S, is a closed convex subset of O+. A state ρ is called
faithful if ρ > 0, and we denote by Sf the set of faithful states. Sf is an open convex and
dense subset of S.

A linear map Φ : O → O is called completely positive (CP) if
∑

i,j B∗
i Φ(A∗

i Aj )Bj ≥ 0
for any finite families {A1, . . . ,AN }, {B1, . . . ,BN } ⊂ O. Equivalently, Φ is CP if Φ ⊗ Id
is a positive map on O ⊗ B(CN) for all N ≥ 1. A CP map is automatically Schwartz. We
denote by CP(O) the monoid of completely positive maps, and by CP1(O) the sub-monoid
of unital maps. CP(O) is a convex cone and CP1(O) is a convex set. Stinespring’s theorem
[61] asserts that Φ ∈ CP(O) iff there exists a finite family {Vj }j∈J in O such that

Φ(X) =
∑

j∈J

V ∗
j XVj , (1)

for all X ∈ O. The formula (1) is called a Kraus representation of Φ . Such representation is
in general not unique.

Unital CP maps naturally arise in the quantum mechanics of open systems. Indeed, as-
sume that the quantum system S with Hilbert space H interacts with some environment
described by the Hilbert space Henv. According to the general structure of quantum mechan-
ics, the evolution of the joint system over some time interval is given by a unitary U on
H ⊗ Henv. Thus, if X is an observable of the system S , then its Heisenberg evolution over
the considered time interval is given by the map

Φ(X) = trHenv

(
(1 ⊗ ρenv)U

∗(X ⊗ 1)U
)
,

where trHenv( · ) denotes the partial trace over the environment Hilbert space and ρenv is the
initial state of the environment. One easily checks that Φ is a unital CP map such that, for
any state ρ of S ,

tr
(
ρΦ(X)

) = tr
(
(ρ ⊗ ρenv)U

∗(X ⊗ 1)U
)
.

A positive linear map Φ is called irreducible (in the sense of Davies [9]) if the inequality
Φ(P ) ≤ λP , where P is a projection and λ > 0, holds only for P = 0 or P = 1. If Φ is
positivity improving, then obviously Φ is irreducible. In terms of a Kraus decomposition,
irreducibility can be characterized as follows (see, e.g., [57]):

Theorem 2.1 Let Φ be a CP(O) map with a Kraus decomposition (1) and let A be the
subalgebra of O generated by {Vj | j ∈ J } and 1. Then Φ is irreducible iff Aψ = H for any
non-zero vector ψ ∈ H.
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For reader’s convenience, we shall prove Theorem 2.1 in Sect. 7.2.
The adjoint Φ∗ of a linear map Φ is positive/positivity improving/CP/irreducible iff Φ

is. Φ∗ is trace preserving, i.e., tr(Φ∗(X)) = tr(X) for all X ∈ O, iff Φ is unital. In particular,
Φ∗ maps S into itself iff Φ is positive and unital. A state ρ ∈ S is called Φ-invariant if
Φ∗(ρ) = ρ, which is equivalent to ρ(Φ(X)) = ρ(X) for all X ∈ O.

Let {etL}t≥0 be a continuous semigroup of linear maps on O generated by a linear map L.
This semigroup is called unital/positive/positivity improving/CP(O)/CP1(O) iff etL is for all
t > 0. A CP1(O) semigroup is called quantum dynamical semigroup (QDS).1

Let {etL}t≥0 be a positive unital semigroup. A state ρ is called steady (or stationary) if
ρ(etL(X)) = ρ(X) for all t ≥ 0 and X ∈ O. Clearly, ρ is steady iff L∗(ρ) = 0.

A positive unital semigroup {etL}t≥0 is said to be relaxing to a steady state ρ+ if

lim
t→∞ etL∗

(ρ) = ρ+, (2)

for all ρ ∈ S. The relaxation is exponentially fast if there exists γ > 0 such that for all
states ρ,

etL∗
(ρ) = ρ+ + O

(
e−γ t

)
,

as t → ∞. The relaxation to a steady state is an ergodic property that plays a fundamental
role in the statistical mechanics of QDS.

Our study of the large deviation theory of QDS will be based on the following result.

Theorem 2.2 Let {etL}t≥0 be a positivity improving CP(O) semigroup and

� = max
{
Reλ |λ ∈ sp(L)

}
.

Then � is a simple eigenvalue of L and is the only eigenvalue of L on the line Re z = �. For
any state ρ on O, one has

� = lim
t→∞

1

t
logρ

(
etL(X)

)
, (3)

for all non-zero X ∈ O+. If in addition the semigroup {etL}t≥0 is unital, then � = 0 and the
semigroup is relaxing exponentially fast to a faithful steady state ρ+.

The proof of this theorem is based on the Perron-Frobenius theory of positive maps devel-
oped in [28] and is given in Sect. 7.2.

It is a fundamental result of Lindblad [46, 47], Gorini, Kossakowski and Sudarshan [35],
and Christensen and Evans [7], that {etL}t≥0 is a CP(O) semigroup iff there are K ∈ O and
Φ ∈ CP(O) such that

L(X) = K∗X + XK + Φ(X), (4)

for all X ∈ O. For short, we shall call the generator of a CP(O) semigroup a Lindbladian,
and the r.h.s. of Eq. (4) a Lindblad decomposition of L. Although the Lindblad decomposi-
tion is not unique, it can be effectively used to characterize some important properties of the
semigroup. In particular, we have:

1The name quantum Markov semigroup is also used in the literature.
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Theorem 2.3 Let {etL}t≥0 be a CP(O) semigroup and L(X) = K∗X +XK +Φ(X) a Lind-
blad decomposition. If Φ is irreducible, then the semigroup is positivity improving.

We shall prove this theorem in Sect. 7.2. Theorems 2.1 and 2.3 provide an effective criterion
for verifying the positivity improving assumption of Theorem 2.2 (see Sect. 4).

If {etL}t≥0 is a QDS, then L(1) = 0, and it follows from (4) that

L(X) = i[T ,X] − 1

2

{
Φ(1),X

} + Φ(X), (5)

where T is a self-adjoint element of O and Φ ∈ CP(O). We shall also refer to the r.h.s. of
Eq. (5) as a Lindblad decomposition of L.

The dissipation function of a QDS {etL}t≥0 is the sesquilinear map D : O × O → O
defined by

D(X,Y ) = L
(
X∗Y

) −L
(
X∗)Y − X∗L(Y ).

If (5) is the Lindblad decomposition of L and (1) a Kraus decomposition of Φ , then

D(X,X) =
∑

j∈J

[Vj ,X]∗[Vj ,X].

Hence, D(X,X) ≥ 0 and D(X,X) = 0 iff X ∈ {Vj | j ∈ J }′. The dissipation function of a
QDS was introduced by Lindblad in [46] and has played an important role in many subse-
quent works on the subject.

The detailed balance condition and time-reversal invariance will play an important role
in our work. Both properties refer to a pair (ρ,L), where ρ is a faithful state and L is
the generator of a QDS. Note that any faithful state induces an inner product 〈X|Y 〉ρ =
〈Xρ1/2|Yρ1/2〉 = tr(ρX∗Y ) on O. We call the ρ-adjoint of a linear map Φ its adjoint Φρ

w.r.t. this inner product. In particular, we say that a linear map Φ is ρ-self-adjoint if Φρ = Φ .

Definition 2.4 Consider a pair (ρ,L), where ρ is a faithful state and L is a Lindbladian
generating a QDS.

(a) The pair (ρ,L) is said satisfy the detailed balance condition if L∗(ρ) = 0 and there exists
Lindblad decomposition L = i[T , · ] − 1

2 {Φ(1), · } + Φ such that Φ is ρ-self-adjoint.
(b) The pair (ρ,L) is said to be time-reversal invariant (TRI) if there exists an involutive

anti-linear ∗-automorphism Θ : O → O, called the time-reversal, such that Lρ ◦ Θ =
Θ ◦L and Θ(ρ) = ρ.

Definition 2.4(a) is equivalent to the definition of detailed balance given by Kossakowski,
Frigerio, Gorini, and Verri [42] (see Theorem 7.2 below). The above definition, however, is
technically and conceptually more suitable for our purposes.2 The detailed balance condition
is characteristic of QDS describing the interaction of a system S with an environment at
equilibrium (see [42, 48]).

For the motivation regarding the definition of time-reversal we refer the reader to Sect. 4
and [31, 51]. We recall that Θ : O → O is an involutive anti-linear ∗-automorphism iff there
exists an anti-unitary involution θ : H → H such that Θ(X) = θXθ (see Exercise 4.36 in
[36]), and that Θ(ρ) = ρ iff ρ(Θ(X)) = ρ(X∗) for all X ∈ O.

2Alternative definitions of detailed balance can be found in [1, 3].
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3 Quantum Dynamical Semigroups Out of Equilibrium

3.1 The Setup

We shall study QDS {etL}t≥0 on O = B(H), dimH < ∞, satisfying the following ergodicity
condition

(ER) The QDS {etL}t≥0 is positivity improving.

Furthermore, we shall focus on semigroups whose generator L has the special structure
given by

(DB) There are M pairs (ρj ,Lj ) satisfying the detailed balance condition such that

L =
M∑

j=1

Lj .

We shall interpret each of the M sub-Lindbladians Lj as describing the interaction of a
quantum system S with some reservoir Rj . A QDS is out of equilibrium if Hypothesis
(DB) holds and ρj �= ρk for some pair j, k (such a QDS describes the interaction of the
system S with an environment

∑
j Rj out of equilibrium).

A QDS satisfying (DB) is called time-reversible if

(TR) All the pairs (ρj ,Lj ) are time-reversal invariant with the same time-reversal
map Θ .

Finally, we shall investigate more closely the special case where the states ρj are thermal
equilibrium states at inverse temperature βj > 0 for the same Hamiltonian.

(KMSβ ) β = (β1, . . . , βM) ∈ R
M+ and there exists a self-adjoint element HS ∈ O such

that

ρj = e−βj HS

tr(e−βj HS )
,

for j = 1, . . . ,M .

As we shall see in Sect. 4, Hypotheses (ER), (DB) and (KMSβ ) are naturally satisfied by the
QDS describing the weak coupling (van Hove) limit dynamics of an open quantum system
S with Hilbert space H interacting with an environment made of M thermal reservoirs. In
this case, the Lindbladian Lj pertains to the interaction of S with the j th reservoir and the
state ρj is a steady state of the system coupled only to this reservoir. If the joint dynamics of
the system and reservoirs is time-reversal invariant, then Hypothesis (TR) is also satisfied.

