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Abstract For integers n,q = 1,2,3, . . . , let Poln,q denote the C-linear space of polynomials
in z and z̄, of degree ≤ n−1 in z and of degree ≤ q −1 in z̄. We supply Poln,q with the inner
product structure of

L2
(
C, e−m|z|2 dA

)
, where dA(z) = π−1dxdy, z = x + iy;

the resulting Hilbert space is denoted by Polm,n,q . Here, it is assumed that m is a positive
real. We let Km,n,q denote the reproducing kernel of Polm,n,q , and study the associated deter-
minantal process, in the limit as m,n → +∞ while n = m+ O(1); the number q, the degree
of polyanalyticity, is kept fixed. We call these processes polyanalytic Ginibre ensembles,
because they generalize the Ginibre ensemble—the eigenvalue process of random (normal)
matrices with Gaussian weight. There is a physical interpretation in terms of a system of free
fermions in a uniform magnetic field so that a fixed number of the first Landau levels have
been filled. We consider local blow-ups of the polyanalytic Ginibre ensembles around points
in the spectral droplet, which is here the closed unit disk D̄ := {z ∈ C : |z| ≤ 1}. We obtain
asymptotics for the blow-up process, using a blow-up to characteristic distance m−1/2; the
typical distance is the same both for interior and for boundary points of D̄. This amounts to
obtaining the asymptotical behavior of the generating kernel Km,n,q . Following (Ameur et
al. in Commun. Pure Appl. Math. 63(12):1533–1584, 2010), the asymptotics of the Km,n,q

are rather conveniently expressed in terms of the Berezin measure (and density)

dB〈z〉
m,n,q(w) := B〈z〉

m,n,q(w)dA(w), B〈z〉
m,n,q(w) = |Km,n,q(z,w)|2

Km,n,q(z, z)
e−m|w|2 .
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For interior points |z| < 1, we obtain that dB〈z〉
m,n,q(w) → dδz in the weak-star sense, where δz

denotes the unit point mass at z. Moreover, if we blow up to the scale of m−1/2 around z, we
get convergence to a measure which is Gaussian for q = 1, but exhibits more complicated
Fresnel zone behavior for q > 1. In contrast, for exterior points |z| > 1, we have instead that
dB〈z〉

m,n,q(w) → dω(w, z,De), where dω(w, z,De) is the harmonic measure at z with respect
to the exterior disk D

e := {w ∈ C : |w| > 1}. For boundary points, |z| = 1, the Berezin
measure dB〈z〉

m,n,q converges to the unit point mass at z, as with interior points, but the blow-
up to the scale m−1/2 exhibits quite different behavior at boundary points compared with
interior points. We also obtain the asymptotic boundary behavior of the 1-point function at
the coarser local scale q1/2m−1/2.

Keywords Bargmann-Fock space · Polyanalytic function · Determinantal point process

1 Introduction

1.1 Notation

We will write use standard notation, such as ∂X and int(X) for the boundary and the interior
of a subset X of the complex plane C. The complex conjugate of a complex number z is
usually written as z̄. We write R for the real line, D := {z ∈ C : |z| < 1} for the open unit
disk, and De := {z ∈ C : |z| > 1} for the open exterior (punctured) disk. The characteristic
function of a set E is written 1E . We write

dA(z) = π−1dxdy, where z = x + iy ∈C,

for the normalized area measure in C, and use the standard Wirtinger derivatives

∂z := 1

2
(∂x − i∂y), ∂̄z := 1

2
(∂x + i∂y), where z = x + iy.

We also write � for the (quarter) Laplacian

�z := ∂z∂̄z = 1

4

(
∂2

x + ∂2
y

)
.

1.2 Determinantal Projection Processes

Given a locally compact topological space X with a positive Radon measure μ, a finite deter-
minantal projection process is a random configuration of n points defined by the following
probability measure on Xn:

dP (z1, . . . , zn) = 1

n! det
[
Kn(zi, zj )

]n

i,j=1
dμ(z1) · · ·dμ(zn). (1.1)

Here, Kn is the integral kernel of a projection operator to an n-dimensional subspace of
L2(X,μ). It is customary to identify all the permutations of the points and think the process
as a random measure

∑n

j=1 δzj
on X. It should be mentioned that finite determinantal projec-

tion processes presented here are a subclass of more general determinantal point processes
which, for instance, can contain infinitely many points. We omit the general definition, as
the processes we will consider in this paper are only of the special form (1.1).
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Determinantal processes were originally introduced by Macchi [28] to model fermions in
quantum mechanics. Indeed, the probability density (1.1) vanishes whenever any two points
in the n-tuple (z1, . . . , zn) coincide (fermions are forbidden to be in the same state). We
interpret this as saying that the points in the n-tuple repel each other. Point processes of this
kind appear in several contexts, e.g., in random matrix theory and combinatorics (for general
surveys, see [10, 24]; we should also mention the books [6, 11, 12, 15, 29]).

1.3 Eigenvalues of Random Normal Matrix Ensembles

Our main motivating example comes from the theory of random normal matrices. This
topic has in recent years been subject to rather active investigation by physicists as well
as by mathematicians. For an introduction, see, e.g., [38]. So, we shall use X = C and
dμ(z) = e−mQ(z)dA(z), for a positive weight function Q satisfying some mild regularity and
growth conditions; m is a positive real parameter, and dA(z) = π−1dxdy is the normalized
area measure. Let us write L2(C, e−mQ) := L2(X,μ) in this situation. The determinantal
projection process is associated with an n-dimensional subspace of L2(C, e−mQ), and we
will use the space Poln of all polynomials in z of degree ≤ n− 1; we write Polm,n to indicate
that we have supplied Poln with the Hilbert space structure of L2(C, e−mQ). The density of
the process is then given by the reproducing kernel Km,n of the space Polm,n. So, we are
talking about the probability measure

dP (z1, . . . , zn) = 1

n! det
[
Km,n(zi, zj )

]n

i,j=1
e−m{Q(z1)+···+Q(zn)}dA(z1) · · ·dA(zn). (1.2)

In terms of the correlation kernel

�m,n(z,w) := Km,n(z,w)e− 1
2 m{Q(z)+Q(w)}, (1.3)

which is the integral kernel of an orthogonal projection on L2(C), the expression (1.2) sim-
plifies to

dP (z1, . . . , zn) = 1

n! det
[
�m,n(zi, zj )

]n

i,j=1
dA(z1) · · ·dA(zn). (1.4)

The process described by (1.2) and (1.4) represents the eigenvalues of a random normal
matrix picked from the distribution

1

Zm,n

e−m tr[Q(M)]dvolNM(n)(M), (1.5)

where dvolNM(n)(M) is the natural Riemannian volume form on the n × n normal matrices
inherited from the metric of Cn2

(see [38]); Zm,n is the normalization constant needed to
make the total mass equal to 1. We are interested in the limiting behavior of the process
as m,n → +∞ while n = mτ + O(1) for some positive real number τ . Without loss of
generality, we will consider only τ = 1.

1.4 Local Blow-Up Processes

Let N+ and N+,0 be the set of points defined by

N+ := {
w ∈C : �Q(w) > 0

}
, N+,0 := {

w ∈ C : �Q(w) ≥ 0
}
.
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In the arXiv preprint [20], which appeared later in the expanded form [21], the function Q̂

was defined as a certain envelope of Q, namely the largest subharmonic function in C which
is ≤ Q everywhere and has the growth bound

Q̂(z) = log |z|2 + O(1), as |z| → +∞.

It is known that �Q̂ = 1S�Q for some compact set S (see, e.g., [21]). We assume that
S is the minimal compact with this property, and call S a spectral droplet. We then have
S ⊂ N+,0. The point process (1.2) has the following property: as m,n → +∞ while n =
m+ O(1), the points will tend to accumulate on the set S with density �Q there. Moreover,
the set S ∩ N+ is rather regular for real-analytic Q, as the Sakai theory applies (cf. [23];
see also the related papers [19] and [22]). Typically we then expect a real-analytic boundary,
with the exception of cusps and contact (or kissing) points. Let us refer to the set int(S∩N+)

as the bulk. The results of [3, 4] show that for bulk points z, the local blow-up process at z,
with coordinates (ξ1, . . . ξn),

ξj := m1/2
[
�Q(z)

]1/2
(zj − z),

where (z1, . . . , zn) are from the process (1.2), converges weakly to the translation invariant
Ginibre(∞) process, as m,n → +∞ while n = m + o(1). The associated generating kernel
is the reproducing kernel (ξ, η) �→ eξ η̄ of the Bargmann-Fock space. This has the flavor of
a universality result. The corresponding statement in the Hermitian random matrix theory is
the universality of the sine kernel for bulk (the points zj would in this context be eigenvalues
of the random matrix). We observe here that the sine kernel is the reproducing kernel for
the Paley-Wiener space (a subspace of L2(R) consisting of entire functions). As for the
two boundary points in the GUE model, the Tracy-Widom distribution appears, which is
generated by the Airy kernel. The Airy kernel is reproducing for another Hilbert space of
entire functions (see [27]). This suggests that for real-analytic Q and z ∈ ∂S ∩ N+, there
should exist a local blow-up

ξj := mθ(zj − z),

where θ = θ(z) is a suitable positive real, such that as m,n → +∞ while n = m + o(1), the
process (ξ1, . . . , ξn) would converge to a determinantal process whose generating kernel is
the reproducing kernel of a Hilbert space of entire functions. We verify this in the context
of the Ginibre ensemble (i.e., with Q(z) = |z|2), and identify the associated Hilbert space
as the closed subspace of the Bargmann-Fock space characterized by slow growth in a half-
plane (see also Sect. 5 where a characterization via the Bargmann transform is presented). In
that case we have θ = 1

2 as in the case of interior points. This is in contrast with Hermitian
random matrix theory, where a different scaling is required for boundary and for bulk points.

1.5 The Berezin Measure and the Berezin Density

In [3–5], Ameur, Hedenmalm, and Makarov study the Berezin measure dB〈z〉
m,n and Berezin

density B〈z〉
m,n:

dB〈z〉
m,n(w) := B〈z〉

m,n(w)dA(w), B〈z〉
m,n(w) := |Km,n(z,w)|2

Km,n(z, z)
e−mQ(w),

which arise in the study of the Berezin transform. The Berezin measure is a probability
measure, which makes it more stable than the reproducing kernel Km,n of Polm,n itself as we
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let m,n → +∞. In terms of the point process (1.2), B〈z〉
m,n measures the amount of repulsion

from z caused by placing one of the points at z. For bulk points z, we have the convergence
dB〈z〉

m,n → dδz in the weak-star sense of measures, as m,n → +∞ while n = m + o(1).
Here, dδz is the Dirac point mass at z. In fact, there is a better result: the blow-up Berezin
density

B̂〈z〉
m,n(ξ) = 1

m�Q(z)
B〈z〉

m,n

(
z + ξ√

m�Q(z)

)

converges to the standard Gaussian e−|ξ |2 . This corresponds to the convergence of the local
blow-up of the point process to the Ginibre(∞) process (cf. [3, 4]). On the other hand, for
points z outside the spectral droplet, i.e., for z ∈ C\S , the Berezin measure dB〈z〉

m,n converges
in the weak-star sense of measures to harmonic measure at z with respect to the exterior do-
main C \S as m,n → +∞ while n = m+ o(1) (see [3] for Q = |z|2, and [4] for the general
result).

1.6 The Local Blow-Up of the Point Process and the Berezin Density

It is convenient to think of the point process (1.2) in terms of the k-point intensities

det
[
�m,n(zi, zj )

]k

i,j=1
= det

[
Km,n(zi, zj )e

− 1
2 m[Q(zi )+Q(zj )]]k

i,j=1
.

We notice quickly that the intensities are unchanged if the kernel changed to

Kχ
m,n(z,w) := χ(z)χ̄(w)Km,n(z,w),

provided that χ is measurable with |χ(z)| ≡ 1 (we can call this a “gauge transformation”).
This can help in the asymptotical analysis of local blow-ups. For k = 2, we get the 2-point
intensity

{
Km,n(z1, z1)Km,n(z2, z2) − ∣

∣Km,n(z1, z2)
∣
∣2}

e−mQ(z1)−mQ(z2)

= Km,n(z1, z1)e
−mQ(z1)

{
Km,n(z2, z2)e

−mQ(z2) − |Km,n(z1, z2)|2
Km,n(z1, z1)

e−mQ(z2)

}
, (1.6)

where we recognize the Berezin density as a correction to the product of the two 1-point
densities; the 1-point intensity is

z �→ Km,n(z, z) e−mQ(z).

So, as far as the 2-point intensity goes, we just need the 1-point intensity and the Berezin
density. Since the 1-point intensity is just the restriction to z1 = z2 of the Berezin density, the
Berezin density is all we need to describe the 2-point intensity. We will be a little lazy and
just work with the Berezin density in the context of local blow-ups, although the asymptotics
of the k-point intensity would strictly speaking require a little more work. So, although we
state many of our assertions regarding local blow-ups in terms of the Berezin density, we
maintain that they generalize to statements about the point processes (cf. [4]).
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1.7 The Ginibre Ensemble and Its Polyanalytic Generalization

The case Q(z) = |z|2 of (1.5) (or (1.2)) is known as the Ginibre ensemble. The (probability
generating or reproducing) kernel is now particularly simple:

Km,n(z,w) = m

n−1∑

j=0

(mzw̄)j

j ! .

Here, S = D̄, the closed unit disk. We will consider a family of generalizations of the Ginibre
ensemble, the polyanalytic Ginibre ensembles, which are defined by the reproducing kernels
Km,n,q of the subspaces

Polm,n,q := span
{
zj zk : 0 ≤ j ≤ n − 1, 0 ≤ k ≤ q − 1

}

supplied with the Hilbert space structure of L2(C, e−m|z|2). The correlation kernels �m,n,q

for the polyanalytic Ginibre ensembles are given by the formula analogous to (1.3):

�m,n,q(z,w) := Km,n,q(z,w)e− 1
2 m{Q(z)+Q(w)}. (1.7)

The parameter value q = 1 corresponds to the standard Ginibre process. In general, we now
project to the nq-dimensional subspace of the polyanalytic polynomials, where the degree
in z̄ is ≤ q − 1, and the degree in z is ≤ n − 1. Note that the dimension of the subspace is
now nq and not n.

The polyanalytic Ginibre ensembles can be interpreted physically in the following way.
In quantum mechanics, the wavefunction of an n-body system consisting of non-interacting
fermions with wavefunctions ψj , j = 1, . . . , n, is given by the Slater determinant

det
[
ψj(zk)

]n

j,k=1
.

The important property of this expression is that it satisfies the Pauli exclusion principle,
i.e., it is antisymmetric with respect to interchanging two wavefunctions.

In this paper, the wavefunctions of the form ψ = ue− 1
2 m|z|2 , where u is an eigenfunction

of the differential operator (densely defined on L2(C, e−m|z|2))

�̃ = −∂z∂̄z + mz̄∂̄z,

play a special role. This operator represents (after suitable normalizations) a single particle
in the complex plane within a uniform magnetic field of which is strength m and perpendic-
ular to the plane. The eigenspaces for this operator are of the form (see, e.g., [30])

δA2
m,r+1(C) := A2

m,r+1(C) � A2
m,r (C),

where A2
m,r (C) is the Bargmann-Fock space of polyanalytic functions f satisfying

∂̄ rf (z) = 0 (cf. Sect. 2). These eigenspaces are often referred to as Landau levels (in
the literature, the term “Landau level” can also refer to the eigenvalue). The symbol “�”
means taking the orthogonal difference of the two subspaces of A2

m,r+1. We will denote by
ur+1,j , j = 1, . . . , n, some orthonormal basis of the space

δPolm,n,r+1 := Polm,n,r+1 � Polm,n,r ⊂ δA2
m,r+1(C).
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Fig. 1 The polyanalytic Ginibre
process with the kernel Km,n,q

with m = n = 61 and q = 3. The
simulation is based on the
algorithm by Hough, Krishnapur,
Peres, and Virág [24]

and write ψr+1,j := ur+1,j e− 1
2 m|z|2 for the corresponding wavefunctions. We now form the

wavefunction for a system where there are n fermions at each of the q first Landau levels:

Ψq,n(z) := det
[
ψr,i(zs,j )

]
nq×nq

, 1 ≤ i, j ≤ n, 1 ≤ r, s ≤ q.

Here, we write z = (z1,1, . . . , zr,i , . . . , zq,n) for an nq-tuple of complex numbers. The corre-
sponding probability amplitude is 1

Zq,n
|Ψq,n|2, where Zq,n is a normalization constant. By a

standard argument in random matrix theory (see [25] p. 47), this expression can be rewritten
as (the correlation kernel is given by (1.7))

1

Zq,n

|Ψq,n|2 = 1

(nq)! det
[
�1,n,q(zr,i , zs,j )

]
nq×nq

, 1 ≤ i, j ≤ n, 1 ≤ r, s ≤ q,

which is exactly the probability density of the polyanalytic Ginibre ensembles. As a result,
the polyanalytic Ginibre ensembles model systems of free fermions where all Landau levels
below a given level contain the same number of particles. We will focus on the case where
m and n large and kept relatively close to each other: physically, this corresponds to each
Landau level being completely filled. We should point out that in our treatment, there is no
special significance in the choice of having exactly the same number of particles in each
Landau level below the cut-off level—other configurations can be analyzed in a similar
manner.

For more background on the free fermion interpretation in the normal matrix (ground
state) model, see [37]; more information about the connection between polyanalytic func-
tions and Landau levels is contained in [1, 7, 30, 31, 36].

As for the point process, the points generally repel each other, but for q > 1, they also
tend to avoid certain geometric configurations, such as circles and lines. We have run a
simulation in Fig. 1.
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Fig. 2 The limiting Berezin
density for polyanalytic Ginibre
process with q = 3 exhibiting
Fresnel ring pattern. Here, white
is high and black is low Berezin
density

1.8 Results

Macroscopically, we find that the behavior of the polyanalytic Ginibre ensemble is similar
to that of the Ginibre ensemble. If we measure this in terms of the Berezin measure, we have
that as m,n → +∞ while n = m + O(1),

dB〈z〉
m,n,q → dδz for z ∈ D̄, dB〈z〉

m,n,q → dωz for z ∈ D
e,

where ωz is the harmonic measure of z with respect to the exterior disk D
e . Here, Km,n,q is

the reproducing kernel for Polm,n,q , and we use the notation

dB〈z〉
m,n,q(w) := B〈z〉

m,n,q(w)dA(w), B〈z〉
m,n,q(w) := |Km,n,q(z,w)|2

Km,n,q(z, z)
e−mQ(w),

for the corresponding Berezin measure and Berezin density. Interestingly, the microscopic
behavior of the Berezin measure dB〈z〉

m,n,q is quite different for q > 1 compared with the
Ginibre case q = 1. In terms of the blow-up Berezin density (�Q(z) = �|z|2 ≡ 1 here)

B̂〈z〉
m,n,q(ξ) = m−1 B〈z〉

m,n,q

(
z + m−1/2ξ

)
,

we have the following asymptotics as m,n → +∞ while n = m + O(1):

B̂〈z〉
m,n,q(ξ) −→ q−1L1

q−1

(|ξ |2)2
e−|ξ |2 for z ∈D, (1.8)

where L1
q−1 denotes the generalized Laguerre polynomial of degree q − 1 with parameter 1

(see (2.1) for the explicit expression). It is well-known that the Laguerre polynomial L1
q−1

has exactly q − 1 strictly positive roots, which implies that the Berezin density will exhibit a
typical Fresnel-type ring pattern (see Fig. 2). Taking (1.6) into account, we see that the zero
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rings of the Berezin kernel B̂〈z〉
m,n,q(ξ) correspond to circles centered at z where in the limit

as m,n → +∞ no repulsion occurs between the center z and points on those circles.
This resembles what happens in the one-dimensional GUE case, where the zero density

points for the Berezin density come from the zeros of the sine kernel. Actually, the analogy
is more than a superficial similarity. If we consider rather big values of q , and scale down to
local distance (mq)−1/2, with

B̃〈z〉
m,n,q

(
ξ ′) = (mq)−1 B〈z〉

m,n,q

(
z + (mq)−1/2ξ ′),

then by the above we have, for z ∈ D,

B̃〈z〉
m,n,q

(
ξ ′) −→ q−2L1

q−1

(
q−1|ξ ′|2)2

e−q−1|ξ ′ |2 ,

as m,n → +∞ with n = m + O(1). Next, if we let q → +∞, we get that (see [26] 18.11.5)

q−2L1
q−1

(
q−1|ξ ′|2)2

e−q−1|ξ ′ |2 −→
{+∞∑

i=0

(−1)i |ξ ′|2i

i!(i + 1)!

}2

= J1(2|ξ ′|)2

|ξ ′|2 ,

where J1 is the standard Bessel function. The identity

J1(2|ξ ′|)
|ξ ′| =

∫

D

e2i Re[ξ ′ ζ̄ ]dA(ζ)

shows that we are dealing with a planar analogue of the sine kernel (the sine kernel is the
Fourier transform of the characteristic function of the interval [−1,1], the one-dimensional
unit ball). We remark here that the asymptotics (1.8) which is obtained here in the model
case Q(z) ≡ |z|2 can be shown to hold at bulk points for rather general weights Q, see [18].

We also investigate the local behaviour of the Berezin transform when |z| = 1, i.e., when
z is on the boundary of the bulk. Using the same blow-up scale as with an interior point, we
show that the blow-up Berezin density B̂〈z〉

m,n,q(ξ) tends to a limit which can be expressed in
terms of Hermite polynomials (see Theorem 5.10). Here, too, there is a ring-like pattern in
the interior direction, but it is not so pronounced as it is for interior points (the bulk). We
express the 1-point intensity near a boundary point in terms of a sum of squares of Hermite
polynomials. The Wigner semi-circle law then gives the asymptotic behavior of the 1-point
function, which tells us the intensity of the process. We find that for big q , but much bigger
m,n with m = n + O(1), the 1-point function is nontrivial in the annulus

1 − q1/2m−1/2 ≤ |z| ≤ 1 + q1/2m−1/2;
inside it is essentially constant, and outside it more or less vanishes. Near the outward bound-
ary of the annulus at the scale (mq)−1/2, we expect the statistics of the point process to be
related with the well-known Airy point process (in the sense of Tracy and Widom).

We should mention that the model of the present paper has been studied previously in
physics literature, see Dunne [13]. However, as far as we know, the exact scaling limits of
the blow-up correlation kernels were not obtained earlier.

1.9 Lifting to Two Complex Variables

Analogous results to [3] are obtained on complex manifolds by Berman [8]. We note that the
polyanalytic Ginibre processes can also be viewed as processes in C

2 with the rather singular
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weight e−|z1|2δ0(z1 − z̄2), where δ0 is unit point mass at 0. Berman considers reproducing
kernels of polynomial subspaces as the total degree of the polynomials tends to infinity. In
contrast, here we discuss the case where one variable has bounded degree and the degree of
the other variable goes to infinity.