3.2 Main Result

Suppose that a QDS {etL}t≥0 satisfies Hypothesis (DB). Our main technical result concerns
the properties of the deformations of this QDS generated by

L(α)(X) =
M∑

j=1

Lj (Xρ
−αj

j )ρ
αj

j , (6)
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where α = (α1, . . . , αM) ∈ R
M . We will use the notation 1 = (1, . . . ,1) wherever the mean-

ing is clear within the context, e.g., 1 − α = (1 − α1, . . . ,1 − αM). Let

e(α) = max
{
Reλ

∣
∣λ ∈ sp(L(α))

}
.

Theorem 3.1 Suppose that Hypothesis (DB) holds. Then:

(1) {etL(α)}t≥0 is a CP(O) semigroup for all α ∈ R
M .

(2) For any state ρ on O, there is a Borel probability measure P t
ρ on R

M such that

tr
(
ρetL(α) (1)

) =
∫

RM

e−tα·ς dP t
ρ(ς).

We denote by 〈 · 〉ρ,t the expectation w.r.t. this measure.

In the remaining statements we assume that Hypothesis (ER) is satisfied.

(3) For all α ∈ R
M the CP(O) semigroup {etL(α)}t≥0 is positivity improving. In particular,

the QDS {etL}t≥0 is relaxing exponentially fast to a steady state ρ+.
(4) For all α ∈ R

M , e(α) is a simple eigenvalue of L(α) and this operator has no other
eigenvalues on the line Re z = e(α). Moreover, for any state ρ and all α ∈RM ,

lim
t→∞

1

t
log

〈
e−tα·ς 〉

ρ,t
= e(α). (7)

(5) The function R
M � α �→ e(α) is real analytic and convex.

(6) Relation (7) holds for α in an open neighborhood of RM in C
M .

(7) If Hypothesis (TR) is satisfied, then

e(1 − α) = e(α), (8)

for all α ∈ R
M .

(8) If Hypothesis (KMSβ ) is satisfied, then

e
(
α + λβ−1

) = e(α),

for all α ∈ R
M and all λ ∈R with β−1 = (β−1

1 , . . . , β−1
M ).

Remark 1 The identity (8) is the QDS analog of the generalized Evans-Searles symmetry of
time-reversal invariant classical dynamical systems (see [26, 30, 40]). However, contrary to
the classical case, we do not expect that the function

α �→ eρ,t (α) = log tr
(
ρetL(α) (1)

)
,

satisfies this symmetry for fixed finite time t . A notable exception is provided by the very
special “chaotic state” ρ = ρch = 1/dimH. Indeed, it follows from the fact that Θ ◦L∗

(α) =
L(1−α) ◦ Θ (see the proof of Theorem 3.1) that eρch,t (1 − α) = eρch,t (α) for all α ∈ R

M and
all t ≥ 0.

Remark 2 Property (8) is a consequence of energy conservation. It was first proposed by
Andrieux et al. in the framework of Hamiltonian dynamics on the basis of a formal calcula-
tion [2].
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We shall call the probability measure P t
ρ the entropic full counting statistics (EFCS) of

the QDS generated by L (w.r.t. the specific decomposition L = ∑
j Lj ). As explained in

Sect. 5, in cases where this QDS arises as a weak coupling limit of the dynamics of a system
S coupled to M thermal reservoirs, the EFCS is the scaling limit of a measure P

t
ρ which

describes the mean rate of entropy exchange between the system and the M reservoirs during
the time interval [0, t] (see Eq. (38) below).

An alternative interpretation of the measures P t
ρ is based on the well-known unraveling

technique. In other words, these measures can be understood in terms of a classical stochas-
tic process which provides a coarse grained description of the dynamics of the system by so
called quantum trajectories. Within this framework, P t

ρ is the joint distribution of M random
variables which describe the exchange of entropy between the system and the M reservoirs
(see Sect. 6).

3.3 Entropic Fluctuations

As a direct consequence of Theorem 3.1 and the Gärtner-Ellis theorem (see, e.g., [25, 29]),
we have

Corollary 3.2 Assume that Hypotheses (DB) and (ER) hold and let

I (ς) = − inf
α∈RM

(
α · ς + e(α)

)
.

I (ς) is the Fenchel-Legendre transform of e(−α). Then:

(1) I (ς) takes values in [0,∞] and is a convex lower-semicontinuous function with compact
level sets.3

(2) I (ς) = 0 iff ς = ς , where ς = −∇e(0). Moreover, for any ε > 0 there exists a positive
constant a(ε) such that

P t
ρ

({
ς ∈R

M | |ς − ς | ≥ ε
}) ≤ e−ta(ε),

for all t > 0.
(3) The family of measures {P t

ρ}t≥0 satisfies the large deviation principle with rate function
I . More precisely, for any Borel set G ⊂ R

M we have

− inf
ς∈int(G)

I (ς) ≤ lim inf
t→∞

1

t
logP t

ρ(G) ≤ lim sup
t→∞

1

t
logP t

ρ(G) ≤ − inf
ς∈cl(G)

I (ς), (9)

where int(G) and cl(G) denote the interior and the closure of the set G.
(4) If Hypothesis (TR) is satisfied, then the rate function satisfies

I (−ς) = 1 · ς + I (ς). (10)

(5) If Hypothesis (KMSβ ) is satisfied, then I (ς) = +∞ for any ς ∈ R
M such that

β−1 · ς �= 0.

3The level sets of I are {ς | I (ς) ≤ l} where l ∈ [0,∞[.
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Remark 1 The components of ς = (ς1, . . . , ςM) describe the asymptotic rates of entropy
transport between the system S and the M reservoirs constituting its environment. The non-
negative number

σ+ = 1 · ς =
∑

j

ςj ,

is the steady state entropy production rate of a QDS satisfying Hypotheses (ER) and (DB)
(see the next section for additional information about this important concept). If (TR) holds,
then Relation (10) implies I (−ς) = σ+ and σ+ > 0 iff ς �= 0.

Remark 2 The large deviation principle (9) quantifies the exponential rate of decay of the
measures P t

ρ away from the asymptotic mean value ς and describes the statistics of the fluc-
tuations of the rates of entropy transport over large but finite periods of time. In particular,
(9) implies that

P t
ρ

({
ς ∈R

M |ς � ϕ
}) � e−tI (ϕ),

for large t . Combining Parts (2) and (3) we derive that for large t ,

P t
ρ({ς ∈R

M |ς � −ϕ})
P t

ρ({ς ∈RM |ς � ϕ}) � e−t1·ϕ, (11)

and in particular that

P t
ρ({ς ∈R

M |ς � −ς})
P t

ρ({ς ∈RM |ς � ς}) � e−tσ+ . (12)

The identities (8) and (10), together with the resulting asymptotics (11) and (12), constitute
fluctuation relations for a QDS out of equilibrium. One important feature of the fluctuation
relations is universality (independence of the model).

Theorem 3.1 and Bryc’s theorem (see Proposition 1 in [6] and Appendix A in [36]) imply
the Central Limit Theorem for the family of measures {P t

ρ}t≥0.

Corollary 3.3 Assume that Hypotheses (ER) and (DB) hold. Then for any Borel set
G ⊂ R

M ,

lim
t→∞P t

ρ

({
ς ∈R

M |√t
(
ς − 〈ς〉ρ,t

) ∈ G
}) = μD(G), (13)

where μD denotes the centered Gaussian measure on R
M with covariance D given by

Dij = ∂2e(α)

∂αi∂αj

∣
∣∣
∣
α=0

.

Note that if Hypothesis (KMSβ ) holds, then Theorem 3.1 (8) implies that the Gaussian
measure μD has its support on the hyperplane β−1 ·ς = 0. This is of course related to Part (5)
of Corollary 3.2 and to energy conservation.
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3.4 Thermodynamics

The von Neumann entropy of a state ρ is Ent(ρ) = −tr(ρ logρ) and we shall call S =
− logρ the entropy observable associated to ρ. The relative entropy of a state ν w.r.t. to
another state μ is

Ent(ν|μ) =
{

tr(ν(logμ − logν)) if Ran(ν) ⊂ Ran(μ);
−∞ otherwise.

We refer the reader to the monograph of Ohya and Petz [54] for further information on
these fundamental concepts. Following Lebowitz and Spohn [48, 60], we define the entropy
production in the state ρ of a QDS {etL}t≥0 satisfying Hypothesis (DB) by4

σ(ρ) = d

dt

M∑

j=1

Ent
(
etL∗

j (ρ)
∣∣ρj

)∣∣
t=0

. (14)

We recall basic properties of the entropy production established in [48, 60].

(a) Since ρj is a steady state of the QDS generated by Lj , we have

Ent
(
etL∗

j (ρ)
∣
∣ρj

) = Ent
(
etL∗

j (ρ)
∣
∣etL∗

j (ρj )
)
,

and Uhlman’s monotonicity theorem ([62], see also [36, 54]) implies that the r.h.s. of
this identity is a non-decreasing function of t . Hence,

σ(ρ) ≥ 0.

(b) An application of a theorem of Lieb [45] gives that the map S � ρ �→ σ(ρ) is convex
(see Theorem 3 in [60]).

(c) Set Sj = − logρj and Ij = Lj (Sj ). An immediate consequence of (14) is the entropy
balance equation:

d

dt
Ent

(
etL∗

(ρ)
)∣∣

t=0
= σ(ρ) +

M∑

j=1

ρ(Ij ). (15)

The second term on the r.h.s. of Eq. (15) describes the flux of entropy entering the
system. Thus, we can interpret the observable Ij as the entropy flux out of the j th
reservoir. Note that if ρ is a steady state, then the l.h.s. of (15) vanishes, and the entropy
balance equation takes the form

σ(ρ) = −
M∑

j=1

ρ(Ij ). (16)

Our next result links the function e(α) to the observables Sj and Ij .

Theorem 3.4 Let {etL}t≥0 be a QDS satisfying Hypotheses (ER) and (DB). Set Jj =
Ij − ρ+(Ij ). Then the following holds:

4The derivative exists for all ρ ∈ S, see Theorem 3 in [60].
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(1)

∂e(α)

∂αj

∣
∣∣
∣
α=0

= ρ+(Ij ).

In particular,

ρ+(Ij ) = − lim
t→∞〈ςj 〉ρ,t = −ςj ,

and σ(ρ+) = ∑
j ςj .