1.10 The Polyanalytic Ginibre Ensemble and Weighted Interpolation

It is well known in the theory of random matrices that for complex numbers z1, . . . , zn, we
have

1

n! det
[
Km,n,1(zi, zj )

]n

i,j=1
= 1

Zm,n,1
|�(z1, . . . , zn)|2,

where �(z1, . . . , zn) = Πi,j :i<j (zj − zi) is the van der Monde determinant. A point config-
uration in a compact set which maximizes the van der Monde determinant is known to be a
good choice of nodes for Lagrange interpolation [34]. Instead of considering points confined
to a compact set, one can add a weight to prevent the points from going off to infinity. This
leads to the same expression which arises in the context of random eigenvalues.

We turn to the polyanalytic case. One shows that

1

(nq)! det
[
Km,n,q(zi, zj )

]nq

i,j=1
= 1

Zm,n,q

|�q(z1, . . . , znq)|2,

where Zm,n,q is a normalization constant

Zm,n,q :=
∫

Cnq

|�q(z1, . . . , znq)|2e−m
∑nq

j=1 Q(zj )dA(z1) . . .dA(znq)

and

�q(z1, . . . , znq) = det

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

1 . . . 1
z1 . . . znq

... . . .
...

zn−1
1 . . . zn−1

nq

z̄1 . . . z̄nq

z̄1z1 . . . z̄nqznq

...
. . .

...

z̄
q−1
1 . . . z̄

q−1
nq

...
. . .

...

z̄
q−1
1 zn−1

1 . . . z̄
q−1
nq zn−1

nq

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

.

So, �q(z1, . . . , znq) is the polyanalytic analogue of the van der Monde determinant. As
in the case q = 1 (which gives the usual van der Monde determinant), the expression
|�q(z1, . . . , znq)|2 measures how good the configuration is for Lagrange interpolation by
polyanalytic polynomials. So, the polyanalytic Ginibre ensemble is a way to produce ran-
dom Lagrange interpolation sets, using the Gaussian weight for confinement.
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1.11 Further Results and Open Problems

In [33] and [4], the authors showed that the fluctuations of eigenvalues of random normal
matrices tend to Gaussian free field. The fluctuations of the polyanalytic Ginibre process
will be discussed in a separate paper—the limit is again the Gaussian free field, but the
variance depends on the degree of polyanalyticity.

One could naturally address all the questions discussed in this article with a more general
weight Q. We conjecture that the spectral droplet will be the same as in the analytic case,
i.e. that the points from the process will accumulate on the set S , with density given by the
equilibrium measure 1S�QdA. It is also likely that the blow-up of the Berezin density at a
bulk point z will have a universal limit, which we here computed to be q−1L

〈1〉
q−1(|ξ |2)2e−|ξ |2 .

2 Polyanalytic Bargmann-Fock Spaces

2.1 An Orthogonal Basis

We will consider the Bargmann-Fock space A2
m,q(C) of poly-analytic functions of degree

≤ q − 1, i.e., functions of the form

f (z) =
q−1∑

r=0

z̄rfr (z),

where all the components fr are entire, subject to the norm integrability condition

‖f ‖2
A2

m,q (C)
:= ‖f ‖2

L2(C,e−m|z|2 )
=

∫

C

|f (z)|2e−m|z|2 dA(z) < +∞.

Here, as always, m > 0. We note that A2
1,1(C) is the standard Bargmann-Fock space. As

before, let Polm,n,q be the closed subspace of A2
m,q(C), defined by the condition that all

the components fr are polynomials of degree less or equal to n − 1. Moreover, let Km,q

and Km,n,q denote the reproducing kernels for A2
m,q(C) and Polm,n,q , respectively. We will

be concerned with the asymptotic behaviour of the kernel Km,n,q , as m,n → +∞ while
n = m + O(1).

Bargmann-Fock-spaces of polyanalytic functions have been considered in, e.g., [36],
where the reproducing kernels and orthonormal bases were identified. We will attempt to
supply a self-contained account of these basic matters.

To begin with, we identify an orthonormal basis for the space Polm,n,q . Here, and later
as well, we will need some standard properties of the classical orthogonal polynomials. For
details, we refer the reader to [26]. We need the generalized Laguerre polynomials ((x)j :=
x(x + 1) · · · (x + j − 1) is the Pochhammer symbol)

Lα
k (x) :=

k∑

i=0

(−1)i

(
k + α

k − i

)
xi

i! =
k∑

i=0

(−1)i (α + i + 1)k−i

i!(k − i)! xi. (2.1)

Proposition 2.1 For q ≤ n, the following functions form an orthonormal basis for Polm,n,q

(i, r, j, k are all integer parameters):

e1
i,r (z) :=

√
r!

(r+i)! m
(i+1)/2zi Li

r

(
m|z|2)

, 0 ≤ i ≤ n − r − 1, 0 ≤ r ≤ q − 1,
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e2
j,k(z) :=

√
j !

(j+k)! m
(k+1)/2z̄k Lk

j

(
m|z|2)

, 0 ≤ j ≤ q − k − 1, 1 ≤ k ≤ q − 1.

Proof Clearly, all the above functions belong to the space Polm,n,q . Also, all the functions
e1
i,r are orthogonal to each of the functions e2

j,k , for the indicated ranges of the indices, as
can be seen by integrating along circles using polar coordinates. Next, we show that the
functions e1

i,r form an orthonormal set. Any two functions there having different parameter i

are orthogonal, again by integrating along circles using polar coordinates. So, we fix i, and
pick two indices r1, r2. We compute the inner product of two such functions:

∫

C

e1
i,r1

(z)e1
i,r2

(z)e−m|z|2 dA(z)

=
√

r1!
(r1 + i)!

√
r2!

(r2 + i)!m
i+1

∫

C

|z|2iLi
r1

(
m|z|2)

Li
r2

(
m|z|2)

e−m|z|2 dA(z)

=
√

r1!r2!
(r1 + i)!(r2 + i)!

∫ ∞

0
Li

r1
(t)Li

r2
(t) t ie−tdt = δr1,r2 ,

where the delta is in Kronecker’s sense. In a similar fashion, the functions e2
j,k form an

orthonormal set. So, the functions e1
i,r , e

2
j,k together form an orthonormal set. Next, the di-

mension of the span equals the total number of vectors, which we calculate to nq , which
equals the known dimension of the space Polm,n,q . The proof is complete. �

2.2 The Reproducing Kernel

For q ≤ n, we conclude that the reproducing kernel of Polm,n,q equals

Km,n,q(z,w) = m

q−1∑

r=0

n−r−1∑

i=0

r!
(r + i)! (mzw̄)iLi

r

(
m|z|2)

Li
r

(
m|w|2)

+ m

q−2∑

j=0

q−j−1∑

k=1

j !
(k + j)! (mzw)kLk

j

(
m|z|2)

Lk
j

(
m|w|2)

. (2.2)

Remark 2.2 In [2], it is pointed out that Perelomov in his book [32], p. 35, mentions that the
formula (2.2)—viewed as the explicit expression for the matrix elements of the displacement
operator—had been used by Feynman and Schwinger in a somewhat different form. For this
reason, Abreu and Feichtinger [2] suggest naming the orthogonal basis of Proposition 2.1
the Feynman-Schwinger basis for the polyanalytic Bargmann-Fock space.

We note that by plugging in n = +∞ in Proposition 2.1 we get an orthonormal basis for
the space A2

m,q(C). It follows that the same procedure of plugging in n = +∞ in the above
expression for Km,n,q gives us Km,q , the reproducing kernel for A2

m,q(C). What is probably
less obvious is that Km,q may be written in a much simpler form (this representation is,
however, known; compare with [7, 31]).

Proposition 2.3 We have that

Km,q(z,w) = m

q−1∑

r=0

∞∑

i=0

r!
(r + i)! (mzw̄)iLi

r

(
m|z|2)

Li
r

(
m|w|2)
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+ m

q−2∑

j=0

q−j−1∑

k=1

j !
(j + k)! (mz̄w)kLk

j

(
m|z|2)

Lk
j

(
m|w|2)

= mL1
q−1

(
m|z − w|2)

emzw̄.

Proof It is clear from Proposition 2.1 that the double sum expression equals Km,q(z,w), so
the only thing that needs attention is the last equality. We first do the case w = 0. Many of
the terms in the double sum vanish, so that we are left with

Km,q(z,0) = m

q−1∑

r=0

L0
r

(
m|z|2)

L0
r (0),

It is well-known that L0
r (0) = 1 and that

∑q−1
r=0 Lα

r = Lα+1
q−1 , so that the above reduces to

Km,q(z,0) = mL1
q−1

(
m|z|2)

.

We turn to general w ∈C. It is well-known that the transformation

Tw[f ](z) := e− 1
2 m|w|2−mzw̄f (z + w)

acts unitarily on A2
m,q(C); its adjoint is T∗

w = T−w . By the reproducing property of
Km,q(z,0), we have, for f ∈ A2

m,q(C),

e− 1
2 m|w|2f (w) = Tw[f ](0) =

∫

C

Twf (z)Km,q(z,0)e−m|z|2 dA(z)

=
∫

C

f (z)T∗
w

[
Km,q(·,0)

]
(z) e−m|z|2 dA(z)

= me− 1
2 m|w|2

∫

C

f (z)L1
q

(
m|z − w|2)

emz̄we−m|z|2 dA(z).

The claim that Km,q(z,w) = mL1
q−1(m|z − w|2)emzw̄ now follows immediately. �

2.3 Szegö Asymptotics

We shall show that the kernel Km,n,q(z,w) is approximated well by Km,q(z,w), provided
that z,w ∈ D are rather close to one another. It will be instrumental to study the asymptotic
behavior of the partial sums

Ek(ζ ) =
k∑

j=0

1

j !ζ
j

of the Taylor expansion of the exponential function. In [35], Szegö showed that

Ek(kζ )

ekζ
= 1 − 1√

2πk

(
ζe1−ζ

)k ζ

1 − ζ

(
1 + ε1

k (ζ )
)
, (2.3)

provided that |ζe1−ζ | < 1 and |ζ | < 1, whereas

Ek(kζ )

ekζ
= 1√

2πk

(
ζe1−ζ

)k ζ

ζ − 1

(
1 + ε2

k (ζ )
)
, (2.4)
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provided that |ζe1−ζ | < 1 and |ζ | > 1. Here, we have the convergence

lim
k→+∞

ε1
k (z) = lim

k→+∞
ε2
k (z) = 0

uniformly on compact subsets of the respective domains. As for (2.4), the uniform conver-
gence ε2

k (ζ ) → 0 as k → +∞ holds also in certain unbounded subdomains; in particular,
along the real line, we have uniform convergence on all intervals [a,+∞[ with a > 1.

2.4 An Elementary Estimate of Laguerre Polynomials

The following elementary estimate of generalized Laguerre polynomials will prove useful.

Lemma 2.4 Suppose α is a positive real. Then, for k = 0,1,2, . . ., we have that

∣∣Lα
k (x)

∣∣ ≤ 1

k! (x + α + k)k, x ∈ [0,+∞[.

Moreover, with β := α + 2k − 2 + 2
√

1
4 + (k − 1)(k + α − 1), we have that

1

k! (x − β)k ≤ (−1)kLα
k (x) ≤ 1

k!x
k, x ∈ [β,+∞[.

Actually, the related inequality |Lα
k (x)| ≤ 1

k!x
k holds for all x ∈ [ 1

2β,+∞[.

Proof We begin with the estimate (0 ≤ i ≤ k is assumed)

(α + i + 1)k−i ≤ (α + k)k−i .