(2)

∂2e(α)

∂αj∂αk

∣∣
∣∣
α=0

= −
∫ ∞

0
ρ+

(
etL(Jj )J +

k + etL(Jk)J +
j

)
dt

+
∫ ∞

0
ρ+

(
Lk

(
etL(Jj )Sk

) +Lj

(
etL(Jk)Sj

))
dt + δjkρ+

(
Dj(Sj , Sj )

)

= lim
t→∞ t

〈(
ςj − 〈ςj 〉ρ,t

)(
ςk − 〈ςk〉ρ,t

)〉
ρ,t

,

where J +
j = Lρ+

j (Sj ) = L∗
j (Sjρ+)ρ−1

+ and Dj(A,B) = Lj (A
∗B) − Lj (A

∗)B −
A∗Lj (B) is the dissipation function of the j th Lindbladian.

Remark 1 Under the assumptions of the theorem the semigroup {etL}t≥0 is relaxing expo-
nentially fast to ρ+. Since ρ+(Jj ) = 0, this implies that the operators etL(Jj ) are exponen-
tially decaying as t → ∞, and so the time integrals in Part (2) are absolutely convergent.

Remark 2 We shall make use of Part (2) in Sect. 3.6 where we discuss linear response theory.

3.5 Energy Fluxes

The Hypothesis (KMSβ ) allows us to relate entropy fluxes to energy fluxes by simple rescal-
ing and to restate our main results in terms of energy transport. As a preparation for the
discussion of the linear response theory, in this section we briefly discuss how this restating
is carried out. Until the end of this section we shall assume that Hypotheses (ER), (DB), and
(KMSβ ) hold.

The observable describing the energy flux out of the j th reservoir is Fj = Lj (HS) (see
[48]). Note that Ij = βjFj . If in addition (TR) holds, then Θ(HS) = HS and it follows from
Parts (1) and (2) of Theorem 7.1 that Lρj

j (HS) = Lj (HS). Hence,

Θ(Fj ) = Lρj

j

(
Θ(HS)

) = Fj .

The steady state energy fluxes are

φj = ρ+(Fj ).

Obviously, ςj = −βjφj , and Eq. (16) takes the form

σ(ρ+) = −
M∑

j=1

βjφj ≥ 0. (17)
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This relation expresses the second law of thermodynamics for QDS satisfying our assump-
tions. The relation L∗(ρ+) = 0 yields the first law (conservation of energy):

M∑

j=1

φj = 0. (18)

The energetic full counting statistics of the system is the probability measure Qt
ρ on R

M

given by

Qt
ρ(φ) = P t

ρ(−βφ),

where βφ = (β1φ1, . . . , βMφM). In particular,

tr
(
ρetL(α/β) (1)

) =
∫

RM

etα·φdQt
ρ(φ),

where α/β = (α1/β1, . . . , αM/βM). Hence, for α ∈R
M ,

χ(α) = lim
t→∞

1

t
log

∫

RM

etα·φdQt
ρ(φ) = e(−α/β),

and in particular,

∂χ(α)

∂αj

∣∣
∣∣
α=0

= φj ,
∂2χ(α)

∂αj∂αk

∣∣
∣∣
α=0

= 1

βjβk

∂2e(α)

∂αj∂αk

∣∣
∣∣
α=0

. (19)

Note that the translation symmetry of e(α) (described in Part (8) of Theorem 3.1) implies
that

χ(α) = χ(α + λ1), (20)

for all α ∈ R
M , λ ∈R. If (TRI) holds, then the Evans-Searles symmetry takes the form

χ(α) = χ(−β − α). (21)

The large t fluctuations of Qt
ρ are described by obvious reformulations of Corollaries 3.2

and 3.3.
Finally, we discuss briefly the equilibrium case where βj = β0 for j = 1, . . . ,M . In this

case

ρj = ρ0 = e−β0HS

tr(e−β0HS )
,

and L∗
j (ρ0) = 0 for all j . It follows that L∗(ρ0) = 0 and hence that ρ+ = ρ0 and φj = 0 for

all j . Combining Parts (1) and (2) of Theorem 7.1 with Theorem 3.4 (2) one easily derives
that J +

j = Jj = Ij = β0Fj , and that

∂2χ(α)

∂αj∂αk

∣∣
∣∣
α=0

= −
∫ ∞

0
ρ0

(
etL(Fj )Fk + etL(Fk)Fj

)
dt + δjkρ0

(
Dj(HS,HS)

)
. (22)

If the pair (ρ0,L) is TRI, then

ρ0
(
etL(Fj )Fk

) = ρ0
(
Θ

(
FketL(Fj )

)) = ρ0
(
FketLρ0

(Fj )
) = ρ0

(
etL(Fk)Fj

)
. (23)
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3.6 Linear Response Theory

Our last result concerns linear response to thermodynamical forces. We consider a small
system S coupled to M thermal reservoirs Rj in equilibrium at inverse temperatures βj

where each βj is close to some common equilibrium value β0 > 0. The purpose of lin-
ear response theory is to study the behavior of various physical quantities to first or-
der in the thermodynamical forces ζj = β0 − βj . It is therefore natural to parametrize
β = (β1, . . . , βM) by ζ = (ζ1, . . . , ζM) so that ζ = 0 corresponds to the equilibrium situ-
ation β = βeq = (β0, . . . , β0). The precise setup is as follows.

Let (Lζ )ζ∈U be a family of Lindbladians indexed by an open neighborhood U of 0 in R
M

and such that each Lζ satisfies Hypotheses (ER) and (TR). Moreover, we assume Hypotheses
(DB) and (KMSβ ) in the following form: for each ζ ∈ U ,

Lζ =
M∑

j=1

Lζ,j ,

where Lζ,j depends only on ζj and satisfies the detailed balance condition w.r.t. the state

ρζj = e−(β0−ζj )HS

tr(e−(β0−ζj )HS )
,

for some ζ -independent self-adjoint HS ∈ O. We shall also assume the following regularity
in ζ :

(RE) The map ζ �→ Lζ is continuously differentiable at ζ = 0.

In what follows we shall indicate explicitly the dependence on ζ by writing Lζ,(α), e(ζ,α),
χ(ζ,α), Fζ,j , φζ,j , etc. Our assumptions imply that all partial derivatives of Lζ,(α) w.r.t. α

are continuously differentiable w.r.t. ζ at ζ = 0.
For all α ∈ R

M and ζ ∈ U , e(ζ,α) is a simple eigenvalue of Lζ,(α). The perturbation the-
ory of isolated eigenvalues (see the proof of Theorem 3.4) implies that all partial derivatives
of e(ζ,α) w.r.t. α are also continuously differentiable w.r.t. ζ at ζ = 0 and the same holds
for the function χ(ζ,α). In particular, the maps ζ �→ φζ,j are continuously differentiable at
ζ = 0.

Combining (17) and (18) yields the following expressions of the first and second laws of
thermodynamics

M∑

j=1

φζ,j = 0,

M∑

j=1

ζjφζ,j ≥ 0.

The kinetic transport coefficients are defined by

Ljk = ∂φζ,j

∂ζk

∣
∣∣
∣
ζ=0

.

It follows from the first law that

M∑

j=1

Ljk = 0, (24)
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while the second law implies that the real quadratic form determined by the matrix [Ljk] is
positive definite.5 It further follows from the first relation in (19) that

Ljk = ∂2χ(ζ,α)

∂ζk∂αj

∣
∣∣
∣
ζ=α=0

.

In terms of the variable ζ , the Evans-Searles symmetry (21) takes the form χ(ζ,α) =
χ(ζ,−βeq + ζ − α), while the translation symmetry (20) reads χ(ζ,α) = χ(ζ,α + λ1).
Since βeq = β01, combining these two symmetries we derive

χ(ζ,α) = χ(ζ, ζ − α). (25)

This relation and the chain rule (see Lemma 4.4 in [40]) yield

Ljk = ∂2χ(ζ,α)

∂ζk∂αj

∣∣
∣∣
ζ=α=0

= −1

2

∂2χ(ζ,α)

∂αk∂αj

∣∣
∣∣
ζ=α=0

. (26)

The equality of mixed partial derivatives ∂αk
∂αj

χ = ∂αj
∂αk

χ implies the Onsager reciprocity
relations Ljk = Lkj . Relations (22), (23), and Corollary 3.3 complete the linear response
theory. We summarize:

Theorem 3.5 Under the Hypotheses formulated at the beginning of this section the follow-
ing statements hold.

(1) The Green-Kubo formulae:

Ljk =
∫ ∞

0
ρ0

(
etL0(F0,j )F0,k

)
dt − 1

2
δjkρ0

(
D0,j (HS,HS)

)
,

where D0,j denotes the dissipation function of L0,j .
(2) The Onsager reciprocity relations:

Ljk = Lkj .

(3) The Fluctuation-Dissipation Theorem: for a state ρ on O let Qt
eq,ρ be the energetic full

counting statistics of the equilibrium system, i.e.,

tr
(
ρetL0,(α/β0) (1)

) =
∫

RM

etα·φdQt
eq,ρ(φ)

and let 〈 · 〉eq,ρ,t denote the expectation w.r.t. the measure Qt
eq,ρ . For any Borel set

G ⊂ R
M ,

lim
t→∞Qt

eq,ρ

({
φ ∈ R

M |√t
(
φ − 〈φ〉eq,ρ,t

) ∈ G
}) = μD(G),

where μD is the centered Gaussian measure on R
M with covariance D given by

Djk = 2Ljk.

5This does not imply that Ljk = Lkj .
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Remark 1 Concerning the diagonal transport coefficients Ljj , the terms ρ0(D0,j (HS,HS))

are non-negative, and are strictly positive if S is effectively coupled to the j th-reservoir (see
Sect. 4). Parts (1)–(2) of Theorem 7.1 imply that ρ0(D0,j (HS,HS)) = −2ρ0(HSF0,j ).

Remark 2 In the absence of time-reversal, Part (3) holds with

Djk =
∫ ∞

0
ρ0

(
etL0(F0,j )F0,k + etL0(F0,k)F0,j

)
dt − δjkρ0

(
D0,j (HS,HS)

)
.