Next, we note that for x ≥ 0 and k = 0,1,2, . . ., we have

Lα
k (x) =

k∑

i=0

(−1)k (α + i + 1)k−i

i!(k − i)! xi =
∑

i even

(α + i + 1)k−i

i!(k − i)! xi −
∑

i odd

(α + i + 1)k−i

i!(k − i)! xi,

and in view of the above estimate,

∑

i even

(α + i + 1)k−i

i!(k − i)! ≤
∑

i even

(α + k)k−i

i!(k − i)! = 1

2k!
(
(α + k + x)k + (α + k − x)k

)
,

and, analogously,

∑

i odd

(α + i + 1)k−i

i!(k − i)! ≤
∑

i odd

(α + k)k−i

i!(k − i)! = 1

2k!
(
(α + k + x)k − (α + k − x)k

)
.

By discarding alternatively the even or odd contribution, we arrive at

∣∣Lα
k (x)

∣∣ ≤ 1

2k!
(
(x + α + k)k + |α + k − x|k)

,

which is slightly stronger than the first estimate.
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It is well-known that Lα
k is a polynomial of degree k all of whose zeros are distinct and

real, and they all fall in the interval ]0, β[ (see 18.16.13 of [26]). Therefore, we can write

Lα
k (x) = (−1)k

k! (x − β1) · · · (x − βk), (2.5)

where β1 < · · · < βk are the zeros of Lα
k . Now, all the zeros satisfy x − βj ≥ x − β ≥ 0

for x ≥ β and |x − βj | ≤ x for x ≥ β/2. The remaining estimates of the proposition follow
immediately from combining these observations with the representation (2.5). �

2.5 Approximation of the Polynomial Polyanalytic Reproducing Kernel

We estimate the difference Km,n,q − Km,q .

Proposition 2.5 Let z,w ∈ C be such that |zw| ≤ θ1 < 1 and |zw|e1−|zw| ≤ θ2 < 1. Let M

be a positive real number. Then, as m,n → +∞ while |m − n| ≤ M ,
∣
∣Km,n,q(z,w) − Km,q(z,w)

∣
∣ e−m|zw| ≤ Cmqθm

2 (1 − θ1)
−2

[
1 + |z|2q + |w|2q

]
,

where the constant C depends on q and M .

Proof In view of (2.2) and Proposition 2.3, we have that for q ≤ n,

Km,q(z,w) − Km,n,q(z,w) = m

q−1∑

r=0

+∞∑

i=n−r

r!
(r + i)! (mzw̄)iLi

r

(
m|z|2)

Li
r

(
m|w|2)

.

By Lemma 2.4, we get that
∣
∣∣
∣∣

+∞∑

i=n−r

r!
(r + i)! (mzw̄)iLi

r

(
m|z|2)

Li
r

(
m|w|2)

∣
∣∣
∣∣

≤
+∞∑

i=n−r

1

r!(r + i)!
(
m|zw|)i(

m|z|2 + i + r
)r(

m|w|2 + i + r
)r

= 1

r!
+∞∑

j=0

1

(n + j)!
(
m|zw|)n−r+j (

m|z|2 + n + j
)r(

m|w|2 + n + j
)r

≤ 4r−1

r!
+∞∑

j=0

1

(n + j)!
(
m|zw|)n−r+j [(

m|z|2)r + (n + j)r
][(

m|w|2)r + (n + j)r
]
. (2.6)

For r confined to 0 ≤ r ≤ q − 1 and for big n, say n ≥ n0(q), we have

(n + j)2r

(n + j)! ≤ 2

(n + j − 2r)! and
(n + j)r

(n + j)! ≤ 2

(n + j − r)! ,

so that if we use the notation

Rk(z) =
+∞∑

j=k+1

1

j !z
j = ez − Ek(z),
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we obtain from (2.6) that for 0 ≤ r ≤ q − 1 and n ≥ n0(q),

∣
∣∣
∣∣

+∞∑

i=n−r

r!
(r + i)! (mzw̄)iLi

r

(
m|z|2)

Li
r

(
m|w|2)

∣
∣∣
∣∣

≤ 4r−1mr

r!
[|zw|rRn−1

(
m|zw|) + 2

(|z|2r + |w|2r
)
Rn−r−1

(
m|zw|)

+ 2|zw|rRn−2r−1

(
m|zw|)]

. (2.7)

Next, we see from Szegö’s asymptotical expansion (2.3) that for large k, l with l = k+O(1),
we have

Rk(lζ )

elζ
= (2πk)−1/2(l/k)k ζ

k/ l − ζ

(
ze1−lζ/k

)k(
1 + ε1

k (lζ/k)
)
, (2.8)

as k, l → +∞ and l = k + O(1). By a careful application of (2.8) to (2.7), and summing
over 0 ≤ r ≤ q − 1, the assertion of the proposition follows. �

Corollary 2.6 For z,w ∈ D, let 1 − |zw| ≥ τ > 0. Then, as m,n → +∞, while
|m − n| ≤ M ,

Km,n,q(z,w) = Km,q(z,w) + O
(
e− 1

2 mτ2
em|zw|),

where the “O” constant depends on τ , q , and M .

Proof A Taylor series expansion of the logarithm gives that

t e1−t < e− 1
2 (1−t)2

, 0 ≤ t < 1,

and, together with the fact that the exponential function grows faster than any given power,
the assertion follows from Proposition 2.5. �

As we shall see, Proposition 2.5 implies that the Berezin density

B〈z〉
m,n,q(w) = |Km,n,q(z,w)|2

Km,n,q(z, z)
e−m|w|2

behaves locally near z like the Berezin density

B〈z〉
m,q(w) = |Km,q(z,w)|2

Km,q(z, z)
e−m|w|2 = m2L1

q−1(m|z − w|2)2e2mRe zw̄

mL1
q−1(0) em|z|2 e−m|w|2

= m

q
L1

q−1

(
m|z − w|2)2

e−m|z−w|2 . (2.9)

To make this precise, we recall the definition of the blow-up Berezin density:

B̂〈z〉
m,n,q(ξ) = m−1B〈z〉

m,n,q

(
z + m−1/2ξ

)
.
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Proposition 2.7 Fix z ∈D. Then

∫

C

∣∣B̂〈z〉
m,n,q(ξ) − q−1L1

q−1

(|ξ |2)2
e−|ξ |2 ∣∣dA(ξ) −→ 0,

as m,n → +∞ while n = m + O(1).

Proof By (2.9), we have

B̂〈z〉
m,q(ξ) = m−1B〈z〉

m,q

(
z + m−1/2ξ

) = q−1L1
q−1

(|ξ |2)2
e−|ξ |2 ,

so the comparison is with the blow-up Berezin density for Km,q . We write w := z+m−1/2ξ ;
since z ∈ D is fixed, we have 1 − |z|2 ≥ τ > 0 for some small τ , and we suppose that w is
close to z so that 1 − |zw| ≥ τ > 0 as well. Then, by Proposition 2.3 and Corollary 2.6,

B〈z〉
m,n,q(w) = |Km,n,q(z,w)|2

Km,n,q(z, z)
e−m|w|2 = |Km,q(z,w) + O(e− 1

2 mτ2
em|zw|)|2

Km,q(z, z) + O(e− 1
2 mτ2

em|z|2)
e−m|w|2

= |mL1
q−1(m|z − w|2)emzw̄ + O(e− 1

2 mτ2
em|zw|)|2

(mq + O(e− 1
2 mτ2

)) em|z|2
e−m|w|2 ,

so that if we expand the square using that

∣∣L1
q−1

(
m|z − w|2)∣∣ = O

(
mq−1

)
,

where the “O” depends only on q (this follows from Lemma 2.4), and simplify the expres-
sion, we arrive at

B〈z〉
m,n,q(w) = m

q
L1

q−1

(
m|z − w|2)2

e−m|z−w|2 + O
(
m2q−2e− 1

2 mτ2
e−m(|z|−|w|)2 )

,

which immediate gives that

B〈z〉
m,n,q(w) = m

q
L1

q−1

(
m|z − w|2)2

e−m|z−w|2 + O
(
m2q−2e− 1

2 mτ2 )
.

The corresponding blow-up Berezin density then has

B̂〈z〉
m,n,q(ξ) = m−1B〈z〉

m,n,q

(
z + m−1/2ξ

) = q−1L1
q−1

(|ξ |2)2
e−|ξ |2 + O

(
m2q−3e− 1

2 mτ2 )
. (2.10)

As exponentials grow faster than polynomials, the error terms is negligible for big m. For
fixed z ∈ D, the requirement on ξ so that 1 − |zw| ≥ τ for some fixed τ > 0 is fulfilled for
big m if, say, |ξ | ≤ logm is required. So, (2.10) has the immediate consequence that

∫

D(0,logm)

∣∣B̂〈z〉
m,n,q(ξ) − q−1L1

q−1

(|ξ |2)2
e−|ξ |2 ∣∣ dA(ξ) = O

(
m2q−3(logm)2e− 1

2 mτ2 )
, (2.11)

where more generally D(z0, ρ) denotes the open disk of radius ρ about z0. Since the associ-
ated blow-up Berezin measures

dB̂〈z〉
m,n,q(ξ) := B̂〈z〉

m,n,q(w)dA(ξ), dB̂〈z〉
m,q(ξ) := q−1L1

q−1

(|ξ |2)2
e−|ξ |2 dA(ξ),
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are both probability measures, the assertion of the proposition follows from (2.11) once it is
noted that the right-hand side of (2.11) tends to 0 as m → +∞. �

We note that the claimed convergence dB〈z〉
m,n,q → dδz for z ∈ D is an immediate conse-

quence of Proposition 2.7.

3 Berezin Density Asymptotics for an Exterior Point

3.1 Convergence to Harmonic Measure

We show that the Berezin measures have the convergence dB〈z〉
m,n,q → dωz for z ∈ D

e as
m,n → +∞ while n = m + O(1). Here, ωz is harmonic measure with respect to the point z

and the exterior disk De .

3.2 Concentration of the Berezin Mass

We first study the concentration of the Berezin measure to neighborhoods of the closed unit
disk D̄. We recall the standard notation D(z0, ρ) for the open disk of radius ρ centered at z0.

Lemma 3.1 Suppose z ∈ D
e and that ρ > 1. Then
∫

C\D(0,ρ)

B〈z〉
m,n,q(w)dA(w) → 0, (3.1)

as m,n → +∞ while n ≤ m + O(1).

Proof Let w ∈C \D(0, ρ). We note that

n − 1 ≤ m + O(1) ≤ 2m (3.2)

for sufficiently big m, and so, by Lemma 2.4,

n−r−1∑

i=0

r!
(r + i)!

∣
∣(mzw̄)iLi

r

(
m|z|2)

Li
r

(
m|w|2)∣

∣

≤
n−r−1∑

i=0

1

r!(r + i)!
(
m|zw|)i(

m|z|2 + i + r
)r(

m|w|2 + i + r
)r

≤ 9r

r!
n−r−1∑

i=0

1

(r + i)!
(
m|zw|)i+2r ≤ 9r

r!
(
m|zw|)r

En−1

(
m|zw|). (3.3)

If we replace (n, r) by (q, j) in (3.3), we obtain

q−j−1∑

k=1

j !
(j + k)!

∣
∣(mz̄w)kLk

j

(
m|z|2)

Lk
j

(
m|w|2)∣

∣ ≤ 9j

j !
(
m|zw|)j

Eq−1

(
m|zw|). (3.4)

We may restrict to q ≤ n; after, we are considering the limit as n → +∞. As Eq−1 ≤ En−1

on the positive half-axis for q ≤ n, an application of (3.3) and (3.4) to (2.2) gives

∣
∣Km,n,q(z,w)

∣
∣ ≤ 2me9

(
m|zw|)q−1

En−1
(
m|zw|). (3.5)
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Next, we observe that Polm,n,1 ⊂ Polm,n,q (since q ≥ 1), which implies that

Km,n,q(z, z) ≥ Km,n,1(z, z) = mEn−1

(
m|z|2)

.