Remark 3 Parts (1) and (2) of Theorem 3.5 were first proven in [48] by a different method.
For comparison purposes we sketch the proof of [48]. Since L∗

ζ,k(ρζk ) = 0,

dL∗
ζ,k

dζk

(ρζk ) = −L∗
ζ,k

(
dρζk

dζk

)
= L∗

ζ,k(HSρζk ) = Fζ,kρζk ,

where the last equality follows from Parts (1) and (2) of Theorem 7.1. Hypotheses (ER) and
(RE) imply that the map ζ �→ ρζ,+ is continuously differentiable at ζ = 0. Differentiating
L∗

ζ (ρζ,+) = 0 w.r.t. ζk at ζ = 0, we get

dL∗
ζ,k

dζk

∣
∣∣
∣
ζ=0

(ρ0) = −L∗
0

(
∂ρζ,+
∂ζk

∣
∣∣
∣
ζ=0

)
.

The last two relations give

L∗
0

(
∂ρζ,+
∂ζk

∣∣∣
∣
ζ=0

)
= −F0,kρ0. (27)

Since

lim
t→∞ etL∗

0 (F0,kρ0) = ρ0(F0,k)ρ0 = 0, (28)

the operators etL∗
0 (F0,kρ0) are exponentially decaying as t → ∞, and we deduce from (27)

that there is a constant c such that

∂ρζ,+
∂ζk

∣∣
∣∣
ζ=0

= cρ0 +
∫ ∞

0
etL∗

0 (F0,kρ0)dt.

If j �= k then Fζ,j = Lζ,j (HS) does not depend on ζk and it follows that

Ljk = tr

(
F0,j

∂ρζ,+
∂ζk

∣
∣∣
∣
ζ=0

)
=

∫ ∞

0
ρ0

(
etL0(F0,j )F0,k

)
dt.

The conservation law (24), the limit (28) and the last formula in Remark 1 yield

Lkk = −
∑

j :j �=k

Ljk =
∫ ∞

0
ρ0

(
etL0(F0,k)F0,k − etL0

(
L0(HS)

)
F0,k

)
dt

=
∫ ∞

0
ρ0

(
etL0(F0,k)F0,k

)
dt −

∫ ∞

0

d

dt
tr
(
etL∗

0 (F0,kρ0)HS
)
dt
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=
∫ ∞

0
ρ0

(
etL0(F0,k)F0,k

)
dt + ρ0(HSF0,k)

=
∫ ∞

0
ρ0

(
etL0(F0,k)F0,k

)
dt − 1

2
ρ0

(
D0,k(HS,HS)

)
.

Note that the above argument did not make use of Hypothesis (TR) and so Part (1) of Theo-
rem 3.5 holds without time-reversal assumption (in fact, Lebowitz and Spohn do not discuss
time-reversal at all in [48]). However, if the pair (ρ0,L0) is time-reversal invariant, then Part
(1) and Relation (23) yield the Onsager reciprocity relations.

In contrast to the direct argument of [48], the proof described in this section exploits fun-
damentally the symmetry (25). The advantage of this derivation in context of a QDS out of
equilibrium is conceptual. The fluctuation relations are structural model independent fea-
tures of non-equilibrium statistical mechanics. As observed by Gallavotti [32], in the linear
regime near equilibrium the fluctuation relations reduce to familiar fluctuation-dissipation
formulae, and this structural model independent view of linear response theory is of funda-
mental conceptual importance (see [36, 40, 49] for a pedagogical discussion of this point).
Our proof shows how a QDS out of equilibrium fit into this general picture and complements
the derivation of [48] from the conceptual point of view.

4 Weakly Coupled Open Quantum Systems

We consider a small quantum system S , described by the Hamiltonian HS acting on the
finite dimensional Hilbert space HS . To induce a dissipative dynamics on S , we couple this
system to several infinitely extended thermal reservoirs R1, . . . ,RM . Each reservoir Rj is
initially in a thermal equilibrium state at inverse temperature βj > 0.6 By passing to the
GNS representations induced by these states, each Rj is described by a Hilbert space Hj ,
a W ∗-algebra Oj ⊂ B(Hj ) of observables, and a self-adjoint operator Lj (the Liouvillean)
acting on Hj , such that the Heisenberg dynamics τ t

j (A) = eitLj Ae−itLj leaves Oj invariant.
The initial state of Rj is given by Oj � A �→ ωj (A) = 〈ξj |Aξj 〉, where ξj ∈ Hj is a unit
vector such that Ljξj = 0. Moreover, the state ωj satisfies the KMS boundary condition: for
all A,B ∈ Oj ,

ωj

(
Aτ t

j (B)
) = ωj

(
τ

t−iβj

j (B)A
)
. (29)

The Hilbert space of the joint system S +R1 + · · · +RM is H = HS ⊗H1 ⊗ · · · ⊗HM

and we shall denote HS ⊗ 1 ⊗ · · · ⊗ 1, 1 ⊗ H1 ⊗ · · · ⊗ 1, . . . simply by HS , H1, . . .

The interaction between the system S and the reservoir Rj is described by the Hamilto-
nian

HSRj
=

nj∑

k=1

Q
(k)
j ⊗ R

(k)
j ,

6Here, we could also consider conserved charges and introduce associated chemical potentials. We refrain to
do so in order to keep notation as simple as possible.
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where each Q
(k)
j is a self-adjoint operator on HS and each R

(k)
j is a self-adjoint element

of Oj such that ωj (R
(k)
j ) = 0.7 The full Hamiltonian (more precisely the semi-standard

Liouvillean in the terminology of [17]) of the coupled system is

Lλ = HS +
M∑

j=1

(Lj + λHSRj
),

where λ is a coupling constant. The effective dynamics of the system S is then defined by
the family of linear map {T t

λ }t∈R on B(HS) determined by

〈
ψ

∣
∣T t

λ (X)ψ
〉 = 〈

ψ ⊗ ξ
∣
∣eitLλ (X ⊗ 1)e−itLλψ ⊗ ξ

〉
,

where X ∈ B(HS), ψ ∈ HS , and ξ = ξ1 ⊗ · · · ⊗ ξM .
Except in trivial cases, {T t

λ }t≥0 is not a semigroup. However, under appropriate conditions
on the decay of the multi-time correlation functions ωj (τ

t1
j (R

(k1)

j ) · · · τ tn
j (R

(kn)
j )), Davies has

shown (see Theorem 2.3 in [10]) that there exists a Lindbladian L generating a QDS such
that L commutes with LS(X) = i[HS,X], and

lim
λ→0

sup
λ2t∈I

∥∥T t
λ − et (LS+λ2L)

∥∥ = 0,

holds for any compact interval I = [0, τ ] ⊂ R. In other words, in the limit of small coupling
λ → 0 and for times of the order λ−2 the effective dynamics of S is well approximated by
the quantum dynamical semigroup generated by LS + λ2L. This theory is well-known and
we refer the reader to the in depth exposition of [15, 48] for further details. To write down
the explicit form of the generator L, we introduce the functions

h
(kl)
j (ω) =

∫ ∞

−∞
e−iωt

〈
ξj

∣
∣R(k)

j τ t
j

(
R

(l)
j

)
ξj

〉
dt = 2π

〈
R

(k)
j ξj

∣
∣δ(Lj − ω)R

(l)
j ξj

〉
,

and their Hilbert transforms

s
(kl)
j (ω) = P

∫ ∞

−∞

h
(kl)
j (ν)

ν − ω

dν

2π
= 〈

R
(k)
j ξj

∣∣P(Lj − ω)−1R
(l)
j ξj

〉
,

where P denotes Cauchy’s principal value (the hypotheses of the above mentioned theorem
of Davies ensure the existence of these integrals). Note that the nj × nj -matrices

hj (ω) = [
h

(kl)
j (ω)

]
, sj (ω) = [

s
(kl)
j (ω)

]
,

are respectively positive and self-adjoint and that the KMS condition (29) implies the rela-
tion

h
(kl)
j (−ω) = e−βj ωh

(lk)
j (ω). (30)

7In some models (like the spin-boson system) the operators R
(k)
j

are unbounded and only affiliated to the

W∗-algebra Oj . With some additional technicalities the discussions of this and the next three section easily
extend to such cases, see any of the references [15, 17, 19, 41, 48].
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We denote by Pμ the spectral projection of HS associated to the eigenvalue μ ∈ sp(HS),
and for

ω ∈ Ω = {
μ − ν

∣∣μ,ν ∈ sp(HS)
}
,

we define

V
(k)
j (ω) =

∑

μ−ν=ω

PνQ
(k)
j Pμ = V

(k)∗
j (−ω). (31)

Obviously,

eαHSV
(k)
j (ω)e−αHS = e−αωV

(k)
j (ω), (32)

for all α ∈ C.
The generator L has the Lindblad form (5), with the self-adjoint operator T given by

T =
M∑

j=1

Tj , Tj =
nj∑

k,l=1

∑

ω∈Ω

s
(kl)
j (ω)V

(k)∗
j (ω)V

(l)
j (ω),

and the CP map Φ given by

Φ(X) =
M∑

j=1

Φj(X), Φj (X) =
nj∑

k,l=1

∑

ω∈Ω

h
(kl)
j (ω)V

(k)∗
j (ω)XV

(l)
j (ω).

A Kraus decomposition of Φj is constructed as follows. Denote by uj (ω) = [u(kl)
j (ω)] a

unitary matrix which diagonalize the positive matrix hj (ω),

uj (ω)∗hj (ω)uj (ω) = [
δklg

(k)
j (ω)

]
.

Setting W
(k)
j (ω) =

√
g

(k)
j (ω)

∑
l u

(kl)
j (ω)V

(l)
j (ω), we obtain

Φj(X) =
nj∑

k=1

∑

ω∈Ω

W
(k)∗
j (ω)XW

(k)
j (ω).

Note that L can be written as the sum of the Lindbladians

Lj (X) = i[Tj ,X] − 1

2

{
Φj(1),X

} + Φj(X),

where Lj describes the interaction of the small system S with a single reservoir Rj . Using
(30) and (32) one easily verifies that Lj satisfies the detailed balance condition w.r.t. the
faithful state

ρj = e−βj HS

tr(e−βj HS )
. (33)

Thus, Hypotheses (DB) and (KMSβ ) are automatically satisfied by the weak coupling Lind-
bladian L.

Regarding time-reversibility, assuming that

(a) each reservoir is time-reversal invariant, i.e., there exists antiunitary involution θj acting
on Hj such that Ljθj = θjLj and θj ξj = ξj ;
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(b) the small system S is time-reversal invariant, i.e., there is an antiunitary involution θS
on HS such that θSHS = HSθS ;

(c) θjR
(k)
j = R

(k)
j θj and θSQ

(k)
j = Q

(k)
j θS for all j, k,

we easily conclude that h
(kl)
j (ω) = h

(lk)
j (ω), s

(kl)
j (ω) = s

(lk)
j (ω), and θSV

(k)
j (ω) = V

(k)
j (ω)θS .

It immediately follows that θSTj = TjθS and Φj(θSXθS) = θSΦj(X)θS . Hence, Hypothesis
(TR) is satisfied with Θ(X) = θSXθS .

We now turn to the ergodicity Hypothesis (ER). Clearly, {Q(k)
j }′

j,k ∩ {HS}′ ⊂ KerL and
the condition

{
Q

(k)
j

}′
j,k

∩ {HS}′ = C1, (34)

is obviously necessary for (ER) to hold. On the other hand, assuming that the matrices hj (ω)

are strictly positive for all 1 ≤ j ≤ M and ω ∈ Ω , the construction of the Kraus family
{W(k)

j (ω)}j,k,ω shows that its linear span coincides with the linear span of the family V =
{V (k)

j (ω)}j,k,ω . By Eq. (31), the family V is self-adjoint, and von Neumann’s bicommutant
theorem implies that the smallest subalgebra of O containing V is the bicommutant V ′′. As
shown by Spohn (see Theorem 3 in [59]), the condition V ′′ = O is equivalent to (34). Hence,
assuming strict positivity of the matrices hj (ω) for all j and ω, Theorems 2.1 and 2.3 imply
that the Spohn condition (34) is also sufficient for Hypothesis (ER) to hold.

Note that

σ(ρ) =
M∑

j=1

σj (ρ),

where σj (ρ) is the entropy production of the system S interacting only with the reservoir
Rj via the Lindbladian Lj . If the matrix hj (ω) is strictly positive and

{
Q

(k)
j

}′
k
∩ {HS}′ = C1, (35)

then, as discussed above, the QDS {etLj }t≥0 is positivity improving. Moreover, L∗
j (ρ) = 0

iff ρ = e−βj HS/tr(e−βj HS ).8 Hence, we arrive at the following elegant condition (see [5, 48])
which ensures that σ(ρ) > 0 for all states ρ: there exists a pair j1, j2 such that βj1 �= βj2 ,
the relation (35) holds for j = j1, j2, and the matrix hj (ω) is strictly positive for all ω and
j = j1, j2.

In conclusion, under very general and natural conditions the class of weak coupling limit
QDS introduced in [48] satisfies Hypotheses (ER), (DB), (TR), (KMSβ ), and has strictly
positive entropy production.9 Starting with the seminal paper [48], such semigroups have
been one of the basic paradigms of non-equilibrium quantum statistical mechanics.

5 Full Counting Statistics

In this section, we elucidate the physical meaning of the measure P t
ρ introduced in Theo-

rem 3.1 in cases where the Lindbladian L describes a weakly coupled open quantum system

8The same conditions ensure that the terms ρβ0 (Dj (HS ,HS )) in Theorem 3.5(1) are strictly positive, pro-
viding of course that HS �∈ C1.
9At the current level of generality, the verification of Hypothesis (RE) requires supplementing Davies’ con-
ditions with additional regularity assumptions which we shall not discuss for reasons of space. In practice,
i.e. in the context of concrete models, the verification of (RE) is typically an easy exercise.
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as discussed in the preceding section. We shall keep our presentation at a formal level; the
interested reader should consult Sect. 5 of [36] for a more detailed discussion as well as
[14, 20, 21, 41] for a mathematically rigorous treatment of some specific models.

We start with the open system described in Sect. 4, but we assume now that the reservoirs
Rj are confined to finite boxes. More precisely, working in the Schrödinger representation,
we assume that the reservoir Hamiltonians Hj have purely discrete spectrum and that the
operators e−βHj are trace class for all β > 0. The initial state of the combined system is
ρ = ρS ⊗ ρR, where

ρR = ρR1 ⊗ · · · ⊗ ρRM
, ρRj

= e−βj Hj

tr(e−βj Hj )
,

and ρS is the initial state of the small system S .
The full counting statistics of the entropy fluxes across the system S is defined as fol-

lows. Set S = (S1, . . . , SM) with Sj = βjHj . The observables Sj commute and hence can
be simultaneously measured. Let Πs denote the joint spectral projection of S associated to
the eigenvalue s ∈ sp(S). Two successive measurements of S at time t0 and at time t0 + t

are described by the positive map valued measure (PMVM) (see, e.g., [13]) which, to any
subset A ∈ sp(S) × sp(S), associate the CP map

EA(X) =
∑

(s,s′)∈A

Πs′e−itHλΠsXΠse
itHλΠs′ .

Indeed, if ρt0 denotes the state of the system at time t0, one easily checks that, according to
the usual rules of projective measurements,

trE{(s,s′)}(ρt0),

is the joint probability for the first measurement to yield the result s and for the second one
to yield the result s ′. Hence, the probability distribution of ς = (s ′ − s)/t , the mean rate of
entropy transport from the system S to the M reservoirs over the time interval [0, t], is given
in terms of the initial state ρS by the formula

P
t
ρS

(ς) = trE{s′−s=tς}(ρS ⊗ ρR).

The atomic probability measure P
t
ρS

on R
M is the full counting statistics of the en-

ergy/entropy flow. An elementary calculation shows that the Laplace transform of this mea-
sure is given by

�t
ρS

(α) =
∫

RM

e−tα·ς dPt
ρS

(ς) = tr
(
(ρS ⊗ ρR)ρ−α

R eitHλρα
Re−itHλ

)
,

where, for α = (α1, . . . , αM) ∈RM , we have set

ρα
R = 1 ⊗ ρ

α1
R1

⊗ · · · ⊗ ρ
αM
RM

.

Assuming that the operators

τ
isβj /2
j

(
R

(k)
j

) = e−sβj Hj /2R
(k)
j esβj Hj /2,
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are entire analytic functions of s, we can define the deformed Hamiltonian

Hλ,α = ρ
α/2
R Hλρ

−α/2
R = HS +

M∑

j=1

(

Hj + λ2

nj∑

k=1

Q
(k)
j ⊗ τ

iαj βj /2
j

(
R

(k)
j

)
)

,

and write

�t
ρS

(α) = tr
(
(ρS ⊗ ρR)eitH∗

λ,α1e−itHλ,α
)
. (36)

At this point, one can pass to the GNS representation of the reservoirs and perform a ther-
modynamic limit, letting the size of the confining boxes become infinite. If the deformed

operators τ
iαj βj /2
j (R

(k)
j ) remain well defined elements of the W ∗-algebras Oj in this limit,

then we can define the effective deformed dynamics of the open system with infinitely ex-
tended reservoirs

〈
ψ

∣∣T t
λ,α(X)ψ

〉 = 〈
ψ ⊗ ξ

∣∣eitL∗
λ,α (X ⊗ 1)e−itLλ,αψ ⊗ ξ

〉
, (37)

with the deformed semi-standard Liouvillean

Lλ,α = HS +
M∑

j=1

(

Lj +
nj∑

k=1

Q
(k)
j ⊗ τ

iαj βj /2
j

(
R

(k)
j

)
)

.

Assuming that the thermodynamic limit

TD− lim tr
((|ψ〉〈ψ | ⊗ ρR

)
eitH∗

λ,α (X ⊗ 1)e−itHλ,α
) = 〈

ψ
∣∣T t

λ,α(X)ψ
〉
,

exists for any ψ ∈ HS , X ∈ B(HS), and α ∈ R
M , we conclude that the Laplace transform

�t
ρS

(α) of the full counting statistics Pt
ρS

has a well defined thermodynamic limit

TD− lim �t
ρS

(α) = tr
(
ρST t

λ,α(1)
)
,

for all α ∈ R
M . Then one can show that, as the size of the reservoir increases, the full

counting statistics Pt
ρS

converges weakly to a Borel probability measure which we again
denote by P

t
ρS

which satisfies

∫

RM

e−tα·ς dPt
ρS

(ς) = tr
(
ρST t

λ,α(1)
)
,

(see Proposition 4.1 in [37]). We call the limiting measure P
t
ρS

the full counting statistics
of the open system S coupled to the infinitely extended reservoirs R1, . . . ,RM . Note that
since infinitely extended reservoirs have an infinite energy, it is not possible to implement
directly the successive measurement procedure we have described to this model, and that
one is forced to invoke the thermodynamic limit to construct its full counting statistics.

Applying the Davies procedure to extract the weak coupling limit of the deformed effec-
tive dynamics leads to

lim
λ→0

sup
λ2t∈I

∥∥T t
λ,α − et (LS+λ2K(α))

∥∥ = 0,

where K(α) is a deformed generator commuting with LS . An explicit calculation shows
that the only difference between K(α) and the undeformed Lindbladian L = K0 is that the
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functions h
(kl)
j are replaced with (recall that Ljξj = 0),

h
(kl)
j,αj

(ω) = 2π
〈
τ

iαj βj /2
j

(
R

(k)
j

)
ξj

∣∣δ(Lj − ω)τ
iαj βj /2
j

(
R

(l)
j

)
ξj

〉

= 2π
〈
e−αj βj Lj /2R

(k)
j ξj

∣∣δ(Lj − ω)e−αj βj Lj /2R
(l)
j ξj

〉

= e−αj βj ωh
(kl)
j (ω).

Using Eq. (32), one finally concludes that, with the ρj defined in Eq. (33),

K(α)(X) =
M∑

j=1

Lj

(
Xρ

−αj

j

)
ρ

αj

j ,

and so K(α) coincides with the deformed Lindbladian L(α). We conclude that if [HS, ρS] = 0,
then the measure P t

ρ introduced in Theorem 3.1 is related to the full counting statistics Pt
ρS

through the scaling limit

lim
λ→0

∫
f

(
λ−2ς

)
dPt/λ2

ρS
(ς) =

∫
f (ς)dP t

ρS
(ς). (38)

We note that in the weak coupling regime, the energy/entropy fluxes are of order λ2 so the
scaling λ−2ς which appears on the left hand side of the last identity is natural. The measure
P t

ρS
thus describes the rescaled mean energy/entropy fluxes at the Van Hove time scale t/λ2.

To the best of our knowledge, this observation is due to de Roeck [18].
For some specific models it is possible to show that

lim
λ→0

sup
t>0

∥∥T t
λ,α − et (LS+λ2Kα)

∥∥ = 0,

(see [19–21, 41]), and in such cases one can relate the large deviation principle of Corol-
lary 3.2 to the large deviation principle of the full counting statistics Pt

ρS
.