We conclude that the Berezin density may be estimated as follows:

B〈z〉
m,n,q(w) ≤ 4m e18

(
m|zw|)2q−2 En−1(m|zw|)2

En−1(m|z|2) e−m|w|2 . (3.6)

Finally, we see from Szegö’s asymptotical expansion (2.4) that

Ek(lζ )

elζ
= (2πk)−1/2(l/k)k ζ

ζ − k/l

(
ζe1−lζ/k

)k(
1 + ε2

k (lζ/k)
)
. (3.7)

Here, k ≤ l + O(1), where the convergence ε2
k (lζ/k) → 0 is uniform if ζ is real with ζ ≥ a

for some fixed a > 1. This leads to

En−1(m|zw|)2

En−1(m|z|2) = [
2π(n − 1)

]−1/2[
m/(n − 1)

]n−1
en−1|w|2n−2

(
1 + o(1)

)
,

where the “o” term is uniform in the convergence. As we implement this estimate in (3.6),
and integrate over C \D(0, ρ), the claim follows. �

3.3 A Principal Value Calculation

We follow the approach of [3], and calculate a certain principal value integral. As on the real
line, principal value integrals in the complex plane are defined by first removing a disk of
radius ε around the singularity and then letting ε → 0.

Lemma 3.2 Fix z ∈D
e . For any l = 0,1,2, . . ., we have

pv
∫

C

w−lB〈z〉
m,n,q(w)dA(w) → z−l ,

as m,n → +∞ with n = m + O(1).

Proof The case q = 1 was treated in [3], so we may from now on assume that q ≥ 2. We
write

Km,n,q = KI
m,n,q + KII

m,n,q ,

where

KI
m,n,q(z,w) := m

q−1∑

r=0

n−r−1∑

i=0

r!
(r + i)! (mzw̄)iLi

r

(
m|z|2)

Li
r

(
m|w|2)

and

KII
m,n,q(z,w) := m

q−2∑

j=0

q−j−1∑

k=0

j !
(j + k)! (mz̄w)kLk

j

(
m|z|2)

Lk
j

(
m|w|2)

.
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It follows that the expression |Km,n,q |2 decomposes accordingly:

∣
∣Km,n,q(z,w)

∣
∣2 = ∣

∣KI
m,n,q(z,w)

∣
∣2 + ∣

∣KII
m,n,q(z,w)

∣
∣2 + 2 Re

[
KI

m,n,q(z,w)KII
m,n,q(z,w)

]
.

(3.8)
We first consider the following integral involving |KI

m,n,q |2:

pv
∫

C

w−l
∣∣KI

m,n,q(z,w)
∣∣2

e−m|w|2 dA(w)

= m2
q−1∑

r1,r2=0

n−r1−1∑

i1=0

n−r2−1∑

i2=0

pv
∫

C

w−l r1!r2!
(r1 + i1)!(r2 + i2)! (mzw̄)i1(mz̄w)i2

× Li1
r1

(
m|z|2)

Li1
r1

(
m|w|2)

Li2
r2

(
m|z|2)

Li2
r2

(
m|w|2)

e−m|w|2 dA(w)

= m2z−l

q−1∑

r1,r2=0

n−r1−1∑

i1=0

n−r2−1∑

i2=0

mi1+i2r1!r2!
(r1 + i1)!(r2 + i2)!δi2,i1+l |z|2i2Li1

r1

(
m|z|2)

Li2
r2

(
m|z|2)

×
∫

C

|w|2i1Li1
r1

(
m|w|2)

Li2
r2

(
m|w|2)

e−m|w|2 dA(w), (3.9)

where the delta is understood in Kronecker’s sense. The identity (for p = 1,2,3, . . .)

Lα+p
r (x) =

r∑

s=0

(
r − s + p − 1

p − 1

)
Lα

s (x) (3.10)

plus the standard orthogonality properties of the Laguerre polynomials gives that

∫ +∞

0
t i1Li1

r1
(t)Li1+l

r2
(t)e−tdt = (r1 + i1)!(r2 − r1 + l − 1)!

r1!(r2 − r1)!(l − 1)! ,

where the right-hand side should be interpreted as 0 for r2 < r1. By polar coordinates, then,
we have

∫

C

|w|2i1Li1
r1

(
m|w|2)

Li1+l
r2

(
m|w|2)

e−m|w|2 dA(w) = m−i1−1 (r1 + i1)!(r2 − r1 + l − 1)!
r1!(r2 − r1)!(l − 1)! ,

and (3.9) simplifies to

pv
∫

C

w−l |KI
m,n,q(z,w)|2e−m|w|2 dA(w)

= mz−l

q−1∑

r1=0

q−1∑

r2=r1

n−l−r2−1∑

i1=0

r2!(r2 − r1 + l − 1)!
(r2 − r1)!(l − 1)!(r2 + i1 + l)!

× (
m|z|2)i1+l

Li1
r1

(
m|z|2)

Li1+l
r2

(
m|z|2)

, (3.11)
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provided n is so big that q + l ≤ n. Next, we apply Lemma 2.4 and (3.2) (using that z ∈D
e)

to arrive at

n−l−r2−1∑

i1=0

r1!r2!
(r2 + i1 + l)!

(
m|z|2)i1+l∣∣Li1

r1

(
m|z|2)

Li1+l
r2

(
m|z|2)∣

∣

≤
n−l−r2−1∑

i1=0

1

(r2 + i1 + l)!
(
m|z|2)i1+l(

m|z|2 + i1 + r1
)r1

(
m|z|2 + i1 + l + r2

)r2

≤ 3r1+r2

n−l−r2−1∑

i1=0

1

(r2 + i1 + l)!
(
m|z|2)r1+r2+i1+l ≤ 3r1+r2

(
m|z|2)r1En−1

(
m|z|2)

. (3.12)

On the other hand, by the estimate from below in Lemma 2.4,

Km,n,q(z, z) ≥ KI
m,n,q(z, z) = m

q−1∑

r=0

n−r−1∑

i=0

r!
(r + i)!

(
m|z|2)i

Li
r

(
m|z|2)2

≥ m

q−1∑

r=0

n−r−1∑

i=0

1

r!(r + i)!
(
m|z|2)i[

m|z|2 − β(n)
]2r

(3.13)

provided that m|z|2 ≥ β(n), where

β(n) := n + q − 4 + 2

√
1

4
+ (q − 2)(n − 1) = n + O(

√
n).

As we assume z ∈D
e and n = m + O(1), we must have

m|z|2 − β(n) = m
(|z|2 − 1

) + m − β(n) ≥ 1

2
m

(|z|2 − 1
)

for big enough m,n, and so, by (3.13),

Km,n,q(z, z) ≥ KI
m,n,q(z, z) ≥ m

q−1∑

r=0

n−r−1∑

i=0

4−r

r!(r + i)!
(
m|z|2)i+2r

≥ 41−qm

(q − 1)! (m|z|)q−1
[
En−1

(
m|z|2) − Eq−2

(
m|z|2)]

≥ 4−qm

(q − 1)! (m|z|)q−1En−1

(
m|z|2)

. (3.14)

Here, we used that the En−1(m|z|2) is much bigger than Eq−2(m|z|2) as m,n both grow. Let
us look at the contribution from 0 ≤ r1 ≤ q − 2 in the right-hand side of (3.11) using the
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estimate (3.12):

m |z|−l

q−2∑

r1=0

q−1∑

r2=r1

n−l−r2−1∑

i1=0

r2!(r2 − r1 + l − 1)!
(r2 − r1)!(l − 1)!(r2 + i1 + l)!

(
m|z|2)i1+l∣∣Li1

r1

(
m|z|2)

Li1+l
r2

(
m|z|2)∣∣

≤ m
|z|−l

(l − 1)!
q−2∑

r1=0

q−1∑

r2=r1

(r2 − r1 + l − 1)!
r1!(r2 − r1)! 3r1+r2

(
m|z|2)r1En−1

(
m|z|2)

≤ mC1(q, l)
(
m|z|2)q−2

En−1
(
m|z|2)

,

for an appropriate positive constant C1(q, l). As we combine this estimate with (3.14), we
obtain

m
|z|−l

Km,n,q(z, z)

q−2∑

r1=0

q−1∑

r2=r1

n−l−r2−1∑

i1=0

r2!(r2 − r1 + l − 1)!
(r2 − r1)!(l − 1)!(r2 + i1 + l)!

× (
m|z|2)i1+l∣∣Li1

r1

(
m|z|2)

Li1+l
r2

(
m|z|2)∣∣ ≤ C2(q, l)m−1 = O

(
m−1

) −→ 0,

as m,n → +∞ in the prescribed fashion. So the contribution to (3.11) which comes from
0 ≤ r1 ≤ q − 2 is negligible from the point of view of the Berezin density. It remains to
consider the contribution from r1 = q − 1. The corresponding part of the sum in the right-
hand side of (3.11) equals

mz−l

n−l−q∑

i1=0

(q − 1)!
(q + i1 + l − 1)!

(
m|z|2)i1+l

L
i1
q−1

(
m|z|2)

L
i1+l

q−1

(
m|z|2)

,

and we now claim that

m
z−l

Km,n,q(z, z)

n−l−q∑

i1=0

(q − 1)!
(q + i1 + l − 1)!

(
m|z|2)i1+l

L
i1
q−1

(
m|z|2)

L
i1+l

q−1

(
m|z|2) −→ z−l ,

(3.15)
as m,n → +∞ in the given fashion. We use the recurrence relation (3.10) to write

L
i1
q−1(x) = L

i1+l

q−1(x) −
q−2∑

s=0

(
q + l − s − 2

l − 1

)
Li1

s (x). (3.16)

A straightforward argument allows us to show that as insert this into (3.15), the sum that is
subtracted on the right-hand side of (3.16) makes asymptotically no contribution to the sum
in (3.15). Consequently, (3.15) is equivalent to having

m
z−l

Km,n,q(z, z)

n−l−q∑

i1=0

(q − 1)!
(q + i1 + l − 1)!

(
m|z|2)i1+l

L
i1+l

q−1

(
m|z|2)2 −→ z−l (3.17)

as m,n → +∞ in the given fashion. If we insert the expression (2.2) defining Km,n,q(z, z),
we see that (there is some cancellation of terms)

z−l − m
z−l

Km,n,q(z, z)

n−l−q∑

i1=0

(q − 1)!
(q + i1 + l − 1)!

(
m|z|2)i1+l

L
i1+l

q−1

(
m|z|2)

L
i1+l

q−1

(
m|z|2)
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= z−l

Km,n,q(z, z)

{

m

q−2∑

r=0

n−r−1∑

i=0

r!
(r + i)!

(
m|z|2)i

Li
r

(
m|z|2)2

+ m

q−2∑

j=1

q−j−1∑

k=1

j !
(j + k)!

(
m|z|2)k

Lk
j

(
m|z|2)2

+ m

l−1∑

i1=0

(q − 1)!
(q + i − 1)!

(
m|z|2)i

Li
q−1

(
m|z|2)2

}

. (3.18)

By careful application of Lemma 2.4 to all the Laguerre polynomials in this expression,
while inserting (3.13) to control the denominator, we indeed get (3.17). So, after a lot of
effort, we have obtained that

pv
∫

C

w−l
|KI

m,n,q(z,w)|2
Km,n,q(z, z)

e−m|w|2 dA(w) −→ z−l (3.19)

as m,n → +∞ with n = m + O(1). Analogous but slightly easier arguments (left to the
interested reader) show that

pv
∫

C

w−j
|KII

m,n,q(z,w)|2
Km,n,q(z, z)

e−m|w|2 dA(w) −→ 0

and

∫

C

w−j Re

{
KI

m,n,q(z,w)KII
m,n,q(z,w)

Km,n,q(z, z)

}
e−m|w|2 dA(w) −→ 0,

again as m,n → +∞ with n = m + O(1). Finally, we put everything together based on the
decomposition (3.8):

pv
∫

C

w−jB〈z〉
m,n,q(w)dA(w) = pv

∫

C

|Km,n,q(z,w)|2
Km,n,q(z, z)

e−m|w|2 dA(w) −→ z−l ,

as m,n → +∞ with n = m + O(1). This ends the proof. �

3.4 Convergence to Harmonic Measure

We now show that even in the principal value sense, the Berezin density tends to avoid the
interior of the unit disk.

Lemma 3.3 Fix a real parameter ρ with 0 < ρ < 1 and a point z ∈ D
e . Then, for l =

0,1,2, . . ., we have the convergence

pv
∫

D(0,ρ)

w−lB〈z〉
m,n,q(w)dA(w) −→ 0,

as m,n → +∞ with n = m + O(1).
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Proof In terms of the decomposition (3.8), we will focus on the term |KI
m,n,q |2 and leave

the other two to the reader (the necessary arguments are similar but slightly easier). The
analogue of (3.9) reads

pv
∫

D(0,ρ)

w−l
∣∣KI

m,n,q(z,w)
∣∣2

e−m|w|2 dA(w)

= m2z−l

q−1∑

r1,r2=0

min{n−r1−1,n−l−r2−1}∑

i1=0

r1!r2!
(r1 + i1)!(r2 + i1 + l)!

× m
(|z|2)i1+l

Li1
r1

(
m|z|2)

Li1+l
r2

(
m|z|2)

×
∫

D(0,ρ)

(
m|w|2)i1Li1

r1

(
m|w|2)

Li1+l
r2

(
m|w|2)

e−m|w|2 dA(w). (3.20)

By Lemma 2.4, we have
∫

D(0,ρ)

(
m|w|2)i1 |Li1

r1

(
m|w|2)

Li1+l
r2

(
m|w|2)|e−m|w|2 dA(w)

≤ 1

r1!r2!
∫

D(0,ρ)

(
m|w|2)i1

(
m|w|2 + i1 + r1

)r1
(
m|w|2 + i1 + l + r2

)r2 e−m|w|2 dA(w)

≤ 2r1+r2−2

r1!r2!
∫

D(0,ρ)

(
m|w|2)i1

[(
m|w|2)r1 + (i1 + r1)

r1
]

× [(
m|w|2)r2 + (i1 + l + r2)

r2
]
e−m|w|2 dA(w)

= 2r1+r2−2

r1!r2!m
{∫ mρ2

0
t i1+r1+r2 e−tdt + (i1 + r1)

r1

∫ mρ2

0
t i1+r2 e−tdt

+ (i1 + l + r2)
r2

∫ mρ2

0
t i1+r1 e−tdt + (i1 + r1)

r1(i1 + l + r2)
r2

∫ mρ2

0
t i1 e−tdt

}
.

In terms of the function

χ(a, b) := 1

Γ (a + 1)

∫ b

0
tae−tdt, a, b ∈ [0,+∞[,

which takes values in the interval [0,1[, the estimate becomes
∫

D(0,ρ)

(
m|w|2)i1 |Li1

r1

(
m|w|2)

Li1+l
r2

(
m|w|2)|e−m|w|2 dA(w)

≤ 2r1+r2−2

r1!r2!m
{
(i1 + r1 + r2)!χ

(
i1 + r1 + r2,mρ2

) + (i1 + r1)
r1(i1 + r2)!χ

(
i1 + r2,mρ2

)

+ (i1 + l + r2)
r2(i1 + r1)!χ

(
i1 + r1,mρ2

) + (i1 + r1)
r1(i1 + l + r2)

r2 i1!χ
(
i1,mρ2

)}
.

and if we use that a �→ χ(a, b) is decreasing for fixed b (a direct calculation involving
derivatives suffices to verify this), we get

∫

D(0,ρ)

(
m|w|2)i1 |Li1

r1

(
m|w|2)

Li1+l
r2

(
m|w|2)|e−m|w|2 dA(w)
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≤ 2r1+r2−2

r1!r2!m
{
(i1 + r1 + r2)! + (i1 + r1)

r1(i1 + r2)! + (i1 + l + r2)
r2(i1 + r1)!

+ (i1 + r1)
r1(i1 + l + r2)

r2 i1!
}
χ

(
i1,mρ2

)
. (3.21)

Next, since z ∈ D
e , n = m + O(1), and i1 + l ≤ n − 1, we may use another aspect of

Lemma 2.4 to see that

|Li1
r1

(
m|z|2)

Li1+l
r2

(
m|z|2)| ≤ 1

r1!r2!
(
m|z|2)r1+r2 , (3.22)

provided m,n are big enough. As we combine the equality (3.20) with the estimates (3.21)
and (3.22), and use some well-understood comparisons of factorials and powers, we arrive
at

∣∣
∣∣pv

∫

D(0,ρ)

w−l
∣
∣KI

m,n,q(z,w)
∣
∣2

e−m|w|2 dA(w)

∣∣
∣∣

≤ mC3(q, l)|z|−l+2q−2
n−l−1∑

i1=0

(m|z|2)i1+l

(i1 + l)! χ
(
i1,mρ2

)
, (3.23)

for some appropriate positive constant C3(q, l). The function χ(i1,mρ2) drops off exponen-
tially quickly to 0 as i1 exceeds mρ2 by a margin greater than O(m1/2), as can be seen, e.g.,
by an application of the Central Limit Theorem (compare with the next section). This means
that effectively we are summing up to m|ρ|2 + O(m1/2) in the right-hand side expression of
(3.23), which does not permit the sum to compare with the size of Km,n,q(z, z); cf. (3.14).
This results in the convergence

pv
∫

D(0,ρ)

w−l
|KI

m,n,q(z,w)|2
Km,n,q(z, z)

e−m|w|2 dA(w) −→ 0

as m,n → +∞ with n = m + O(1). Together with the estimates which were left as an
exercise to the reader, we get

pv
∫

D(0,ρ)

w−l |Km,n,q(z,w)|2
Km,n,q(z, z)

e−m|w|2 dA(w) −→ 0

as m,n → +∞ with n = m + O(1), which amounts to the assertion of the lemma. �

As in the proof of the Theorem 2.10 in [3], we may now conclude the following.

Theorem 3.4 Fix z ∈D
e and a bounded continuous function g on C. Then

∫

C

g(w)B〈z〉
m,n,q(w)dA(w) →

∫

C

g(w)dω
(
w,z,De

)
,

as m,n → +∞ with n = m + O(1). Here, dω(w, z,De) is harmonic measure with respect
to the point z and the domain De .

Naturally, the harmonic measure in question can be written explicitly with the Poisson
kernel:

dω
(
w,z,De

) = 1

2π

|z|2 − 1

|1 − z̄w|2 ds(w).
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Here, ds(w) denotes the arc-length measure on the unit circle.

4 Poly-Bargmann Transforms

4.1 Purpose of the Section

In this section, we discuss the poly-Bargmann transforms, a generalization of the classical
Bargmann transform, which are needed later when we analyze the Berezin density at a
boundary point. The poly-Bargmann transforms appeared in Vasilevski’s paper [36], where
the basic properties were presented.

4.2 The Hermite Polynomials and the Bargmann Transform

We denote by Hj the j -th Hermite polynomial with respect to the Gaussian weight e− 1
2 t2

(“probabilistic (monic) Hermite polynomials”). The generating function identity

etz− 1
2 z2 =

+∞∑

j=0

Hj(t)
zj

j !

allows us to write

1

(2π)1/4
ezt− 1

2 z2− 1
4 t2 =

+∞∑

j=0

Hj(t)e−t2/4

(2π)1/4
√

j ! × zj

√
j ! .

We recall the standard definition of the Bargmann transform:

B[f ](z) = 1

(2π)1/4

∫

R

ezt− 1
2 z2− 1

4 t2
f (t)dt, f ∈ L2(R).

As the function systems

{
1

(2π)1/4
√

j !Hj(t)e
− 1

4 t2
}+∞

j=0

and

{
zj

√
j !

}+∞

j=0

form orthonormal bases for L2(R) and the Bargmann-Fock space A2
1,1(C) (this is A2

m,q(C)

with m = q = 1), respectively, we obtain the following well-known fact.

Proposition 4.1 The Bargmann transform B : L2(R) → A2
1,1(C) acts isometrically and

bijectively, and for each j = 0,1,2, . . ., the basis function (2π)−1/4(j !)−1/2Hj(t)e− 1
4 t2

is
mapped to the basis function (j !)−1/2zj .

4.3 A Class of Auxiliary Operators

Let ∂z, ∂̄z denote the standard Wirtinger differential operators

∂z := 1

2
(∂x − i∂y), ∂̄z := 1

2
(∂x + i∂y), where z = x + iy.
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For r = 0,1,2, . . ., we introduce the operator

Tr [f ](z) := 1√
r!e|z|2 ∂r

z

{
f (z)e−|z|2 }

,

with the semi-group property T1 ◦ Tr−1 = r1/2Tr . We also consider the dilated variant

Tm,r [f ](z) = Tr [fm−1/2 ](m1/2z
)
,

where fm−1/2(z) = f (m−1/2z). It has the semi-group property Tm,1 ◦ Tm,r−1 = r1/2Tm,r , and
may be expressed in more concrete terms:

Tm,r [f ](z) = m−r/2

√
r! em|z|2 ∂r

z

{
f (z)e−m|z|2 }

.

We now study the effect of Tr on the basis elements (j !)−1/2zj .

Proposition 4.2 For j ≥ r , we have

Tr

[
zj

√
j !

]
= 1√

r!e|z|2∂r
z

{
e−|z|2 zj

√
j !

}
=

√
r!
j !z

j−rLj−r
r

(|z|2)

while for j ≤ r ,

Tr

[
zj

√
j !

]
= 1√

r!e|z|2∂r
z

{
e−|z|2 zj

√
j !

}
= (−1)r−j

√
n!
r! z̄r−jL

r−j

j

(|z|2)
.