The link between full counting statistics and deformations of the semi-standard Liouvil-
lean (relations (36) and (37)) goes back to [18]. The link between full counting statistics and
deformations of the standard Liouvillean can be traced back to [16, 38, 53], was fully elab-
orated in [36], and plays the key role in the work [41]. The second link relates full counting
statistics to modular theory of operator algebras and deformed Lindbladians L(α) to Fermi
Golden Rule for spectral resonances of the deformed standard Liouvilleans. This point is
discussed in detail in [41] and we refer the reader to this work for additional information.

6 Unraveling of the Deformed Semigroup etL(α)

In this section we follow [22] and present an alternative and more general interpretation of
the measure P t

ρ based on the standard unraveling technique. As a byproduct of this con-
struction, we shall get a proof of Parts (1) and (2) of Theorem 3.1. We shall assume that
Hypothesis (DB) holds throughout the section and use the elementary properties of Lind-
bladians summarized in Theorem 7.1.

Let Lj (X) = i[Tj ,X] − 1
2 {Φj(1),X} + Φj(X) denote a Lindblad decomposition of Lj

and set

K(X) = −K∗X − XK, K =
M∑

j=1

Kj, Kj = 1

2
Φj(1) + iTj .
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By Theorem 7.1, Kj commutes with ρj and Φj admits a decomposition

Φj =
∑

ω∈Ωj

Φj,ω,

where Ωj = {μ − ν |μ,ν ∈ sp(logρj )} and Φj,ω ∈ CP(O) satisfies Φj,ω(Xρ
−αj

j )ρ
αj

j =
e−αj ωΦj,ω(X). It follows that

L(α) = K +
M∑

j=1

∑

ω∈Ωj

e−αj ωΦj,ω, (39)

is of the Lindblad form (4) for α ∈ R
M , which proves Part (1) of Theorem 3.1. Using the

Dyson expansion of the cocycle Γ t
α = e−tK ◦ etL(α) , we obtain the representation

〈
ρ
∣
∣etL(α) (1)

〉 = 〈
etK∗

(ρ)
∣
∣Γ t

α(1)
〉 = 〈ρt |1〉

+
∑

N≥1

∑

(j1,...,jN )∈{1,...,M}N
(ω1,...,ωN )∈Ωj1 ×···×ΩjN

e−∑N
k=1 αjk

ωk

×
∫

0≤s1≤···≤sN ≤t

〈
ρt

∣
∣ΦjN ,ωN ,sN ◦ · · · ◦ Φj1,ω1,s1(1)

〉
ds1 · · ·dsN , (40)

where ρt = etK∗
(ρ) and Φj,ω,s = e−sK ◦ Φj,ω ◦ esK.

Unraveling consists of rewriting this expression in terms of a probability measure μt
ρ on

a set Ξt of quantum trajectories defined as follows. For N ≥ 1, let

Ξt
N = {

ξ = [ξ1, . . . , ξN ] ∣∣ ξk = (jk,ωk, sk), jk ∈ {1, . . . ,M},
ωk ∈ Ωjk ,0 ≤ s1 ≤ · · · ≤ sN ≤ t

}
,

and set Ξt
0 = {∅}. On the disjoint union

Ξt =
⊔

N≥0

Ξt
N,

one defines the positive measure μt
ρ by

∫

Ξt

f (ξ)dμt
ρ(ξ) = f

({∅})〈ρt |1〉 +
∑

N≥1

∑

(j1,...,jN )∈{1,...,M}N
(ω1,...,ωN )∈Ωj1 ×···×ΩjN

∫

0≤s1≤···≤sN ≤t

f
([

(j1,ω1, s1), . . . , (jN ,ωN, sN)
])

× 〈
ρt

∣
∣ΦjN ,ωN ,sN ◦ · · · ◦ Φj1,ω1,s1(1)

〉
ds1 · · ·dsN .

Comparison with Eq. (40) shows that
∫

Ξt

dμt
ρ(ξ) = 〈

ρt

∣
∣Γ t

0 (1)
〉 = 〈

ρ
∣
∣etL(1)

〉 = 1,
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and hence μt
ρ is a probability measure. An element ξ ∈ Ξt is a quantum trajectory which

represent the history of the system during the time interval [0, t]. Observe that the system can
exchange entropy with the reservoir Rj only in quanta of the form ω ∈ sp(Sj )−sp(Sj ) = Ωj

where Sj = − logρj . An element ξ = [ξ1, . . . , ξN ] of Ξt is a chronologically ordered list
of elementary events ξk = (jk,ωk, sk) which we interpret in the following way: at time sk

the system has exchanged an entropy quantum ωk with reservoir Rjk . According to this
interpretation, the random variable

ςj (ξ) = 1

t

∑

k:jk=j

ωk,

represents the mean rate of entropy exchange of the system with reservoir Rj during the
time interval [0, t]. It follows that one can rewrite the expansion (40) as

〈
ρ
∣∣etL(α) (1)

〉 =
∫

Ξt

e−t
∑M

j=1 αj ςj (ξ) dμt
ρ(ξ).

This proves Part (2) of Theorem 3.1 and identifies the measure P t
ρ as the law of the random

variable ς(ξ) = (ς1(ξ), . . . , ςM(ξ)) induced by the measure μt
ρ .

7 Proofs

7.1 Detailed Balance

To a faithful state ρ, we associate two groups of transformations of O, the modular group
Δz

ρ(X) = ρzXρ−z, and the group Rz
ρ(X) = ρzXρz, z ∈C. Δ1

ρ = Δρ is the modular operator
of the state ρ. Note that Δiα

ρ ∈ CP1(O) and Rα
ρ ∈ CP(O) for α ∈R.

Theorem 7.1 Let ρ be a faithful state on O and L = i[T , · ] − 1
2 {Φ(1), · } + Φ a Lindbla-

dian generating a QDS. Suppose that L∗(ρ) = 0 and Φρ = Φ . Then:

(1) The Hermitian and anti-Hermitian parts of L w.r.t. the inner product induced by ρ are
given by

L(d)(X) = 1

2

(
L+Lρ

)
(X) = −1

2

{
Φ(1),X

} + Φ(X),

L(h)(X) = 1

2

(
L−Lρ

)
(X) = i[T ,X].

They are also called dissipative and Hamiltonian parts of L.
(2) L, L(h), L(d) and Φ commute with the modular operator Δρ . In particular, T and Φ(1)

commute with ρ and L(d)∗(ρ) = L(h)∗(ρ) = 0.
(3) The CP map Φ admits a decomposition

Φ =
∑

ω∈sp(logΔρ)

Φω,

where Φω ∈ CP(O) satisfies Φω(Xρ−α)ρα = e−αωΦω(X), Φρ
ω = Φ−ω and Φ∗

ω = eωΦ−ω .
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(4) For α ∈C define Lα = Rα/2
ρ ◦L ◦R−α/2

ρ . Then

Lα(X) = L
(
Xρ−α

)
ρα = i[T ,X] − 1

2

{
Φ(1),X

} +
∑

ω∈sp(logΔρ)

e−αωΦω(X), (41)

holds for all X ∈ O. Moreover, {etLα }t≥0 is a CP(O) semigroup for α ∈ R.
(5) If the pair (ρ,L) is time-reversible with time-reversal Θ , then for all α ∈R

Θ ◦L∗
α = L1−α ◦ Θ.

Remark The proofs of Parts (1)–(3) can be found in [3, 42]. For the readers convenience we
provide a complete proof below.

Proof We start with the simple remarks that L∗(X) = −i[T ,X]− 1
2 {Φ(1),X}+Φ∗(X) and

that Mρ(X) = M∗(Xρ)ρ−1 for any linear map M on O. We recall that M is a ∗-map if
M(X∗) = M(X)∗ for all X ∈ O. The maps L and L∗, as generators of positive semigroups,
and Φ as a positive map, are all ∗-maps.

The fact that Φ is ρ-self-adjoint implies Φ∗(Xρ) = Φ(X)ρ for all X ∈ O and in partic-
ular that Φ∗(ρ) = Φ(1)ρ. Thus, since T , Φ(1) and ρ are self-adjoint, it follows from

0 = L∗(ρ) = −i[T ,ρ] + Φ∗(ρ) − 1

2

{
Φ(1), ρ

} = 1

2

[
Φ(1) − 2iT ,ρ

]
,

that ρ commutes with T and Φ(1). A simple calculation yields

Lρ(X) = −i[T ,X] + Φ(X) − 1

2

{
Φ(1),X

}
, (42)

and Part (1) follows.
The formula (42) implies that Lρ is a ∗-map. Thus, one can write

Lρ
(
Δρ(X)

) = L∗(ρX)ρ−1 = L∗((X∗ρ
)∗)

ρ−1 = L∗(X∗ρ
)∗

ρ−1

= (
Lρ

(
X∗)ρ

)∗
ρ−1 = Δρ

(
Lρ(X)

)
. (43)

It follows that [Lρ,Δρ] = 0 and, since Δρ is ρ-self-adjoint, that [L,Δρ] = 0. Clearly,
[T ,ρ] = 0 implies that [L(h),Δρ] = 0 and L(h)∗(ρ) = 0. Thus, one also has [L(d),Δρ] = 0
and

L(d)∗(ρ) = L∗(ρ) −L(h)∗(ρ) = 0.

Finally, [Φ(1), ρ] = 0 implies [Φ,Δρ] = 0, which concludes the proof of Part (2).
Denote by logρ = ∑

λ λPλ the spectral representation of logρ. The operator logΔρ =
[logρ, · ] is self-adjoint on O, with spectrum sp(logΔρ) = sp(logρ)−sp(logρ). Its spectral
representation is given by

logΔρ =
∑

ω∈sp(logΔρ)

ωPω, Pω(X) =
∑

λ−μ=ω

PλXPμ.
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Since Φ commutes with Δρ , it commutes with each of the spectral projection Pω , and in
particular one has Pω ◦ Φ ◦Pω = Pω ◦ Φ . Thus, setting

Φω(X) =
∑

λ−μ=ω

λ′−μ′=ω

PμΦ(PλXPλ′)Pμ′ ,

we have

∑

ω∈sp(logΔρ)

Φω(X) =
∑

λ−μ=λ′−μ′
PμΦ(PλXPλ′)Pμ′ =

∑

λ−λ′=μ−μ′
PμΦ(PλXPλ′)Pμ′

=
∑

ω∈sp(logΔρ)

Pω

(
Φ

(
Pω(X)

)) =
∑

ω∈sp(logΔρ)

Pω

(
Φ(X)

) = Φ(X).