Proof The proof is based on an induction argument. The statement is obviously true for
r = 0 and all j . So, by induction, we assume that the statement holds for some r − 1 ≥ 0
and all j . In case j ≥ r , we then have

∂r
z

{
e−|z|2zj

} = ∂z

{
(r − 1)! zj−r+1L

j−r+1
r−1

(|z|2)
e−|z|2 }

= (r − 1)!zj−r
{
(j − r + 1)L

j−r+1
r−1

(|z|2) − L
j−r+2
r−2

(|z|2)|z|2

− |z|2Lj−r+1
r−1

(|z|2)}
e−|z|2

= r!Lj−r
r

(|z|2)
zj−re−|z|2 ,

if we use the standard identity rLα
r (x) = (α + 1 − x)Lα+1

r−1 (x) − xLα+2
r−2 (x). Next, in case

j ≤ r − 1, we have instead (see [17], 8.971(5))

∂r
z

{
e−|z|2zj

} = (−1)r−1−j ∂
{
j ! z̄r−1−jL

r−1−j

j

(|z|2)
e−|z|2 }

= (−1)r−j j !z̄r−j
{
L

r−j

j−1

(|z|2) + L
r−j−1
j

(|z|2)}
e−|z|2

= (−1)r−j j ! z̄r−jL
r−j

j

(|z|2)
e−|z|2 ,

which completes the proof. �
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4.4 Pure Poly-analytic Fock Spaces

Write ej (z) := (j !)−1/2zj for j = 0,1,2, . . ., which functions form the standard orthonormal
basis for the space A2

1,1(C). The function Tr [ej ] ∈ A2
1,r+1(C) is then a polynomial in z, z̄,

where the degree in z remains equal to j , and the degree in z̄ equals r . For general positive m,
the functions ej,m(z) := (j !)−1/2m

1
2 (j+1)zj , with j = 0,1,2, . . ., form an orthonormal basis

for the space A2
m,1(C). The functions Tm,r [ej,m] are computed using Proposition 4.2 above,

and we then recognize that we can identify them with the basis elements which appear in
Proposition 2.1. We clearly have that

span
{
Tm,r [ej,m] : 0 ≤ j ≤ n − 1, 0 ≤ r ≤ q − 1

} = Polm,n,q ,

and in view of the orthogonality properties in Proposition 2.1, we also must have

span
{
Tm,r [ej,m] : 0 ≤ j ≤ n − 1

} = Polm,n,r+1 � Polm,n,r , (4.1)

where the “�” is with respect to the inner product in L2(C, e−m|z|2). Following Vasilevski
[36], then, we define the pure (true) polyanalytic Fock space of level r + 1:

δPolm,n,r+1 := Polm,n,r+1 � Polm,n,r , δA2
m,n,r+1(C) := A2

m,r+1(C) � A2
m,r (C), (4.2)

with the understanding that Polm,n,0 := {0} and A2
m,0(C) := {0}. The operator Tm,r now be-

comes an isometric isomorphism

Tm,r : A2
m,1(C) → δA2

m,n,r+1(C), Tm,r : Polm,n,1 → δPolm,n,r+1.

We obtain the orthogonal decompositions

Polm,n,q =
q−1⊕

r=0

δPolm,n,r+1, A2
m,q(C) =

q−1⊕

r=0

δA2
m,r+1(C).

As a consequence, if Kδ:m,n,r+1 and Kδ:m,r+1 denote the reproducing kernels for the spaces
δPolm,n,r+1 and δA2

m,r+1(C), respectively, we must have that

Km,n,q =
q−1∑

r=0

Kδ:m,n,r+1, Km,q =
q−1∑

r=0

Kδ:m,r . (4.3)

4.5 The Poly-Bargmann Transforms

For m = 1, the poly-Bargmann transform of level r is defined by

Br [f ] := Tr ◦ B[f ].

Proposition 4.3 We have

Br [f ](z) = 1

(2π)1/4
√

r!
∫

R

f (t)Hr(t − z − z̄) etz− 1
2 z2− 1

4 t2
dt, r = 0,1,2, . . . .
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Proof We proceed by induction. For r = 0, the formula reduces to the usual Bargmann
transform (if we recall that H0 = 1). By the induction hypothesis, we suppose therefore that
the formula is valid for all integers up to r − 1. From the semi-group property T1 ◦ Tr−1 =
r1/2Tr , we see that

Br [f ] = Tr ◦ B[f ] = r−1/2T1 ◦ Tr−1 ◦ B[f ](z) = r−1/2T1 ◦ Br−1[f ].
Since the formula holds for r − 1, the following calculation shows that it holds for r as well:

r−1/2e|z|2∂z

([
(r − 1)!]−1/2

Hr−1(t − z − z̄) etz− 1
2 z2− 1

4 t2
e−|z|2 )

= (r!)−1/2
(−H ′

r−1(t − z − z̄) + (t − z − z)Hr−1(t − z − z̄)
)

etz− 1
2 z2− 1

4 t2

= (r!)−1/2Hr(t − z − z̄)etz− 1
2 z2− 1

4 t2;
here, we used the standard identity Hr(x) = xHr−1(x)−H ′

r−1(x). The proof is complete. �

5 Reproducing Kernel and Berezin Density Asymptotics for a Boundary Point

5.1 Purpose of the Section

In this section, we will calculate the limit of the blow-up Berezin transform B̂〈z〉
m,n,q at a

boundary point z, that is, |z| = 1. There is no loss of generality to take z = 1. Our strategy
is to investigate the blow-up of the reproducing kernel of the space of analytic polynomi-
als Polm,n,1 (with q = 1) first, and then use this information together with poly-Bargmann
transform to lift the asymptotics to the context of the general polyanalytic spaces Polm,n,q .

5.2 The Central Limit Theorem Revisited

The following improvement of the central limit theorem will be needed. Let cdfX denote the
cumulative distribution function of a real-valued random variable X and let

erf(z) = 1√
2π

∫ z

−∞
e− 1

2 t2
dt

be the error function. Here, for complex z, we may think of the contour of integration as
following the real line from −∞ to 0, and then from going from 0 to z along any smooth
curve.

We shall write i.i.d. as shorthand for independent identically distributed in the context of
random variables. The following result is from [9, 14].

Theorem 5.1 (Berry-Esséen) Let X1,X2, . . . be i.i.d. real-valued random variables with
E(Xj ) = 0, E(X2

j ) = 1 and E(|Xj |3) = ρ < +∞ for all j . Also, let Yn = n−1/2
∑n

j=1 Xj .
Then there exists an absolute constant C such that

∣
∣cdfYn(x) − erf(x)

∣
∣ ≤ Cρ√

n
, x ∈R.

The Berry-Esséen theorem gives the following asymptotics for the partial Taylor sums of
the exponential function.
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Lemma 5.2 We have

En−1(x)

ex
= erf

(
n − x√

n

)
+ O

(
n−1/2

)
,

as n → +∞, uniformly in x ∈ [0,+∞[.

Proof Let X1, . . . ,Xn be independent exponentially distributed random variables on
[0,+∞[ with density e−x . It is well known that the sum

∑n

j=1 Xj obeys a gamma dis-
tribution with the cumulative distribution function 1 − e−xEn−1(x). The random variables
X1 − 1, . . . ,Xn − 1 all have zero mean and variance 1, and the third moment is finite, so by
the Berry-Esséen theorem, we have

1 − e−xEn−1(x) = cdf∑n
j=1 Xj

(x) = cdf ∑n
j=1 Xj −n

√
n

(
x − n√

n

)
= erf

(
x − n√

n

)
+ O

(
n−1/2

)
,(5.1)

where the “O” term is uniform in x as n → +∞. �

Results of this nature are well known. A reader who prefers a more direct approach might
use Taylor’s formula with remainder term to obtain

En−1(x)e−x = 1 − 1

(n − 1)!
∫ x

0
tn−1e−tdt,

and then analyze the integral by Laplace’s method.
This allows us to blow up the function En−1(mzw̄) when z and w are close to the point

1 and m,n → +∞ with n = m + O(1).

Lemma 5.3 Fix a positive real ε. For complex ξ, η ∈ C, we then have

En−1(m(1 + m−1/2ξ)(1 + m−1/2η̄))

em+√
m(ξ+η̄)

= eξ η̄ erf(−ξ − η̄) + O
(
m− 1

2 +ε
)
,

as m,n → +∞ while n = m + O(1). Here, the “O” expression on the right-hand side is
uniform on compact subsets of C.

Proof If we put

ζ := m
(
1 + m−1/2ξ

)(
1 + m−1/2η̄

) = m + m1/2(ξ + η̄) + ξ η̄,

then

n − ζ√
n

= n − m − m1/2(ξ + η̄) − ξ η̄√
n

= −ξ − η̄ + O
(
m−1/2

)
,

where the “O” term is uniform on compact subsets. If we use that En−1 has only nonnegative
Taylor coefficients, we get from Lemma 5.2 that

|En−1(ζ )|
e|ζ | ≤ En−1(|ζ |)

e|ζ | = erf

(
n − |ζ |√

n

)
+ O

(
n−1/2

)
, (5.2)
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with a uniform “O” term. So, for real ξ, η, we may deduce from (5.2) the assertion of the
lemma with ε = 0. For general complex ξ, η, we note that

|ζ | = m |(1 + m−1/2ξ
)(

1 + m−1/2η̄
)|

= m + m1/2 Re[ξ + η] + Re ξ Reη + 1

2
(Im ξ)2 + 1

2
(Imη)2 + O

(
m−1/8

)

uniformly in the domain where max{|ξ |, |η|} ≤ m1/8. As the right-hand side of (5.2) is ≤ 3
2

for big n, we see that
∣
∣∣
∣
En−1(m(1 + m−1/2ξ)(1 + m−1/2η))

em+√
m(ξ+η)+ξ η̄

∣
∣∣
∣ ≤ 3

2
e−(Im ξ)(Imη)+ 1

2 (Im ξ)2+ 1
2 (Imη)2+O(m−1/8)

≤ 2e
1
2 [Im ξ−Imη]2

holds in the domain where max{|ξ |, |η|} ≤ m1/8, provided m is big enough. We need to show
that the difference

Fm,n(ξ, η) := En−1(m(1 + m−1/2ξ)(1 + m−1/2η̄))

em+√
m(ξ+η̄)+ξ η̄

− erf(−ξ − η̄)

is of order O(m−1/2+ε) uniformly as ξ, η remain confined to some compact subset of C. We
know that Fm,n(ξ, η) = O(m−1/2) uniformly when ξ, η ∈R with confined to max{|ξ |, |η|} ≤
m1/8. In view of the calculation we just made, we also have a good uniform estimate of
Fm,n(ξ, η) when ξ, η ∈ C with max{|ξ |, |η|} ≤ m1/8. With an elementary estimate of har-
monic measure (see exercise II.3a in [16]), we can show that Fm,n(ξ, η) = O(mε−1/2) holds
uniformly when ξ, η ∈C belong to a compact subset of C, and in addition, η ∈ R. Here, ε is
a positive number which we can get as small as we like. A similar argument with η in place
ξ worsens the control to Fm,n(ξ, η) = O(m2ε−1/2), but now the control is uniform when both
ξ, η are both complex and confined to some compact subset. The proof is complete with
ε = 2ε. �

5.3 The Reproducing Kernel for a Subspace of the Fock Space

We shall identify both the right-hand and the left-hand side expressions appearing in
Lemma 5.3 with reproducing kernels of certain Hilbert spaces of entire functions. This will
be the case r = 0 of the proposition below.

Let us agree to identify

L2(R−) = {
f ∈ L2(R) : f (x) = 0 for x > 0

}
.

In the following proposition and later, we encounter integrals ranging from −∞ to some
complex number w. We can use any contour that first goes from −∞ to 0 along the real axis
and then connects 0 to w. Our integrands are usually holomorphic, so we are allowed us to
perturb the contour of integration when needed.

Proposition 5.4 For r = 0,1,2, . . ., the function

(ξ, η) �→ eξ η̄

r!√2π

∫ −ξ−η̄

−∞
Hr(t + ξ − η)Hr(t + η̄ − ξ̄ )e− 1

2 t2
dt

is the reproducing kernel for the Hilbert space Br [L2(R−)] ⊂ A2
1,r+1(C).
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Proof Let M(ξ,η) = Mη(ξ) be the reproducing kernel for Br [L2(R−)]. This kernel has
Mη ∈ Br [L2(R−)] and

1√
r!(2π)1/4

∫

R

f (t)Hr(t − η − η̄)etη− 1
2 η2− 1

4 t2
dt = Br [f ](η) = 〈

Br [f ],Mη

〉
A2

1,r+1(C)

= 〈
f,B−1

r [Mη]
〉
L2(R)

for all η ∈C and all f ∈ L2(R−), which allows us to conclude that

B−1
r [Mη](t) = (r!)−1/2(2π)−1/41]−∞,0](t)Hr(t − η − η̄) et η̄− 1

2 η̄2− 1
4 t2

.

After applying the operator Br to both sides, we see that (cf. Proposition 4.3)

Mη(ξ) = 1

r!√2π

∫ 0

−∞
Hr(t − ξ − ξ̄ )etξ− 1

2 ξ2− 1
4 t2

Hr(t − η − η̄)et η̄− 1
2 η̄2− 1

4 t2
dt

= eη̄ξ

r!√2π

∫ 0

−∞
Hr(t − ξ − ξ̄ )Hr(t − η − η̄)e− 1

2 (t−ξ−η̄)2
dt

= eη̄ξ

r!√2π

∫ −η̄−ξ

−∞
Hr(t + η̄ − ξ̄ )Hr(t + ξ − η)e− 1

2 t2
dt. �

Remark 5.5 The special case r = 0 of the kernel in Proposition 5.4 is eξ η̄erf(−ξ − η̄), which
is what we have on the right-hand side in Lemma 5.3.

5.4 The Blow-Up of the Polynomial Space at the Boundary Point

We turn to the polyanalytic analogue of the left-hand side of Lemma 5.3.

Definition 5.6 We introduce the blow-up space at 1,

Pol〈1〉
m,n,q := {

e−m1/2ξp
(
1 + m−1/2ξ

) : p ∈ Polm,n,q

}
,

which we equip with the norm

∥∥ξ �→ e−m1/2ξp
(
1 + m−1/2ξ

)∥∥
Pol〈1〉

m,n,q
:= m1/2e

1
2 m‖p‖

L2(C,e−m|z|2 )
.

For 0 ≤ r ≤ q − 1, we denote by δPol〈1〉
m,n,r+1 the subspace

δPol〈1〉
m,n,r+1 := {

e−m1/2ξp
(
1 + m−1/2ξ

) : p ∈ δPolm,n,r+1

}
,

equipped with the same norm.

An elementary change of variables argument allows us to identify the norm on Pol〈1〉
m,n,q

with that of A2
1,q (C):

∥
∥ξ �→ e−m1/2ξp

(
1 + m−1/2ξ

)∥
∥

Pol〈1〉
m,n,q

= ∥
∥ξ �→ e−m1/2ξp

(
1 + m−1/2ξ

)∥
∥

A2
1,q

(C)
. (5.3)
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As a consequence, we may regard Pol〈1〉
m,n,q and δPol〈1〉

m,n,r+1 as norm closed subspaces of
A2

1,q (C). We may read off from the definition of the norm in Pol〈1〉
m,n,q that the kernel on the

left-hand side in Lemma 5.3 is the reproducing kernel for the space Pol〈1〉
m,n,1. So, Lemma 5.3

can be understood as saying that

K
Pol〈1〉

m,n,1
(ξ, η) = KB0[L2(R−)](ξ, η) + O

(
m− 1

2 +ε
)
, (5.4)

where KPolm,n,1 and KB0[L2(R−)] denote the reproducing kernels of the spaces in the sub-
scripts, and the bound is locally uniform on compact subsets. We want to generalize (5.4)
beyond q = 1. To this end, we make use of the operators Tr .

Proposition 5.7 For r = 1,2,3, . . ., we have that

r−1/2T1 : δPol〈1〉
m,n,r → δPol〈1〉

m,n,r+1

is an isometric isomorphism.

Proof From the isometry properties of Tr−1 and Tr together with the semi-group property
r−1/2T1 ◦ Tr−1 = Tr , we get that

r−1/2T1 : δA2
1,r (C) → δA2

1,r+1(C)

is an isometric isomorphism. In view of (5.3), the isometry part of the assertion follows. It
remains to show that the operator is onto. This is an algebraic exercise which we leave to
the reader. �

By iterating Proposition 5.7, we obtain the following.

Corollary 5.8 For r = 1,2,3 . . ., we have that

Tr : Pol〈1〉
m,n,1 → δPol〈1〉

m,n,r+1

is an isometric isomorphism.

5.5 The Blow-Up of the Polynomial Reproducing Kernel at a Boundary Point

From Corollary 5.8 above, we get that

K
δPol〈1〉

m,n,r+1
(ξ, η) = [Tr ]ξ [T̄r ]η

(
K

Pol〈1〉
m,n,1

(ξ, η)
)
, (5.5)

where the subscripts z and w are used to indicate that the operator is acting with respect to
that variable, and the bar means complex conjugation of the operator. In the above formula,
Tr is as before, and T̄e is given by

T̄r [f ](z) := 1√
r!e|z|2 ∂̄ r

z

{
f (z)e−|z|2 }

.

We would like to plug in the approximation (5.4) into (5.5). We recall that the operator Tr

is given by the analogous formula, which expands as a sum of certain polynomials in z̄ of
degree ≤ r times powers of the differential operator ∂z of degree ≤ r (a similar assertion
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can be made about T̄r as well). The Cauchy integral formula allows us to control the size of
the derivatives on a compact subset in terms of the size of the functions on a slightly bigger
compact subset. This means that the approximation (5.4) carries over, and we find that

K
δPol〈1〉

m,n,r+1
(ξ, η) = [Tr ]ξ [T̄r ]η

(
KB0[L2(R−)](ξ, η)

) + O
(
m− 1

2 +ε
)
, (5.6)

with uniform control on compact subsets. Next, as

Pol〈1〉
m,n,q =

q−1⊕

r=0

δPol〈1〉
m,n,r+1,

we get that

K
Pol〈1〉

m,n,q
(ξ, η) =

q−1∑

r=0

K
δPol〈1〉

m,n,r+1
(ξ, η) =

q−1∑

r=0

[Tr ]ξ [T̄r ]η
(
KB0[L2(R−)](ξ, η)

) + O
(
m− 1

2 +ε
)
,

(5.7)
again with uniform control on compact subsets. Next, it should be rather clear that

[Tr ]ξ [T̄r ]η
(
KB0[L2(R−)](ξ, η)

)

is the reproducing kernel for the space TrB0[L2(R−)] = Br [L2(R−)], which was identified
in terms of Hermite polynomials back in Proposition 5.4. We write this down as a proposi-
tion.

Proposition 5.9 Fix a positive real number ε. Then the reproducing kernel for Pol〈1〉
m,n,q has

the following form:

K
Pol〈1〉

m,n,q
(ξ, η) =

q−1∑

r=0

eξ η̄

r!√2π

∫ −ξ−η̄

−∞
Hr(t + ξ − η)Hr(t + η̄ − ξ̄ )e− 1

2 t2
dt + O

(
m− 1

2 +ε
)
,

as m,n → +∞ while n = m + O(1), where the control is uniform on compact subsets.

If we like, we may use the classical Christoffel-Darboux identity

q−1∑

r=0

1

r!Hr(x)Hr(y) = Hq(x)Hq−1(y) − Hq−1(x)Hq(y)

(q − 1)!(x − y)
(5.8)

to rewrite the above sum. Also, we should note that reproducing kernel for the blow-up space
Pol〈1〉

m,n,q is connected with the reproducing kernel Km,n,q for Polm,n,q via the identity

K
Pol〈1〉

m,n,q
(ξ, η) = m−1e−m−m1/2(ξ+η̄)Km,n,q

(
1 + m−1/2ξ,1 + m−1/2η

)
. (5.9)

5.6 The Blow-Up of the 1-Point Intensity Near a Boundary Point

The 1-point intensity function is

Km,n,q(z, z)e
−m|z|2 ,
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and the localized version with z = 1 + m−1/2ξ is

Um,n,q(ξ) := m−1Km,n,q

(
1 + m−1/2ξ,1 + m−1/2ξ

)
e−m|1+m−1/2ξ |2 ,

where we throw in a factor of m−1 to compensate for the expected number of Jacobian. In
view of (5.9) together with Proposition 5.9, we obtain

Um,n,q(ξ) =
q−1∑

r=0

1

r!√2π

∫ −2 Re ξ

−∞
Hr(t)

2e− 1
2 t2

dt + O
(
m− 1

2 +ε
)
.

So, essentially, the 1-point intensity function is determined by the density

t �→
q−1∑

r=0

1

r!√2π
Hr(t)

2e− 1
2 t2

,

which corresponds to filling the lowest energy eigenstates of the harmonic oscillator. By the
Wigner semi-circle law, then, we get the approximation

Um,n,q(ξ) ≈ 2q

π

∫ −q−1/2 Re ξ

−1

√
1 − τ 2dτ,

valid for big m,n with n = m + O(1), and big q (but much smaller than m,n). So, if we
rescale to characteristic distance q1/2m−1/2 we find an interesting law in the limit. To be
more precise, we find that

q−1Um,n,q

(
q1/2ξ ′) → 2

π

∫ −Re ξ ′

−1

√
1 − τ 2dτ, (5.10)

for ξ ′ confined to a compact set with −1 ≤ Re ξ ′ ≤ 1. Here, it is assumed that the limit
m,n → +∞ while m = n + O(1) is taken first, and the limit q → +∞ is taken afterwards.
Asymptotically, then, (5.10) asserts that the one-point function is the definite integral of the
semi-circle function.

5.7 The Blow-Up Berezin Density at a Boundary Point

The blow-up Berezin density at 1 is given by

B̂〈1〉
m,n,q(ξ) = m−1B〈1〉

m,n,q

(
1 + m−1/2ξ

) = m−1e−m|1+m−1/2ξ |2 |Km,n,q(1 + m−1/2ξ,1)|2
Km,n,q(1,1)

.

From (5.9), we have that

K
Pol〈1〉

m,n,q
(0,0) = m−1e−mKm,n,q(1,1),

while Proposition 5.9 gives

K
Pol〈1〉

m,n,q
(0,0) =

q−1∑

r=0

1

r!√2π

∫ 0

−∞
Hr(t)

2e− 1
2 t2

dt + O
(
m− 1

2 +ε
)
,
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as m,n → +∞ with n = m + O(1). Now, as each Hermite polynomial Hr is either even or
odd,

∫ 0

−∞
Hr(t)

2e− 1
2 t2

dt = 1

2

∫ +∞

−∞
Hr(t)

2e− 1
2 t2

dt = r!√2π

2
,

which leads to

K
Pol〈1〉

m,n,q
(0,0) = q

2
+ O

(
m− 1

2 +ε
)

and

Km,n,q(1,1) = 1

2
mqem

[
1 + O

(
m− 1

2 +ε
)]

.

A similar calculation gives that

Km,n,q

(
1 + m−1/2ξ,1

) = mem+m1/2ξK
Pol〈1〉

m,n,q
(ξ,0)

= mem+m1/2ξ

{
q−1∑

r=0

1

r!√2π

∫ −ξ

−∞
Hr(t + ξ)Hr(t − ξ̄ )e− 1

2 t2
dt

+ O
(
m− 1

2 +ε
)
}

.

Putting things together, we obtain the following asymptotics for the blow-up Berezin
density.

Theorem 5.10 Fix a positive real number ε. Then the blow-up Berezin density at 1 has the
following form:

B̂〈1〉
m,n,q(ξ) = 1

πq

∣
∣∣∣
∣

q−1∑

r=0

1

r!
∫ −ξ

−∞
Hr(t + ξ)Hr(t − ξ̄ )e− 1

2 t2
dt

∣
∣∣∣
∣

2

+ O
(
m− 1

2 +ε
)
,

as m,n → +∞ while n = m + O(1), where the constant of the error term is uniform on
compact subsets.

Remark 5.11 When we make some explicit calculations based on Theorem 5.10, we see that
the Fresnel zone pattern is less pronounced for a boundary point z.
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