Moreover, since Φ is completely positive, it follows from the identity

∑

i,j

B∗
i Φω

(
A∗

i Aj

)
Bj =

∑

(i,λ),(j,μ)

B∗
i,λΦ

(
A∗

i,λAj,μ

)
Bj,μ,

where Ai,λ = AiPλ and Bi,λ = Pλ−ωBi , that Φω is completely positive. Next, note that the
identity

PμΦ
(
PλXρ−αPλ′

)
Pμ′ρα = PμΦ(PλXPλ′)Pμ′e−α(λ′−μ′),

implies

Φω

(
Xρ−α

)
ρα = e−αωΦω(X). (44)

The identity Φ∗(X) = Φ(Xρ−1)ρ and a simple calculation yield

Φ∗
ω(X) =

∑

λ−μ=ω

λ′−μ′=ω

PλΦ
∗(PμXPμ′)Pλ′ =

∑

λ−μ=ω

λ′−μ′=ω

PλΦ
(
PμXPμ′ρ−1

)
ρPλ′

=
∑

λ−μ=ω

λ′−μ′=ω

PλΦ(PμXPμ′)Pλ′eλ′−μ′ = eωΦ−ω(X).

The last identity combined with Eq. (44) gives

Φρ
ω(X) = Φ∗

ω(Xρ)ρ−1 = eωΦ−ω(Xρ)ρ−1 = Φ−ω(X),

and Part (3) follows.
To prove Part (4), note that since L commutes with Δρ , one has

Lα(X) = Rα/2
ρ ◦L ◦R−α/2

ρ (X) = Rα/2
ρ ◦ Δ−α/2

ρ ◦L ◦ Δα/2
ρ ◦R−α/2

ρ (X)

= ρα/2ρ−α/2L
(
ρα/2ρ−α/2Xρ−α/2ρ−α/2

)
ρα/2ρα/2 = L

(
Xρ−α

)
ρα.

The formula (41) follows from the relation Lα(X) = L(Xρ−α)ρα , the fact that ρ commutes
with T and Φ(1) and Eq. (44). Since etLα = Rα/2

ρ ◦ etL ◦ R−α/2
ρ , {etLα }t≥0 is a CP(O)

semigroup for all α ∈R, and Part (4) follows.
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It remains to prove Part (5). Define L(d)
α (X) = L(d)(Xρ−α)ρα . A simple calculation gives

L(d)∗
α (X) = L(d)∗(Xρα

)
ρ−α,

and Part (1) implies

L(d)∗(X) = L(d)ρ
(
Xρ−1

)
ρ = L(d)

(
Xρ−1

)
ρ.

Hence,

L(d)∗
α = L(d)

1−α.

Since Θ is involutive, the relation Lρ ◦ Θ = Θ ◦ L implies L ◦ Θ = Θ ◦ Lρ . It follows
from Part (1) that L(h) ◦ Θ = −Θ ◦ L(h) and L(d) ◦ Θ = Θ ◦ L(d). Moreover, Θ(ρα) = ρα

implies L(d)
α ◦ Θ = Θ ◦L(d)

α . Thus, one has

L∗
α = L(h)∗ +L(d)∗

α = −L(h) +L(d)

1−α,

and

Θ ◦L∗
α = (

L(h) +L(d)

1−α

) ◦ Θ = L1−α ◦ Θ.

�

We finish this section with:

Theorem 7.2 Let ρ be a faithful state and L a Lindbladian on O generating a QDS. Suppose
that L∗(ρ) = 0. Then the following statements are equivalent:

(1) There exist a self-adjoint T ∈ O such that the Hermitian part of L w.r.t. the inner product
induced by ρ has the form

L(h)(X) = 1

2

(
L−Lρ

)
(X) = i[T ,X].

(2) There exists a Lindblad decomposition L = i[T , · ]− 1
2 {Φ(1), · }+Φ such that Φρ = Φ .

Remark This theorem establishes that Definition 2.4 (a) is equivalent to the definition of
detailed balance given in [42] (see also Sect. IV in [48]). Although we shall not make use of
this result in the sequel, we include the proof for reader’s convenience.

Proof The implication (2) ⇒ (1) follows from Part (1) of Theorem 7.1. To prove the impli-
cation (1) ⇒ (2), note first that (1) implies that

L(d) = 1

2

(
L+Lρ

)
,

is a Lindbladian generating a QDS. Since L(d) is ρ-self-adjoint, arguing as in (43) one de-
duces that [Δρ,L(d)] = 0. Let now L = i[S, · ] − 1

2 {Ψ (1), · } + Ψ be a Lindblad decompo-
sition. Since

L(d) = lim
T →∞

1

T

∫ T

0
Δit

ρ ◦L(d) ◦ Δ−it
ρ dt,
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setting

M = lim
T →∞

1

T

∫ T

0
ρ it Sρ−itdt, Ξ = lim

T →∞
1

T

∫ T

0
Δit

ρ ◦ Ψ ◦ Δ−it
ρ dt,

we deduce that

L(d) = i[M, · ] − 1

2

{
Ξ(1), ·} + Ξ,

is also a Lindblad decomposition. Clearly, [Δρ,Ξ ] = 0, [M,ρ] = 0, [Ξ(1), ρ] = 0. Hence,

L(d)ρ = −i[M, · ] − 1

2

{
Ξ(1), ·} + Ξρ,

Ξρ(X) = ρ−1/2Ξ ∗(ρ1/2Xρ1/2
)
ρ−1/2,

and we derive that Ξρ(1) = Ξ(1) +L(d)ρ(1) = Ξ(1) +L(d)(1) = Ξ(1). Setting

Φ = 1

2

(
Ξ + Ξρ

)
,

we get

L(d) = 1

2

(
L(d) +L(d)ρ

) = −1

2

{
Φ(1), ·} + Φ,

where Φ is CP and Φρ = Φ . Hence, L = i[T , · ] − 1
2 {Φ(1), · } + Φ is a Lindblad decompo-

sition of L with Φρ = Φ . �

7.2 Irreducibility and Positivity Improving

We start with the following observation of [57]:

Proposition 7.3 A positive linear map Φ : O → O is irreducible iff etΦ is positivity improv-
ing for some (and hence all) t > 0.

Proof If Φ is irreducible, then it follows from Lemma 2.1 in [28] that

(Id + Φ)dimH−1,

is positivity improving, and so etΦ is positivity improving for all t > 0. To prove the con-
verse, suppose that etΦ is positivity improving and that Φ(P ) ≤ λP , where λ > 0 and P �= 0
is a projection. Then Φn(P ) ≤ λnP for all n, and so 0 < etΦ(P ) ≤ eλtP . The last relation
implies that P = 1. �

Proof of Theorem 2.1 We follow [57]. Let ϕ,ψ ∈ H be non-zero vectors and t > 0. Expand-
ing etΦ∗

into a power series, we get

〈
ϕ
∣
∣etΦ∗(|ψ〉〈ψ |)ϕ〉 = ∣

∣〈ϕ|ψ〉∣∣2 +
∞∑

n=1

tn

n!
∑

j1,...,jn

∣
∣〈ϕ|Vj1 · · ·Vjnψ〉∣∣2

.

Hence, 〈ϕ|etΦ∗
(|ψ〉〈ψ |)ϕ〉 = 0 iff ϕ ⊥ Aψ , and we deduce that etΦ∗

is positivity improving
iff Aψ = H for all non-zero vectors ψ ∈ H. Since etΦ∗

is positivity improving iff etΦ is, the
result follows from Proposition 7.3. �
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Proof of Theorem 2.2 The proof of based on Perron-Frobenius theory of positive maps
developed in [28]. Let t > 0 be given. The map etL is positive and its spectral radius is et�.
It follows from Theorem 2.5 in [28] that et� is an eigenvalue of etL, and that there exists a
non-zero M ∈ O+ such that

etL(M) = et�M.

Since the map etL is positivity improving, M > 0. Define

Ψ (X) = M−1/2et (L−�)
(
M1/2XM1/2

)
M−1/2.

The map Ψ is unital, completely positive (hence Schwartz), and positivity improving (hence
irreducible). The same holds for Ψ n , n ≥ 1, and it follows from Theorem 4.2 in [28] that 1
is a simple eigenvalue of Ψ and that Ψ has no other eigenvalues on the unit circle |z| = 1.
Hence, L has a simple eigenvalue at � and no other eigenvalues on the line Re z = �.

Denote by μ the eigenvector of L∗ associated to the eigenvalue �. Since etL∗
is positivity

improving by duality, one can chose μ > 0 and normalize it by 〈μ|M〉 = 1. Let δ > 0 be the
distance from sp(L) \ {�} to the line Re z = �. Then, for any ε > 0,

〈
ρ
∣∣etL(X)

〉 = et�
(〈ρ|M〉〈μ|X〉 + O

(
e−t (δ−ε)

))
, (45)

holds for all states ρ and all X ∈ O. Since 〈ρ|M〉 > 0 and 〈μ|X〉 > 0 for non-zero X ∈ O+,
Eq. (3) follows.

If L(1) = 0, then etL(1) = 1 and since ‖etL‖ = ‖etL(1)‖ = 1, it follows that � = 0 and
M = 1. By duality, (45) yields

etL∗
(ρ) = μ + O

(
e−t (δ−ε)

)
,

and the semigroup {etL}t≥0 is relaxing exponentially fast to the faithful state ρ+ = μ. �

Proof of Theorem 2.3 Note that K0 : X �→ K∗X + XK generates a continuous group of
completely positive maps on O, namely etK0(X) = etK∗

XetK . Denoting Γ t = e−tK0 ◦ etK,
it is sufficient to show that 〈ϕ|Γ t(|ψ〉〈ψ |)ϕ〉 > 0 for any non-zero vectors ϕ,ψ ∈ H and all
t > 0. To prove this claim, let us assume that 〈ϕ|Γ t0(|ψ〉〈ψ |)ϕ〉 = 0 for some t0 > 0. The
Dyson expansion for Γ t0 gives

Γ t0 = Id +
∞∑

n=1

∫

Δn

Φn
s ds,

where

Δn = {
s = (s1, . . . , sn) ∈R

n
∣∣0 ≤ s1 ≤ · · · ≤ sn ≤ t0

}
,

Φs = e−sK0 ◦ Φ ◦ esK0 for s ∈R, and Φn
s = Φs1 ◦ Φs2 ◦ · · · ◦ Φsn for s ∈ Δn. It follows that

〈
ϕ
∣
∣Γ t0

(|ψ〉〈ψ |)ϕ〉 = ∣
∣〈ϕ|ψ〉∣∣2 +

∞∑

n=1

∫

Δn

〈
ϕ
∣
∣Φn

s

(|ψ〉〈ψ |)ϕ〉
ds = 0.

Since the functions s �→ 〈ϕ|Φn
s (|ψ〉〈ψ |)ϕ〉 are continuous and non-negative, we infer that

〈ϕ|Φn
s (|ψ〉〈ψ |)ϕ〉 = 0 for all n and all s ∈ Δn, and in particular that 〈ϕ|Φn(|ψ〉〈ψ |)ϕ〉 = 0

for all n. Hence, 〈ϕ|etΦ(|ψ〉〈ψ |)ϕ〉 = 0 for all t ≥ 0, and Proposition 7.3 implies that ϕ = 0
or ψ = 0. �
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For later reference, we mention the following simple fact:

Proposition 7.4 Let Φj , j = 1, . . . , n, be positive linear maps such that
∑

j Φj is irre-
ducible. If λ1, . . . , λn are strictly positive then

∑
j λjΦj is irreducible.

Proof The result follows from the obvious inequality

min
i

λi

∑

j

Φj ≤
∑

j

λjΦj ≤ max
i

λi

∑

j

Φj .

�

7.3 Proof of Theorem 3.1

(1)–(2) were already proven in Sect. 6.
(3)–(4) By Eq. (39), Proposition 7.4, and Theorem 2.3, the CP semigroup {etL(α)}t≥0 is

positivity improving for all α ∈ R
M , and the statement follows from Theorem 2.2.

(5) Note that the map C
M � α �→ L(α) is entire analytic. Since e(α) is a simple eigenvalue

of L(α) for all α ∈ R
M , the regular perturbation theory implies that e(α) is a real analytic

function of α. Property (2) and Hölder’s inequality yield that e(α) is a convex function of α.
(6) This part also follows from regular perturbation theory. Fix α0 ∈ R

M and set

δ = 1

2
min

{
e(α0) − Re z

∣
∣ z ∈ sp(L(α0)) \ {

e(α0)
}}

> 0.

If ε is small enough and α ∈ Dε = {z ∈CM | |α − α0| < ε}, one has

〈
ρ
∣∣etL(α) (1)

〉 = ete(α)
(〈ρ|Mα〉〈μα|1〉 + O

(
et (−δ+O(ε))

))
,

where e(α), Mα and μα are analytic functions of α such that 〈ρ|Mα〉〈μα|1〉 −
〈ρ|Mα0〉〈μα0 |1〉 = O(ε) and 〈ρ|Mα0〉〈μα0 |1〉 > 0. It follows that there exists ε > 0 such
that for α ∈ Dε ,

lim
t→∞

1

t
log

〈
ρ
∣
∣etL(α) (1)

〉 = e(α).

(7) Let Θ be the time-reversal map. By Property (5) of Theorem 7.1 one has

Θ ◦L∗
(α) = L(1−α) ◦ Θ,

for all α ∈ R
M . It follows that sp(L(α)) = sp(L(1−α)) and hence e(α) = e(1 − α).

(8) If Hypothesis (KMSβ ) is satisfied, then ρj = Z−1
j νβj with ν = e−HS and Zj = tr(νβj ).

Hence, Rαj
ρj = Z

−2αj

j Rαj βj
ν and Part (4) of Theorem 7.1 yields

L(α) =
M∑

j=1

Rαj βj /2
ν ◦Lj ◦R−αj βj /2

ν .

It follows that

L(α+λβ−1) = Rλ/2
ν ◦L(α) ◦R−λ/2

ν ,

and so sp(L(α+λβ−1)) = sp(L(α)). In particular, e(α + λβ−1) = e(α).
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7.4 Proof of Theorem 3.4

(1) At α = 0, the spectral projection of L(α) = L associated to its dominant eigenvalue 1 is
|1〉〈ρ+|. Thus, for α sufficiently close to 0 ∈ RM , e(α) = E1(α)/E0(α) where

En(α) =
∮

Γ

zn
〈
ρ+

∣∣(z −L(α))
−1(1)

〉 dz

2π i
,

and Γ is a small circle centred at 1 such that no other point of sp(L) is on or inside Γ . Since
(z − L)−1(1) = z−1, one has E1(0) = 0 and E0(0) = 1 and hence (∂αj

e)(0) = (∂αj
E1)(0).

An elementary calculation yields

(∂αj
En)(0) =

∮

Γ

zn
〈
ρ+

∣∣(z −L)−1 ◦L;αj
◦ (z −L)−1(1)

〉 dz

2π i
,

where

L;αj
(X) = ∂αj

L(α)(X)|α=0 = Lj (XSj ) −Lj (X)Sj . (46)

The identities

L;αj
◦ (z −L)−1(1) = z−1L;αj

(1) = z−1Ij ,

〈ρ+|(z −L)−1 = z−1〈ρ+|,
yield

(∂αj
E0)(0) = 0, (∂αj

E1)(0) = ρ+(Ij ),

and the statement follows.
(2) From the previous calculation, we easily infer

(∂αk
∂αj

e)(0) = (∂αk
∂αj

E1)(0)

=
∮

Γ

1

z

〈
ρ+

∣∣L;αk
◦ (z −L)−1(Ij ) +L;αj

◦ (z −L)−1(Ik) +L;αkαj
(1)

〉 dz

2π i
,

(47)

where

L;αkαj
(1) = ∂αk

∂αj
L(α)(1)|α=0 = δkj

(
Lj

(
S2

j

) − 2Lj (Sj )Sj

)
.

Theorem 7.1 (2) implies

Lj

(
etSj Xe−tSj

) = etSj Lj (X)e−tSj ,

and hence Lj ([Sj ,X]) = [Sj ,Lj (X)]. It follows that [Sj ,Lj (Sj )] = 0 and L;αkαj
(1) =

δkjDj (Sj , Sj ). Using the fact that

∮

Γ

1

z

〈
ρ+

∣
∣L;αk

◦ (z −L)−1
(
ρ+(Ij )

)〉 dz

2π i
=

∮

Γ

1

z2
ρ+(Ik)ρ+(Ij )

dz

2π i
= 0,
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we can replace Ij/k with Jj/k = Ij/k − ρ+(Ij/k) in Eq. (47). Since ρ+(Jj ) = 0, the mero-
morphic function (z −L)−1(Jj ) is regular at z = 0 and one has

lim
z→0

(z −L)−1(Jj ) =
∫ ∞

0
etL(Jj )dt,

the integral on the r.h.s. being absolutely convergent. We therefore have

(∂αk
∂αj

e)(0) =
∫ ∞

0
ρ+

(
L;αk

(
etL(Jj )

) +L;αj

(
etL(Jk)

))
dt + δkjρ+

(
Dj(Sj , Sj )

)
.

The relation

∂2e(α)

∂αj∂αk

∣∣
∣∣
α=0

= −
∫ ∞

0
ρ+

(
etL(Jj )J +

k + etL(Jk)J +
j

)
dt

+
∫ ∞

0
ρ+

(
Lk

(
etL(Jj )Sk

) +Lj

(
etL(Jk)Sj

))
dt + δjkρ+

(
Dj(Sj , Sj )

)
,

now follows from Eq. (46) and the identity

ρ+
(
Lk

(
etL(Jj )

)
Sk

) = 〈
Lk

(
etL(Jj )

)∣∣Sk

〉
ρ+ = 〈

etL(Jj )
∣
∣Lρ+

k (Sk)
〉
ρ+ = ρ+

(
etL(Jj )J +

k

)
.

Finally, an application of Vitali’s convergence theorem (see Appendix B in [36]) gives

∂2e(α)

∂αj∂αk

∣
∣∣
∣
α=0

= lim
t→∞ t

〈(
ςj − 〈ςj 〉ρ,t

)(
ςk − 〈ςk〉ρ,t

)〉
ρ,t

.
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17. Dereziński, J., Jakšić, V., Pillet, C.-A.: Perturbation theory of W∗-dynamics, Liouvilleans and KMS-
states. Rev. Math. Phys. 15, 447–489 (2003)

18. de Roeck, W.: Quantum fluctuation theorem: Can we go from micro to meso? Comptes Rendus Phys. 8,
674–683 (2007)

19. de Roeck, W.: Large deviation generating function for currents in the Pauli-Fierz model. Rev. Math.
Phys. 21, 549–585 (2009)

20. de Roeck, W., Kupianien, A.: ‘Return to Equilibrium’ for weakly coupled quantum systems: a simple
polymer expansion. Commun. Math. Phys. 305, 797–826 (2011)

21. de Roeck, W., Kupianien, A.: Approach to ground state and time-independent photon bound for massless
spin-boson models. Ann. H. Poincaré 14, 253–311 (2013)

22. de Roeck, W., Maes, C.: Steady state fluctuations of the dissipated heat for a quantum stochastic model.
Rev. Math. Phys. 18, 619–653 (2006)

23. Davies, E.B., Spohn, H.: Open quantum systems with time-dependent Hamiltonians and their linear
response. J. Stat. Phys. 19, 511–523 (1978)

24. Dümcke, R., Spohn, H.: The proper form of the generator in the weak coupling limit. Z. Physik B 34,
419–422 (1979)

25. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Applications of Math-
ematics, vol. 38. Springer, New York (1998)

26. Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violation in shearing steady flows.
Phys. Rev. Lett. 71, 2401–2404 (1993)

27. Esposito, M., Harbola, U., Mukamel, S.: Nonequilibrium fluctuations, fluctuation theorems, and counting
statistics in quantum systems. Rev. Mod. Phys. 81, 1665–1702 (2009)

28. Evans, D.E., Høegh-Krohn, R.: Spectral properties of positive maps on C∗-algebras. J. London. Math.
Soc. 17, 345–355 (1978)

29. Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Classics of Mathematics. Springer,
Berlin (1985). Reprinted in the series, 2006

30. Evans, D.J., Searles, D.J.: Equilibrium microstates which generate second law violating steady states.
Phys Rev. E 50, 1645–1648 (1994)

31. Fagnola, F., Umanità, V.: Detailed balance, time reversal, and generators of quantum Markov semi-
groups. Mathematical Notes 84, 108–115 (2008)

32. Gallavotti, G.: Extension of Onsager’s reciprocity to large fields and the chaotic hypothesis. Phys. Rev.
Lett. 77, 4334–4337 (1996)

33. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev.
Lett. 74, 2694–2697 (1995)

34. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970
(1995)

35. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level
systems. J. Math. Phys. 17, 821–825 (1976)
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